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Carbon Nanofi7. Carbon Nanofibers

Yoong Ahm Kim, Takuya Hayashi, Morinobu Endo, Mildred S. Dresselhaus

Carbon nanofibers are sp2-based linear, non-

continuous filaments that are different from

continuous, several micrometer diameter carbon

fibers. This chapter gives a review on the growth,

structural properties and practical applications

of carbon nanofibers as compared with those of

conventional carbon fibers. Carbon nanofibers

could be produced via the catalytic chemical va-

por deposition (CVD) as well as the combination

of electrospinning of organic polymer and ther-

mal treatment. The commercially available carbon

nanofiber around the world is ca. 500 t/y. Carbon

nanofibers exhibit high specific area, flexibility,

and super strength due to their nanosized diameter

that allow them to be used in the electrode ma-

terials of energy storage devices, hybrid-type filler

in carbon fiber reinforced plastics and bone tis-

sue scaffold. It is envisaged that carbon nanofibers

will be key materials of green science and tech-

nology through close collaborations with carbon

fibers and carbon nanotubes.
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Carbon nanofibers could be defined as sp2-based linear
filaments with diameter of ca. 100 nm that are char-
acterized by flexibility and their aspect ratio (above
100). Materials in a form of fiber are of great prac-
tical and scientific importance. The combination of
high specific area, flexibility, and high mechanical
strength allow nanofibers to be used in our daily
life as well as in fabricating tough composites for
vehicles and aerospace. However, they should be dis-
tinguished from conventional carbon fibers [7.1–3]
and vapor-grown carbon fibers (VGCFs) [7.4–10] in
their small diameter (Fig. 7.1). Conventional carbon

fibers and VGCFs have several micrometer-sized diam-
eters (Fig. 7.1c, d). In addition, they are different
from well-known carbon nanotubes [7.5, 11–14]. Car-
bon nanofibers could be grown by passing carbon
feedstock over nanosized metal particles at high tem-
perature [7.4–10], which is very similar to the growth
condition of carbon nanotubes. However, their ge-
ometry is different from concentric carbon nanotubes
containing an entire hollow core, because they can
be visualized as regularly stacked truncated conical
or planar layers along the filament length [7.15–18].
Such a unique structure renders them to show semi-

Part
A

7



SP
IN

:
12

74
26

08
(S

pr
in

ge
r

H
an

db
oo

k
of

Sp
ri

ng
er

H
an

db
oo

k
of

N
an

om
at

er
ia

ls
)

M
S

ID
:

hb
22

-0
07

Pr
oo

f
N

um
m

er
de

s
Pr

oo
fs

C
re

at
ed

on
:

11
A

pr
il

20
11

17
:0

3
C

E
T

2 Part A Carbon-Based Nanomaterials

In
de

x
en

tr
ie

s
on

th
is

pa
ge

polymeric composite
carbon fiber reinforced plastic
carbon fiber
graphite

1 101 102 103 104

Diameter (nm)

Carbon nanotube Carbon nanofiber Carbon fiber

a) b) c) d) e)

Fig. 7.1 Schematic comparison of the diameter dimensions on a log
scale for various types of fibrous carbons

conducting behavior [7.19] and to have chemically
active end planes on both the inner and outer sur-
faces of the nanofibers, thereby making them useful
as supporting materials for catalysts [7.20], reinforc-
ing fillers in polymeric composites [7.21], hybrid-
type filler in carbon fiber reinforced plastics [7.22–

24], and photocurrent generators in photochemical
cells [7.25, 26].

Alternatively, carbon nanofibers could be fab-
ricated by the right combination of electrospin-
ning of organic polymers and thermal treatment
in an inert atmosphere. The electro-spinning tech-
nique has been considered to be one of the
advanced fiber formation techniques from poly-
mer solution by using electrostatic forces [7.27–
30]. Electrospun-based nanofibers exhibited notice-
able properties, such as nanosized diameter, high
surface area and thin web morphology, which make
them applicable to the fabrication of high-performance
nanocomposites, tissue scaffolds and energy storage de-
vices [7.31–37].

Within these contexts, intensive studies on the syn-
thesis, characterization, possible application of carbon
nanofibers have been carried out for the last decade. In
this chapter, we have reviewed the synthesis techniques,
their interesting textural properties, and, furthermore,
the promising usages of carbon nanofibers that have
been developed over the past 10 years.

7.1 Similarity and Difference Between Carbon Fibers
and Carbon Nanofibers

Since carbon nanofibers could be considered as the 1-D
form of carbon, their structure and properties are closely
related to those of other forms of carbon, especially to
crystalline three-dimensional graphite, turbostratic car-
bons, and to their constituent 2-D layers. Therefore,
several forms of conventional carbon materials should
be mentioned in terms of their similarities and differ-
ences relative to a carbon nanofiber. Especially, a direct
comparison should be made between fibrous carbon ma-
terials, because the carbon fiber acts as a bridge between
carbon nanofibers and conventional bulky carbon ma-
terials. In this section, the structures of carbon fibers as
well as VGCFs are described with a strong emphasis
on the similarities and differences of these 1-D carbon
materials.

7.1.1 Basic Concepts

Carbon fibers represent an important class of graphite-
related materials that are closely related to carbon
nanofibers, with regard to structure and properties.
Carbon fibers have been studied scientifically since
the late 1950s and fabricated industrially since 1963.

They are now becoming a technologically and commer-
cially important material in the aerospace, construction,
sports, electronic device and automobile industries.
The global carbon fiber market has now grown to
about 12 500 t/y of product, after 40 years of contin-
uous R&D work [7.1–3]. Carbon fibers are defined
as a filamentary form of carbon with an aspect ra-
tio (length/diameter) greater than 100. Probably, the
earliest documented carbon fibers are the bamboo-
char filaments made by Edison for use in the first
incandescent light bulb in 1880. With time, carbon
fibers were replaced by the more robust tungsten fil-
aments in light bulb applications, and consequently
carbon fiber R&D vanished at that early time. But
in the late 1950s, carbon fibers once again became
important because of the aggressive demand from
aerospace technology for the fabrication of lightweight,
strong composite materials, in which carbon fibers are
used as a reinforcement agent in conjunction with
plastics, metals, ceramics, and bulk carbons. The spe-
cific strength (strength/weight) and specific modulus
(stiffness/weight) of carbon fiber-reinforced composites
demonstrate their importance as engineering mater-
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ials, due to the high performance of their carbon fiber
constituents.

Since the temperature and pressure necessary to
prepare a carbon fiber from the liquid phase is at the
triple point (T = 4100 K, p = 123 kbar), it would be al-
most impossible to prepare carbon fibers from the melt
under industrial processing conditions. Carbon fibers
are therefore prepared from organic precursors. This
preparation is generally done in three steps, including
stabilization of a precursor fiber in air (at ≈ 300 ◦C),
carbonization at ≈ 1100 ◦C, and subsequent graphitiza-
tion (> 2500 ◦C). Fibers undergoing only the first two
steps are commonly called carbon fibers, while fibers
undergoing all three steps are called graphite fibers.
Carbon fibers are generally used for their high strength,
while graphite fibers are used for their high modu-
lus. Historically, Bacon’s graphite whisker (Fig. 7.2)
has demonstrated the highest mechanical properties of
a carbon fiber (with regard to both strength and mod-
ulus), comparable to the ideal value for a graphite
network [7.38]. Graphitic whiskers were grown under
conditions near the triple point of graphite. Then, the
structural model was proposed, in which the layers con-
sisting of graphene sheets are wound around the axis
like as in rolling up a carpet. These whiskers were used
as the performance target in the early stages of car-
bon fiber technology, even though they have never been
produced on a large-scale.

Fig. 7.2 Model for graphite
whiskers grown by the direct
current (DC) arc-discharge
of graphite electrodes.
Whiskers were reported to
have the carpet-rolling struc-
ture of graphite sheets and
to have high mechanical
strength and modulus along
the fiber axis, similar to the
ideal values of a graphene
sheet

7.1.2 Synthesis and Properties
of Carbon Fibers

SEM photographs together with schematic structural
models are shown in Fig. 7.3 for typical carbon fibers:
a high-strength polyacrylonitrile (PAN)-based fiber
(Fig. 7.3a), a high-modulus PAN-based fiber (Fig. 7.3b)
and a mesophase pitch-based carbon fiber (MPCF)
(Fig. 7.3c) [7.38, 39]. The PAN-based fibers consist of
small sp2-carbon structural units preferentially aligned
with the carbon hexagonal segments parallel to the fiber
axis. This orientation is responsible for the high ten-
sile strength of PAN-based carbon fibers [7.40]. By
varying the processing conditions (e.g., oxidation con-
ditions, choice of precursor material, and especially
by increasing the heat treatment temperature) of PAN
fibers, a better alignment of the graphene layers can be
achieved (structural model of Fig. 7.3b), thus leading
to stiffer, higher-modulus PAN fibers, but with lower
strength [7.39]. PAN-based fibers are one of the typical
hard carbons. MPCFs consist of well-aligned graphitic
layers arranged nearly parallel to the fiber axis, and
this high degree of preferred orientation is responsible
for their high modulus or stiffness as well as their rel-
atively high graphitizability. The structures described
above give rise to different physical properties, although
each type of fiber features carbon hexagonal networks,
possessing the strongest covalent bonds in nature (C–C
bonds). These strong interatomic bonds lie in sheets es-
sentially parallel to the fiber axis, and are responsible
for the high mechanical performance of these carbon
fibers.

Referring to Fig. 7.4a we see that PAN-based fibers
have high strength and MPCFs have high modulus,
while VGCFs provide mainly ultra-high modulus ma-
terials [7.4, 41]. In this figure we also observe isotropic
pitch-based (general grade) fibers, exhibiting much
lower modulus and strength, but widely used in com-
posites with cement matrix for construction due to
their low cost and chemical stability. Figure 7.4b
demonstrates a direct indication of the differences in
the mechanical properties of various carbon fibers,
from low modulus – high strength to high modu-
lus – low strength fibers from the lower left to the
upper right in the photograph, where a yarn containing
500 fibers was initially placed in a horizontal posi-
tion. These fibers are combined with other materials
in order to design suitable mechanical properties and
the fibers are used as a filler for various advanced
composite materials. In order to get high performance
in carbon and graphite fibers, it is very important
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tubular filament
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Folded graphite sheet 
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Transverse
section

1 nm

External
section

Longitudinal
section

Transverse
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Pores
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External
section

Fig. 7.3a–c SEM micrographs of three types of carbon fibers and their corresponding structural models. (a) High-strength
PAN-based fiber, (b) High-modulus PAN-based fiber, and (c) a mesophase pitch-based fiber. In the second row of each
fiber type, a schematic diagram of the fiber structure is shown

to control the microstructure by selecting the appro-
priate organic precursor as well as the processing
conditions.

7.1.3 Vapor-Grown Carbon Fibers

VGCFs have a very special structure like annular-rings
(Fig. 7.5a) and are synthesized by a somewhat different
formation process than that used to produce PAN-based
and MPCFs. In particular, VGCFs are not prepared
from a fibrous precursor, but rather from hydrocar-
bon gas, using a catalytic growth process outlined in
Fig. 7.5b [7.5–10]. Ultrafine transition metal particles,

such as iron particles with diameter less than 10 nm,
are dispersed on a ceramic substrate, and a hydro-
carbon, such as benzene diluted with hydrogen gas,
is introduced at temperatures of about 1100 ◦C. Hy-
drocarbon decomposition takes place on the catalytic
particle, leading to a continuous carbon uptake by the
catalytic particle and a continuous output by the par-
ticle of well-organized tubular filaments of hexagonal
sp2-carbon. The rapid growth rate of several tens of
μm/min, which is 106 times faster than that observed
for the growth of common metal whiskers [7.37], al-
lows the production of commercially viable quantities
of VGCFs. Evidence in support of this growth model
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pyrolytic deposition
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Fig. 7.4 (a) The mechanical properties of various kinds of carbon and graphite fibers and (b) a direct comparison of the
mechanical properties for high strength and high modulus fibers. Low modulus fiber droops under its own weight, but
the high modulus fibers does not

Substrate

Catalytic
particle

C

C

Carbon supply C

Pyrolytic carbon layers

Primarily formed fiber 

c) d)

2 μm

100 nm 100 nm

b)a)

Fig. 7.5 (a) SEM image of vapor-grown carbon fibers, (b) suggested growth mechanism of VGCFs using ultra-fine cat-
alytic metal particles, (c) very early stage of tubule growth in which the catalytic-particle is still active for promoting
elongation growth. The primary tubule thus formed acts as a core for vapor grown fibers. (d) The fiber is obtained
through a thickening process, such as the pyrolytic deposition of carbon layers on the primary tubule. The encapsulated
catalytic particle can be seen at the tip of the hollow core
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