Chapter 2
Evolutionary Algorithms and Other
Randomized Search Heuristics

In our description of evolutionary algorithms we make use of terms that stem
from biology, hinting at the roots of evolutionary algorithms. We adhere to these
standard notions as long as they do not collide with standard notions in computer
science. Evolutionary algorithms are structurally very simple. They work in rounds
that are called generations. Evolutionary algorithms operate on some search space
S, where S is a set. Points are assigned some quality via a function f. In
the context of optimization, f is called an objective function. In the context
of evolutionary algorithms, it is usually called fitness function. Sometimes one
distinguishes between a fitness function f and an objective function f’, where the
fitness f is utilized by the evolutionary algorithm directly whereas the objective
function f” is in some sense closer to the problem at hand. We will introduce this
distinction later when we discuss how we can adapt evolutionary algorithms to a
given problem (see Sect. 2.5). For now we are only dealing with the fitness function
f:S — R and do not care if there is an objective function f’ ‘wrapped around.” The
set R is the set of possible fitness values. It may be an arbitrary set; most often it is
(some subset of) IR.

An evolutionary algorithm operates on a collection of points from the search
space, called a population P. The members of the population, i.e., some points in
the search space, are called individuals. We use (€ N to denote the size of the
population, i.e., u =|P|. A population is a multiset over S, i.e., it may contain
multiple copies of individuals. Since the population changes from generation to
generation, we denote the 7th population by P,. Choosing the first population Py in
the beginning is called initialization. Usually for each member x of the population
its fitness f(x) is computed and stored. If fitness values are stored this starts with
the initialization, where it is done for the complete population. The first step in
each generation is to select some individuals from the population that will be
used to create new points in the search space. These individuals are referred to as
parents. Their selection is called selection for reproduction. Often this selection is
done fitness-based: the chances of individuals to become parents increase with their
fitness. Then some random variation is applied to the parents where small changes
are more likely than large changes. We distinguish two kinds of variation operators.

T. Jansen, Analyzing Evolutionary Algorithms, Natural Computing Series, 7
DOI 10.1007/978-3-642-17339-4_2, © Springer-Verlag Berlin Heidelberg 2013

8 2 Evolutionary Algorithms and Other Randomized Search Heuristics

Fig. 2.1 Outline of a generic Initialization |. _______

evolutionary algorithm. 1\ initial
Arrows show control flow, PN : population
~
dashed arrows show data flow , R - (- - -1
1 —)| Selection for Reproduction [
1 f -——
1
, | current y parent
1 vpopulation . ____ ! population
. . Variation|
current . . 1 offspring
. .
population ! L -t population
' | Selection for Replacement |
1 |
1 1 current
, 1 population
1 R —
1
1
1

Variation operators that take one parent as input and randomly create one individual
are called mutation. Variation operators that take at least two parents as input and
randomly create (at least) one individual are called crossover. In any case, the
newly created individuals are called offspring. It is not unusual to combine different
variation operators, e.g., create an offspring via crossover and use this offspring as
input for a mutation operator. Usually, the intermediate step (the offspring before
mutation) is discarded; but this may be different in some evolutionary algorithms.
There is hardly any limit to creativity when designing evolutionary algorithms
and thus there are no really strict rules. After creating the offspring population
most often there is some kind of selection for replacement. The reason is that
the size of the population is typically not changed during the whole run. Thus,
the new population P, is selected from the old population P, and the newly
generated offspring. When describing this selection as selection for replacement,
i.e., selecting which individuals are not going to be present in the next population
P, 11, it differs from selection for reproduction in preferring individuals with smaller
fitness. One may as well describe this selection step as selection for survival where
those individuals are selected that will be member of the next generation. In this
description there is no conceptual difference to selection for reproduction. After
the new generation P, is produced (and the old population P, is discarded), it is
checked whether some fermination criterion is met. If so, some output is produced
and the algorithm terminates. Otherwise the next generation starts with the selection
for reproduction. This evolutionary cycle is summarized in Fig. 2.1. Note that we do
not explicitly include evaluating the fitness of individuals in the evolutionary cycle.
We silently assume that whenever the fitness of an individual is needed (usually in
selection) the value is either available or will be computed ‘on the fly.’

Now we describe concrete realizations for each of the six modules: initialization,
selection for reproduction, mutation, crossover, selection for replacement, and

2.1 Modules of Evolutionary Algorithms 9

termination criterion. Since variation operators depend on the structure of the
individuals, we have to discuss different search spaces first.

In principle, the search space may be any set S. Often it is structured as
Cartesian product of some other sets, i.e., S =] x S x --- x §,. The two most
important cases for both theory and practical applications are S ={0,1}" and
S =1R". In applications, combinations of some discrete or even Boolean search
space and some real search space are also common. Another important search space
is the permutation set, i.e., S =S, ={m | m is permutationon {1,2,...,n}}. The
standard search spaces {0, 1}, R", and S, all have in common that points in these
search spaces have natural descriptions (and therefore natural implementations) of
constant length: bit strings of length n, vectors of n real numbers, and » natural
numbers, respectively. This is quite different from search spaces where natural
descriptions have varying length. One example of such search spaces is the set of
all trees that correspond to arithmetic terms. Most of the time, we will not deal with
such search spaces where individuals are more flexible and have no fixed length.
They are most often used in evolutionary algorithms that are counted to the subfield
of genetic programming.

2.1 Modules of Evolutionary Algorithms

We describe the different modules that can be combined and ‘plugged into’ the
algorithmic framework depicted in Fig.2.1 to obtain a complete evolutionary
algorithm. Where necessary, we give different descriptions for the three standard
search spaces {0, 1}", R", and S,. Our descriptions are formal and specific. This
does not exclude the existence of quite different variants in actual evolutionary
algorithms. As already pointed out in the introduction, there is hardly a limit to
the creativity of designers of evolutionary algorithms. The descriptions given here
will, however, be used throughout this text.

2.1.1 Initialization

In most cases, initialization is done ‘purely at random.” For the search spaces {0, 1}"
and S, this means uniformly at random. In IR", initialization is most often done
uniformly in some restricted part of the search space.

In applications, it may make more sense to start with ‘promising’ individuals
that were obtained by means of some heuristic, possibly in some previous run
of the evolutionary algorithm. It has to be noted, though, that many evolutionary
algorithms suffer if the members of a population are too similar to each other.

When dealing with problems with restrictions, it often makes sense to initialize
the population with individuals that respect all restrictions. There are variation
operators with the property that by using such feasible solutions as input only
feasible points in the search space are produced as offspring. This may improve the

10 2 Evolutionary Algorithms and Other Randomized Search Heuristics

performance of an evolutionary algorithm significantly. It is most useful in problems
where feasible solutions are difficult to find.

For tests and studies, it may make sense to start in some carefully chosen region
of the search space or with individuals having some property of interest. This way
one may observe and analyze how the evolutionary algorithm under consideration
behaves under circumstances that may be unlikely to evolve in a normal run using
plain random initialization.

2.1.2 Selection

Selection appears twice in the evolutionary cycle (Fig.2.1): as selection for repro-
duction and as selection for replacement. Since selection for replacement can as
well be described as selection for survival, then coinciding with selection for
reproduction, we describe all selection mechanisms in a way appropriate for this
kind of selection. If selection for replacement is desired, analogous remarks apply
but ‘the sign of fitness’ changes: whereas larger fitness values are to be preferred
in selection for reproduction, we prefer smaller fitness values in selection for
replacement (since we are maximizing fitness).

Often, selection is based on the fitness of the individuals alone. Some variants
do additionally take other properties of the individuals or even the population into
account. All variants have in common that they do not select in favor of lower fitness
values. While one may in principle devise such selection variants, we discard those
variants as unreasonable—essentially being designed not in accordance with the
spirit of evolutionary computation.

There are two quite different ways how selection may be performed. One way is
to select single individuals and repeat this as many times as selected individuals are
needed. This applies to almost all selection methods presented here. Such selection
methods can be described by the underlying probability distribution. For each
individual one provides the probability to be selected. Given these probabilities,
selection is usually performed independently with replacement. The other way is
selecting all individuals that are needed in one batch. This implies that no single
individual can be selected more often than once. This corresponds to performing
selection without replacement.

Uniform selection Select an individual uniformly at random. This is the
weakest form of selection that we still consider to be reasonable.

Fitness-proportional selection This selection method assumes that all fitness
values are positive. An individual s in the current population P is selected with

probability f(s)/ > f(x).

X€EP
The most obvious disadvantage of fitness-proportional selection is the direct and

strong dependence on the fitness values. This implies that changing the fitness
function f to f + ¢ for some constant ¢ (from an optimization point of view not
really a change) changes the selection probabilities observably.

2.1 Modules of Evolutionary Algorithms 11

If differences between fitness values in the population are very large, fitness-
proportional selection behaves almost deterministically. This may be something
that is not wanted. If, on the other hand, differences between fitness values are
very small, fitness-proportional selection behaves similar to uniform selection.
This is typical for situations later in the run of an evolutionary algorithm: as all
fitness values become larger, the relative differences become smaller and fitness-
proportional selection becomes increasingly similar to uniform selection.

Variants of fitness-proportional selection Since fitness-proportional selection
has such obvious drawbacks, there are a number of variants of fitness-
proportional selection that aim at adjusting the selection mechanism and avoiding
its difficulties without disregarding the main idea.

Scaled fitness-proportional selection Use fitness-proportional selection
but replace the fitness function f by a scaled and translated versionm - f + b,
where m and b are parameters. Sometimes these parameters are chosen
adaptively depending on the current population. Clearly, this does not really
solve the problem. With respect to m - f 4+ b, all our critical remarks about
fitness-proportional selection still apply. Moreover, it may be difficult to find
appropriate values for m and b.

Boltzmann selection Use fitness-proportional selection but replace the
fitness function f by e//T where T is a parameter (called temperature) that
allows one to vary the influence of the actual fitness values. Typically, T varies
with time, it is rather large in the beginning and gradually lowered.
Boltzmann selection comes with the immediate advantage that additive
changes of the fitness function, i.e., going from f to f 4 ¢, have no influence
on the probabilities to be selected. We observe that

)0/ T efOIT . oe/T o/ O/T
Y eUOFIT = S (eS0T ge/T) — 3. ef0I/T
XEP X€EP XEP

holds for each constant c.

Rank selection Use fitness-proportional selection but replace the fitness
value of individual s € P by its rank, i.e., its position in the list of all
individuals of the current population sorted descending with respect to fitness,
ties being broken uniformly at random.

It is not difficult to see that each direct dependence on the concrete fitness
values is removed here. In particular, this selection method does not change
its characteristics during a run as fitness-proportional selection does.

Tournament selection This selection method comes with a parameter k € IN'\
{1}, called tournament size. The selection works by first selecting k individuals
uniformly at random. Then the one with maximal fitness is selected. Ties are
broken uniformly at random.

The main advantage of tournament selection is that it works in a very local
fashion. There is no need to compute the actual fitness values for all members

12 2 Evolutionary Algorithms and Other Randomized Search Heuristics

of the population. Only those individuals selected for the tournament need to
be evaluated. Another advantage is that the parameter k allows for very simple
tuning of the selection strength. Clearly, the larger k is, the more competitive
tournament selection becomes. All advantages with respect to independence of
the concrete fitness values that we listed for rank selection apply here, too.
Finally, tournament selection guarantees that the k — 1 worst members of the
population are never selected.

Truncation selection This is the only selection method that we discuss where

all individuals are selected in one batch. The selection is simple: the individuals
are selected descending with respect to fitness, and ties are broken uniformly
at random. If k£ individuals are to be selected, the individuals with ranks in
{1,2,...,k} are selected.
We introduce two special variants of truncation selection that are both used for
selection for replacement only. If all the individuals to be selected are from
the offspring population (ignoring the parent population), we call the selection
comma-selection. If we select A offspring from a population of size u, we
write this as (u, A). If the individuals to be selected are from both the parent
population and the offspring population, we call the selection plus-selection and
write (u+A).

Selection mechanisms taking the actual individuals into consideration are typ-
ically sensitive to the similarity of the individuals. If this is done the selection
mechanism tends to aim at increasing diversity in the population by avoiding
the selection of individuals that are very similar. We will discuss some concrete
examples later when we perform concrete analyses. Another type of selection
mechanism takes the ‘age’ of individuals into account. Inspired from nature,
something like a lifespan for individuals may be introduced. The most basic form
of this mechanism uses age to break ties: if a parent individual and an offspring
individual have the same fitness value, typically the offspring individual is favored.

2.1.3 Mutation

Mutation operators depend on the structure of the individuals and thus on the
search space. All mutation operators have in common that they tend to create rather
small changes. We describe mutation operators for the three standard search spaces
{0,1}", R", and S,,.

Mutation operators for {0, 1}" The parent is x € {0, 1}" with length n. The
ith bit in x is denoted by x[i]. We want to favor small changes to x and measure
the size of changes by using Hamming distance as our metric. The Hamming
distance H(x,y) of two individuals x,y €{0,1}" is simply the number of

n

positions where x and y differ, i.e., H(x,y) = Y (x[i] + y[i] — 2x[i]y[i]).

i=

2.1 Modules of Evolutionary Algorithms 13

Standard bit mutation The offspring y is created as a copy of x, where
for each bit the value of the bit is inverted (a bit-flip occurs) independently
with probability p,,. The parameter p,, is called the mutation probability. The
expected number of positions where the parent x and its offspring y differ
equals p,, - n. Since we want to favor small changes, we need p,, € (0, 1/2].
Note that p,, = 1/2 implies that y is drawn from {0, 1}" independently of x
uniformly at random. The most common mutation probability is p,, = 1/n,
flipping just one bit on average.

b-bit mutations The offspring y is created as a copy of x where the
value of exactly b bits is inverted. The positions of these b bits are chosen
uniformly at random; b € {1,2,...,n} is a parameter. Typically, b is quite
small: » = 1 is a common choice. In comparison with standard bit mutations
with mutation probability p,, = 1/n, 1-bit mutations have less variance and
facilitate analysis. But it has to be noted that the differences in performance
induced by changing from 1-bit mutations to standard bit mutations with
Pm = 1/n can be enormous.

Mutation operators for IR" Most often, the offspring y € R” is created from
its parent x € IR” by adding some vector m € IR". In principle, m may be chosen
in arbitrary ways. In simple evolutionary algorithms, each component of m is
chosen in the same way, i.e., independently and identically distributed. Thus, we
now describe the way of choosing one componentm’ € R. Since we want to favor
small changes, we typically choose m’ as a random variable with mean value 0.
We distinguish bounded from unbounded mutations. In bounded mutations, m’
is chosen from some interval [a, b], often uniformly from [—a, a] for some fixed
a € R™. More commonly used are unbounded mutation operators, where m’ is
not bounded. For these unbounded mutations, however, the probability typically
decreases strictly with the absolute value. The most common choice makes use
of a normal distribution (Gaussian mutations), where we have e~/ (20%) /~2mo?
as probability density function with parameter 0. We know that the mean is 0 and
the standard deviation is 0. In some sense, the choice of o determines the size of
the mutation. Typically, o is not fixed but varies during a run. The idea is to have
o large when far away from optimal points and small when close by. Often, one
chooses 0 = 1 fixed and uses an additional parameter s € R™ to scale the step
size, using s - m’ instead of m’.

Mutation operators for S, For permutations a number of quite different
mutation operators have been devised. Which ones make sense clearly depends
on the fitness function and, more generally, the problem at hand. Some mutation
operators are designed for specific problems. Here, we concentrate on only a few
general mutation operators that can be used in different contexts.

Exchange Choose (i, j) €{1,2,...,n}x{1,2,...,n} withi # j uniformly
at random. Generate the offspring y from its parent x by copying x and
exchanging i and ;.

14 2 Evolutionary Algorithms and Other Randomized Search Heuristics

Jump Choose (i, j) €{1,2,...,n} x{1,2,...,n} withi # j uniformly at
random. Generate the offspring y from its parent x by copying x, moving i to
position j, and shifting the other elements accordingly.

Combination of exchange and jump Both mutation operators for permu-
tations, exchange and jump, have in common that they act quite locally. They
are not capable of generating arbitrary permutations in a single mutation. But
it is often desirable to have this ability since it makes sure that an algorithm
cannot become trapped in a local optimum. Thus, we let ourselves be inspired
by standard bit mutations with mutation probability p,, = 1/n. For these
mutations, the number of mutated bits is approximately Poisson distributed
with parameter 1. Here, we choose k € IN according to a Poisson distribution
with parameter 1, i.e., Prob(k =r) = 1/(e - r!). Then we perform k + 1
local operations, choosing exchange or jump each time independently with
equal probability.

2.1.4 Crossover

Crossover operators cannot be designed independently of the search space. In this
way they are similar to mutation operators. The difference from mutation is that
more than one parent is used. Most crossover operators make use of two parents,
which is clearly close to the natural paradigm. But there are also crossover operators
in use that operate on many more parents.

The idea of crossover is to generate an offspring that is in some way similar to
its parents. We will define all crossover operators in a way that they produce exactly
one offspring.

Crossover operators for {0, 1}" Let x1,x,€{0,1}" be the two parents of
length n. For crossover operators for {0, 1}" that make use of two parents,
it is not unusual to produce two offspring. Such crossover operators produce
one offspring by assembling pieces of the two parents. The second offspring is
created by assembling exactly the unused pieces of the two parents. This way, for
each position the numbers of 0-bits and 1-bits in the two offspring equal these
numbers in their parents. Here we stick to describing the construction of one
offspring only.

k-point crossover Select k different positions from {1,2,...,n — 1}
uniformly at random. Let these positions be p; < p, < -+ < pi. Then the
offspring y is defined by copying the first p; bits from x;, the second p, — p;
from Xx,, the next p3 — p, bits from x;, and so on, alternating between x;
and x;. This method can be visualized as having the two parent bit strings cut
into pieces after each p;th position. Then the offspring is the concatenation of
pieces taken alternately from the two parents. An example forn = 9, k = 3,
and p; = 2, p» =5, p3 = 6 can be seen here.

2.1 Modules of Evolutionary Algorithms 15

xi=xi[1] x1[2] xi[3] xi[4] x[5] | xi[6] | x1[7] xi[8] x1[9]
X2 =x[1] x2[2] x2A3] x204] x2f5] | x206] | x2(7] x2[8] x2[9]
y=x[1] 2 0B Ml x| 6] | w7 xS xa]

We observe that the offspring is equal to both parents at all positions where
the parents agree. Usually, only very small numbers of crossover points are
used. The most common forms of k-point crossover are 2-point crossover and
even 1-point crossover.

Uniform crossover The offspring is created from its parents by copying
their bits in the following way. For each bit the value is copied from one of the
parents and the decision among the parents is made independently for each bit
and with equal probability. As is the case for k-point crossover, the offspring
is equal to both parents at all positions where the parents agree. From the set
of all individuals with this property, each is generated with equal probability
by uniform crossover. This way the number of possible offspring is usually
much larger for uniform crossover than for k-point crossover.

Gene pool crossover This crossover operates on an arbitrary number of
parents. It is not unusual to use the complete population as parents. If we use
m € N parents xi, Xz, ..., X, the offspring y = y[1]y[2]:-- y[n] is defined

by setting y[i] = 1 with probability [> x;[i]) /m,and y[i] = 0 otherwise.
j=1

Crossover for IR" For IR” it is possible to have k-point crossover and uniform
crossover very similar to the corresponding operators for {0, 1}". Instead of
copying bits, real numbers are copied from the parents. In addition, there
is another type of crossover that makes use of the natural interpretation of
individuals from R”" as vectors.

Arithmetic crossover This crossover operates on an arbitrary number
of parents like gene pool crossover. Again, it is not unusual to use the
complete population as parents. If we use m € IN parents xi, X2, ..., X,, the

n

offspring y € R” is created as weighted sum y = > o; - x;, where the
=
. 1
parameters o; sum up to 1, i.e., Y «; = 1. Typically, one sets o; = 1/m for
i=1
alli €{1,2,...,n}. This is called intermediate recombination and defines the
offspring to be the center of mass of its parents. Note that this is the only
variation operator that has no random component.

Crossover for S, There is a variety of crossover operators for permutations.
Almost all of them create an offspring based on exactly two parents. Most often,
two positions are selected uniformly at random and the elements between these
two positions in the first parent are reordered according to the ordering in the
second parent. Examples include order crossover, partially mapped crossover
(PMX), and cycle crossover (CX). We name these examples without giving
precise definitions. The reason is that for permutations no successful standard

16 2 Evolutionary Algorithms and Other Randomized Search Heuristics

crossover with convincing performance across a wide variety of different
permutation problems is known. It is worth mentioning that for specific appli-
cations custom-tailored crossover operators have been suggested. Examples are
edge recombination and inver-over, both designed for the traveling salesperson
problem (TSP).

2.1.5 Termination Criterion

The termination criterion is the final step in the evolutionary cycle (see Fig.2.1). It
decides if the algorithm is to be stopped or if another generation is to be started.
In the case of stopping, usually an output is produced. In most cases evolutionary
algorithms are used for maximizing the fitness function f, and consequently some
x € § with maximal fitness among all visited search points is presented. To achieve
this, the current best is usually stored in addition to and independent of the current
population. Termination criteria can be more or less flexible. We describe different
classes of termination criteria without going into detail. For our goals it is helpful
to consider the most basic and simple termination criterion, i.e., avoiding the issue
altogether by using no termination criterion at all.

Adaptive termination criteria These termination criteria may take anything
into account. Being completely unrestricted implies that they are the most flexible
way of deciding about termination. This may depend on directly observable
properties like the population and its fitness values as well as on statistics based
on such properties. A typical example for such an adaptive termination criterion
is the number of generations since the last improvement. Also, simpler criteria,
like stopping once the best fitness value found is beyond some predetermined
value, fall into this category.

Fixed termination criteria In practice, in many cases much simpler stopping
criteria are used. Fixed termination criteria stop the algorithm after a predefined
number of steps or computations regardless of the actual run. Concrete examples
include stopping after a predefined number of generations or a predefined number
of fitness evaluations.

No termination criterion When we consider evolutionary algorithms from a
theoretical point of view we avoid the topic of choosing a termination criterion
and simply let the evolutionary cycle continue without stopping. In a formal
sense, we let the algorithms run forever. What we are interested in is the first
point of time 7" when a global maximum of f is found, where time is measured
by the number of function evaluations. We call this point of time the optimization
time and are mostly interested in its mean value. For practical purposes this is an
important measure. It tells us how long we have to wait, on average, in order to
find an optimal solution.

2.2 Parameters of Evolutionary Algorithms 17
2.2 Parameters of Evolutionary Algorithms

It is already apparent that evolutionary algorithms have a number of parameters that
need to be set. Apart from the parameters belonging to some module as defined in
the previous section, there are also more global parameters. We list these parameters
here and briefly discuss their role. The main purpose is to introduce the notation that
is used throughout the text. Note that in the evolutionary computation community
there is no common notation in use. Here, we only introduce the most basic
and important parameters. Some evolutionary algorithms make use of additional
parameters. These will be introduced as needed.

Dimension of the search space n We use n to measure the size of the search
space for {0,1}", R", and S,. Clearly, n is not really a parameter of the
evolutionary algorithm but a property of the search space and thus the fitness
function. When analyzing (randomized) algorithms, one usually considers the
performance of the algorithm depending on the size of the input. Most often,
results are expressed in an asymptotic form (using the Landau notation, see
Appendix A.1) and one assumes that the size of the input grows to infinity. For
us, n plays the role of the input size. Therefore, we analyze the performance of
evolutionary algorithms for n — oco. Another important role of the dimension
of the search space is to determine the value of parameters of the evolutionary
algorithms. Often such parameters are fixed with respect to n. One example is
the mutation probability p,,, which is most often set to p,, = 1/n.

Population size p The number of individuals in the population, in particular
right after initialization, is called the population size p. There are no clear
rules for setting the population size. Clearly, 1 needs to be bounded above in a
reasonable way. If we adopt the usual perspective of complexity theory, it makes
sense to have polynomially bounded, i.e., u = n°®. Typical choices include
u=0moru=0 (ﬁ), but also much smaller populations like @ = O(1) or
even 4 = 1 are not uncommon.

Offspring population size A The number of offspring generated in each gen-
eration is called the offspring population size. Clearly, A = n°") is reasonable.
Again, a wide variety of different values for the offspring population size are
commonly used. In particular, A =1 is a very common choice (even more
common than u = 1), but also having A > u (like A = n -) is not unusual. Of
course, what values for A make sense also depends on the selection mechanism
employed.

Crossover probability p,. We denote the probability that crossover is used
to produce an offspring as crossover probability p.. Any choice p. €0, 1] is
possible; the most often recommended choices are quite large constant values like
pe €10.5,0.8]. In some evolutionary algorithms either crossover or mutation is
applied. In these cases we apply crossover with probability p. and consequently
mutation with probability 1 — p.. Here we do not do that. Instead, we decide
about the application of crossover and mutation independently and have offspring
created by means of crossover undergo a subsequent mutation with a certain
probability that is called the probability for mutation.

18 2 Evolutionary Algorithms and Other Randomized Search Heuristics

Probability for mutation Probability for mutation is the probability to pro-
duce an offspring via application of a mutation operator. We mention this
parameter without actually using it. In the algorithms that we consider we always
set the probability for mutation to 1. It is important not to mix this up with the
mutation probability p,,, a parameter of standard bit mutation. Using the most
commonly used mutation probability p,, = 1/n implies that with probability
(1 —1/n)" & 1/e no bit is flipped. Thus, there is no need to ensure that there
are steps without actual mutations by introducing a probability for mutation.
It is important to note that some authors use ‘mutation probability’ to denote
the probability for mutation and introduce the notion of ‘mutation strength’ or
‘mutation rate’ for our mutation probability.

There are different ways of setting the parameters in evolutionary algorithms.
The simplest and most common way is to set all parameters to some fixed
values in advance and keep the parameters unchanged during the run. Usually,
one experiments a little to find settings that lead to acceptable performance.
It is not clear, however, that such static parameter settings are able to deliver
satisfactory results at all. It may well be the case that in the beginning of the
run the fitness function presents the evolutionary algorithm with a landscape that
makes certain values for some parameters mandatory while at some later time the
population searches in other regions of the search space where other values for
the parameters are to be preferred. This motivates having the parameter settings
vary with time. This way of setting the parameters is called dynamic parameter
setting. In implementations, the number of generations or the number of fitness
evaluations are used as measure for time. While dynamic parameter setting is quite
common for some randomized search heuristics, it is seldom used in evolutionary
algorithms. One example, however, that we already mentioned is the temperature
T in Boltzmann selection. In evolutionary algorithms, if parameter values are to
change during the run, in most cases a more complicated mechanism is used. In
principle, any information available may be used to decide upon the new values of
parameters. Typical examples of the kind of information used include the current
population, the population’s distribution in the search space, the current fitness
values, or measures based on a history of the population. A concrete example would
be the number of generations since an offspring with better fitness than its parent has
been produced. A common strategy is to increase the mutation probability if such
an event has not occurred for a predefined number of generations. Generally, any
method depending on any individual created and any random experiment performed
during the complete run is permissible. This complex way of setting the parameters
is called adaptive parameter settings.

We observe that these methods of setting the parameters form a hierarchy
as depicted in Fig.2.2. Adaptive parameter settings form the most flexible and
largest class of methods for setting the parameters. Dynamic parameter settings are
restricted methods that may only depend on the time but not on the many other
available data. It may therefore be adequately described as a special case of adaptive
parameter setting. In the same way, static parameter settings can be described as a

2.3 Typical Evolutionary Algorithms 19

Fig. 2.2 Hierarchy of

parameter setting methods
adaptive parameter settings

dynamic parameter settings

static parameter settings

special case of dynamic parameter settings, where the function that depends on time
is constant. One may say that static parameter settings are a degenerate form of
dynamic parameter settings.

One special way of adaptively setting the parameters deserves to be mentioned:
self-adaptive parameter settings. Self-adaptation means that the parameter settings
are evolved together with the population in some way. Typically, the parameter
values are encoded as part of the individuals, formally increasing the size of the
search space. We can describe this by having our new individuals live in § x Q,
where S is the original search space and Q is the set of possible parameter settings.
Note that the fitness f:S — R is still defined on S, and therefore the parameter
settings have no direct influence on the fitness. In each generation, first variation
operators are applied to the parameter settings. Then these offspring parameter
values are used to parameterize the variation operators applied to points in S.
Selection is done in the usual way. The idea is that good values for the parameters
have the tendency to create good offspring. Since good offspring are typically
selected, good values for the parameters indirectly have better chances to survive
and be present in the next generation. This is the reason why the parameter values
have to be subject to variation first. Otherwise we have random changes of parameter
values that have no influence at all on the selection, and self-adaptation would
probably not work that well.

2.3 Typical Evolutionary Algorithms

The ‘invention’ of evolutionary algorithms dates back to the 1960s. Different
research groups suggested independently of each other quite similar randomized
search heuristics all inspired by natural evolution. All had the idea to devise
interesting and useful new algorithms by mimicking natural processes in algorithmic
form. For us it is not difficult to identify these different algorithms as variants of the
same algorithm family, as different kinds of evolutionary algorithms. And yet it was

20 2 Evolutionary Algorithms and Other Randomized Search Heuristics

a long and sometimes difficult process for the researchers involved to recognize that
others developed very similar ideas. This can still be seen today and is apparent
in different names for certain kinds of evolutionary algorithms. One may consider
having separate names for these different variants useful since it seems to allow us
to describe rather complicated evolutionary algorithms in a very short and precise
way. This, however, is actually not an accurate description of the status quo. Nobody
really uses the algorithmic variants devised nearly 50 years ago. There are so
many variations of all kinds of evolutionary algorithms around that it is practically
impossible to infer the details of an evolutionary algorithm just from its name. Since
the historic names are still around, we give a short description and describe typical
variants. We conclude this section by giving precise definitions of an evolutionary
algorithm that we will consider in great detail in the chapter on methods for the
analysis of evolutionary algorithms (Chap. 5). We describe all algorithms in a way
that make them suitable for maximization of a fitness function f. This agrees with
the intuitive idea that fitness should be maximized. Clearly, minimization of — f
is equivalent to maximization of f and thus considering only maximization is no
restriction.

In the United States, Holland [50] devised genetic algorithms (GAs). Most
often they are defined for the search space {0, 1}"; the variation operator that is
considered to be the most important one is crossover. Often k-point crossover with
k €{1,2} is used with quite high probability, i.e., p. > 1/2. Mutation, typically
standard bit mutations with small mutation probability, is considered to be a kind
of ‘background operator’ that merely generates enough diversity in the population
to facilitate crossover. Selection for reproduction is usually done using fitness-
proportional selection. In his original work Holland does not mention selection for
replacement; in fact, (u, i) selection is applied.

In Germany, Schwefel [114] and Rechenberg [107] devised evolution strategies
(ESs). Most often they are defined for the search space R"; the most important
variation operator is mutation. Often there is no crossover at all, and if crossover is
to be used it is usually intermediate crossover. In the beginning there was no explicit
discussion about selection for reproduction; uniform selection is used for this
purpose. Selection for replacement is usually implemented either as comma- or plus-
selection. For evolution strategies, non-static ways of setting the parameters have
been in use almost from the very beginning. In particular, self-adaptive methods
were used very early on.

In the United States, Fogel et al. [41] devised evolutionary programming (EP).
Originally, the set of finite state automata was used as search space. This may be
seen as the most ambitious approach. The complex structure of the search space led
to an emphasis of mutation (of course, mutation operators suitable for mutating
finite state automata had to be developed). Later developments led evolutionary
programming increasingly close to evolution strategies.

Quite some time later, Koza [73,74] and Koza et al. [75,76] introduced genetic
programming (GP). Genetic programming uses evolutionary algorithms that are
modeled after genetic algorithms but use a different search space (often the set of
all s-expressions) and aim at developing programs as individuals.

2.3 Typical Evolutionary Algorithms 21

Considering the different streams that together led to the class of evolutionary
algorithms, it comes as no surprise that there are many different variants of
evolutionary algorithms. Some variants, however, are more common than others. We
consider some of the more basic, well-known, and therefore in some sense important
ones here.

One algorithm that is often singled out is the so-called simple GA. It is a genetic
algorithm operating on the search space {0, 1}", fitness-proportional selection for
reproduction, 1-point crossover with crossover probability p. € [0.5,0.9], standard
bit mutations with mutation probability p,, < 1/n, and (u, p) selection for
replacement. Sometimes crossover is described as producing two offspring but this
varies from author to author. The simple GA was first described by Goldberg [46]
and later analyzed by Vose [125].

An evolutionary algorithm that we are going to analyze in considerable detail is a
simple algorithm that we call (u+A) EA. It operates on the search space {0, 1}", has
population size p, offspring population size A, uniform selection for reproduction,
no crossover, standard bit mutation with mutation probability p,, = 1/n, and
(pu+A)-selection for replacement. Since this algorithm is central for our analysis,
we give a precise formal definition.

Algorithm 1 ((u+1) EA).

1. Initialization

Choose x1, X2, ..., x, €10, 1}" uniformly at random.
Collect x1, x2,...,X, in Py. £ := 0.
2. Repeatfori € {1,2,...,1}
3. Selection for Reproduction
Select y € P, uniformly at random.
4. Variation

Create y; by standard bit mutation of y with p,, = 1/n.
6. Selection for Replacement
Sortall x, x2,...,x, € Py and yq, y2,..., yx in descending order
according to fitness, breaking ties first by preferring offspring
and breaking still unresolved ties uniformly at random.
Collect the first i individuals in P; 4.
7. t :==t + 1. Continue at line 2.

The (u+A) EA implements plus-selection with a slight preference for the
offspring: if parents and offspring have equal fitness, the offspring is preferred.
So, if we have three parents x;, x;, x3 with fitness values f(x;) =2, f(x2)=7,
f(x3) = 4, and three offspring y;, y», y3 with fitness values f(y) = 4, f(y2) = 6,
f(y3) = 1, then the ordering is X7, y2, Y1, X3, X1, V3.

We know that evolutionary algorithms are particularly difficult to analyze
since they are not designed with analysis in mind. Thus, it makes sense to start
with particularly simple evolutionary algorithms. This way we can hope to have
manageable objects of studies and develop tools for their analysis that turn out
to be suitable for the analysis of more complex evolutionary algorithms, too.

22 2 Evolutionary Algorithms and Other Randomized Search Heuristics

This motivates considering the (u+A) EA with minimum population size and
offspring population size, i.e., 4 = A = 1. These settings lead to a simpler formal
description of the (1+1) EA.

Algorithm 2 ((1+1) EA).

1. Initialization
Choose xg € {0, 1}" uniformly at random.
t:=0.
2. Variation
Create y by standard bit mutation of x, with p,, = 1/n.
3. Selection for Replacement
If f(y) > f(x), then x,41 := yelse x4 1= x;.
4. t :=1t + 1. Continue at line 2.

Note that we described these two evolutionary algorithms without any stopping
criterion. Remember that this is the most common approach when analyzing
evolutionary algorithms. We are interested in the optimization time 7', i.e., T :=
min {t € Ny | f(x;) = max {f(x") | x" €{0, 1}"}} for the (14+1) EA.

2.4 Other Simple Randomized Search Heuristics

Evolutionary algorithms are by no means the only kind of general randomized
search heuristics. There is a plethora of different randomized search heuristics
ranging from very simple (like pure random search) to quite complicated and
sophisticated (like particle swarm optimization or ant colony optimization). Since
our interest is in evolutionary algorithms, we will not discuss other randomized
search heuristics in great detail. It makes sense, however, to compare the perfor-
mance of evolutionary algorithms with that of other randomized search heuristics in
order to get a better understanding of their specific strengths and weaknesses. We
consider five of the simpler randomized search heuristics for this purpose. Another
motivation for discussing these other randomized search heuristics is to develop
an understanding of the way a borderline could be drawn separating evolutionary
algorithms from other randomized search heuristics. Due to the flexibility of the
algorithmic concept ‘evolutionary algorithm’, it is impossible to come to a clear and
indisputable distinction. But we will be able to give reasons for calling some simple
randomized search algorithm like the (1+1) EA an evolutionary algorithm while
we consider quite similar algorithms to be of a different kind. Finally, structurally
simpler randomized search heuristics can serve as a kind of stepping stone. Proving
results about their behavior can provide valuable insights about how a proof for the
more complex evolutionary algorithms can be obtained. We describe all randomized
search heuristics for the maximization of some function f: {0, 1}" — IR.

Pure random search Search starts with some x € {0, 1}"" chosen uniformly at
random. In each step, another point y € {0, 1}" is chosen uniformly at random
that replaces x.

2.4 Other Simple Randomized Search Heuristics 23

This kind of blind search may, of course, be described as an (1, 1) EA with
standard bit mutation with mutation probability p,, = 1/2. But this would be
misleading. It differs in two important points from evolutionary algorithms: the
search is not guided by the fitness values encountered, and the search has no
locality whatsoever.

Pure random search is a very simple and almost always very bad search heuristic,
of course. Its only advantage is that it is extremely easy to analyze. We may use
it as a very weak competitor. If an evolutionary algorithm is not even able to
clearly outperform pure random search, it is definitely not doing much good for
the fitness function under consideration.

Random local search Search starts with some x € {0, 1}" chosen uniformly at
random. In each step, another point y € N(x) is chosen uniformly at random
where N(x) denotes some neighborhood of x. Then, y replaces x if f(y) >
f(x) holds.

Often, the neighborhood N(x) = {x" €{0,1}" | H(x,x") = 1} is used. We call
this the direct Hamming neighborhood. Sometimes, larger neighborhoods like
N(x) = {x’€{0,1}" | H(x, x") = 2} are more useful. Almost always one has
neighborhoods of at most polynomial size, i.e., |[N(x)| = n%W.

Random local search with the direct Hamming neighborhood, i.e., the neighbor-
hood N(x) consists of only the Hamming neighbors of x, could be described as
(141) EA with 1-bit mutations instead of standard bit mutations. This difference,
however, is crucial. Random local search can be trapped in local optima of
the fitness landscape where all Hamming neighbors have smaller fitness values.
Random local search cannot move anywhere from such a point. For the (141)
EA, no such traps exist. It can reach any point in the search space by one mutation
with positive (yet very small) probability. This ability to perform global search is
typical for evolutionary algorithms. This is why we draw a borderline here.
Nevertheless, random local search and the (14 1) EA (as defined as Algorithm 2)
are very similar. Often random local search is much easier to analyze. Since
the performance of random local search and the (141) EA is often similar,
analyzing random local search can be a helpful first step toward an analysis of
the (1+1) EA.

Iterated local search In iterated local search we carry out several local search

runs subsequently. Each random local search is carried out as described above.
Every time the search gets stuck in a local optimum it is restarted with some new
starting point x chosen uniformly at random from {0, 1}".
We note that iterated local search requires considering the complete neighbor-
hood N(x) in order to decide whether the search got stuck. Clearly, this implies
increased computation time for something that we consider one ‘round’ of the
algorithm. However, this extension to random local search is so simple and
yet such a significant improvement that it is worth mentioning. Moreover, such
restarts may be added to any kind of random search heuristics; in particular they
may be used in combination with evolutionary algorithms. There, however, it is
more difficult to find an appropriate criterion for triggering a restart.

24 2 Evolutionary Algorithms and Other Randomized Search Heuristics

Metropolis algorithm Search starts with some x € {0, 1}"* chosen uniformly

at random. In each step another point y € N(x) is chosen uniformly at random,
where N (x) denotes some neighborhood of x. Then, y replaces x with probabil-
ity min {1’ e(f(y)—f(X))/T}.
As for random local search, the most common neighborhood consists just of
the Hamming neighbors of x. The parameter 7 € R™ is called temperature;
it is fixed in advance and held constant during the complete run. The term
min {1, e(f(«")_f(x”/T} equals 1 if f(y) > f(x) holds. So, improvements in
fitness are always accepted here. This coincides with random local search. But for
f(y) < f(x), the two search heuristics differ. While such a move from x to y is
never done with random local search, it may be done in the Metropolis algorithm.
The probability, however, depends on the parameter 7" and the difference in
fitness values f(x) — f(y). With increasing difference the probability for such
a step decreases exponentially. The selection mechanism helps prevent getting
stuck in local optima.

Simulated annealing Simulated annealing is almost identical to the Metropo-
lis algorithm, but the fixed temperature 7" is replaced by some function 7: Ny —
R” that is called annealing schedule and that depends on time, i.e., on the current
generation.

Clearly, we may describe the Metropolis algorithm as simulated annealing with
fixed temperature. Thus, simulated annealing is an example of an algorithm
making use of a dynamic parameter-setting scheme, whereas the Metropolis
algorithm is the same algorithm but utilizing a static parameter setting.

Usually, one uses strictly decreasing annealing schedules 7'. In fact, simulated
annealing is inspired by the process of annealing in metallurgy. There, metal that
is heated beyond its recrystallization temperature is cooled sufficiently slowly
such that it is allowed to enter an energy-minimizing state. When using simulated
annealing for finding points with large fitness values in the search space, the
idea is the following. In the beginning, fitness values are quite bad, and it
should be simple to escape from local optima. This is analogous to using a high
temperature. Later on, the algorithm has probably found much more promising
regions of the search space that should not be left easily. This is analogous to
lower temperatures. Given a certain optimization problem, to find an appropriate
annealing schedule is as crucial for the performance of simulated annealing as it
is difficult to achieve.

2.5 Design of Evolutionary Algorithms

Our main focus when considering evolutionary algorithms is analysis. We aim at
considering common evolutionary algorithms and finding out how they perform
on different problems. When one wants to apply evolutionary algorithms, the
perspective is necessarily different. In this case, one wants to design an evolutionary
algorithm that is appropriate and efficient for a given problem class. We consider this

2.5 Design of Evolutionary Algorithms 25

situation here and discuss aspects that stem from a theoretical perspective and that
should be taken into account.

We restricted our description of modules for evolutionary algorithms to the
three search spaces {0,1}", R", and S,. In principle, we could even restrict
the discussion to the search space {0, 1}". Evolutionary algorithms are (like all
algorithms nowadays) implemented on computers using binary representations
internally. Thus, any nonbinary data like real numbers has to be mapped to a binary
representation at some level. One may therefor argue that we may as well ‘lift’
this mapping to the topmost level, perform it ourselves, and deal only with binary
representations from now on. However, such reasoning does usually not take the
complexity of the actual mappings involved into account. It is similar to arguing
that a modern computer is in principle nothing more than a finite automata with a
huge state space. While this is true in a formal sense, we know that it is much more
appropriate to describe a modern computer as a Turing machine. Properties and
complexity are better captured this way. Similarly, it makes more sense to consider
evolutionary algorithms on different search spaces.

We are interested in evolutionary algorithms because they have proven to be very
useful in many practical applications. Without practical applications there would be
no point in doing theory. For some practical problems it is actually possible to find
an appropriate formalization as function f:{0,1}" - R, f:R" - R, or f: S, —
R where f is to be maximized. One particularly good example is the satisfiability
problem SAT that is of practically importance in many applications and at the same
time one of the most prominent problems in theoretical computer science. If we
consider SAT for n variables it is easy for any concrete SAT instance to describe
a corresponding function fSAT instance: {0, 1} — INp that yields the number of
clauses satisfied by an assignment x € {0, 1}" of the n variables. Similarly, for each
instance of the traveling salesperson problem (TSP) with n cities, we can define
a corresponding function fTsp instance: S» — R that yields the length of the tour
described by a permutation 7 for each permutation 7 € S,. But here we encounter
a first (easy to solve) problem. While evolutionary algorithms aim at maximizing
a fitness function, the function fTsp instance Needs to be minimized. As discussed
above, this can easily be fixed by replacing fTsp instance PY — TSP instance- But this
yields a fitness function with only negative function values, making, for example,
the use of fitness proportional selection impossible. A different way of dealing with
a minimization problem would be to replace the kind of selection employed, using
selection for replacement where selection for reproduction is intended, and vice
versa. But this would in some sense be against one of the main ideas of evolutionary
algorithms. Evolutionary algorithms are attractive to practitioners since there is no
need for modifications of the algorithm, since they are easy off-the-shelf solutions
to a wide variety of different problems. Such ad hoc modifications of the algorithm
become even more complicated if the fitness function is not defined over one of
the standard search spaces. Adopting a novel kind of search space implies that
new variation operators need to be defined. Then the design of new evolutionary
algorithms becomes as complicated and as time consuming as the design and
implementation of any new problem-specific search heuristic. Thus, it is advisable to

26 2 Evolutionary Algorithms and Other Randomized Search Heuristics

follow a different route. In the following, we discuss such a solution to our problem
that, from the point of view of computer science, is more structured than ad hoc
modifications of the algorithm. Moreover, it has the additional charming property
of having a corresponding mechanism in the natural paradigm.

Let us assume that we are dealing with an optimization problem that is modeled
as either maximization or minimization of some function g: A — B. Here, A may
be an arbitrary set, B is some set that allows for some way of evaluating solutions.
Thus, there needs to be at least a partial ordering defined on B. We want to solve
this optimization problem by means of some evolutionary algorithm. In order to do
so, we define two mappings /#;: S — A and hy: B — R, where S is the search
space of our evolutionary algorithm. The idea is to have the search space S equal
to some standard search space so that we have an evolutionary algorithm operating
on S ready to use. We define a fitness function f for our evolutionary algorithm by
f = hy o g o h;. This implies that in order to compute the fitness for some point
s €S, we first map s via h; to h1(s) € A, compute its value g(k;(s)) € B, and, by
means of /1, map this value to a fitness value ,(g(h;(s))) € R.

Following the natural paradigm, the set S is often called phenotype space and A
is called genotype space. Accordingly, /; is called genotype—phenotype mapping.
The idea is that our ‘genetic’ algorithms operate on the genotypes, whereas in
nature fitness (in the sense of survivability) is, of course, expressed on the level
of phenotypes. So having some mapping from the genotypes to the phenotypes that
is involved in determining the fitness of some individual is something that we may
see in nature.

In principle, we are free to choose &; and /1, any way we like. Obviously, we have
to make sensible choices in order to arrive at an evolutionary algorithm that works
well for our problem. Probably the most basic requirement is that %, is a function
that needs to be maximized in order to find optimal solutions to g. Moreover, &
and £, need to be computable efficiently, evaluation via /s, needs to have a good
correspondence to evaluation via g, and /; needs to map to as much of A4 as possible.
If we choose /1 in a unfavorable way, it may happen that optimal solutions in A have
no preimage in S and thus cannot be found be the evolutionary algorithm at all.

All this advice is basically trivial. In practice, however, it may be highly
nontrivial to follow this advice. Nevertheless, we discuss even more guidelines that
all aim at delivering a well-functioning evolutionary algorithm. These guidelines
come with the advantage of being less trivial: they are useful advice that is
substantial and could hardly be found with just a few minutes of thinking. While
following them in practice may be difficult, it pays to know about them in order to
avoid making mistakes that have been made many times before by others.

As we pointed out when discussing different variation operators, the main idea in
evolutionary algorithms is to search for promising new search points quite close to
the points of the current population. Since our variation operators work in genotype
space S but fitness assessment is done in phenotype space A, it is desirable that
small changes in genotype space correspond to small changes in phenotype space.
If there is no such correspondence between changes in S and A, we have departed
(at least implicitly, perhaps unknowingly) from the idea of evolutionary algorithms.

2.5 Design of Evolutionary Algorithms 27

It is possible that the evolutionary algorithm that we obtain still works—but from a
fundamental point of view it should not. In order to make our ideas more precise,
we need a way of measuring changes. This is done by means of some metric d. For
the sake of completeness, we recall the definition of a metric.

Definition 2.1. For a set M a mappingd: M x M — IRS' is called a metric on M
if it has the following three properties:

1. Positivity Vx,yeM:x#y & d(x,y)>0
2. Symmetry Vx,yeM:d(x,y) =d(y,x)
3. Triangle inequality Vx,y,ze M:d(x,y) +d(y,z) > d(x,2)

We assume that some metric d4 for A is known. This metric is a formal way
to express domain knowledge that a user has. For candidate solutions a;,a, € 4 to
the practical problem g: A — B, the user is expected to be able to describe their
similarity. If our genotype—phenotype mapping /; happens to be injective, then we
obtain a metric ds on S by means of iy via dg(x,y) = d4(hi(x),hi(y)) for
all x,y € S. If h is not injective, we cannot define ds this way since this would
violate the positivity constraint. In this case a metric ds that reflects d 4 has to be
defined some other way. From now on we simply assume that some metric ds on S
is defined, and we demand that for all x, x’, x” € S

ds(x,x") < ds(x,x")

= da(hi(x). (X)) < da(hi(x). i (x"))

holds. We call this property monotonicity. Clearly, monotonicity guarantees the
connection between the magnitudes of changes that we desire.

Based on this metric dg, we can now formalize our requirements for variation
operators. This helps not only to check whether our genotype—phenotype mapping
hy and the metric dg are appropriate when applying some evolutionary algorithm to
some practical optimization problem. It also enables us to discuss the appropriate-
ness of newly designed variation operators in an objective way.

For our discussion we want to describe mutation and crossover as randomized
functions that we define in the following way. Assume we have a mapping r: X —
Y, where the image r(x) € Y depends not only on x € X but also on some random
experiment, i.e., 7(x) is a random variable. The random experiment is defined on
some probability space (§2, p). We define the mapping r as r: X x £2 — Y, where
r(x,w) =y if applying r to x together with @ € §2 as result of a random experiment
yields y. For x e X and y €Y, we let Prob (r(x) = y) = > p(w). We

w € Q2:r(x,w)=y
simplify our notation by omitting @ and assume that the probability space (£2, p) is
clear from the context.

For the sake of clarity, we discuss a simple example and consider 1-bit mutation
as a randomized mapping m: {0, 1}" — {0, 1}". Since we flip exactly one bit and
choose the position of this bit uniformly at random, (§2, p) with 2 = {1,2,...,n}
and p(i) = 1/nforalli € £2 is an appropriate probability space. For x € {0, 1}" and

28 2 Evolutionary Algorithms and Other Randomized Search Heuristics

i €2 wedefinem(x,i) = x & (0"_l 10”_i), where we use the following notation.
For b €{0,1} and j € Ny let b/ denote the concatenation of j times the letter b.
In particular, let b° denote the empty word. Thus, 0210 = 001000 holds. The
operation @ applied on {0, 1}" stands for bitwise XOR, where for a, b € {0, 1} XOR
is defined via XOR(a, b) = a+b—2ab. It is easy to see that this way m corresponds
exactly to our understanding of 1-bit mutation.

Using this notation as we did in the example, we can proceed and define our
requirements for variation operators. We begin with mutation operators that we
describe as randomized mappings m: S — S.

We want a mutation operator m to favor small changes. We express this by
demanding that

ds(x,x") < dg(x,x")

Vx,x',x"eS:
= Prob (m(x) = x’) > Prob (m(x) = x")
holds. If x’ is closer to x than x” is, than it should be more likely to obtain x’ as
offspring of x then x”.
A second reasonable requirement is to have mutation operators not induce a
search bias. We want the search to be guided by the fitness values which are taken
into account by selection. This can be expressed via

ds(x,x") = ds(x,x")

Vx,x',x"eS:
= Prob (m(x) = x’) = Prob (m(x) = x")
in a formal and precise way.

For crossover, we can proceed in a similar way. Crossover is described as a
randomized mapping c: S xS — S. We consider crossover operating on two parents
and producing exactly one offspring. It is not difficult to generalize this to crossover
operators using more parents. We express the idea that an offspring should be similar
to its parent by having

o Prob (c(x,x") = x") > 0
Vx,x',x"eS:
= max {ds(x,x").ds(x',x")} < ds(x,x)

for crossover. The distance from the offspring to any of its parents is bounded above
by the distance of the parents.

Clearly, we do not want crossover to induce a search bias. We express this by
requiring that

Vx,x" €8:Va € R : Prob (ds(x, c(x,x")) = a) = Prob (ds(x, c(x, X)) = a)

holds. The offspring is required to be symmetric with respect to its parents in terms
of distance.

It is important to understand that these requirements are not ‘true’ in the sense
that following these rules necessarily leads to better evolutionary algorithms or that

2.6 Remarks 29

violating a requirement implies poorer performance. And yet they should be taken
seriously since they have the benefit of formalizing our intuitive understanding of
evolutionary computation. Following them helps us not to depart from the paradigm
of evolutionary computation. When applied during the creative act of defining new
variation operators, they guide us and help us by presenting us with a formalism
that leads us to more objectively justified and, in any case, more conscious design
decisions. Moreover, they facilitate the formal analysis of evolutionary algorithms
that are designed respecting these guidelines.

2.6 Remarks

While the description of the evolutionary cycle gives an accurate picture of the
structure of evolutionary algorithms, our actual list of modules for evolutionary
algorithms is very short and contains only the most basic examples. This is
due to our emphasis on the analysis of evolutionary algorithms. A much more
comprehensive view is presented in [9] and, more recently, in [110]. With respect
to the mutation operators for permutations, it is worth mentioning that jump and
exchange, while quite general in nature, have been designed for the problem of
sorting [132].

With respect to tournament selection we remarked that there is no need to have
all members of the current population evaluated as is the case for all selection
mechanisms. Poli [98] suggests an evolutionary algorithm that takes advantage of
this fact and reduces the number of function evaluations if the tournament size is
small and the number of generations is not too large. This is one concrete example
where the explicit inclusion of function evaluations within the evolutionary cycle
would contradict an evolutionary algorithm as suggested to improve efficiency.

The analytical framework we pursue is inspired by the classical analysis (and
design) of efficient randomized algorithms. Excellent textbooks providing introduc-
tion and overview include [15, 88].

In practical applications, finding good parameter settings is crucial. Bartz-
Beielstein [10] provides a framework for a systematic approach to this problem. The
classification of mechanisms to set and control parameters during a run (presented in
Fig.2.2) is structured in a way that a hierarchy is formed. This makes self-adaptation
a special case of adaptive parameter settings. Historically, self-adaptation has been
described as an alternative to adaptive parameter settings (see [8, 38]). While this
may be useful to make a point and propagate self-adaptive parameter settings as
‘natural’ for evolutionary algorithms, it is, logically speaking, misleading.

Local search is a very well known and popular randomized search heuristic by
itself. It is not covered in this text in any depth. Interested readers may want to
consult [2, 83] for a more appropriate exposition of local search. The Metropo-
lis algorithm and simulated annealing are also two popular randomized search
heuristics. Useful references include [1, 55, 63, 72, 82]. The design methodology
for evolutionary algorithms based on a metric was first presented by Droste and
Wiesmann [29].

2 Springer
http://www.springer.com/978-3-642-17338-7

Analyzing Evolutionary Algorithms
The Computer Science Perspective
lansen, Th.

2013, ¥, 258 p., Hardcowver

ISEM: 978-3-642-17338-7

