
Chapter 11
Target Identification and Tracking

In this chapter we first recall the notion of contracted GPTs. Then we
show that the CGPTs have some nice properties, such as simple rotation
and translation formulas, simple relation with shape symmetry, etc. More
importantly, we derive new invariants for the CGPTs. Based on those
invariants, we develop a dictionary matching algorithm. We suppose that
the unknown shape of the target is an exact copy of some element from
the dictionary, up to a rigid transform and dilatation. Using the invariants,
we identify the target in the dictionary with a low computational cost.
We also apply the Extended Kalman Filter to track both the location and
the orientation of a mobile target from MSR data.

11.1 Complex CGPTs Under Rigid Motions
and Scaling

As we will see later, a complex combination of CGPTs is most convenient
when we consider the transforms of CGPTs under dilatation and rigid
motions, i.e., shift and rotation. Therefore, for a double index mn, with
m,n = 1, 2, . . ., we make use of the complex combination of CGPTs given
by (7.10), where the CGPTs, Mcc

mn ,M
ss
mn ,M

cs
mn , and M sc

mn , are defined by
(7.6)–(7.9).

Then, from (4.2), we observe that

N
(1)
mn(λ,D) =

∫
∂D

Pn(y)(λI − K∗
D)−1[〈ν,∇Pm〉](y) dσ(y) ,

N
(2)
mn(λ,D) =

∫
∂D

Pn(y)(λI − K∗
D)−1[〈ν,∇Pm〉](y) dσ(y) ,
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212 11 Target Identification and Tracking

where Pn and Pm are defined by (7.4). In order to simplify the notation, we
drop λ in the following and write simply N

(1)
mn(D),N

(2)
mn(D).

We consider the translation, the rotation and the dilatation of the domain
D by introducing the following notation:

(i) Shift: TzD = {x+ z, x ∈ D}, for z ∈ R
2;

(ii) Rotation: RθD = {eiθx, x ∈ D}, for θ ∈ [0, 2π);
(iii) Scaling: sD = {sx, x ∈ D}, for s > 0.

The following properties for the complex CGPTs hold. They are much simpler
than those associated with the GPTs, which are derived in Sect. 4.2.

Proposition 11.1. For all integers m,n, and geometric parameters θ, s,
and z, the following holds:

N
(1)
mn(RθD) = ei(m+n)θ

N
(1)
mn (D), N

(2)
mn (RθD) = ei(n−m)θ

N
(2)
mn(D) ,

(11.1)

N
(1)
mn(sD) = sm+n

N
(1)
mn(D), N

(2)
mn(sD) = sm+n

N
(2)
mn(D) ,

(11.2)

N
(1)
mn(TzD) =

m∑

l=1

n∑

k=1

Cz
mlN

(1)
lk (D)Cz

nk , N
(2)
mn(TzD) =

m∑

l=1

n∑

k=1

Cz
mlN

(2)
lk (D)Cz

nk ,

(11.3)

where Cz is a lower triangle matrix with the m,n-th entry given by

Cz
mn =

(
m

n

)
zm−n , (11.4)

and Cz denotes its conjugate. Here, we identify z = (z1, z2) with z = z1+ iz2.

An ingredient that we will need in the proof is the following chain rule
between the gradient of a function and its push forward under transformation.
In fact, for any diffeomorphism Ψ from R

2 to R
2 and any scalar-valued

differentiable map f on R
2, we have

d(f ◦ Ψ)
∣∣
x
(h) =

(
df
∣∣
Ψ(x)

◦ dΨ
∣∣
x

)
(h) , (11.5)

for any tangent vector h ∈ R
2, with dΨ being the differential of Ψ .

Proof (of Proposition 11.1). We will follow proofs of similar relations that
can be found in Chap. 4. Let us first show (11.1) for the rotated domain
Dθ := RθD. For a function φ(y), y ∈ ∂D, we define a function φθ(yθ), yθ :=
Rθy ∈ ∂Dθ by
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φθ(yθ) = φ ◦ R−θ(yθ) = φ(y) .

It is proved in (4.10) that λI−K∗
D is invariant under the rotation map, that is,

(λI − K∗
Dθ

)[φθ](yθ) = (λI − K∗
D)[φ](y) . (11.6)

We also check that Pm(Rθy) = eimθPm(y).
We will focus on the relation for N

(1)
mn , the other one can be proved in the

same way. By definition, we have

N
(1)
mn(D) =

∫
∂D

Pn(y)φD,m(y)dσ(y) ,

N
(1)
mn(Dθ) =

∫
∂Dθ

Pn(yθ)φDθ ,m(yθ)dσ(yθ) ,

(11.7)

where

φD,m(y) = (λI − K∗
D)−1[〈ν,∇Pm〉](y) ,

φDθ,m(yθ) = (λI − K∗
Dθ

)−1[〈ν,∇Pm〉](yθ) .

Note that the last function differs from φθ
D,m. By the change of variables

yθ = Rθy in the first expression of (11.7), we obtain

N
(1)
mn(D) =

∫
∂Dθ

Pn(R−θyθ)φD,m(R−θyθ)dσ(yθ)

= e−inθ

∫
∂Dθ

Pn(yθ)φ
θ
D,m(yθ)dσ(yθ) .

From (11.6), we have

(λI − K∗
Dθ

)[φθ
D,m](yθ) = (λI − K∗

D)[φD,m](y)

= 〈νy,∇Pm(y)〉 .

Moreover, Pm(y) = e−imθPm(yθ) so that, by applying the chain rule (11.5)
with f = Pm, T = Rθ, x = y and h = νy, we can conclude that

〈νy,∇Pm(y)〉 = e−imθ〈Rθνy,∇Pm(yθ)〉
= e−imθ〈νyθ

,∇Pm(yθ)〉 .
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Therefore, φθ
D,m = e−imθφDθ,m, and we conclude that

N
(1)
mn(Dθ) = ei(m+n)θ

N
(1)
mn(D) .

The second identity in (11.1) results from the same computation as above
(the minus sign comes from the conjugate in the definition of N(2)), and the
two equations in (11.2) are proved in the same way, replacing the transformed
function φθ by

φs(sy) = φ(y) .

Thus, only (11.3) remains. Since the difference between these two comes
from the conjugation, we will focus only on the first identity in (11.3). The
strategy will be once again the following: for a function φ(y), y ∈ ∂D, we
define a function φz(yz), yz = y + z ∈ ∂Dz, with Dz := TzD, by

φz(yz) = φ ◦ T−z(yz) = φ(y) ,

which also verifies an invariance relation similar to (11.6)

(λI − K∗
Dz

)[φz ](yz) = (λI − K∗
D)[φ](y) . (11.8)

Moreover, for every integer q ∈ N one has the following

Pq(yz) = (y + z)q =

q∑
r=0

(
q

r

)
yrzq−r . (11.9)

Equations (11.7) become

N
(1)
mn(D) =

∫
∂D

Pn(y)φD,m(y)dσ(y) ,

N
(1)
mn(Dz) =

∫
∂Dz

Pn(yz)φDz ,m(yz)dσ(yz) ,

where

φD,m(y) = (λI − K∗
D)−1[〈ν,∇Pm〉](y) ,

φDz ,m(yz) = (λI − K∗
Dz

)−1[〈ν,∇Pm〉](yz) .

Thus, combining (11.8) and (11.9) leads us to
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(λI − K∗
Dz

)[φDz ,m](yz) = 〈νyz ,∇Pm(yz)〉

= 〈νy,
m∑
l=1

(
m

l

)
zm−l∇Pl(y)〉

=
m∑
l=1

(
m

l

)
zm−l(λI − K∗

D)[φD,l](y)

=

m∑
l=1

(
m

l

)
zm−l(λI − K∗

Dz
)[φz

D,l](yz) ,

so that we have

φDz ,m(y) =

m∑
l=1

(
m

l

)
zm−lφz

D,l(yz) .

Hence, returning to the definition of N(1)
mn(Dz) with the substitution yz ↔ y,

we obtain

N
(1)
mn(Dz) =

m∑
l=1

(
m

l

)
zm−l

∫
∂Dz

Pn(yz)φ
z
D,l(yz)dσ(yz) ,

=
m∑
l=1

n∑
k=1

(
m

l

)(
n

k

)
zm−lzn−k

N
(1)
lk (D) ,

which is the desired result. Note that the index k begins with k = 1 because∫
∂Dz

φz
D,l = 0. This completes the proof.

11.1.1 Some Properties of the Complex CGPTs

We define the complex CGPT matrices by N
(1) := (N

(1)
mn)m,n and N

(2) :=

(N
(2)
mn)m,n. We set w = seiθ and introduce the diagonal matrix Gw with

the m-th diagonal entry given by wm = smeimθ. Proposition 11.1 implies
immediately that

N
(1)(TzsRθD) = CzGw

N
(1)(D)Gw(Cz)T , (11.10)

N
(2)(TzsRθD) = CzGwN

(2)(D)Gw(Cz)T , (11.11)

where Cz is defined by (11.4). Relations (11.10) and (11.11) still hold for the
truncated CGPTs of finite order, due to the triangular shape of the matrix Cz .
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Using the symmetry of the CGPTs [31, Theorem 4.11] and the positivity of
the GPTs as proved in [31], we easily establish the following result.

Proposition 11.2. The complex CGPT matrix N
(1) is symmetric:

(N(1))T = N
(1), and N

(2) is Hermitian: (N(2))T = N
(2). Consequently, the

diagonal elements of N(2) are strictly positive if λ > 0 and strictly negative
if λ < 0.

Furthermore, the CGPTs of rotation invariant shapes have special struc-
tures:

Proposition 11.3. Suppose that D is invariant under rotation of angle 2π/p
for some integer p ≥ 2, i.e., R2π/pD = D, then

N
(1)
mn(D) = 0 if p does not divide (m+ n) , (11.12)

N
(2)
mn(D) = 0 if p does not divide (m − n) . (11.13)

Proof. Suppose that p does not divide (m + n), and define r := 2π(n +
m)/p mod 2π. Then by the rotation symmetry of D and the symmetry
property of the CGPTs, we have

N
(1)
mn(D) = N

(1)
mn(R2π/pD) = ei(m+n)2π/p

N
(1)
mn(D) = eirN(1)

mn(D) .

Since r < 2π and r 	= 0, we conclude that N
(1)
mn(D) = 0. The proof of (11.13)

is similar.

11.2 Shape Identification by the CGPTs

We call a dictionary D a collection of standard shapes, which are centered
at the origin and with characteristic sizes of order 1. Given the CGPTs of an
unknown shape D, and assuming that D is obtained from a certain element
B ∈ D by applying some unknown rotation θ, scaling s and translation
z, i.e., D = TzsRθB, our objective is to recognize B from D. For doing
so, one may proceed by first reconstructing the shape D using its CGPTs
through some optimization procedures as proposed in [37], and then match
the reconstructed shape with D. However, such a method may be time-
consuming and the recognition efficiency depends on the shape reconstruction
algorithm.

We propose in Sects. 11.2.1 and 11.2.2 two shape identification algorithms
using the CGPTs. The first one matches the CGPTs of data with that of
the dictionary element by estimating the transform parameters, while the
second one is based on a transform invariant shape descriptor obtained from
the CGPTs. The second approach is computationally more efficient. Both of
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them operate directly in the data domain which consists of CGPTs and avoid
the need for reconstructing the shape D. The heart of our approach is some
basic algebraic equations between the CGPTs of D and B that can be deduced
easily from (11.10) and (11.11). Particularly, the first four equations read:

N
(1)
11 (D) = w2

N
(1)
11 (B) , (11.14)

N
(1)
12 (D) = 2N

(1)
11 (D)z + w3

N
(1)
12 (B) , (11.15)

N
(2)
11 (D) = s2N

(2)
11 (B) , (11.16)

N
(2)
12 (D) = 2N

(2)
11 (D)z + s2wN

(2)
12 (B) , (11.17)

where w = seiθ.

11.2.1 CGPTs Matching

Determination of Transform Parameters

Suppose that the complex CGPT matrices N(1)(B),N(2)(B) of the true shape
B are given. Then, from (11.16), we obtain that

s =

√
N

(2)
11 (D)/N

(2)
11 (B) . (11.18)

Case 1: Rotational Symmetric Shape.

If the shape B has rotational symmetry, i.e., R2π/pB = B for some p ≥ 2, then
from Proposition 11.3 we have N

(2)
12 (B) = 0 and the translation parameter z

is uniquely determined from (11.17) by

z =
N

(2)
12 (D)

2N
(2)
11 (D)

. (11.19)

On the contrary, the rotation parameter θ (or eiθ) can only be determined
up to a multiple of 2π/p, from CGPTs of order 
p/2� at least. Although
explicit expressions of eipθ can be deduced from (11.14)–(11.17) (or higher-
order equations if necessary), we propose to recover eipθ by solving the least-
squares problem:

min
θ

(
‖N(1)(TzsRθB) − N

(1)(D)‖2F + ‖N(2)(TzsRθB) − N
(2)(D)‖2F

)
.

(11.20)
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Here, s and z are given by (11.18) and (11.19) respectively, and N
(1)(D) and

N
(2)(D) are the truncated complex CGPTs matrices of dimension 
p/2� ×


p/2�.

Case 2: Non Rotational Symmetric Shape.

Consider a non rotational symmetric shape B which satisfies the assumption:

N
(1)
11 (B) 	= 0 and det

(
N

(1)
11 (B) N

(2)
11 (B)

N
(1)
12 (B) N

(2)
12 (B)

)
	= 0 . (11.21)

From (11.15) and (11.17), it follows that we can uniquely determine the
translation z and the rotation parameter w = eiθ from CGPTs of orders one
and two by solving the following linear system:

N
(1)
12 (D)/N

(1)
11 (D) = 2z + wN

(1)
12 (B)/N

(1)
11 (B) ,

N
(2)
12 (D)/N

(2)
11 (D) = 2z + wN

(2)
12 (B)/N

(2)
11 (B) . (11.22)

Debiasing by Least-Squares Solutions

In practice (for both the rotational symmetric and non rotational symmetric
cases), the values of the parameters z, s and θ provided by the analytical
formulas and numerical procedures above may be inexact, due to the noise
in the data and the ill-conditioned character of the linear system (11.22).
Let z∗, s∗, θ∗ be the true transform parameters, which can be considered as
perturbations around the estimations z, s, θ obtained above:

z∗ = z + δz, s∗ = sδs, and θ∗ = θ + δθ , (11.23)

for δz, δθ small and δs close to 1. To find these perturbations, we solve a
nonlinear least-squares problem:

min
z′,s′,θ′

(
‖N(1)(Tz′s′Rθ′B) − N

(1)(D)‖2F + ‖N(2)(Tz′s′Rθ′B) − N
(2)(D)‖2F

)
,

(11.24)

with (z, s, θ) as an initial guess. Here, the order of the CGPTs in (11.24) is
taken to be 2 in the non rotational case and max(2, [p/2]) in the rotational
symmetric case. Thanks to the relations (11.10) and (11.11), one can calculate
explicitly the derivatives of the objective function, therefore can solve (11.24)
by means of standard gradient-based optimization methods.
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Algorithm 11.1 Shape identification based on CGPT matching
Input: the first k-th order CGPTs N(1)(D),N(2)(D) of an unknown shape D
for Bn ∈ D do

1. Estimate z, s, and θ using the procedures described in Sect. 11.2.1;
2. D̃← R−θs

−1T−zD, and calculate N(1)(D̃) and N(2)(D̃);
3. E(1) ← N(1)(Bn)− N(1)(D̃), and E(2) ← N(2)(Bn)− N(2)(D̃);
4. en ← (‖E(1)‖2F + ‖E(2)‖2F )1/2/(‖N(1)(Bn)‖2F + ‖N(2)(Bn)‖2F )1/2;
5. n← n+ 1;

end for
Output: the true dictionary element n∗ ← argminnen.

First Algorithm for Shape Identification

For each dictionary element, we determine the transform parameters as
above, then measure the similarity of the complex CGPT matrices using
the Frobenius norm, and choose the most similar element as the identified
shape. Intuitively, the true dictionary element will give the correct transform
parameters and hence the most similar CGPTs. This procedure is described
in Algorithm 11.1.

11.2.2 Transform Invariant Shape Descriptors

From (11.16) and (11.17) we deduce the following identity:

N
(2)
12 (D)

2N
(2)
11 (D)

= z + seiθ
N

(2)
12 (B)

2N
(2)
11 (B)

, (11.25)

which is well defined since N
(2)
11 	= 0 thanks to the Proposition 11.2. Identity

(11.25) shows a very simple relationship between N
(2)
12 (B)

2N
(2)
11 (B)

and N
(2)
12 (D)

2N
(2)
11 (D)

for
D = TzsRθB.

Let u =
N

(2)
12 (D)

2N
(2)
11 (D)

. We first define the following quantities which are
translation invariant:

J (1)(D) = N
(1)(T−uD) = C−u

N
(1)(D)(C−u)T , (11.26)

J (2)(D) = N
(2)(T−uD) = C−uN

(2)(D)(C−u)T , (11.27)

with the matrix C−u being the same as in Proposition 11.1. From J (1)(D) =

(J (1)
mm(D))m,n and J (2)(D) = (J (2)

mm(D))m,n, we define, for any indices m,n,
the scaling invariant quantities:
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Algorithm 11.2 Shape identification based on transform invariant descrip-
tors

Input: the first k-th order shape descriptors I(1)(D), I(2)(D) of an unknown shape D
for Bn ∈ D do

1. en ←
(‖I(1)(Bn) − I(1)(D)‖2F + ‖I(2)(Bn)− I(2)(D)‖2F

)1/2;
2. n← n+ 1;

end for
Output: the true dictionary element n∗ ← argminnen.

S(1)
mn(D) =

J (1)
mn (D)(

J (2)
mm(D)J (2)

nn (D)
)1/2 , S(2)

mn(D) =
J (2)
mn (D)(

J (2)
mm(D)J (2)

nn (D)
)1/2 .

(11.28)

Finally, we introduce the CGPT-based shape descriptors I(1) = (I(1)
mn)m,n

and I(2) = (I(2)
mn)m,n:

I(1)
mn(D) = |S(1)

mn(D)| and I(2)
mn(D) = |S(2)

mn(D)| , (11.29)

where | · | denotes the modulus of a complex number. Constructed in this way,
I(1) and I(2) are clearly invariant under translation, rotation, and scaling.

It is worth emphasizing the symmetry property, I(1)
mn = I(1)

nm, I(2)
mn = I(2)

nm,
and the fact that I(2)

mm = 1 for any m.

Second Algorithm for Shape Identification

Thanks to the transform invariance of the new shape descriptors, there is
no need now for calculating the transform parameters, and the similarity
between a dictionary element and the unknown shape can be directly
measured from I(1) and I(2). As in Algorithm 11.1, we use the Frobenius
norm as the distance between two shape descriptors and compare with all
the elements of the dictionary. We propose a simplified method for shape
identification, as described in Algorithm 11.2.

11.3 Target Tracking

In this section we apply an Extended Kalman Filter to track both the
location and the orientation of a mobile target from multistatic response
measurements. As shown in Sect. 1.10.2, the Extended Kalman Filter (EKF)
is a generalization of the Kalman Filter (KF) to nonlinear dynamical systems.
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It is robust with respect to noise and computationally inexpensive, therefore
is well suited for real-time applications such as tracking. One should have
in mind that, in real applications, one would like to localize the target and
reconstruct its orientation directly from the MSR data without reconstructing
the GPTs.

11.3.1 Location and Orientation Tracking of a
Mobile Target

We denote by zt = (xt, yt)
T ∈ R

2 the position and θt ∈ [0, 2π) the orientation
of a target Dt at the instant t, such that the shape of the target Dt is given by:

Dt = zt +RθtB , (11.30)

where Rθt is the rotation by θt. We assume that the CGPTs of B have been
reconstructed and the shape has been correctly identified from a dictionary,
so that the CGPT matrix M := M(B) of order K ≥ 2 is available. We use
the same notation as in the previous chapter. Then we have the MSR
matrix:

At = L(Mt) + Et +Wt , (11.31)

where Mt is the CGPT of Dt, Et is the truncation error, and Wt the
measurement noise of time t. In the case of circular configuration with
coincident arrays of sources and receivers, the linear operator L takes the
form:

L(Mt) = CDMtDCT . (11.32)

The objective of tracking is to estimate the target location zt and orien-
tation θt from the MSR data stream At. Before developing a CGPT-based
tracking algorithm, we establish a simple relation between Mt and M.

Time Relationship Between CGPTs

Let u = (1, i)T . The complex CGPT N
(1),N(2) are defined by

N
(1)
mn = (Mcc

mn − M ss
mn) + i(Mcs

mn +M sc
mn) = uTMmnu ,

N
(2)
mn = (Mcc

mn +M ss
mn) + i(Mcs

mn − M sc
mn) = u∗Mmnu .
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Therefore, we have

N
(1) = UT

MU, and N
(2) = U∗

MU , (11.33)

where the matrix U of dimension 2K × K is defined by

U =

⎛
⎜⎜⎜⎝

u 0 . . . 0

0 u . . . 0
...

. . .
...

0 . . . 0 u

⎞
⎟⎟⎟⎠ . (11.34)

To recover the CGPT Mmn from the complex CGPTs N
(1),N(2), we simply

use the relations

Mcc
mn =

1

2

e(N(1)

mn + N
(2)
mn), Mcs

mn =
1

2
�m(N(1)

mn + N
(2)
mn) ,

M sc
mn =

1

2
�m(N(1)

mn − N
(2)
mn), M ss

mn =
1

2

e(N(2)

mn − N
(1)
mn) .

(11.35)

For two targets Dt and B satisfying (11.30), the following relationships
between their complex CGPTs hold:

N
(1)(Dt) = FT

t N
(1)(B)Ft , (11.36a)

N
(2)(Dt) = F ∗

t N
(2)(B)Ft , (11.36b)

where Ft is a upper triangle matrix with the (m,n)-th entry given by

(Ft)mn =

(
n

m

)
(xt + iyt)

n−m
eimθt . (11.37)

Linear Operator Tt

Now one can find explicitly a linear operator Tt which depends only on zt, θt,
such that Mt = Tt(M), and the equation (11.31) becomes:

At = L(Tt(M)) + Et +Wt . (11.38)

For doing so, we set Jt := UFt, where U is given by (11.34). Then, a
straightforward computation using (11.33), (11.35), and (11.36) shows that

Mcc(Dt) = 
eJT
t M
eJt, Mcs(Dt) = 
eJT

t M�mJt ,

M sc(Dt) = �mJT
t M
eJt, M ss(Dt) = �mJT

t M�mJt ,
(11.39)
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where Mcc(Dt),M
cs(Dt),M

sc(Dt),M
ss(Dt) are the CGPTs. By interlacing

all these four terms we get the operator Tt:

Tt(M) = 
eU(
eJT
t M
eJt)
eUT + 
eU(
eJT

t M�mJt)�mUT+

�mU(�mJT
t M
eJt)
eUT + �mU(�mJT

t M�mJt)�mUT = Mt .
(11.40)

Tracking by CGPTs

A naive way to track the location zt and the orientation θt is as follows.
At each time t we first reconstruct Mt to get the complex CGPTs

N
(1)
1,1(Dt),N

(1)
1,2(Dt),N

(2)
1,1(Dt),N

(2)
1,2(Dt) .

Then we find the relative movement Δzt = zt − zt−1 and Δθt = θt − θt−1 by
solving a linear system:

N
(1)
12 (Dt)/N

(1)
11 (Dt) = 2(
Δzt + i�Δzt) + eiΔθtN

(1)
12 (Dt−1)/N

(1)
11 (Dt−1),

N
(2)
12 (Dt)/N

(2)
11 (Dt) = 2(
Δzt + i�Δzt) + eiΔθtN

(2)
12 (Dt−1)/N

(2)
11 (Dt−1) .

(11.41)

The estimated path is then zt =
∑t

s=1 Δzs + z0, and θt =
∑t

s=1 Δθs + θ0.
However, such an algorithm has no practical interest. In fact, the error in the
estimated path (zt, θt) will propagate over time, since the noise presented in
data is not properly taken into account here. In the following we apply the
Extended Kalman Filter to the system (11.38) which takes advantage of the
operator Tt and handles correctly the noise.

11.3.2 Tracking by the Extended Kalman Filter

In the next we establish first the system state and the observation equations,
then linearize the observation equation and apply the EKF algorithm.

System State Observation Equations

We assume that the position of the target is subject to an external driving
force that has the form of a white noise. In other words the velocity
(V (τ))τ∈R+ of the target is given in terms of a two-dimensional Brownian
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motion (Wa(τ))τ∈R+ and its position (Z(τ))τ∈R+ is given in terms of the
integral of this Brownian motion:

V (τ) = V0 + σaWa(τ), Z(τ) = Z0 +

∫ τ

0

V (s)ds .

The orientation (Θ(τ))τ∈R+ of the target is subject to random fluctuations
and its angular velocity is given in terms of an independent white noise, so
that the orientation is given in terms of a one-dimensional Brownian motion
(Wθ(τ))τ∈R+ :

Θ(τ) = Θ0 + σθWθ(τ) .

We observe the target at discrete times tΔτ , t ∈ N, with time step Δτ . We
denote zt = Z(tΔτ), vt = V (tΔτ), and θt = Θ(tΔτ). These functions obey
the recursive relations

vt = vt−1 + at, at = σa

(
Wa(tΔτ) − Wa((t − 1)Δτ)

)
,

zt = zt−1 + vt−1Δτ + bt , bt = σa

∫ tΔτ

(t−1)Δτ

Wa(s) − Wa((t − 1)Δτ)ds ,

θt = θt−1 + ct, ct = σθ

(
Wθ(tΔτ) − Wθ((t − 1)Δτ)

)
.

(11.42)

Since the increments of the Brownian motions are independent from each
other, the vectors (Ut)t≥1 given by

Ut =

⎛
⎝at
bt
ct

⎞
⎠

are independent and identically distributed with the multivariate normal
distribution with mean zero and covariance matrix Σ given by

Σ = Δτ

⎛
⎜⎝

σ2
aI2

σ2
a

2 ΔτI2 0
σ2
a

2 ΔτI2
σ2
a

3 Δτ2I2 0

0 0 σ2
θ

⎞
⎟⎠ . (11.43)

The evolution of the state vector

Xt =

⎛
⎝vt
zt
θt

⎞
⎠
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takes the form

Xt = FXt−1 + Ut, F =

⎛
⎝ I2 0 0

ΔτI2 I2 0

0 0 1

⎞
⎠ . (11.44)

The observation made at time t is the MSR matrix given by (11.38), where
the system state Xt is implicitly included in the operator Tt. For the sake
of simplicity, we suppose that the truncation error Et is small compared
to the measurement noise so that it can be dropped in (11.38), and that
the Gaussian white noise Wt of different time are mutually independent.
We emphasize that the velocity vector vt of the target does not contribute
to (11.38), which can be seen from (11.30). To highlight the dependence on
zt, θt, we introduce a function h which is nonlinear in zt, θt, and takes M as
a parameter, such that

h(Xt;M) = h(zt, θt;M) = L(Tt(M)) . (11.45)

Then together with (11.44) we get the following system state and observation
equations:

Xt = FXt−1 + Ut , (11.46a)

Vt = h(Xt;M) +Wt . (11.46b)

Note that (11.46a) is linear, so in order to apply EKF on (11.46), we only need
to linearize (11.46b), or in other words, to calculate the partial derivatives of
h with respect to xt, yt, θt.

Linearization of the Observation Equation

Clearly, the operator L contains only the information concerning the
acquisition system and does not depend on xt, yt, θt. So, by (11.45), we have

∂xth = L(∂xtTt(M)) . (11.47)

Moreover, the calculation for ∂xtTt is straightforward using (11.40). We have

∂xtTt(M) =�eU∂xt(�eJT
t M�eJt)�eUT + �eU∂xt(�eJT

t M�mJt)�mUT+

�mU∂xt(�mJT
t M�eJt)�eUT + �mU∂xt(�mJT

t M�mJt)�mUT ,

(11.48)
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where the derivatives are found by the product rule:

∂xt(
eJT
t M
eJt) = 
e(∂xtJ

T
t )M
eJt + 
eJT

t M
e(∂xtJt) ,

∂xt(
eJT
t M�mJt) = 
e(∂xtJ

T
t )M�mJt + 
eJT

t M�m(∂xtJt) ,

∂xt(�mJT
t M
eJt) = �m(∂xtJ

T
t )M
eJt + �mJT

t M
e(∂xtJt) ,

∂xt(�mJT
t M�mJt) = �m(∂xtJ

T
t )M�mJt + �mJT

t M�m(∂xtJt) ,

and ∂xtJt = U∂xtFt. The (m,n)-th entry of the matrix ∂xtFt is given by

(∂xtFt)m,n =

(
n

m

)
(n − m)zn−m−1

t eimθt . (11.49)

The derivatives ∂ytTt(M) and ∂θtTt(M) are calculated in the same way.

Bibliography and Discussion

The results of this chapter on target identification are from [8]. They provide
an efficient approach for real-time target identification using dictionary
matching. They show that GPT-based representations are appropriate and
natural tools for multistatic imaging. They can be generalized to electro-
magnetic wave propagation as well. As shown in this chapter, they can be
used for tracking a mobile target from multistatic data. The results of this
chapter on the location and orientation tracking are from [9]. An analysis
of the ill-posed character of both the location and orientation tracking in
the case of limited-view data was carried out in [9]. In [11], transformation
formulas for the GPTs under rigid motions and scaling in three dimensions
are given. Moreover, invariants under those transformations, which can be
used as shape descriptors for dictionary matching in three dimensions, are
constructed.

In [41] a shape identification and classification algorithm in echolocation
is proposed. The approach is based on first extracting scattering coefficients
from the reflected waves and then matching them with precomputed ones
associated with a dictionary of targets. The construction of such frequency-
dependent shape descriptors is based on the properties of the scattering
coefficients described in Chap. 5 and some new invariants.
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