
Chapter 2
A Comment on the Question of Degeneracies
in Quantum Mechanics

Michal Svrček

Abstract The problem of degeneracies, descending from the Born-Oppenheimer
(B-O) approximation serves as a “comeback backdoor” of the principle of com-
plementarity, but on a much more subtle level. Quantum mechanics incorporates
both mechanical and field theory features, which results in the well-known particle-
wave aspects of complementarity. The degeneracy problem, however, prompts a
new type of “property-object” complementary phenomena. This leads to serious
consequences: Field theoretical methods, unlike mechanical ones, are incapable of
separating the internal and the external degrees of freedom with respect to the cen-
tre of gravity, but on the other hand adapt relativistically in a natural manner very
similar to the space-time formulas of Maxwell’s equations. The solutions of the
quantum field equations, relativistic in the mentioned specific sense, yield singu-
larities at symmetric points that correspond to the well-known B-O degeneracies
giving the latter in actual fact a metaphysical attribute. However, Nature has in this
case a more sophisticated method or modus operandi to avoid degenerations and to
instigate symmetry violations.

In quantum mechanics, we often encounter degenerate states, which are authentic
and experimentally detectable. The most famous case of degeneracy removal is the
splitting of states under the influence of external electric or magnetic fields (Stark
and Zeeman effects). On the other hand, we also often come across virtual degener-
ate states that are the product of a simplified Hamiltonian, which we usually have to
choose due to the possibility of a realistic analytical solution when the total Hamil-
tonian does not directly provide such a solution. Since the step toward the answer
exploit the principle of superposition, the simplified Hamiltonian may lead to non-
existent fictional degenerations, which are eventually eliminated when taking the
total Hamiltonian into consideration. This removal is either resolved in perturbation
theory or in a non-perturbative approach based on multiconfigurational interaction.

Realistic degenerate states are mostly well defined and they do not therefore need
to be considered further here. In contrast, in the case of so-called virtual degenerate
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states there are many unresolved questions. A typical example is the situation of
degenerate states arising in connection with the use of the Born-Oppenheimer (B-O)
approximation [1]. Since the wave function of the system of electrons and nuclei can
be decomposed due to their small mass ratio m/M into

Ψ (r,R) = ψ(r,R)χ(R) (2.1)

we can separately solve the equations for the electron and the nuclear states. Quan-
tization is carried out in a hierarchical manner: First the electron states are paramet-
rically quantized at given internuclear distances R

He(R)
∣
∣ψ(r,R)

〉 = Ee(R)
∣
∣ψ(r,R)

〉

(2.2)

after which the introduction of the kinetic energy of electrons, Te, the electron-
nuclear and two-electron potentials, EeN and Eee, respectively, the electron Hamil-
tonian He in Eq. (2.2) is expressed as

He = Te(r) + EeN(r,R) + Eee(r). (2.3)

Finally the nuclear motions are quantized as

HN

∣
∣χ(R)

〉 = E
∣
∣χ(R)

〉

(2.4)

where one obtains for the nuclear Hamiltonian in Eq. (2.4) (TN is the kinetic energy
of nuclei and ENN the internuclear potential)

HN = TN(R) + ENN(R) + Ee(R). (2.5)

When Eq. (2.2), at the nuclear equilibrium position, causes a degenerate solu-
tion, represented by the crossing of two or more potential surfaces, the Jahn-Teller
(J-T) effect [2] shows up. The usual responses to this impasse are the incorpora-
tion of standard non-adiabatic corrections as the only cure capable of removing the
degeneracies originating from the B-O approximation.

There would be no further reason to think about the origin of this type of de-
generacies, if field theoretic methods did not exist. In the latter situation, with an
approach, borrowed from quantum electrodynamics and made operational within
quantum mechanics and furthermore widely used in the theory of solids, we are in
fact facing a similar degeneracy problem, but with a completely different method of
solution regarding degeneracy removal. Perhaps the most famous is the model field
Hamiltonian

H =
∑

k,σ

εka+
k,σ

ak,σ +
∑

q

�ωq
(

b+
q bq + 1/2

) +
∑

k,q,σ

uq(

bq + b+−q
)

a+
k+q,σ

ak,σ .

(2.6)
Now the question arises how Eq. (2.6) relates with the B-O approximation. Elec-

tron and electron-phonon terms come from the second quantization of Eq. (2.3)
neglecting the two-electron term, i.e. Te + EeN . The phonon term comes from the
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second quantization of the B-O equation (2.5), i.e. TN + ENN + Ee. This means
that whenever the system is in a degenerate situation in a quantum mechanical de-
scription, according to Eq. (2.2), it is simultaneously degenerate in the quantum field
description, see to Eq. (2.6). What is indeed striking is the way the quantum mechan-
ical approach on the one hand and the field theoretical approach on the other hand,
in reality are capable to eliminate the degeneracy. The mechanical approach leads to
multiconfigurational interaction descriptions including all intersecting potential sur-
faces, as is standard practice in the theory of J-T effect [3, 4], while the field theoret-
ical approach uses the Fröhlich transformation [13] (which, unfortunately, is unable
to remove the degeneracies) and subsequently the Bogoljubov-Valatin transforma-
tion [5], the latter reflecting the BCS theory [6], as is customary in the theory of
superconductivity. Both approaches lead to broken symmetries. Again we find here
a striking difference: the mechanical approach of the J-T effect leads to a structural
symmetry breaking, whereas symmetry violations in the field theoretical approach
to BCS theory relates to charge superselection rule violation.

At this point, we may correctly speculate over the differences between the two
approaches, quantum mechanical and quantum field theoretical ones, and in partic-
ular over the origin of these differences as, e.g., resulting from the B-O approxima-
tion, and moreover how to completely bypass this almost undefeatable approxima-
tion. It provides a certain type of virtual degeneracies, and therefore the question
appears whether these are still justified and if there exists some higher principle,
that would entirely circumvent such circumstances and arrive without more ado at
the desired lifting of the degeneration.

Actually, there is an, in principle, exact formulation in quantum mechanics, con-
sidered by Monkhorst [7, 8], which ignores the B-O approximation, but, however,
suffers some disadvantages. Firstly, it is not possible to derive analytic expressions
for quantum mechanical measurable quantities, cf. the B-O separation procedure;
and secondly, even with the best computers the computations are numerically ex-
ceedingly demanding. It is in effect prohibiting even going beyond such a hum-
ble endeavour as just about ten considered particles, electrons and nuclei included.
Hence, unfortunately, it is quite impossible to consider systems where the B-O ap-
proximation leads to electronically degenerated states, such as those leading to the
J-T effect or the mechanisms of superconductors.

Regarding quantum field methods, there do not seem to exist any definite tech-
niques in consideration of how to construct a field that is not based on the B-O ap-
proximation, or in other words going further than the model Hamiltonian (2.6). This
Hamiltonian representation has turned out to be especially advantageous in treat-
ing systems like insulators and conductors, but alas in superconductivity it points
to the same problems in analogy with non-adiabatic corrections in the J-T problem,
i.e. one obtains B-O degenerate states that we then try to eliminate in a subsequent
treatment.

The primary problem of the B-O approximation is related to the centre-of-mass
(COM) notion. It was indeed one of the main reasons why Monkhorst promoted his
concept and entirely avoided to make this approximation. However, it also appears
that the mistake to determine the centre of gravity in the B-O approximation may be



44 M. Svrček

compensated via the Born-Huang (or Born-Handy) [9, 10] ansatz, which provides
the lowest diagonal adiabatic correction to the B-O formulation. The Born-Handy
ansatz has been tested numerous times, and it yields accurate results in agreement
with experiment. The reason behind the popularity of the Born-Handy ansatz and
why it has been so carefully verified was its approximate avoidance of the COM
problem in the B-O separation. Handy’s contribution consisted, in addition to for-
mulating the procedure, in convincing the broad scientific community of the value
of this pragmatic ansatz, without having to solve the full COM problem, which
amongst other things demands the introduction of relative coordinates and masses.
Kutzelnigg then gave the proof that the Born-Handy ansatz fully replaces the very
complicated and difficult COM solution [11].

Unfortunately, there exists no analogy of the Born-Handy ansatz in the field the-
oretical equation (2.6), which would compensate for the error in the determination
of the centre of mass by means of the B-O approximation. If we perform its gener-
alization for systems without translational symmetry (applicable not only to crystals
with translational symmetry but also to molecules), and subsequently applying the
Fröhlich transformation (cf. Fröhlich’s attempts to explain superconductivity [13]),
we obtain, for the ground state of the hydrogen molecule, only about 20 % of the
total adiabatic correlation energy, while, in quantum mechanics, the Born-Handy
ansatz yields the correct result [14, 15]. Of course, insulators or conductors are
not as sensitive to these effects, and there we prevail with Eq. (2.6). Nevertheless,
cf. non-adiabatic effects in connection with superconductivity, we have to devote
deeper thoughts to the correctness of the Hamiltonian representation (2.6).

As we proceed we will look in more detail at the COM separation problem as
it appears in the B-O approximation. Equation (2.4) leads to a solution in terms of
coupled oscillators, in which relative coordinates represent normal coordinates of
the vibrational modes. After introducing the normal coordinates Br = br + b+

r and
B̃r = br − b+

r for the kinetic and potential energies, respectively, of the nuclei in the
effective field of the electrons, we have

HBO = Ekin(B̃) + Epot(B) (2.7)

where the kinetic and potential energies are given by

Epot = 1

4

∑

r∈V

�ωrB
+
r Br (2.8)

Ekin = 1

4

∑

r∈V

�ωrB̃
+
r B̃r . (2.9)

From the B-O separation we finally get the well-known vibrational Hamiltonian

HBO = 1

4

∑

r∈V

�ωr

(

B+
r Br + B̃+

r B̃r

) =
∑

r∈V

�ωr

(

b+
r br + 1/2

)

. (2.10)

The mechanical approach, based on this procedure, clearly separates the internal
and the external degrees of freedom. The internal degrees correspond to vibrational
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modes r , r ∈ V , and the external degrees are reflected in the translational degrees of
freedom corresponding to the de Broglie wave of COM, and the rotational degrees
of freedom corresponding to the quantized states of angular momentum, with eigen-
values of L2 and L3. An error in the determination of the centre of gravity is then
entirely compensated by the Born-Handy ansatz, but only on the adiabatic level, as
Kutzelnigg did prove [11].

The field theoretical approach, unfortunately, involves Eq. (2.10) as an ingredient
in the total Hamiltonian (2.6) without any possibility to compensate for the COM
factual error. Where is, however, the mistake? Is the error to be found in Eq. (2.10)?
In considering this question, we get back to one of the fundamental problems of
quantum mechanics, which for inexplicable reasons were never brought up for con-
sideration. As is well-known, in quantum mechanics the mechanical and the field
attributes are brought together, and this gives rise to recognized microscopic pecu-
liarities, viz. the complementarity between the coordinate and the momentum rep-
resentations, the alleged dualism of the considered entities, e.g., the appearance as
particles or as waves, the non-commutativity between different classes of opera-
tors. Even if this has been correctly formulated for single-particle states, the general
role of complementarity in quantum mechanics is not completely unraveled in this
way. There is yet another manifestation of complementarity, which shows up at the
many-body level, i.e. the degenerate states in the B-O many-body approximation
just emerge as the reappearance through the backdoor of the fundamental principle
of complementarity, however on a much more subtle level.

Equations (2.8) and (2.9) represent the standard quantum mechanical picture of
vibrations as the properties of the system of electrons and nuclei. However, if we
want to further include Eq. (2.10) in the ensuing field Hamiltonian (2.6), the vi-
brations must not be interpreted as properties only, but instead they are quantum
mechanical objects themselves, ontologically equivalent with electrons. Hence, the
external degrees of freedom cannot be separated from the internal ones, rather they
are materialized in the form of quasiparticles, i.e. rotons and translons, cf. the in-
ternal degrees of freedom that are materialized e.g. in the form of phonons. This
leads to a surprising deduction: Eqs. (2.8) and (2.9) have two mutually exclusive
interpretations: firstly, they are the determining equations for the properties of elec-
trons and nuclei, e.g. vibrations with a clear separation from the external degrees
of freedom; or secondly, they are the generic equations for new quasiparticles, e.g.
phonons, rotons and translons. In the latter case Eqs. (2.8) and (2.9) have the fol-
lowing solution:

Epot = 1

4

∑

r∈V

�ωrB
+
r Br (2.11)

Ekin = 1

2

(
1

2

∑

r∈V

�ωr +
∑

r∈R

ρr +
∑

r∈T

τr

)

B̃+
r B̃r . (2.12)

Dual interpretations of the same equations with two alternate solutions, in the
form of (2.8), (2.9) and (2.11), (2.12), result in a new type of complementarity.



46 M. Svrček

Hence, in addition to the well-known particle-wave dualism, we discern here a new
type of property-object dualism. Equations (2.11), (2.12) thus become the proper
opening from the original mechanical formulation of the system of electrons and
nuclei to the new field theoretic formulation of electrons, phonons, rotons and
translons. There is here no reduction of the system into a subsystem with 3N − 5(6)

degrees of freedom, as in the B-O case, but we must instead consider all 3N de-
grees, and as a replacement for vibrations, we introduce the concept of hypervibra-
tions (vibrations + rotations + translations) and the corresponding hypervibrational
double-vector

ω =
(

ωr

ω̃r

)

=
(

ωr 0 0
ωr

2
�
ρr

2
�
τr

)

(2.13)

from which we get covariant expressions for the boson hypervibrational Hamilto-
nian with respect to all 3N hypervibrational modes.

HB = 1

4

∑

r

(

�ωrB
+
r Br + �ω̃r B̃

+
r B̃r

)

. (2.14)

It is important to point out that this hypervibrational Hamiltonian (2.14), and
not merely the vibrational Hamiltonian (2.10) must be used in the field equations
of type (2.6). Consequently, while the mechanical pattern in quantum mechanics
retains the classical separation of the degrees of freedom, the field theory pattern
does not permit this, while binding together the internal and the external degrees in a
relativistic manner. It may sound astonishing, but it looks like the second time in the
history of physics, when we come across something similar. The space-time theory
of relativity works in four-dimensions where the time can be seen as the fourth—
external degree of freedom. This feature was not present in the classical mechanical
laws of Newton, but it was finally discovered in the classical field equations known
as Maxwell’s equations, where the Lorentz transformation binds together space and
time.

Although the property-object complementarity as well as the related relativistic
nature of the degrees of freedom was not previously shown, Fröhlich, nevertheless,
used the incomplete field Hamiltonian (2.6) and applied his transformation [13]

H ′ = e−S(Q,P )HeS(Q,P ) (2.15)

which refers only to the internal degrees of freedom. However, by attempting to
remove the degeneracy in Eq. (2.6), and further, to get from the initial conducting
state to the state of superconductivity the treatment fails since it would not produce
the requisite gap. On the other hand we can generalize the Fröhlich transformation,
and, instead of the ordinary vibrational modes, we will use the relativistic hyper-
vibrational ones and in addition consider a general case without any translational
symmetry requirement.
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The following application, in accord with (2.15), of the two quasiparticle trans-
formations, the first Q-dependent

aP =
∑

Q

cPQ(B)aQ, br = br +
∑

PQ

drPQ(B)a+
P aQ (2.16)

with the unitary conditions
∑

R

cPR(B)c+
QR(B) = δPQ, drPQ =

∑

R

c+
RP (B)

[

br , cRQ(B)
]

(2.17)

and the second P -dependent

aP =
∑

Q

c̃PQ(B̃)aQ, br = br +
∑

PQ

d̃rPQ(B̃)a+
P aQ (2.18)

with the unitary conditions
∑

R

c̃PR(B̃)c̃+
QR(B̃) = δPQ, d̃rPQ =

∑

R

c̃+
RP (B̃)

[

br , c̃RQ(B̃)
]

(2.19)

will lead to new systems of fermions and bosons. The diagonalization procedures
permit choosing an optimal system, where we achieve a realistic separation into
individual (quasi) fermions and bosons with minimal interaction between them.

Looking at this problem from the standpoint of group theory, we realize that
we must adhere to the Poincaré group, as one of the most general group reflecting
the full symmetry of special relativity, a problem seldom treated in full generality.
Asking the question what would the most general group be that reflects the full
symmetry of the Fröhlich transformation, or in other words, what would be the
analogy of the Poincaré group for transformations carried out in the field theoretic
methods of quantum mechanics. It can be shown that the Fröhlich transformation
in Eq. (2.15) is decomposable into a product of two quasiparticle transformations:
the coordinate (adiabatic) and the momentum (non-adiabatic) ones. We can perform
the generalization to the case without the implied translational symmetry in a very
simple way by replacing the quasimomentum/spin notation, which Fröhlich used
in his original work, by the spinorbital notation. A further simple generalization
can also be attempted, given that the quasiparticle transformations remain valid,
by replacing the vibrational modes r , r ∈ V by the hypervibrational modes r , r ∈
{V,R,T }.

We can now show that (2.16), (2.18) form a group. First we write their inverse
transformations:

aP =
∑

Q

cPQ(B)aQ, br = br +
∑

PQ

drPQ(B)a+
P aQ (2.20)

aP =
∑

Q

c̃PQ(B̃)aQ, br = br +
∑

PQ

d̃rPQ(B̃)a+
P aQ. (2.21)
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It is easy to prove, see e.g. [17], that (2.16), (2.20) contain two invariants: the
coordinate operator B and the number of fermion particles N

Br = Br, N =
∑

P

a+
P aP =

∑

P

a+
P aP = N (2.22)

and further, the transformations (2.18), (2.21) contain also two invariants: the mo-
mentum operator B̃ and the number of fermion particles N

B̃r = B̃r , N =
∑

P

a+
P aP =

∑

P

a+
P aP = N. (2.23)

Finally, the transformations (2.16), (2.18) and their inverses (2.20), (2.21) are tied
up in a certain way:

cPQ(B) = c+
QP (B), drPQ(B) = −

∑

RS

cPR(B)drRS(B)c+
QS(B) (2.24)

c̃PQ(B̃) = c̃+
QP (B̃), d̃rPQ(B̃) = −

∑

RS

c̃PR(B̃)d̃rRS(B̃)c̃+
QS(B̃). (2.25)

Consequently we realize that (2.16), (2.18) actually form a group and thus all sys-
tems of fermions and bosons, obtained by these are equivalent. It is the most general
group of transformations of the Fröhlich type. Unfortunately the Fröhlich treatment
was sadly undervalued and it is now primarily remembered as an ad hoc transfor-
mation that Fröhlich applied to the Hamiltonian describing conductors, while the
resulting Hamiltonian was eventually used in the BCS theory of superconductiv-
ity. However, from the generalized group structure it follows, that Fröhlich type
transformations are of cardinal importance, not only in solids, but also generally in
quantum chemistry, where they are regrettably still practically unused. In conclu-
sion we point out that the main interest lies in that this generalized group combines
the internal and external degrees of freedom in a relativistic fashion.

As is quite obvious the present understanding only needs a straightforward
knowledge of the quantum nature of the harmonic oscillator. As an example we
investigate how the harmonic oscillator manifests itself in a different way compar-
ing the mechanical, see (2.8), (2.9), and in the field approach, see (2.11), (2.12).
Hence we immediately arrive at the novel type of complementarity as based on
the property-object dualism. Continuing further with the degrees of freedom, where
they, in classical form, enter directly in the electron-nuclear Hamiltonian. As a result
of the COM formulation, they represent the quantum form of vibrational, rotational
and translational quanta—as quasiparticles, which transform according to the most
general group (2.16), (2.18). In the mechanical method one does not recognize any
translational quanta, but the in the field theoretical case one does! It is not possible
to separate internal and external degrees of freedom in the field formulation in con-
trast to the mechanical approach, and therefore we attain a new kind of relativistic
flavour in molecular and solid state structures. This variety of relativity is logically
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of quantum origin! Again, as already pointed out, all the aforementioned statements
are merely a consequence of the properties of the harmonic oscillator.

Let us now continue by applying the general transformations, (2.16), (2.18), to
the field Hamiltonian. Here we will only sketch the derivation, since it is, however,
very time-consuming. The final formula for the change of the ground state energy
has a surprisingly simple analytical form. Details of the derivation have been given
in previous work [15] as well as a more comprehensive discussion in [16].

For the correction of the ground state energy we finally get

ΔE0 =
∑

AIr

(

�ω̃r

∣
∣cr

AI

∣
∣
2 − �ωr

∣
∣c̃r

AI

∣
∣
2) (2.26)

where the summation refers to virtual spinorbitals A, occupied spinorbitals I , and
all hypervibrational modes r , r ∈ {V,R,T }. The coefficients c resp. c̃ are related to
the adiabatic and the non-adiabatic transformation, respectively, and determined by
the set of equations

ur
PQ + (

ε0
P − ε0

Q

)

cr
PQ +

∑

AI

[(

ν0
PIQA − ν0

PIAQ

)

cr
AI − (

ν0
PAQI − ν0

PAIQ

)

cr
IA

]

− �ωr c̃
r
PQ = εr

P δPQ (2.27)
(

ε0
P − ε0

Q

)

c̃r
PQ +

∑

AI

[(

ν0
PIQA − ν0

PIAQ

)

c̃r
AI − (

ν0
PAQI − ν0

PAIQ

)

c̃r
IA

]

− �ω̃rc
r
PQ = ε̃r

P δPQ (2.28)

where u are the coefficients of the electron-hyperphonon interaction, ε0 are one-
electron energies, and ν0 two-electron potential energies.

For the derivation we stress the most interesting three limits of Eq. (2.26):

(a) The adiabatic limit, which means that all non-adiabatic coefficients c̃ will be
equal to zero. Thus, we obtain the adiabatic correction

ΔE0(ad) =
∑

AIr

�ω̃r

∣
∣cr

AI

∣
∣
2 = 2

∑

AI

(
∑

r∈V

1

2
�ωr +

∑

r∈R

ρr +
∑

r∈T

τr

)
∣
∣cr

AI

∣
∣
2 (2.29)

which we can directly compare with the Born-Handy ansatz. In the author’s
works [14, 15], the exact CPHF reformulation of the Born-Handy ansatz is dis-
played, leading to the identity between the field and the mechanical equations
at the adiabatic level

ΔE0(ad) = 〈

ψ(R)
∣
∣TN

∣
∣ψ(R)

〉

R0
= 2

∑

AI

(
∑

r∈V

1

2
�ωr +

∑

r∈R

ρr +
∑

r∈T

τr

)
∣
∣cr

AI

∣
∣
2
.

(2.30)
Numerical verification was performed on the molecules H2, HD and D2 [14].

It was surprising that the vibrational contribution only amounted about 20 %,
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while the remaining 80 % consisted of rotational and translational contribu-
tions, even if considering molecules at rest, i.e. they neither rotate nor move.
This comparison is very important because the field equations used in the the-
ory of solids and derived from the B-O approximation, kept only the first term in
(2.30), which is in complete contrast to the Born-Handy ansatz. From the iden-
tity of (2.29) and (2.30), we can clearly see how the mechanical and the field
approaches get by differently with the inaccurate determination of the centre of
gravity, however, eventually leading to the same results, i.e. that the mechanical
Born-Handy ansatz is equivalent to the relativistic field correction.

(b) The non-relativistic limit + neglection of the two-electron terms. It means that
the summation in Eq. (2.26) will involve only the internal degrees of freedom—
phonons.

ΔE0 =
∑

AI,r∈V

(

�ωr

∣
∣cr

AI

∣
∣
2 − �ωr

∣
∣c̃r

AI

∣
∣
2) =

∑

AI,r∈V

∣
∣ur

AI

∣
∣
2 �ωr

(ε0
A − ε0

I )
2 − (�ωr)2

(2.31)
from which, after changeover from quantum chemical to solid state physics no-
tation, we get exactly the same results as originally derived by Fröhlich [12, 13].

ΔE0 = 2
∑

k,k′;k�=k′

∣
∣uk′−k∣

∣2
fk(1 − fk′)

�ωk′−k

(ε0
k′ − ε0

k)2 − (�ωk′−k)2
. (2.32)

Unfortunately, as mentioned above, this equation did not acquire the ex-
pected superconducting gap, as Fröhlich initially had expected. In fact the opti-
mization of the occupation factors fk yields some decrease of the total energy
and Fröhlich then tried to interpret this new state as the superconducting state.

(c) The complete non-adiabatic and relativistic limit, where we only omit two-
electron terms in order to obtain transparent analytical expression:

ΔE0 =
∑

AIr

∣
∣ur

AI

∣
∣
2 �ω̃r

(ε0
A − ε0

I )
2 − (�ωr)2

(2.33)

which in the form of the sum of vibrational, rotational and translational parts
finally reads

ΔE0 =
∑

AI,r∈V

∣
∣ur

AI

∣
∣
2 �ωr

(ε0
A − ε0

I )
2 − (�ωr)2

+ 2
∑

AI,r∈R

∣
∣ur

AI

∣
∣
2 ρr

(ε0
A − ε0

I )
2

+ 2
∑

AI,r∈T

∣
∣ur

AI

∣
∣
2 τr

(ε0
A − ε0

I )
2
. (2.34)

After the rewriting Eq. (2.34) in solid state notation we obtain
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ΔE0 = 2
∑

k,k′
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∣uk′−k∣

∣
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(ε0
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v,k)2 − (�ωo,k′−k)2

+ 4
∑

k,r∈R

∣
∣ur

∣
∣
2 ρr

(ε0
c,k − ε0

v,k)2
+ 4

∑

k,r∈T

∣
∣ur

∣
∣
2 τr

(ε0
c,k − ε0

v,k)2
(2.35)

where o denotes the optical branches and c, v the conducting and the valence
bands respectively.

Equations (2.34), (2.35) are indeed quite intriguing. Here degenerate states can-
not exist unless all the matrix elements of electron-roton and electron-translon in-
teractions are equal to zero. If not, these types of interactions induce singularities
in symmetric points, where the system would be degenerate according to the B-O
approximation. Rotons and translons thus cause symmetry breaking, which results
in automatic elimination of system degeneracies. Degenerations resulting from the
B-O approximation therefore constitute a metaphysical trait, as well as do the con-
cepts of intersecting potential surfaces.

Unfortunately, many scientists consider real and virtual degeneracies to be of the
same nature, as well as their removal, and that the J-T effect and superconductivity
should be treated on an equal footing using the same quantum mechanical rules
as e.g. the Stark and the Zeeman effects. As we have seen here this is not true.
Nature has yet another, more sophisticated means to eliminate virtual degenerations,
and not removing them in some perturbative or multiconfigurational way as usually
carried out in the case of realistic ones.

The question arises how to interpret the B-O approximation, which entrusts a
metaphysical essence to the resulting degeneracies. The development of quantum
mechanics due to the practical but misleading B-O paradigm has somehow stale-
mated halfway between the mechanical and field theoretical methods, and exactly
at the unlucky point where the corresponding complementarity cannot be seen at
the same time leading to incorrect metaphysical conclusions. As a possible recipe
the author recommends either to go back, totally ignoring the B-O procedure, like
was done by Monkhorst in his concept which in fact is the only correct mechanical
approach, or to go on to the concluding line, where the relativistic field approach
ultimately appears. Despite some incongruousness’s as regards the theory of special
relativity, cf. the fulfillment of the group properties of the Poincaré group, the latter
will not be fully solved until we have obtained a consistent quantum gravity theory.

Quantum mechanics is today considered to be a closed discipline; that means,
it should not lead to any internal contradictions. As we have shown here, in this
work, the transformed standard field Hamiltonian, compared with the Born-Handy
ansatz, yields the same paradox as if trying to apply the Galilean transformation
to Maxwell’s equations. The only way out of this quantum mechanical crisis is to
incorporate the concept of a relativistically noncontradictory structure of molecules
and crystals, binding together their internal and external degrees of freedom in the
same way as the Lorentz transformation binds together space and time. We then
arrive at the more general concept of relativity principles, which concern explic-
itly internal and external degrees of freedom. Relativity of space and time forms
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a special subclass, in which the three internal (spatial) and one external (time) co-
ordinates are bound into a four-dimensional spacetime. Brändas recently opened a
discussion of the possible quantum origin of Einstein’s general relativity [18].

Here we have described a different subclass of relativity considerations, with
reference to the structure of molecules and crystals, which follows as a direct result
of the overlooked property-object dualism. The particle-wave dualism is not the only
manifestation of Bohr’s complementarity; there is also a more subtle property-object
dualism. In conclusion we refer to the old controversy between Einstein and Bohr,
with Einstein’s answer to the puzzles of quantum mechanics: “God does not play
dice.” Thus we can understand the principle of relativity as a direct consequence of
the general complementarity principle.

Acknowledgements The author wishes to express his gratitude to E. Brändas for a very careful
reading of the manuscript and improvements of many linguistic and stylistic formulations.

References

1. Born M, Oppenheimer R (1927) Ann Phys (Leipzig) 84:457
2. Jahn HA, Teller E (1937) Proc R Soc London A 161:220
3. Köppel H, Domcke W, Cederbaum LS (1984) Adv Chem Phys 57:59
4. Bersuker IB (2006) The Jahn-Teller effect. Cambridge University Press, Cambridge
5. Bogoliubov NN (1958) Nuovo Cim 10 Ser 7:794
6. Bardeen J, Cooper LN, Schrieffer JR (1957) Phys Rev 108:1175
7. Monkhorst HJ (1987) Phys Rev A 36:1544
8. Cafiero M, Adamowicz L (2004) Chem Phys Lett 387:136
9. Born M, Huang K (1954) The dynamical theory of crystal lattices. Oxford University Press,

London
10. Handy NC, Lee AM (1996) Chem Phys Lett 252:425
11. Kutzelnigg W (1997) Mol Phys 90:909
12. Fröhlich H (1950) Phys Rev 79:845
13. Fröhlich H (1952) Proc R Soc Lond A 215:291
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