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Synthetic Glycopolymers: Some Recent
Developments

Qiang Zhang and David M. Haddleton

Abstract Glycopolymers are synthetic macromolecules containing sugar moieties.
They have shown promise in biorelated applications and the number of synthetic
approaches for making these molecules is expanding rapidly. This field benefits
from the rapid development of synthetic polymer chemistry, which has seen
dramatic progress in the synthesis of functional glycopolymers. Strategies
employed in glycopolymer synthesis have been generally carried out as either
direct polymerization of glycomonomers or post-glycosylation of pre-formed
polymers. This contribution is a short overview of some of the recent developments
and will hopefully direct the reader to many papers of interest.
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Glycopolymers are generally considered as synthetic macromolecules featuring sugar
moieties and have showed promise in some biorelated applications [1]. This field has
benefited from the development of elegant synthetic polymer chemistry, and the past
two decades have evidenced dramatic progress in the synthesis of functional
glycopolymers. Glycopolymer synthesis has been generally carried out by either
direct polymerization of glycomonomers or post-glycosylation of pre-formed
polymers [2]. As a special case, glycopolymers can also be synthesised via simulta-
neous copper-catalyzed azide-alkyne cycloaddition (CuAAC) and living radical
polymerization (LRP), which is a hybrid of the previous two strategies [3].

By the combination of living polymerization and click chemistry, different
strategies have been developed for the efficient synthesis of glycopolymers with
defined structure and function. These strategies have already been discussed in
detailed reviews separately by Haddleton, Stenzel, Cameron, Maynard and
co-authors [1, 2, 4-6]. The applications of glycopolymers such as therapeutic
drug delivery, multivalent recognitions with lectins and signal transduction have
been summarized in recent reviews by Cameron, Stenzel, Remzi, Kiessling and
co-authors [2, 7-9]. Thus, there has been very intensive research on glycopolymer
synthesis and application, and most of the research until 2011 has been summarized
in previous reviews. However, new strategies have been constantly emerging
during 2011-2013 and are described below.

1 Novel Strategies in the Direct Polymerization
of Glycomonomers

1.1 Ring-Opening Polymerization

Ring-opening polymerization includes cationic, anionic and enzymatic ring-opening
polymerization, which depend on whether the catalyst type or the reactive centre of
the propagating chain is a carbocation or carbanion. It has had a long history since
the 1950s and has been widely used for polymerization of different functional
cyclic monomers [10]. However, its application in the direct polymerization of
carbohydrate-containing cyclic monomers has been limited [11, 12]. Recently, the
Schubert group synthesized a glucose-substituted 2-oxazoline monomer (Fig. 1) via
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Fig. 1 Synthesis of glyco-poly(2-oxazoline)s by ring-opening polymerization

CuAAC and used this for cationic ring-opening copolymerization (CROP) with
2-oxazoline-based monomers, yielding well-defined glycopolymers bearing
functional groups for thiol-ene reactions to tune the properties [13].

Although the polymerization of protected glycomonomers requires high reaction
temperatures (~120°C) and long reaction times (overnight) for this CROP, the final
glycopolymers show relatively narrow molecular weight distribution (~1.3) and the
poly(2-oxazoline) backbones are biocompatible and considered as analogues of
poly(amino acids), which may have potential application in drug delivery.

1.2 Copper-Mediated Living Radical Polymerization

Radical species usually have poor chemo- and regioselectivity in organic reactions
and tend to undergo bimolecular termination and disproportionation in polymeriza-
tions. Thus, in order to have precise control in radical polymerization, a reversible
and dynamic equilibrium between active radical growing species and dormant
species (Fig. 2) is necessary so that the concentration of active radicals can be kept
at a low level. The relatively stable dormant species could avoid side reactions or
propagation yet is still able to generate intermediates capable of propagation by
dissociation of the leaving groups via chemical catalysis or physical stimuli [14].
Different strategies have been developed to perturb this equilibrium with different
leaving groups, including halides, stable radicals and thiolcarbonylthio compounds,
via varying dissociation methods such as metal catalysis and addition-fragmentation
chain transfer etc. Most of the current methods in living radical polymerizations are
based on this concept [15].

Since its discovery in 1994, transition metal-catalyzed LRP has been one of the
most popular, versatile and robust polymerization methods for synthesis of various
functional polymers with controlled chain length, architecture and molecular
weight distribution [16, 17]. The initiators are generally organic halides with
potentially active carbon-halogen bonds for radical generation or conventional
radical initiators, both of which are either commercially available or can be easily
synthesized. The transition metal catalysts generally contain transition metals
of groups 8-11, typically including iron, nickel, ruthenium and copper. Copper
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Fig. 2 Reversible and dynamic equilibrium between active radical growing species and dormant
species (K, means rate constant of activation; K4 means rate constant of deactivation; R, means
rate constant of propargation; M means monomer; P-X represents dormant polymer species;P*
represents reactive polymer radical species)

catalysts have been the most popular of the transition metal catalysts and are easily
handled and highly efficient [15].

Of the copper(I) systems, probably the most well-known is the so-called atom
transfer radical polymerization (ATRP), which utilizes the lower oxidation state
copper(I) halide and (usually) nitrogen-based ligand complexes as the catalyst.
Further research resulted in development of systems such as simultaneous reverse
and normal initiation (SR&NI) ATRP, activators generated by electron transfer
(AGET) ATRP, activators regenerated by electron transfer (ARGET) ATRP,
initiators for continuous activator regeneration (ICAR) ATRP and electrochemically
mediated ATRP (eATRP). In these systems, copper (I) generated by reduction of
higher oxidation state copper(Il) was believed to be always present and act as the
predominant activator [18].

For the copper(0) systems, copper(I) is used as a catalyst precursor to generate
copper(0), which reacts with organic halides for radical generation. Previous research
has suggested that in polar solvents copper(I) halides and nitrogen-based ligand
complexes are often unstable to sometimes rapid disproportionation into copper
(0) and copper (II) halide and this disproportionation facilitates an fast LRP, in
which the radicals are generated from the nascent copper(0) atomic species and the
deactivation is mediated by copper(Il) halide. Both steps are proposed to proceed via
a low activation energy outer-sphere single-electron-transfer mechanism and thus the
polymerization was named single electron transfer living radical polymerization
(SET-LRP) [19, 20].

The direct polymerization of a protected glycomonomer via ATRP was first
reported in 1998 using CuBr/4,4’-di-n-heptyl-2, 2'-bipyridine catalyst in veratrole
at 80°C [21] (see Table 1). Direct copper-mediated polymerization of unprotected
glycomonomers was generally performed in highly polar solvents such as alcohols,
dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N-methyl-2-pyrrolidone
(NMP) or mixtures with water [22]. The main reason for choosing such highly polar
solvents is to solubilize the glycomonomer and the obtained glycopolymer, yet in
some cases it resulted in low initiation efficiency or polymerization that was out of
control [22, 23]. Previous research also revealed that direct aqueous ATRP of
unprotected glycomonomers showed poor living character and that high ratios of
alcohol as the co-solvent had to be used [24, 25]. The main reason is due to the fast
propagation yet inefficient deactivation and the presence of side reactions under
aqueous condition, such as hydrolysis of initiator and propagating polymer chain
and, more importantly, disproportionation of copper catalyst [26]. Pure water has
only been used as the solvent for surface-initiated polymerization, in which cases
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the chain end fidelity and molecular weight distribution tend to be difficult to
elucidate [27-29]. Thus, more efforts are necessary to develop a proper catalyst
system that could efficiently catalyse the polymerization of glycomonomers under
different conditions, especially in aqueous media.

1.3 Reversible Addition-Fragmentation Chain Transfer
Polymerization

Since the discovery of reversible addition-fragmentation chain transfer (RAFT) in
1998 it has become one of the most popular living polymerization processes because
it is tolerant of a wide variety of functional monomers and reaction conditions and
also is promising in bio-applications [42, 43]. For the synthesis of glycopolymers,
RAFT is probably the most popular LRP route at present (with about twice as many
published papers than ATRP/transition metal-mediated strategies for the synthesis
of glycopolymers) and different strategies have been developed for polymerization of
both protected and unprotected glycomonomers [2, 43]. As an interesting case, direct
RAFT polymerization of unprotected glycomonomers in pure water was reported in
2003, at which time direct aqueous ATRP of glycomonomers was still a challenge
[24, 44]. Now, most RAFT polymerizations of glycomonomers are conducted in
aqueous systems with some ratio of organic solvents (DMF, alcohol, DMSO etc.)
with the aim of solubilizing the RAFT agents and radical sources. Most of these
polymerizations are carried out at 60-80°C, although use of aqueous RAFT at
ambient temperature has already been reported (Table 2) [45].

2 Novel Strategies in the Post-glycosylation
of Pre-formed Polymers

2.1 Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction

Copper-catalyzed azide—alkyne cycloaddition (CuAAC) has been widely used in
the post-glycosylation of pre-formed polymers, for which the protected alkyne mono-
mers can be first polymerized by various LRP strategies followed by removal of
trimethylsilyl (TMS) protection groups using tetrabutylammonium fluoride (TBAF)/
acetic acid for click reaction with azido functional sugars (Fig. 3) [59, 60]. This
approach avoids the use of hazardous azide-functionalized monomers and utilizes the
diversity of well-documented azido functional sugars [59].

!X means that in the corresponding literatures H,O or DMSO were used as the solvent for
polymerization, but the polymerization is not successful or out of control under relevant conditions.
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Fig. 4 Synthesis of glycopolymers via CuAAC of alkyne sugar with azido functional insulin

As an inverse approach, an insulin-based glycopolymer was synthesized by
sequential chemical modification using tosylation, azidation and subsequent click
reaction with alkyne sugars [61]. Due to the low ratio of tosylation, the azido
functional insulin tends to be safe and the obtained insulin-based glycopolymers
showed enhanced lectin affinity and gelation properties (Fig. 4).

Based on this combination of CuAAC and LRP, one-pot simultaneous ATRP and
CuAAC was developed as a new tool for glycopolymer synthesis that utilized
unprotected alkyne monomer and azido sugar (Fig. 3) [3]. As an inverse approach, a
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fluorescent glycopolymer could be synthesized via similar one-pot ATRP and CuAAC
strategy using 2-azidoethyl methacrylate and alkyne mannose (Fig. 5) [62].

2.2 Thiol Click Chemistry

Thiol groups can react with many chemical species with high yields under benign
conditions and thus many thiol-related reactions, such as thiol-ene, thiol-yne, thiol-
epoxy, thiol-isocyanate and thiol-halogen reactions, are considered to be click-type
reactions [63].

The thiol-yne coupling reaction is versatile, robust and can tolerate different
functional groups due to its radical nature. It allows facile addition of two thiols to
one alkyne group, which is suitable for construction of complex polymer structures
such as networks, dendrimers and hyperbranched polymers [63, 64]. Successful
glycosylation of linear polymers and dendrimers can be performed via radical-
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mediated thiol-alkyne click reaction, in which the 1-thiol-pB-p-glucose reacts with
the alkyne group in the presence of photo-initiator and UV light (Fig. 6) [65].

Thiol-halogen reactions, such as nucleophilic substitution reaction of
thiocarbohydrate sodium salt with halogen-containing polymers, have been used
for direct synthesis of glycopolymers [66]. This is a relatively slow reaction;
however, no catalyst is needed and hazardous side products are also avoided.
Thus, further research was reported utilizing similar methods (Fig. 7) [67].

2.3 Amine Chemistry

Condensation reactions between ketone groups and aminooxy sugars have become a
tool for synthesis of glycopolymers and glycopeptides (Fig. 8) [68—70]. Generally,
the reactions can be performed in acetate buffer or organic solvent/water mixtures at
ambient temperature or higher temperatures (up to 95°C). The reaction conversion is
only partial at ambient temperature but close to full conversion at higher temperature;
however, reaction times can be as long as 4—7 days.

In order to eliminate the multistep reactions required for glycopolymer synthesis,
free reducing sugars were used directly for the reaction with hydrazide functional
polymer (Fig. 9) under acidic conditions in the presence of aniline catalyst [71].
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Fig. 10 Synthesis of glycopolymers by reaction of poly(pentafluorophenyl methacrylate) with
functional amines

Different sugars, including mannose, fucose, lactose, xylose and panose, were used
with this reaction, giving conversions ranging from 34% up to 95%.

Poly(pentafluorophenyl methacrylate) (PPFMA) bearing active ester groups
could react with a wide variety of functional amines (Fig. 10). Glycopolymers
have been synthesized by direct reaction of PPFMA with glucose amine or first with
propargyl amine then with azido sugar via CuAAC, in which case the linker length
and density of the glycopolymer could be adjusted by the length of propargyl
amines [72, 73].

Other polymers bearing active ester groups, such as highly reactive
p-nitrophenyl carbonate groups, can also react with amine functional sugars for
the synthesis of glycopolymers (Fig. 11) [74, 75]. Utilizing the nucleophilic ring
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Fig. 12 Synthesis of glycopolymers by reaction of poly(azlactone) with amine functional sugar

opening reaction of azlactone with amine, poly(galactose) glycopolymers with
long linker length between carbohydrate and backbone were synthesized by direct
post-polymerization modification of poly(azlactone) scaffold and were shown to be
very active against cholera toxin (Fig. 12) [76].

3 Novel Applications of Glycopolymers

3.1 Therapeutic Application: Anticancer and Anti-HIV

Carbohydrate-based anticancer agents have been explored with the aim of increasing
the efficacy and decreasing the side effects of traditional anticancer Pt-based drugs
[77, 78]. Recently, glycopolymer-based dithiocarbamates conjugates modified
with gold(I) phosphine (Fig. 13) were synthesized and their cytotoxicity profiles
examined. The results suggested that the gold conjugates showed higher accumula-
tion and cytotoxicity to cancer cells due to the existence of glycopolymers and that
their effect on normal breast cells was not significant [79].
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Fig. 14 Multicopy multivalent glycopolymer-stabilized gold nanoparticles as potential synthetic
cancer vaccines [58]

Alison et al. synthesized a series of glycopolymers based on N-acetyl-D-
glucosamine using RAFT and subsequently conjugated these glycopolymers to
gold nanoparticles, yielding a type of multicopy multivalent nanoscale
glycoconjugate (Fig. 14) [58]. These glycopolymer-stabilized gold nanoparticles
could generate strong and long-lasting production of antibodies for selective
recognition with Tn-antigen and thus have the potential to be used as a novel
anticancer vaccine.

Relatively simple mannose-containing glycopolymers can effectively bind to
human dendritic cell-associated lectin (DC-SIGN) and disrupted the interaction of
DC-SIGN interactions with HIV envelope glycoprotein gp120, which could be seen
as a new therapeutic approach (Fig. 15) [80].

3.2 Biocompatible Materials

Hyperbranched glycopolymers have been synthesized via RAFT (Fig. 16) and tested
for blood biocompatibility. The results revealed that glycopolymers are highly
haemocompatible and do not induce clot formation, red blood cell aggregation and
immune response, suggesting a fine biocompatible material [53].
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Fig. 17 Ricin decontamination using biotin-tagged lactose polymer [81]

Lactose and biotin-tagged glycopolymer could effectively absorb ricin and the
obtained toxin—glycopolymer conjugate could be transferred onto streptavidin-
modified magnetic particles for decontamination (Fig. 17) [81].

4 Summary

Glycopolymers represent a challenging and useful target for the synthetic polymer
chemist. New polymerization strategies have resulted in a wide range of polymers
that show really excellent recognition properties towards lectins. The polymer
approach relying on multiple sugar epitopes and a flexible backbone is very
different to the traditional organic chemistry approach where complex and elegant
synthetic routes are used to put certain sugars in the right spatial orientation for
lectin binding. We will see over the next few years if these glycopolymers will find
a breakthrough application and, hopefully, this will occur in the near future.
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