Chapter 2
One-Level FETI/BETI Methods

This chapter deals with tearing and interconnecting methods based on the finite
element method (FEM) and the boundary element method (BEM). Here we allow a
mixture of FEM and BEM within a single discretization of a PDE: the computational
domain is partitioned (“torn”) into several non-overlapping subdomains, and on
each individual subdomain one may choose FEM or BEM as the local discretization.
The coupling (“interconnecting”) of these local discretizations is maintained by
Lagrange multipliers. Additionally, the tearing and interconnecting framework is
used to construct fast solvers for the resulting global system of equations.

The term “one-level” in the title of this chapter refers to a special treatment
of the so-called floating subdomains that do not touch the Dirichlet boundary. An
alternative treatment is used in the dual-primal methods, see Chap. 5.

There are two subclasses of one-level methods: the classical formulation, and the
total or all-floating formulation. The classical finite element tearing and intercon-
necting (FETI) method was proposed by Farhat and Roux [FR91, FR92, FR94]
as a solver for large-scale finite element systems. Note that some basic ideas
can already be found in an earlier work by Glowinsky and Wheeler [GW88] on
certain mixed methods. The FETI method was enhanced with the so-called Dirichlet
preconditioner by Farhat, Mandel, and Roux [FMR94]. The latter method was first
analyzed by Mandel and Tezaur [MT96], who showed that the condition number
grows at most as C (1 + log(H/h))? where H is the subdomain size and & the
element size. See also [Tez98, Bre(02, Bre0O3a] for further analyses. Klawonn and
Widlund [KWO1] proposed new preconditioners including an earlier algorithm by
Rixen and Farhat [RF98a, RF99] and including ideas from balancing Neumann-
Neumann methods (see Sect.2.3). They also generalized the theory in several
different respects (e.g., the case of three-dimensions and so-called fully redundant
Lagrange multipliers) and could show the improved bound C (1 +log(H/ h))?. The
boundary element tearing and interconnecting (BETI) and the coupled FETI/BETI
methods were proposed and analyzed by Langer and Steinbach [LS03, LS05].

The total FETI method and the all-floating BETI method were introduced
independently by Dostal, Hordk, and Kucera [DHKO06] and Of [Of06, Of08],
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64 2 One-Level FETI/BETI Methods

respectively (see also [OS09]), and the corresponding preconditioner was analyzed
in [Pec08b]. Note that these methods have been successfully generalized to mechan-
ical contact problems, see e.g. [BDSO0S, DKV*10].

The remainder of this chapter is organized as follows. In Sect.2.1 we work
out a (discrete) skeleton formulation using the (approximate) Steklov-Poincaré
operators from Chap. 1. Section 2.2 describes the classical FETI/BETT and the all-
floating (total) FETI/BETI method in detail and discusses implementation issues.
Section 2.3 briefly introduces the related balancing Neumann-Neumann method.
The analysis of one-level FETI/BETI is performed in two steps. In Sect.2.4 we
analyze the unpreconditioned method (which turns out to be sub-optimal) and we
begin to analyze the so-called scaled Dirichlet preconditioner on an abstract level.
After providing a set of technical tools (Sect.2.5) we will conclude the analysis in
Sect. 2.6. Finally, we provide some numerical results in Sect. 2.7, and we discuss
generalizations to other equations and/or discretization spaces in Sect. 2.8.

2.1 Skeleton Formulations

FETI and BETT are iterative substructuring methods based on a non-overlapping
decomposition of the computational domain £2. A good starting point for these
methods, especially for BETI, is a discrete skeleton formulation, which is derived
from a continuous one.

2.1.1 Continuous Skeleton Formulation

Let 2 CRY (d =2 or 3) be a bounded Lipschitz domain whose boundary 952
consists of a Dirichlet boundary I'p = I'p with positive surface measure and a
Neumann boundary I'y =952\ I'p. The outward unit normal vector to 92 is
denoted by n. We consider the weak form of the potential equation (1.21): find
u€ H'(£2), ur, = gp such that

/%Vu-Vvdx = / fgvdx—l-/ gy vds VveHé(.Q), (2.1)
2 2 I'n

=:a(u,v) =:(f,v)
where H),(2) := {v € H'(2) : vjr, = 0} and
fo e LX), gyvel’In), gpeH(Ip) (2.2)

are given. We assume that the coefficient <7 fulfills Condition (1.22) from Lemma
1.39 (p. 20), such that we have unique solvability.
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Table 2.1 Geometric sets
and quantities associated to

the subdomain decomposition H; := diam($2;) Subdomain diameter
L= (02 N02;)\ I'p Subdomain interface
I = Ui#j I Interface
s :=J; 02 Skeleton

Let {£2;}7_, be a non-overlapping partition of £2 into open Lipschitz domains £2;
(called subdomains or substructures) such that

s
O = Uﬁi’ 2N, =0 fori # j. (2.3)

i=1

Furthermore, we introduce a couple of geometric quantities summarized in Table 2.1
(recall that I'p is closed!).
Thanks to the assumptions on fp and gy, we have the splitting property

N N
a(u,v) = Z /'Vu-Vvdx, (fiv) = Z(/ fo vdx—l—/ gN vds)
i=1 Q2; i=1 Q2; 02Ny

=: a,-(u|_Ql., V|~Qi) = (fl’ V|.Q,'>

2.4)
witha; : H'(2:) x H'(2;) — Rand f, € H'(£2;)*.

Remark 2.1. We can also allow for a general functional f € H'(£2)* (not necessar-
ily of the form (2.1)), provided that we have a splitting into subdomain functionals
fi € H'(£2:)* asin (2.4).

For each subdomain £2;, let S; : H'/?(382;) — H~'/2(3£2;) denote the Steklov-
Poincaré operator corresponding to the bilinear form a; (-,-) and N; : H'(£2;)* —
H~'/2(3$2;) the corresponding Newton potential, see Definition 1.41. Furthermore,
we define the skeletal spaces

H'>(I's) := {ve L*(I's) :3v e H'(2) :v = V1), (2.5)
HY*(I's) :== {ve H">(I's) : v, =0} (2.6)

Lemma 2.2. The variational formulation (2.1) is equivalent to finding u € H'(2)
with u|r, = gp such that

s s

> (Siupg. vipa,) = Y _(Nifiovoe,)  Vve H)*(Is),

i=1 i=1

ai(ug,, vo) = (fi, vo)e; Yvo € Hy($2;) Vi=1,...,5.
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Proof. The equations in the second line follow immediately from (2.1). With these
local equations fulfilled, Lemma 1.42(ii) implies that

a; (g, vi;) — {fi- vi2;) = (Siupe;. vige:) — (Ni fis Viee:) Vv e H)(R2).

This proves the equivalence. O
The system in Lemma 2.2 can be seen as an algorithm:

1. Determine us € H'/?(I's) with us|r, = gp such that

s s

Z(Si Uslao» Vpo) = Z(Nifia Vo) Vv e Hy*(Ts). 2.7

i=1 i=1

2. Determine the local functions #; = u|g, as the solution of the variational
problems, find u; € H'(£2;) with u;jpq, = us)ae, such that

a;(u;, vo) = (fi, vo)e Vvo € Hy (82)). (2.8)

Problem (2.7) is called skeletal variational formulation. Under the assumptions of
Lemma 1.39, it is straightforward to show (with Theorem 1.1) that Problem (2.7) is
well-posed. Should we only be interested in the trace of the solution u on I's, we
can stop after step 1.

Sometimes, the following homogeneous version of (2.7) is convenient. Find & €

H}/>(I's) such that

s s

Z(Si o Vo) = Z(Nifi — Si &pjaci» Viosx) Vv e Hé/z(Fs), (2.9)

i=1 i=1

where gp € H'?(Is) fulfills gpirp = &p (see Lemma 1.21). Thenu = gp + u
solves Problem (2.7).

2.1.2 Discrete Skeleton Formulations

Discrete skeleton formulations are obtained by applying a Galerkin method to (2.7)
or (2.9).

Step 1. We project the equation to a finite-dimensional space. To this end, we
consider a shape regular triangulation .7"(I's) of the skeleton Is into line
segments (if d =2) or triangles (if d =3). We require that the subdomain
boundaries 9£2; are unions of elements from .7"(I's).

The H'/?(I's)-conforming skeletal finite element space is defined as

VIiI) == ve €Is) v, € Py Yt e Ty} (2.10)



2.1

Skeleton Formulations

Fig. 2.1 Example of a
skeleton mesh for a
decomposition into four
subdomains, extended to
local meshes in two of the

subdomains(e skeleton nodes,

o interior FE nodes)

Step 2.

Si,h =

Sipem if i € Spem
Sirem if i € Frem

67

FEM

s FEM

Vi € jBEM’

Nigem if i € Spem
Nirem if i € Jrem

For simplicity, we assume that the Dirichlet data gp is piecewise linear too.!
Hence, there is a unique function gp € V'(I's) with gpir, = g&p which
vanishes on all nodes except those on I'p.
We use an approximate bilinear form and right hand side. Let #ggy C
{1, ...,s} be an index set and assume that

with constants ;; > 0. In each subdomain, the restriction of 7" (Is) to 982; is
a triangulation of 9£2;, simply denoted by .7"(3£2;). For i ¢ .#ggm, we extend
Th(0£2;) to a shape regular triangulation .7 (£2;) of £2;. For an example see
Fig.2.1. We now replace the local Steklov-Poincaré operators S; and Newton
potentials N; by the FEM- and BEM-approximations from Sects. 1.2.6 and
1.3.8.1. With Fgpym = {1, ey S} \ BEM, WE set

e

To ensure the invertibility of the discretized single layer potential operators

occurring in S; ggm, we assume that in two dimensions, diam(§2;) < 1 for all
i € BeM, cf. Assumption 1.72, p. 46. A sufficient and practicable condition for
this is of course diam(§2) < 1, which can be achieved by a simple scaling of the
coordinates.

up|r, = gp such that

s

Z(Si,humagi, Vhjae:) = Z(Ni,hfia Vhas: )

i=1

Vv, € VA(Ts),

The resulting discrete skeleton variational problem reads: find u;, € V" (I's) with

@2.11)

'Otherwise, we can use an interpolation (if the data is continuous) or an L?-orthogonal projection

of the Dirichlet data to V" (I'p).
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where
Vi(Is) == V(I's)n HY*(I). 2.12)

Since the above bilinear form is symmetric, Lemma 1.3 implies

S
up = argmin Z (%(Si,hvh\ag,-, Vi) — (Niw fi Vh\ag,-))- (2.13)
wevh(rs) i=1
Vh|Irp =8D

The homogeneous version reads: find i1, € Vg (I's) such that

s s
Z(Si,hﬁh\agi, Vhlag) = Z(Ni,hfi — Sin&placis Vo) Vv, € VA(Ts).
i=1 i=1

(2.14)

Then u;, = gp + uy, solves (2.11). The minimization problem equivalent to (2.14)
reads

s
u, = argmin Z (%(Si,thag,., Vi) — (Ninfi — Sin€plas; Vh|a_(2,~))-

viEVA(Ts) i=1

(2.15)

Remark 2.3. For a pure FE formulation (Zrgy = {1, ...,s}), system (2.11) is the
Schur complement system (cf. Sect. 1.2.6) of the global FE system

find uEE € Vh(.Q), MZI\EFD =gp: a(uEE, vp) = (f. vp) Vv, € Vh(Q), virp =0,

E
[Ts*

Remark 2.4. For the case that both FEM and BEM are included, the present form
of the skeleton problem is also known as the symmetric coupling of FEM and
BEM [Cos87]. For the advantages of this coupling and for other types of couplings
see e.g. [ZKB77, ZKB79, BJ79, BIN78, JN80, CS90, Lan94, HHKL97, Hip02,
KS02, Ste03b, Stel1]. See also the related works [CKL98, HSW00, HW91] on pure
boundary element domain decomposition.

and u;, = uj,

Remark 2.5. Note that on a FEM subdomain £2;, the Schur complement matrix may
be defined differently by eliminating non-coupling DOFs on the Neumann boundary
together with the interior DOFs, cf. [TW05, Chap. 4]. The associated operator then
maps from V" (3£2; N (I" U I'p)) to its dual. Correspondingly, one can define a
modified Steklov-Poincaré operator S; : H'/?(352; \ I'y) — H&)I/Z(B.Qi \ I'n),
and show the analogous statements of Sect. 1.2.6 for the two modified operators.
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This approach is very natural in implementations, since one only needs to know
whether a DOF is a coupling one (or a Dirichlet DOF) rather than if it is on the
subdomain boundary. On the contrary, for BEM subdomains this approach is not
natural, since all DOFs in Vh(a.Qi) are already on the subdomain boundary. Hence,
for a unified presentation, we have chosen the separation into “true” boundary DOFs
and interior DOFs for all subdomains. However, generalizations of the statements
below to the modified operators can be proved without major effort.

2.1.3 Error Analysis of the Discrete Skeleton Formulation

The discrete skeleton formulation (2.14) introduces variational crimes when com-
pared to (2.9). In this short section, we provide an a priori error analysis for the
simplified case that

gDZO and f,=0 ViGﬂBEM.
In this case, the solution u of (2.1) lies in the space
VS,D = {V (S H$(.Q) Vi e jBEM : Vg, = %(V‘agi)},

where 7% denotes the harmonic extension from H'/2(32;) — H'(£2;). From the
relation

ai(Vio» W) = (Sivjgar Wia) Vv, we Vsp, i € Ipem,

it is straightforward to show that (2.9) is then equivalent to finding u € Vs p such
that

Y aitwe.vie)+ D (Siupe.voe,) = Y (fiive)  VYveVsp.
i €.9FEM i €.7BEM i € FEM
(2.16)
We now define the space

V.S@,D = {V € VS,D Vi € fBEM “V)aR; € Vh(a.Qi), Vi € jFEM Ve € Vh(g,)}

The discrete problem (2.14) is equivalent to finding u;, € Vf’ p such that

Z a; (up|o;» vag,) + Z(Si,h Up|ag; s VhIaRi) = Z(fi, Vi) Yvi€ VSh,D .

i € SFEM i €.BEM i€ IFEM

(2.17)

Comparing (2.16) and (2.17), we see that the variational crime is located in the BEM
subdomains only, as we replace S; by S, fori € Zggy (for the case Sppy = 0
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see also Remark 2.3). Following the proof of [HLP10, Lemma 4.2], which involves
a Strang lemma (cf. [Cia87]), we obtain that there exists a constant C depending on
the domain §2, the coefficient 27, and on the BEM subdomains £2;, i € #ggm such
that

e —wunll @y = € inf lu = vallme)
VheVSI.D

. 12
+c( S inf )||z,-(u)—zh||§,,1/2(mi)) ,

h €2, (082;
iGﬂBEMZh 1 (052;

where #;(u) = S ujyp, is the generalized conormal derivative of the solution u on
d82; fori € Fgpy. Alternatively, one can employ an error estimate for the associated
mixed setting, cf. [Hof11]. Using the minimizing property of the harmonic extension
(Lemma 1.54), the FE approximation estimates from Lemma 1.44, and the BE
approximation estimates from Lemma 1.89, we finally get the a priori error estimate

1/2
2 2
lu—upllpriy < CI° (|u|H1+.\,(m+ > ||zf(u)||Hp:,/z+.\,(ml_)) :

i €.BEM

provided that u € H'*(£2) with s € (0, 1]. In terms of A, this is the same
error behavior as for a pure FEM discretization. Note, however, that the constant
C depends on the subdomain partition. Finding an estimate which is explicit in the
subdomains is non-trivial, but should be possible under the regularity assumptions
that we will introduce in Sect. 2.5.2. For the limit case H; — h see [HLP10].

2.1.4 Conditioning of the Skeleton Problem

Lemma 2.6. Let 77 (2) be a shape regular and quasi uniform triangulation of £2,
and let each subdomain §2; be a union of a few coarse elements of 7" (2), such
that the number of elements per subdomain is uniformly bounded. Furthermore, let
the triangulation T"(I's) be quasi-uniform. Then there exist uniform constants cy,
¢y > 0 such that for all v € VDh (Ts),

s

cramin H VG2 < D (Sinviags viae,) < ca 1 [eooy h V13

i=1

=:(S;v,v)

where amin > 0 is the constant from (1.22) (p. 21). Hence, the conditioning of the
skeleton problems (2.11) and (2.14) is given by

o || oo
K(Sy) = ﬁ(” | oo () H—lh—l).

Qmin
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Proof. The following proof is identical to [TWO0S, Lemma 4.11]. To simplify its
presentation, we assume that diam(§2) = 1, and we extend v from [s to §2 by
setting v, := J%/v. By Theorem 1.23 and a scaling argument we get that

2 2 2 —1
Hi W2y = HZ (WBpnag, + H IVl20g) )

A

2 2 -2 2
HZ (VB0 + H72 M0, )-

Above, < stands for < C, where C is a generic, uniform constant. Summing over
i =1,...,s,using that H; < H < 1, Friedrichs’ inequality, as well as the spectral
equivalence relations from Sect. 1.3.8.3, we obtain

2 2 2
Qmin H ”v”LZ(Fs) < Omin ”V”Hl(_Q) < amin|V|H1(9)

s s

D USiv. Vg, S D (Siav. Vg, -

i=1 i=1

IA

This shows the lower bound. For the upper bound, note first that with the same
notation as above,

s s

N
2 2
§ (Sinv, v0eg, < E (Sivivhag, < 19|00 E V20, -

i=1 i=1 i=1

To conclude the proof, we apply the inverse inequality
Wlgirpg,) < h2 w222, Yw e V'(82:),

which can derived using interpolation theory (cf. [TW0S, Lemma B.27]). O

Remark 2.7. Preconditioners for the skeleton problem are also called Schur com-
plement preconditioners. Examples are the BPS type and wirebasket preconditioners
(see [TWO5, Sect. 5] and the pioneering papers [BPS86, BPS87, BPS88, BPS89]),
the Neumann-Neumann preconditioners (Sect.2.3) and the BDDC preconditioner
(Sect. 5.1.4). See also the related papers [HL92, HLM91a, HLM91b, CKL98, HS01,
Ste03a, KL04] as well as the work of Nepomnyaschikh [Nep91b, NepO7].

2.2 Formulation of One-Level FETI/BETI Methods

In the following Sect.2.2.1, we derive the classical FETI/BETI methods starting
from the homogenized minimization problem (2.14). Section 2.2.2 deals with
the all-floating (total) FETI/BETI formulation starting from the non-homogenized
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Fig. 2.2 Nodes of the set
d92!'for a single subdomain
£2; (e interface nodes in

I'" N 32", O Dirichlet
nodes, M remaining Neumann
nodes)

minimization problem (2.11). In Sect.2.2.3, we give an interpretation of the
Lagrange multipliers involved in both formulations. Section 2.2.4 introduces various
preconditioners, and Sect. 2.2.5 discusses implementation issues.

Throughout the remainder of this chapter, we work exclusively in the discrete
setting. To simplify the notation, we drop the subscript / in the operators S; ;, and
N; ;. That means from now on, S;, N; refer to discrete operators

Si VR — VIO, N H'(2)* — VH982)*. (2.18)

Moreover, we need a few definitions concerning the skeletal triangulation. Let I Sh
be the set of nodes on I's. Analogously, 39;’, FDh, rh 1",? are the sets of nodes on
the respective parts of the skeleton, see also Fig.2.2. A typical node will be denoted
by x".

Remark 2.8. Note that, for all FEM subdomains, we can define the discrete
operators S;, N; differently by eliminating non-coupling Neumann DOFs fogether
with the interior DOFs, which is much more practicable in implementations, cf.
Remark 2.5 and [TWO0S5, Chap. 4]. This results in operators

S; VM2 \ T'y) = V(0392 \ I'v)*. N; : H'(2;)) — V(982; \ I'y)*.
(2.19)

This is in fact done in the original FETI method, but for a unified presentation of
FETI/BETI, we have chosen the setting in (2.18). The theory below, however, can
be generalized without major difficulties to the case of (2.19).

2.2.1 Formulation of Classical FETI/BETI

In this section we derive the classical formulation of the FETI method (as introduced
in [FR94]) as well as the BETI and coupled FETI/BETI methods (as introduced
in [LS03, LS05]). Our presentation mainly follows [KWO01, LS05], and [TWO5,
Sect. 6.3]. Our starting point is the homogeneous skeleton problem (2.14).
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Fig. 2.3 Sketch of
non-redundant constraints Q, Q,
(left) and fully redundant
constraints (right) for a node
that is shared by four
subdomains —

Q, o

2.2.1.1 Tearing and Interconnecting

The idea of “tearing” is to introduce separate unknowns for i3, € VDh (0£2;) on the
subdomain boundaries. To this end we define the spaces”

W= Vj@2) and W = [[W. (2.20)

i=1
We denote the components of w € W by w; and write
w = [wi]i_, € W. (2.21)

A Jump Operator. Functions in the product space W are typically discontinuous
across subdomain interfaces. Continuity (“interconnecting”) is enforced by con-
straints of the form

wi (x™) — wj x" =0 for x" € Fij?,

i>]. (2.22)
In this book, we restrict ourselves to fully redundant constraints, i.e., we impose
all constraints of the form (2.22), see [TWO05, Sect. 6.3.3] and Fig. 2.3, right. They
turn out to be advantageous in implementations due to the full symmetry. In the
non-redundant case (see [TWO05, Sect. 6.3.2] and Fig. 2.3, left) a minimal number of
necessary constraints is used. For other variants, such as orthogonal constraints, see
e.g. [FPO3, FP0O4].

Definition 2.9. Let us assume a numbering of the (fully redundant) constraints
(2.22) with M being the total number of constraints. The entry of a vector u € R
corresponding to the constraint (2.22) at the node x” € 1"3 is denoted by ft;; (xM.

Introducing the (linear) jump operator B : W — RM, given by

Bw)i;(x") = wi(x") —w;(x")  forx" eI},

i>J, (2.23)

2For the setting (2.19), W; = VE(352, \ I'y).
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we can write all constraints compactly as
Bw = 0.
The essential property of B is (and should be) that the subspace
W= {weW:Bw=0} = ker(B) (2.24)

can be identified with Vl’; (I's), in short: Vl’; (I's) =

Remark 2.10. With respect to the standard nodal basis, the operator B is repre-
sented by signed Boolean matrix (with entries 0, 1 or —1). For other discretization
spaces we refer to Sect. 2.8.

Saddle point formulation. In the sequel, to avoid cumbersome notation, we will
regard the approximate Steklov-Poincaré approximants S; as operators mapping
from W; to W;*, with the only exception of S; gpjae,. In addition, we define

S:W — W*by

(Sv.w) := D (Sivi.w;)  forv,we W, (2.25)

i=1
in short S := diag(S;){_,, and the linear functional g € W* by

s s

(gow) == Y (g wi) == Y (Nifi = SiGppag. wi)  forwe W, (2.26)

i=1 i=1

in short g := [g;]'_; = [N; fi —Si &pjac:]i=,- Using this notation we can write the
minimization problem (2.15) equivalently as the constrained minimization problem

U = argmin 5 LS w, w) — (g, w). (2.27)

wew
Bw=0

For simplicity, we use the symbol & simultaneously for the solution of (2.14) and the
solution of the above problem. The equivalent saddle point problem reads as follows
(see also the following Sect.2.2.1.2). Find (&, A) € W x U:

[ISsBOTMﬂ N [ﬂ (2.28)

where U = RM is the space of Lagrange multipliers. The second equation (B i = 0)
ensures that it € W = VA(Is).

Lemma 2.11. Under the assumptions made in Sect. 2.1, ker(S) N ker(B) = {0}.
Therefore, Problem (2.28) is uniquely solvable up to adding elements from ker BT
to A. The solution it € W = Vh (I's) is the unique solution of (2.14).



2.2 Formulation of One-Level FETI/BETI Methods 75

Proof. Since ker(B) = W = Vi(I's) and the bilinear form (S-,-) is coercive
on VDh (Is), it follows that ker(S) N ker(B) = {0}. The classical Brezzi theory
(cf. Lemma 1.16) implies the solvability of (2.28). Finally, u solves the constrained
miminization problem (2.27), which is equivalent to (2.15) and (2.14). O

For reasons that will become clear later on, we agree that the Lagrange
multipliers are in U, but B w is in its dual:

B:W — U*, BT :U — W*.

Of course, U* = RM too, and the duality pairing in U* x U is nothing else than the
Euclidean inner product, i.e., (i, A) = (i, A)p2 for A € U, u € U*. Nevertheless,
we will keep track of the subtle difference between U and U* for this has several
advantages.

The jump operator B can be decomposed into local operators B; : W; — U™,
i =1,...,s such that

(Bw.A) = Y (Biwi.A) VAeU.

i=1

2.2.1.2 Interpretation of the Lagrange Multipliers

This subsection may be skipped by readers who are mainly interested in the
derivation of the FETI/BETI method. It contains an interpretation of the Lagrange
multipliers as normal fluxes, and it discusses the adjoint BT in more detail.

The saddle point formulation (2.28) can also be derived directly from the
discrete skeleton formulation (2.14) without a detour via the minimization problem.?
We show this alternative derivation because it provides more insight on the Lagrange
multipliers. Let &z € VDh (I's) be the solution of (2.14) and let

i = S Uy — &

denote the discrete (generalized) conormal derivative* and set ¢ = [; i, e W
Substituting this formula into (2.14) and using that VDh Is) = W= ker(B), we
obtain

(t,w) =0 Vw € ker(B). (2.29)

3This way, FETI formulations can be derived for non-symmetric or indefinite problems.

“Note that the given Neumann data gy is already incorporated in g;; if  is the solution, #; vanishes
on all the interior nodes of the local Neumann boundary.
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This is equivalent to

t € ker(B)® = range(B ),
cf. Lemma 1.8. We now

e Parametrize the solution & € Vg (I's) by u € W with the side condition B u = 0,
* Parametrize the conormal derivative t € W* by —BT A with A € U, therefore
fulfilling condition (2.29) automatically.

From the definition of 7 and g, we get the equation —B TA = S ii—g. Together with
B u = 0, this yields exactly (2.28). Under this perspective, the Lagrange multipliers
themselves can be interpreted as normal fluxes. More precisely, they parametrize
the normal fluxes of the solution gp + u of (2.11):

—B'A = Si(&ppg, + i) — Ni f; .

For an interpretation in a mechanical context see [RF98a, RF99].

Definition 2.12. For x € I'} we define
N =tk =1,....5:x" €M,

i.e., the index set of the subdomains sharing the node x". Furthermore, we set
A=k =1,...,5:08; N2, # B}.

Definition 2.13. Fori =1,...,sand x" € B.Qf, let ¢; .1 € V" (£2;) be the nodal
basis function corresponding to node x". For t € W*, we set

lixh = (tiv @i,x’l>39i'

Lemma 2.14. For u € U* and A € U,

(n, A) = Z Z i (X" Ag (x").

herh
i, j€EN

i>j
The adjoints BT : U — W* and B, : U — W* fulfill

BTV = (BT A g oo, = Y sign(i—j)Aj(x")  forx" e @ nr”.
JEN i}

Proof. The proof is straightforward.
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2.2.1.3 Eliminating Local Variables
The first set of equations in (2.28) read
Sii = g —B'A  VYi=1,...5s.

The goal of this subsection is to obtain an explicit formula for u;, which is not
straightforward as some of the operators S; are singular.

In the usual theory of iterative substructuring methods, a floating subdomain is
defined as a subdomain £2; whose boundary d£2; does not intersect the Dirichlet
boundary I'p. Here, we use a more abstract form.

Definition 2.15 (floating subdomain). A subdomain §2; is called a floating subdo-
main if S; : W, — Wl* is singular, otherwise it is a non-floating subdomain. The
index set corresponding to the floating subdomains is denoted by Foq.

In the case of the potential equation, the solution of the pure Neumann problem on
a floating subdomain is only unique up to an additive constant, and so

span{lyn, } ifi € Hhoar,
{0} else.

ker(S;) =
In a non-floating subdomain,
i = ST g —B'A)  Vid Fhou
For the remaining subdomains, we need the solvability conditions
gi — BiT)k € range(S;) Vi € Hhoat-
Choosing an injective operator
R; : Réimler(S) _y py range(R;) = ker(S;), (2.30)
the local solution u; can be represented by
i o= S/(g—B'M) + Ri&. (231)
where SiT is a pseudo inverse of S; (see Sect. 1.1.3.4),and §; € [Rdim(ker(S;)) Actually,
formula (2.31) is valid for all i = 1,...,s. In our setting, we choose R;§ = & if
i € Hhoa and 0 otherwise. Since range(S;) = ker(S;)° = range(R;)° = ker(Rl-T)

(see Lemma 1.8), the compatibility conditions rewrite as

R'(gi—B'A) =0 Vi=1,...,5s, (2.32)
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where for i & oy, this condition is trivial. Introducing
s
7 = l_[ RAim(ker(S))
i=1

and the operators R = diag(R;)!_, : Z — W, and ST := diag(Sl-T) WS W,
we see from (2.31) and (2.32) that

i=S"g—B"A)+RE¢ (2.33)
for some & € Z, provided that
R'™B™A = R'g. (2.34)
Eliminating # from (2.28) using (2.33) yields
BS'(g—BTA) +BRE = 0.

After reordering the terms above and adding (2.34) to the set of equations, we obtain
the system

BS'BTA—BR& = BS'g,
R'BTA = R'g.
By defining the operators
F := BS'BT, G := BR, (2.35)

we see that the above system has saddle point structure. In the following, we briefly
discuss the solvability of this problem and its relation to (2.28).

Lemma 2.16. The problem of finding (A, &) € U x Z such that

F -G[A»] _ [BS'g
Eorl IRV N

is uniquely solvable up to adding an element from ker(B ") to A. With
i = ST g—B"A) + RE,
(u, A) solves (2.28), and 1 € W= VDh (I's) solves (2.14).

Proof. First note that the operators F, G T vanish onker(B ). Therefore, F and G "
are well-defined on the factor space Uy, (57). We apply Lemma 1.16 (with V'

Uer(Ty> @ > Z). The assumptions hold because ker(£) N ker(GT) =ker(BT).
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One easily shows that ker(G) = ker(Bjunge(r)) = ker(B) N ker(S) = {0}, which
implies uniqueness. The rest of the proof is straightforward. O

Remark 2.17. For apure FEM, i.e., #gpm = 0, the use of Schur complement opera-
tors in the derivation can be circumvented. Foreachi = 1,...,s,let X; := VDh (£2;)
be the FE space on £2; with respect to gh (£2;) and set X := ]_[‘;:l X;. Moreover, let
A; 1 X; — X and{; € X be the operator and functional corresponding to the local
stiffness matrix and load vector (after the homogenization). Let B, X; —> U*be
the jump operator defined by B,v; := B; Vilag; - then the global problem is identical

to find (u, A\) e V x U:
AB | [u] _ T
B o |LA] o]

where A = diag(4;)!_,, and £ = [{;]{_, € V*. Having at hand pseudo inverses AIT
and injective operators R; : Rémker(4)) . X such that ker(4;) = range(R;), we
can reduce this system as in Sect. 2.2.1.3. The resulting system is identical to (2.36),
ie.,

F=8BS'BT =BA"B', BS'¢=BA", G=BR=BR, R'g=R ¢,

cf. [RFTM99, Sect.2.1.3].

Remark 2.18. The result of Remark 2.17 also holds for arbitrary combinations of
FEM and BEM if we reformulate the equations in a mixed setting. For i € #ggwm,
we use the local space X; := Vg(aﬂ,-) x Z"(0%2;) and define 4; : X; — Xz,

B;:X; > U* and {; € X" by

D; A1+ kT — [v Ni fi = Digpjag;
A = i 2 il B = By, € = Do |
’ [%1 +Ki -V ] ' [fi] e [—(%1 + Kb
2.2.1.4 A Projection Method

Note that the saddle point problem (2.36) is different in its structure from the saddle
point problem (2.28) because the variables & lives in the space Z of small dimension:

dim(Z) < s <« dim(U).
Therefore, an inversion of a sparse system on Z is acceptable. Since the lower right
block of System (2.36) is zero, we can use a projection method, cf. [FR91, FR94].

Following [FCM95], we define the space of admissible Lagrange increments

Ug = ker(G') = {(AeU:BTr e range(S)}. (2.37)
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The Case R g = 0. Assume for a moment that R T g = 0. Then the solution A of
(2.36) lies in U,g. We can always reach this subspace by an orthogonal projection
(see Sect. 1.1.3.3). Let the self-adjoint linear operator

0:U*—>U

be positive definite on range(G); specific choices of Q will be given later on. The
operator

P=1-0G(G'0G)'GT (2.38)

is a projection from U onto U,. Note that G' Q G is SPD because of the
assumptions on @ and because ker(G)={0}, see the proof of Lemma 2.16.
Furthermore, for a suitable choice of Q, the matrix representing G T Q G is sparse,
cf. Sect.2.2.5.

Hence, if RTg = 0, it suffices to test the first line of (2.36) (rewritten as a
variational problem) with test functions from U,q = range(P), i.e.,

find e Uyg: PTFA = P'BS'g.

The Case RTg #* 0.In the general case, we can decompose A = Ay + I, where
G Ao = RTg and A € U,q. Apparently, the choice

o = 0G(GTOG)'RTg (2.39)

fulfills these requirements, and so we can homogenize the equation. Summarizing,
we obtain the problem

findX € Uy: PTFA = PT(BS'g—Fap). (2.40)
N————
=BS'(g—B T o)

We will discuss this equation in detail~in Sect.2.2.1.5. Before, we need to see how
to recover the variable & from A and A. Testing the first line of (2.36) (rewritten as
a variational problem) with test functions from range(/ — P), we obtain

(I-POHFA-(I-P"GE = (I-P"BS'g
N—

=G¢

— Gé& (I-PT) (FA—BS'g).

GGTQG)TIGTQ BST(BT A—g)
Applying (GT Q G)™'G T Q to the last equation, we obtain the formula

£ =—(G'0G)'GTOBS (g—BTA). (2.41)
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Algorithm 2: Classical FETI/BETI method based on PCG
g =[Nifi —Si &ppaliz
A=0G(G"QG)'RTg
d =P"BS' (g— BT 1)
solve PTF A = d with PCG and initial value 2(9) = 0 and stop after k
iterations
A0 — Ao + A0
0 =—(GTOG)'GTOBS (g — BTAW)
% = ST(g — BT;\(k)) + RE®

Table 2.2 Overview on the spaces and operators involved in FETI/BETI

Spaces
U=RM Space of Lagrange multipliers
Ug =ker(GT) C U Space of admissible Lagrange increments
Uad = Usd/ker(BT) Factor space modulo redundancies
Vg Is) Skeletal FE space with homogeneous Dirichlet conditions

VL’; (082;) (classical)

) Local spaces
Vh(B.Q-) (all-floating)

P =

W = ]_[ Product space (“discontinuous” functions)

W =ke r(B ) cw Subspace of continuous functions in W, identifiable with
Vp(Is)

Z = [[j_, Rdimker(Si) Parameter space of ker(S)

Operators

B:W—>U* Jump operator

F:U—>U* F=BSBT

G:Z—->U* G = BR

P:U — Uy Projection, P =1 — QG(GTQ G)~'GT

PT:U* > U} Projection, PT =1 —G(GTQG)"'GTQ

0:U*—>U Self-adjoint operator, SPD on range(G)

R:Z—->W Injective operator, range(R) = ker(S)

S W —->w* Block operator of local approximate Steklov-Poincaré
operators

St.w*—->w Pseudo inverse of S

The complete method is summarized in Algorithm 2, p. 81. An overview on the
spaces and operators involved is given in Table 2.2, p. 81.
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2.2.1.5 The Central FETI/BETI Equation

Herein, we discuss the solvability and a solution algorithm of Problem (2.40).
Since the Lagrange multipliers are only unique modulo ker(B ), we introduce the
factor space

Uit = Usg/rer(s™)- (2.42)

As mentioned in the proof of Lemma 2.16, F is well-defined on ﬁad because it
vanishes on ker(B ). Recall from Sect. 1.1.3.3 that range(P ) is a realization of
the dual of Uyq. Moreover, one can show that range(P T) Nrange(B) is a realization
of the dual of U ,4. In short,

ﬁ:d = range(PT) Nrange(B) = {u erange(B) : (Bz, Qu) =0 Vzeker(S)}.
(2.43)

Lemma 2.19. The operator P F maps ﬁad to ﬁ:d and P-'—Fl'ljﬂd is SPD.

Proof. By definition, F maps U, to range(B). From the definition of P T we see
that P T (range(B)) C range(B) Nrange(P ') = ﬁ:d.

Since F is self-adjoint and positive semi-definite and P is a projection onto Uy,
it follows immediately that P Tﬂ 7, 18 self-adjoint and positive semi-definite. It

remains to show the definiteness. Assume that for A € ﬁad,
0= (PTFA A = (STBTA, BTA).

Since A € Uy implies BT A € range(S), we conclude from the properties of the
pseudo inverse ST that BTA = 0. Since A is in the factor space modulo ker(B ),
this means A = 0 and concludes the proof. O

As a consequence of Lemma 2.19, Problem (2.40) can be solved using a PCG
method, see Sect. 1.2.4.2 and Corollary 1.50. Recall that we have left the choice of
Q : U* — U open yet, and that we need a preconditioner (at least a formal one)
mapping from ﬁ:d back to U ,q.

The unpreconditioned case. We choose Q = I (recall that U = RM = U™).
Then PT = P and U}y = Uag. Hence, PTFllZm maps to U,q N range(B), which is
naturally embedded in the factor space U Summarizing, the formal preconditioner
can be chosen as the identity, i.e., we take no preconditioner.

The preconditioned case. All preconditioners under our consideration have the
form

PM! (2.44)

where M ! : U* — U. The projection P makes sure that the preconditioner maps
back to the space U,g, which is embedded in U 4. Of course, (P M_l)l g must be
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SPD in order to make PCG applicable. The choice M ~! = I and Q = I gives the
unpreconditioned case.

The complete FETI/BETI method for the classical formulation is summarized in
Algorithm 2, p. 81. Note that in that algorithm, we can substitute g, B, R, S, and
St by £, B, R, A, and A" from Remarks 2.17 and 2.18, respectively (and omit the
first line), see also Sect.2.2.5.

Remark 2.20. By simple linear algebra, one shows the residual identity
d—PTFA® = Ba®),

(see e.g. [FR94, FCRR98]) i.e., the residual in the CG algorithm controls the jump of
the approximant #*), and equivalently the jump of u® =[gp 0,1 _, +u®. We
note that the entire method can be rewritten in terms of the variables 1*):= — BT
(Ao + A®) and 2™, see Sects.2.2.1.2 and 2.2.3.

Remark 2.21. In Algorithm 2, we have chosen 20 =0, but any value in Uyg would
be suitable. Formally, the PCG runs in the factor space U,q4, but in a standard
implementation, we just use vectors in U (projected to U,). Working in factor
spaces might often be dangerous in practice, but not in the current case: the
components in ker(B ") of the iterates cannot blow up. If an iterate A*) should
have a non-zero contribution from ker(B "), the next iterate A**+1 does not depend
on this contribution, see also Sect. 2.2.3.

Remark 2.22. If a preconditioner M —1 is SPD on the whole of U*, one can use
QO = M~ '.Inthatcase, P Q = Q P (cf. formula (1.5)) and so

PM'PTF = M7'PTF,

i.e., we can leave out P in (2.44), see also Sect.2.2.5.

We leave it up to the reader to follow the subsequent presentation linearly or not.
Here is a guide for “nonlinear” readers.

Conditioning. For the case Q = M ™! = I, the convergence of the CG method is
determined by the condition number K(PTﬂ f,)> ¢f- Lemma 1.49, which we will

analyze in Sect.2.4.1. In case of a global quasi-uniform mesh .7 (I's) with mesh
parameter /1 and suitable assumptions on the subdomains, it can be shown that

T | || o) H

k(P Fg,) =C -~ =

where H denotes the maximal subdomain diameter (see Theorem 2.38). The
constant C depends on the shape of the subdomains but is independent of <7, &, and
H , in particular independent of the number of subdomains. Note that the robustness
with respect to the number of subdomains comes from the projection P which plays
the role of a coarse solve, cf. [FMR94].
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Fig. 2.4 Illustration of a classical formulation (/eff) and the all-floating (or total) formulation
(right). Floating subdomains are dark-shaded

Preconditioning is (in general) required if

e H/h gets large (there is a large number of local unknowns in each subdomain),
or

o |||l Loo(2)/min gets large (the coefficient .o/ varies over several orders of
magnitude).

For the definition of preconditioners for piecewise constant coefficients see
Sect. 2.2.4, for their analysis see Sect.2.6. The case of highly varying (multiscale)
coefficients is subject of Chap. 3.

All-floating (Total) FETI/BETI. An important variant of the classical FETI/BETI
method introduced in the current subsection is the all-floating (total) FETI/BETI
method, see Sect.2.2.2, where additional Lagrange multipliers are used to enforce
the Dirichlet boundary conditions. This simplifies the method in a certain sense.

Implementation and Parallelization of the classical and the all-floating
FETI/BETI method are discussed in Sect.2.2.5.

2.2.2 All-Floating (Total) FETI/BETI

The all-floating method is a variant of the classical FETI/BETI method, where one
introduces additional Lagrange multipliers that enforce Dirichlet conditions. For an
illustration see Fig. 2.4.

Saddle Point Formulation. We start with the inhomogeneous skeleton formula-
tion (2.11). In contrast to Sect.2.2.1, the working spaces are chosen as’

SFor the setting (2.19), W; = V(082 \ I'y).
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W= V"0R) and W= [[W. (2.45)

i.e., we do not incorporate any Dirichlet boundary conditions. In this subsection, we
regard S; as a mapping from W; to W.* (opposed to Sect.2.2.1).
In addition to the (fully redundant) interface constraints

wi (x™) —wj x" =0 for x" € 1",;1, i >, (2.46)
(cf. (2.22)) we also require
wi(x") = gp(x")  forx"e'nrp. (2.47)

Definition 2.23. Let us assume a numbering of the constraints (2.46) and (2.47)
with M being the total number of constraints. The entry of a vector u € RM
corresponding to constraint (2.46) is denoted by p;; (x™), the entry corresponding to
constraint (2.47) is denoted by p;p (x").

We define B : W — U* (where U = RM) by
(B w)ij(xh) = w;(x") —wj(xh) for x € F,.’?, i>j,

(2.48)
(Bw)ip(x") = w;(x") for x" € 92! N I'p.

Recall that we have chosen §p € V”(I's) such that it vanishes on all nodes in
FSh \ I'p. Of course, we can identify g¢p with a function in W, and (for simplicity)
denote it again by gp. With these considerations, the condition

Bw = BgD

requires that w is continuous across the subdomain interfaces, and that wir, = gp.
Hence, the space
W := ker(B) = V}(Is)

coincides with that from Sect. 2.2.1. Analogously to Sect. 2.2.1.2, we derive a saddle
point formulation from (2.11). We define

ti = Sjupg, — Ni fi, t=1[4]_, e W
Equation (2.11) implies that
(t,v) =0 Vv e W,
and so ¢ € ker(B)° = range(B"). Parametrizing t by —B A for A € U and

representing the solution as u € W with Bu = B gp yields the saddle point
problem:
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Algorithm 3: All-floating FETI/BETI method based on PCG
g =[Nifili=,
A =0G(GTQG)'RTg
d = PTB[S"(g—B )~ 2p]
solve PT F A = d with PCG and initial value A(”) = 0 and stop after k
iterations
20 = Qo + 20
§0=—(GT0G)'GTOB[ST(g—BTAW) —g)p]
u® = ST(g— BTA®) 4 Rg®

find (u, A) € W x U such that

H AR CT8 B

This problem has the same properties as (2.28): the solution u is unique, and A
is unique modulo ker(B "), cf. Lemma 2.11. Note that —B T A coincides with the
discrete (generalized) conormal derivative of the solution u (also on the Dirichlet
boundary).

Dual Saddle Point Formulation. Going through the same steps as in Sect. 2.2.1.3,
we derive the dual saddle point formulation. The spaces and operators are slightly
different because (in our setting)

ker(S;) = span{lsg,} Vi=1,...,s,

and so all subdomains are floating subdomains in the sense of Definition 2.15.
Hence, Z = R¥ and R : Z — ker(S) with (R§); = &. With the notations from
Table 2.2, p. 81, the dual saddle point problem reads as follows. Find (4, §) € UxZ

such that
[F —G}[A} B [B(sT[Nfﬁ]§=1—§D)]
GT o |le| ™ RTIN; £l '

We see that the structure of this system is identical to (2.40). The projection
method is applied analogously to Sect. 2.2.1.4 and leads to an SPD problem for the
variable A, see Lemma 2.24 below. The complete all-floating FETI/BETI method is
summarized in Algorithm 3. Also here, we can substitute g, B, R, S, and S T by £,
B, R, A, and AT from Remarks 2.17 and 2.18, respectively (and omit the first line),
see also Sect.2.2.5.

Lemma 2.24. In the all-floating formulation, the operator PT F maps U to ﬁ:d
and PT Fy  is SPD.

Proof. The proof is identical to that of Lemma 2.19.
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Remark 2.25. Similarly to Remark 2.20, one can show the residual identity
d—PTFAX® = Bw® —gp),

where above, gp is interpreted as an element in W. Hence, in the all-floating
method, the residual in the CG method controls the jump of the approximant u*) as
well as the error in the Dirichlet conditions.

Lemma 2.26. In the all-floating formulation, for p € U* and A € U,

() = > > wpMAEN Y YT wap (") i ().
Xert ey =l yheyQlnry

i>j
The adjoints BT : U — W* and B : U — W* fulfill

> sign(i —j) Ay (x"y ifx e B.QIZ’ nrk,

BT A = (BT A gpadae, = |1
ixh i 7 ¥ix i )LiD(Xh) ith S 39,-}' NIp,
0 else.

Proof. The proof is straightforward.

2.2.3 FETI/BETI in Terms of Fluxes and Traces

Algorithm 4 displays the FETI/BETI method (both for the classical and the all-
floating formulation) including explicitly the PCG method. Note that in order to
unify the two formulations, we have used that in the classical formulation, B gp = 0

and
u® = 0% +[gppelicy = Pz ST(N: filiz, — B0,

where

P, = I1—-RGT0G)"'G"0 B. (2.50)

We note that this particular projection is also treated in [FP03, SMOS]. One can now
show that for both formulations,

i = u —gp = Pz(ST(g - BT2Y) - gp).

We have seen in Sect. 2.2.1.2 that the Lagrange multipliers are temporary variables
that parametrize fluxes. Also, due to Remarks 2.20 and 2.25,

a® = B,
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Algorithm 4: FETI/BETI method in terms of Lagrange multipliers (%)) and
jumps (d®) including PCG

g = [Ni fi —Si &pjae, )=, in classical formulation
[N fili=y in all-floating formulation
20 =0GGTQG)'RTg
dO=PTB (ST (g—B"A?)—g)p)
k=0
repeat
O =pmta® (in the unpreconditioned case: z¥) = d®))
k) Gk
g® =20 £ B q® D where S =0, Br_y = _ @92
(d®=D, =)y,
d®, 2,

(k+1) — (k) (k) g 0) =

AEFD = 10 4 o) g where & = BT B 40,
d*+D = g0 _ g pPTF g® = Bu® —gp)

k=k+1

until stopping criterion fulfilled for d*)
ub =gp + Pz (ST(g—BTA®) - gp)

Introducing the additional variables
t® = BT 0,

s© = B0 = BTpM=d® = BTpmM~'Ba®,

p® = BTg®),

we can rewrite the whole algorithm in terms of the fluxes 1), the (discontinuous)
Dirichlet traces #¥), the preconditioned “residual” s*), and the search directions
p® in the flux space, see Algorithm 5. In that algorithm we have to use the
projection operators Pz and P; rather than P and P T. We have

range(Pz) = ker(S) 5T o5, P'B = BP,
range(P;) = range(S) BTP = P;BT.
We notice that Algorithm 5 is formally a PCG algorithm (cf. Algorithm 1) with the

operator
P;ST.Yy > Y*

and the preconditioner
P,BTM™'B:Y* 7Y,

where the flux space Y and the Dirichlet trace space Y * are given by
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Algorithm 5: FETI/BETI method including PCG rewritten in terms of fluxes
(t®) and traces (@®))

[Ni fi —Si &pjae, )=, in classical formulation

[N filio, in all-floating formulation

tO=—1-P))g

1% = Pz(ST(g +19)—gp)

k=0

repeat

s® =PI BTM~'Bua® (in the unpreconditioned case: s =BT B i)

~(k) ok

p® =s® 4 By p*=D  where f_; =0, Bi_ = —~(u( L5
@*=D, s&=D),,

@®, s®y,

(k+1) — (k) _ (k) —

t =t ok p where oy = (P,STp®. i),
a D = z® _ o P, ST p* = PZ(ST(g + 1%y — g,D)
k=k+1

until stopping criterion fulfilled for B u®
u® = g, 4 a®

Y : range(BT)ﬂrange(S),

Y* = {we ker(S)J'BTQB :Swe range(BT)} = {we ker(S)J'BTQB N ker(B)J‘S}

(it can be argued that Y * above is a realization of the dual of Y). If Q =M ' =1,
then the operator P; above can be left out (see Remark 2.22). These spaces make
perfect sense because the solution # must fulfill Bu# = 0, thus it must lie in
ker(S )J'BTQ 8, On the other hand, its flux must vanish on ker(B), i.e., the flux must
lie in ker(B)° = range(B ). During the algorithm, the flux iterates are indeed in
equilibrium:

t® — 1O ¢ ker(B)°.

2.2.4 Preconditioning

As announced in Sect. 2.2.1.5, all preconditioners for PTFl T under our consider-
ation have the form
PM™' UL — U,

where M~ : U* - U.
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2.2.4.1 The Dirichlet Preconditioner

The Dirichlet preconditioner proposed by Farhat, Mandel, and Roux [FMR94] is
given by

M;' = BSBT. (2.51)

It was first analyzed by Mandel and Tezaur [MT96] who showed that in two
dimensions, the condition number of FETI with the Dirichlet preconditioner and
with @ = I is bounded by

C mélx(l + log(H; / h))",

where the constant C is independent of A; (which is the local mesh size of
subdomain £2;), H;, and the number of subdomains. In general, 8 = 3. In some
situations, 8 = 2, see [MT96, Lemma 3.8 and Remark 3.9]. With their pioneering
article, Mandel and Tezaur paved the ground for all the refined FETI type analyses
that appeared later. Note also that Tezaur [Tez98] showed that a method by Park,
Justino, and Felippa [PJF97] is equivalent to the method in [FR91], see also
[RFTM99].

Note that in general, the constant C above depends on the coefficient .o# includ-
ing possible jumps. Also, classical primal substructuring methods (see [BPS86]
and [TWO05, Chap. 5]) are known to have a condition number involving just two
powers of the logarithmic term. To get rid of the third power in FETT and to address
coefficient jumps, one has to use a scaling of the jump operator in the preconditioner.

2.2.4.2 The Scaled Dirichlet Preconditioner

The scaled Dirichlet preconditioner has its roots in the following works. Rixen
and Farhat [RF98a] provided a derivation using an energy-minimizing smoothing
procedure. Klawonn and Widlund [KWO1] used the so-called weighted counting
functions, which are a basic ingredient of balancing Neumann-Neumann methods
[DL91, Man93, MB96] (see also Sect.?2.3) and of related methods, see [DSW94,
DW95, DSW96, Sar93, Sar94, Sar97]. A special choice of scalings leads to the
method in [RF98a]. Moreover, Klawonn and Widlund [KWOI1] gave a rigorous
analysis (covering also the three-dimensional case), showing that FETI with the
scaled Dirichlet preconditioner results in a condition number of

c mélx(l + log(Hi/ hi))?,

where the constant C is independent of the local mesh sizes h;, the diameters H;,
the number of subdomains, and of jumps in the coefficients (provided that <7 is
isotropic and piecewise constant on each of the subdomains). We will present this
analysis in detail in Sect. 2.6 below.
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Scalings and Weighted Counting Functions. Firstly, we need scalar weights

pi(x") > 0 (2.52)
foreachi = 1,...,s and for each node x" € B.Qih. We will discuss several choices
below. Secondly, for each j € {1,...,s} and xh e Ff, we define the weight

P'(xh)y h
’—h for x" € 8{2;’,
s . ] 2 P
SRR W (2.53)
0 for x" € Fg’ \89’?,

where A = {i = 1,...,5 : x" € 352;}, cf. Definition 2.12, and y € [1/2, 00)
is a fixed exponent. A default choice for y is one. The resulting piecewise linear
functions 8} € V(Ig) for j = 1,...,s, are called weighted counting functions.
The union of these functions forms a partition of unity on the skeleton, i.e.,

s
Ysiah =1 vwxterl.

J=1

Note finally that 8; (x") = 1forall x" € 982; \ I'".

Remark 2.27. The limit case y — oo corresponds to the choice

1/m ifx" € 92" and p; (x") = max p(x"),
81 (x') = N X (2.54)

0 else,

where m = #{k € A @ p(x") = max pe(x™)} is the number of times the
ENh

maximal coefficient is attained. For an early domain decomposition method with
this scaling see [WX94].

The following scalings are common.

Multiplicity Scaling.  If there is no (or only very little) variation in the coefficient
</, one usually chooses

pi(x") = 1.
Then 8; (x") simply equals the reciprocal of the multiplicity of the node x".

Coefficient Scaling.  In case of coefficient variation, the weight p; (x") should in
a way resemble the coefficient .7 in subdomain £2; around x". If Ao, =a; 1,
we can set p; (x") = a;. The case of a varying coefficient is treated in Chap. 3.
If o7 is isotropic and globally constant, coefficient and multiplicity scaling are
equivalent.
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Stiffness Scaling.  For a pure FETI method, p; (x") is often chosen as the diagonal
entry of the subdomain stiffness matrix corresponding to the node x", see also
Sects.2.6.4 and 3.3.2.

Note that the coefficient scaling is frequently called p-scaling in the literature (where
the scalar coefficient itself is denoted by p), see e.g. [KRWOS]. The stiffness scaling
was first proposed by Rixen and Farhat [RF98a, RF99], there called superlumped
smoothing. For more scalings see Sect.2.6.4 and the recent paper [DW12b].

A Weighted Jump Operator. Recall from Definition 2.13 that
L = (tis @ih)os fort € W,

where ¢; .» € V" (3£2;) is the nodal basis function associated to node x". The
weighted jump operator Bp : W* — U is given by

p )i (x") = §:(x")t; o —0; (X")E; orx" eI}, i>] .
(Bp )iy (x") = 81N 0 =8/ 1, forx" el i>j (255
In the all-floating formulation, we set

(Bpt)ip(x") = t,  forx" €32 N Ip. (2.56)

Lemma 2.28. The adjoint B}, : U* — W is given by

> 8}(xh) sign(i — j) iy (x") ifxh e N a2,

J €N \{i}
. h s h h .
(B-Drﬂ)l(xh) — [L,D(X ) zfx Gan N I'p (in the
all-floating formulation),
0 else.

Proof. The proof is straightforward.
The Scaled Dirichlet Preconditioner is finally given by

M3 = BpSBj. (2.57)

Remark 2.29. Each block S; in S appearing in the preconditioner (2.57) may be
replaced by the hypersingular operator on d§2; (then called scaled hypersingular
BETI preconditioner, cf. [LS03, LS05]), or by any other operator that is spectrally
equivalent to S;.

Remark 2.30. For non-redundant Lagrange multipliers, the preconditioner takes the
same form but with
Bp = BD™'BT)'BD™!,



2.2 Formulation of One-Level FETI/BETI Methods 93

where D : W* — W is a diagonal scaling operator where the entry corresponding
to node x" in subdomain £2; is 5} (x"), cf. [KWO1] and [TWO3, Sect. 6.3.2]. For an
efficient algorithmic construction of Bp see also [Of06, Sect. 5.5.2].

2.2.4.3 Lumped Preconditioners

For a pure FETI method, “lumped” preconditioners (see [FR91, Sect.5] and
[FMR94, Sect. 6]) are constructed by replacing the FE Schur complements S; in
(2.51) or (2.57) by the block K; gp of the stiffness matrix corresponding to the
boundary/interface unknowns. In other words, instead of solving for the PDE-
harmonic extension in each subdomain, we simply extend by zero.

The application of a lumped preconditioner is more economic because one
does not need the factorizations and solves appearing in the operators S;. In some
situations, the overall CPU time of a FETI method with a lumped preconditioner can
be shorter than with a Dirichlet preconditioner, even though the condition number
of the preconditioned system might be larger. This is also due to a superconvergence
effect, cf. [FMR94, Sect. 7].

Remark 2.31. The hypersingular BETI preconditioner could be seen as a BEM
equivalent of the lumped preconditioner, because there is no additional solving
involved. However, this operator has a corresponding dense matrix and thus needs
an effective implementation. Note also that the hypersingular preconditioner is still
quasi-optimal.

For the remainder of this book, we will only treat the scaled Dirichlet precondi-
tioner, because it turns out to be quasi-optimal with respect to the condition number.

2.2.44 The Operator Q

If there is no (or only little) coefficient variation, one commonly chooses

0 =1,

which is supported by the analysis, see Remark 2.111. In case of large coefficient
variation, one often chooses

0 =M s]_)1 :
where MS]_)1 is the scaled Dirichlet preconditioner, cf. [BDFT00]. Another practi-
cally successful option is to set Q to the lumped Dirichlet preconditioner. These
choice originate from [FR94] and were further investigated in [Rix97]. There is also
a diagonal choice

Q = Qdiag
(first suggested and analyzed in [KWO1]) which mimics the choice 0 = M/
under certain regularity assumptions and which simplifies the implementation, see
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Sects. 2.6.3 and 3.3.5.4. Note all these different choices of Q lead to a sparse coarse
matrix G TQG, but to different sparsity patterns, cf. [FR94].

2.2.5 Implementation Issues

In this subsection, we discuss implementation issues of the classical and the all-
floating FETI/BETI methods described above (cf. also [LP98, RF98b, Kam00]). In
particular, we address the issue of parallelization.

2.2.5.1 The Basic Input Data

To make an implementation of FETI/BETI possible, one needs the vector represen-
tations for the local spaces V"(£2;) or V" (I7) with respect to the standard nodal
basis (VDh (£2;) or Vg (I;) in the classical formulation) and a local numbering of the
degrees of freedom (DOFs). Correspondingly, for each FEM subdomain we need
the local stiffness matrix (for a floating subdomain the “Neumann” matrix) and the
load vector associated to each of these spaces. For each BEM subdomain we need
(data-sparse) matrix approximations of the boundary integral operators (for matrix-
free methods see also Sect. 2.2.6). For the classical formulation, we assume that the
system is homogenized, i.e., the prescribed Dirichlet values are already contained in
the load vector, and there are either no Dirichlet DOFs, or these are decoupled from
the remaining DOFs.

2.2.5.2 Interconnecting

In order to do interconnecting, each DOF on the interface must have a local and
a global index. With this information, one can set up the Lagrange multipliers
on the interface: each multiplier (numbered by an index) is described by two
subdomain indices and two local DOF indices, cf. (2.22). The global index is used
for identification only. In the all-floating formulation, one additionally needs to
know which DOFs are on the Dirichlet boundary in order to set up the additional
multipliers there, cf. (2.47).

If the subdomain decomposition is generated from a mesh partitioner such as
METIS [KK98], the local to global mappings come together with the output (at
least for scalar P'-elements).

2.2.5.3 Additional Input Data

For the scaled Dirichlet preconditioner, one needs the scalings p; (x") corresponding
to each interface DOF. For the coefficient scaling (cf. Sect. 2.2.4.2), the coefficient is



2.2 Formulation of One-Level FETI/BETI Methods 95

required, whereas for the stiffness scaling and the multiplicity scaling no additional
information is needed. See however Sect. 2.6.4.2 for undesired effects that can occur
with the stiffness scaling and/or with varying coefficients.

Most importantly, one needs a description of the local kernels, i.e., one needs
matrices R; corresponding to R; from (2.30). If i € Zppwm, it is advantageous to set
up R; such that the columns of R; span the kernel of the local stiffness matrix K;
(rather than that of the Schur complement S; which should never be formed).

If the kernel is not known a priori, one can run a singular value decomposition
or try to get low-frequent eigenpairs of K; by an inverse power method (see e.g.
[GV96]) or the LOBPCG method [KnyO1], but this is in general expensive. Here
lies a true advantage of the all-floating formulation: for the most widely used types
of PDEs, especially for the potential equation or linear elasticity (see also Sect. 2.8),
the kernel is known a priori in all the subdomains and the matrix R; can be given
explicitly.

For the diagonal choice Q = Qgj,, due to Klawonn and Widlund, which we
will expose in Sect.2.6.3, additional mesh information (H; and h;) is required.
Furthermore, one needs to know whether a coupling DOF is associated to a
subdomain vertex, or if it is in the interior of a subdomain edge or face. However,
this can be figured out from the Lagrange multipliers by combinatorial means
(cf. Sect. 2.48).

2.2.5.4 Implementation of the Underlying Operators

Having R and RT at our disposal, and assuming that Q € {I, MS]_DI, O diag)> We
can reduce Algorithms 2 and 3 to the applications of B, BT, Bp, Bg, S, ST, and
(GTQ G)™!, which are discussed in the sequel.

Jump Operators. The operators B, BT, Bp and Bg need not be stored but are
encoded as routines which perform their application to vectors. These routines
mainly use the description of the Lagrange multipliers and the scalings p; (x").

Local FEM Neumann Problems. For each i € .%gy, the action v; = SIT fi for
a given f; € range(S;) is performed as follows. Let vz and fp denote the vector
representations of v; and f;, respectively. Then, with the analogous notation as
in Sect. 1.2.6, the equation S; vp = fp is equivalent to

[Ki,BB Ki,BIi| I:VB:| _ [fB:|

Kip K |Lvs 0]

i.e., we need to solve a local Neumann problem, cf. Sect.1.2.5. The most
convenient way is to regularize the matrix K; (if £2; is floating) and store its
factorization. For the setting (2.19) (see also Remark 2.5, p. 68), the set “I”
above includes interior DOFs as well as non-coupling Neumann DOFs.

Local BEM Neumann Problems. For each i € %y, the action v; = SIT fi
for a given f; € range(S;) is performed as follows. Let v and f denote the
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vector representations of v; and f;, respectively. Let D;, K;, and V; denote the
matrix representations of the hypersingular operator, the double layer potential,
and the single layer potential, respectively, and let M; be the mass matrix
from Sect. 1.3.7. Then instead of solving S;v = f with §; = D; + (%M,T +
KhHv! (%Mi + K), we solve the equivalent saddle point problem

[ D, IMf +K,T} [v:| _ [f}

M + K, -V, t] (o]
which is a standard BEM problem corresponding to the local Neumann problem.
Recall that for d = 2, we should ensure that diam(£2;) < 1 (e.g. by scaling all
the coordinates of §2) in order to ensure the invertibility of V;.
Again, if §2; is a floating subdomain, we can regularize this problem by
regularizing the hypersingular operator D; similar as in Sect. 1.2.5. As briefly
described in Sect. 1.3.7, the matrices D;, K;, and V; can be approximated in
data-sparse form using .7#-matrices. Thus, also the matrix corresponding to the
above (possibly regularized) saddle point problem can be represented by an J7-
matrix, and for each BEM subdomain its .77°-LU factorization can be built and
stored in quasi-optimal time and memory complexity in the preprocessing phase.
For matrix-free fast BEM, such as the fast multipole methods, in connection with
FETI/BETI methods see Sect.2.2.6.

Local Dirichlet Problems. The action of S; for i € g, corresponds essen-
tially to solving a system of the form

Kirvi = —Kipvp.

For the input v, the output is given by S;vp = K; pp v + K; p; v;. Hence, it
is most convenient to build and store a factorization of K| ;; in the preprocessing
phase. Again, for the setting (2.19) (see also Remark 2.5, p. 68), the set “I”
above includes interior DOFs as well as non-coupling Neumann DOFs. For i €
#BEM, the action of S; (see Sect. 1.3.8.1) involves the inverse of the single layer
potential, which can be realized by #°-LU factorization.

The Coarse Problem. Let G and Q denote the matrix representations of G
and Q. As discussed in Remark 2.108 below, the matrix GTQ G is sparse, and
its sparsity pattern is determined by the connectivity graph of the subdomain
partition where each floating subdomain is a node of that graph. Once GTQ G is
assembled (cf. [RF98b, Sect. 3.2]), its factorization can be computed efficiently
during the preprocessing phase, as long as the number of subdomains is not very
large. If we set Q = M, an efficient assembly of G QG is possible but tricky
(see Remark 2.36). Note that the extra cost of applying O during the FETI/BETI
algorithm (see Algorithm 2 and (2.38)) involves the solution of additional local
Dirichlet problems. However, within each step of the iterative solver, this is
compensated by the fact that we can leave out the action of P (cf. Remark 2.22).
Nevertheless, from the implementation point of view, it is more attractive to use
a diagonal choice of Q if the context allows to do so; see Sects. 2.6.3 and 3.3.5.4
below.
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Remark 2.32. 'We warn the reader that if the coefficient « varies extremely within
a single FEM subdomain (see also Chap. 3), the matrices K; ;; and K; (the latter
possibly regularized) can become very ill-conditioned. For example if the coefficient
varies of between 1 and 10°, even direct solvers may run into stability problems.
The same can happen with the coarse matrix G T Q G if the coefficient varies a lot
throughout the global domain 2.

2.2.5.5 Parallelization

The FETI/BETI algorithm is very suitable for multiprocessor machines with shared
and especially with distributed memory. The coding should follow the MIMD
(multiple instruction multiple data) paradigm, cf. [DHL03, Haa99, SBG96]. In the
following, let the processors be numbered from 1 to p. For software supporting
parallelization (on different levels), we refer e.g. to the following frameworks.

e MPI (message-passing interface) standard [MPI09]

e PETSc: http://www-unix.mcs.anl.gov/petsc/petsc-as/

e Hypre: http://acts.nersc.gov/hypre/

e DUNE: http://www.dune-project.org/

e Parallel toolbox: http://paralleltoolbox.sourceforge.net/

For further literature see also [Bas96, SBG96, ZumO03].

Since the main work are subdomain solves that are independent of each other, we
assign each subdomain £2; to a processor p; € {1,..., p}. Hence, each processor
handles one or several subdomains. There are two kinds of global objects involved
in the algorithm that need to be parallelized:

(i) Lagrange multipliers, i.e., vectors from U, U*,
(ii) Coarse vectors representing elements from Z, Z*.

The remaining variables are elements from the spaces W = IT_, W; and W* which
are parallel by construction.

We will first show how to deal with parallelizing the Lagrange multipliers
(kind (i)) using the concept of accumulated and distributed vectors, see e.g.
[DHLO3, Haa99].

Accumulated and Distributed Vectors

Definition 2.33. For A € R and ¢ = 1,..., p, we denote by )&f{ég e RMs the
vector of those entries A;; (x") where

pi=¢q or p; =q and xhel"ij?,
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i.e., the entries shared by processor g. As for A itself, the local numbering within

A% can be arbitrary. To be general, we denote the entries of 1%} again by )Lfl'éij i (x™).

For the all-floating formulation, the vector Affgl additionally contains those entries

Aip(x") where p; = g and x" € 32! N I'}:. The parallel vector Ay = [Ai{éi]gzl

is called accumulated realization of A. It has the property that A;(;éi,i ; "y =N i (x")
for all processors q.

@ ¢ RMy 5 called

Definition 2.34. A parallel vector Agq = [A]7 | with A7

distlg=
distributed realization of A € RM | if

Aij(xh) = Z At(ili{s)t,ij(xh)‘

q€i{pi.pj}

In the implementation, we will use both representations, but the vectors A e, Adist
are never formed, but only their local components A%, /\é‘f:l on each processor ¢.

It is immediate, that for scalars o, § € R and vectors A, u € U or U*, the
accumulated (or distributed) representation of o A 4+ B is simply & Ay + B [lace
(or « Agist + B Maist> Tespectively), i.e., these operations can be performed fully in
parallel.

The next lemma shows that computing the scalar product between a distributed
and an accumulated vector can be performed by computing the local scalar products
and then just communicate the (scalar) results between all processors and add them
up. In the MPI standard, this is done by the allreduce command, see [MPI09].

Lemma 2.35. For A € U and u € U*,
P
(o A) = (e = > (il A9,
q=1

Proof. The proof is straightforward.

With a slight abuse of notation, we will write ({gist, Aace) = (1, A) in the sequel,
which indicates that the calculation of the inner product is based on the result of
Lemma 2.35.

Let Uy, Usist and U, Uj, denote the (formal) spaces of accumulated and
distributed vectors representing elements in U, U*, respectively. Let A denote the
accumulation operator such that for A € U orin U™, A dgisy = Aacc. Moreover, let
D denote the distribution operator under whose action entries will be distributed
by simply dividing them by their multiplicity. We have AD = [ but in general
DA # I. Note also that D # AT.

When we want to compute the (global) Euclidean norm of a vector A from its
accumulated representation A, we can calculate \/(DAycc, Aace)e2, without major
communication. If only A4 is available, we can calculate y/(Agist, A Agist)¢2, Which
involves more communication due to the accumulation operator.
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Setting Up Parallel Lagrange Multipliers

The most convenient starting point is a setting where each local DOF (in a sub-
domain) is associated to a global DOF. This can be easily achieved for continuous
P! elements, if one has global indices for each vertex of the mesh (for high order
elements, one additionally needs global indices for the edges/facets of the mesh).
For simplicity, we continue with the P! elements for the scalar elliptic equation, but
the concept can be generalized straightforwardly.

For each DOF, it should be known which subdomains are formally sharing it.
If this information is not known a priori, it can be got from the associated global
indices by sorting and communicating (see, e.g., [Lie06]). The communication can
be reduced if the next neighbors of each processor are known.

Each multiplier A;; (x") is identified by the triple (i, j, g.1) where g is the
global index of node x” and i > j. When it comes to sending/receiving entries
to/from another processor, we order the corresponding entries with respect to the
global index triple. This ensures that the entries are sent/received in the correct order.

Parallelization of Z and Z*

Since each entry of a vector § € Z or in Z* corresponds to a unigue subdomain,

parallelization is easier. For § € Z andg = 1,..., p, let El(gc) be the local vector of

l(gc) 5=1 be the corresponding parallel

be the spaces of such parallel vectors and let

entries & such that p; = ¢, and let &, := [
vector. Moreover, let Zjoc, Z ff)c

A:Ziy. —Z%, D:Z — Zi

denote the accumulation and distribution operator, respectively. Opposed to the
global vectors of Lagrange multipliers, here the operator A creates a global vector
on each processor by collecting the vectors from all processors. Note that the size
of this global vector is of the same order as the number of subdomains. For the
distribution operator, we have the identity D = AT.

Parallelization of the FETI/BETI Operators

We will now replace the operators occurring in Algorithm 4 by operators involving
the parallel spaces defined above. The following operators arise naturally.
If M~! = I, we have to set M™! := A as an operator mapping Uy, t0 Uy

The implementation of Q : U, — U, depends on the choice of O:

e« If 0 = I or Q = Qg we first implement local diagonal operators Q@)
Applying them in parallel leads to the operator Qo : U del — Uyig. Finally, we
set Q := A Q.

o IfQ = My, wesetQ:= M.
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Operator Adjoint

B W — Uy, BT Upee > W
Bp ‘W* > Use  B) (UE, > W

R Zige = W RT W= ZF
G:=BRD 1 Z = Ug, GT:=ARTBT  :Up — Z*
F:=BS'BT Upee = Uy -

My :=ABp SBJA  :US, — Uy -

The parallel operators corresponding to the projections P, P T are as follows:

P:=7-QGG'QG)'G" : Upe = Usce.

PT .= 1-GG'QG)'G"Q: U;, — Us,.

Note that the matrix corresponding to the coarse operator (GTQG) : Z — Z*
can be assembled and made available on each processor, and its factorization can be
built and stored. Recall from Remark 2.22 that if Q = M, we can leave out P.

Remark 2.36. A parallely efficient assembly of GT QG for the case Q = MG
is tricky but possible. One possible way of implementation is described in [FR94],
see also [BDFT00] for a parallel speed-up of the factorization. Another recipe is
the following. In Sect. 2.4.2.1, we will see that there is an averaging operator Ep :
W — W suchthat GTM5' G = RT(I — Ep)"S (I — Ep) R = RTELS Ep R,
where the latter identity holds true because S R = 0. From this formula, we
see that averaging each kernel function (by Ep) and employing suitable neighbor
communication, we can figure out the corresponding row of the matrix G—'—MS]_)1 G.

The final FETI/BETI algorithm (including PCG) is displayed in Algorithm 6.

2.2.6 Inexact FETI/BETI Methods

Recall that the action of Sj requires to solve a system on subdomain £2;. For a
FEM subdomain, the system matrix is the (regularized) stiffness matrix, for a BEM
subdomain, the system matrix has the form

D, %M,T + K
%M[ + K; -V; ’

where D; is the matrix corresponding to the hypersingular operator, regularized
if £2; is floating, see Sect.2.2.5.4. We already mentioned that this matrix can be
factorized using 5#-LU (or Cholesky) factorization. If one uses the fast multipole
method, only the fast application of the above matrix to a vector is available. In
[LOSZ07b, LOSZ07a], (see also [KWOO] for the original idea in a FETI setting), an
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Algorithm 6: Parallel FETI/BETI method including PCG

_ )IN:i fi = Si &pjag;lj—, inclassical formulation
£ [N filio, in all-floating formulation
A9 —QG@GTQG)'ARTg
din = PTB(S"(g = BTAL) — &)

k

repeat
zﬁ’ékl = P(]L\/I_ldsiksz - (in the unpreconditioned case: zfiﬁg = Ad;iksz)
qa(lcg = Zacg + ,fk—l gacc % where 13_1 =0,
B, = i )
LT k=) (k=1
<dém )’ gcc )> (k) (k)
d;, z
A = 2 + a® gl where o = %
Gacc, -
(k+1) _ (k) T (k) _ ) B acc acc
ddisl - ddist —a, P ancc = B(u — gD)
k=k+1

until stopping criterion fulfilled for d élksz

u® = gp + (I —RD(GTQG)'GTAB) (ST(g —BTAL) — &p)

inexact BETI method has been developed which circumvents this factorization. The
BETI system is rewritten as the threefold saddle point system

-V I+K 0 1 0
+K" D BT ||u|=|f][. (2.58)
0 B A 0

where V' = diag(V;), D = diag(D;), and K = diag(K;), see also Remark 2.18.
The authors use and extend the classical theory of saddle point preconditioners, see
[BP88, Zul02, Zul11]. Their full preconditioner is based on the scaled hypersingular
BETI preconditioner (M ;' with S; replaced by D;) and further preconditioners for
the local single layer potential operators V;. For the latter, several choices have been
proposed in the literature, see e.g. [FS97, Ste03a]. The same technique applies to
hybrid FETI/BETI methods, as outlined in [LPOS].

2.3 Balancing Neumann-Neumann Methods

In this section, we define the balancing Neumann-Neumann method. Its close
connection to FETI will be subject of Sect.2.4.2.4. The Neumann-Neumann
methods were first developed by Bourgat, Glowinski, Le Tallec, and Vidrascu, as



102 2 One-Level FETI/BETI Methods

well as De Roeck, see [BGLV89, De 91, DLI1]. They were considerably improved
by adding a second coarse level, see Mandel and Brezina [Man93, MB96], Le
Tallec [Le 94], as well as Dryja and Widlund [DW95]. See also [TWO05, Sect. 6.2]
for more details on the method. For an alternative with a different coarse space
see [BS02, Sect.7.7]. The connection between balancing Neumann-Neumann and
FETI methods was demonstrated in [KWO1], and supported with an underpinning
theory in [SMO8]. Note also that the Neumann-Neumann methods have been further
developed by Dohrmann and Mandel, leading to the BDDC methods, see Sect. 5.1.4.

Assume for simplicity that gp = 0 and let W, W, S:W > W* andg € W*
be defined either as in the classical or as in the all-floating formulation. Let VDh (I's)
be as in (2.12) and recall that VD’1 (I's) = W.Let AT : VDh (I's) — W denote the
natural embedding and A : W* — VD’1 (I's)* its adjoint (the latter can be seen as
an assembling operator). Furthermore, we define S:=ASAT and g:= Ag.The
equation

findu € V)(Is) : Su =% (2.59)

is then identical to the skeleton formulation (2.11).

The balancing Neumann-Neumann preconditioner can be classified as a sym-
metric, hybrid two-level Schwarz preconditioner for S (ctf. [TWO0S5, Sect. 2.2]; here
hybrid indicates the combination of Schwarz projectors in both an additive and
multiplicative way). First, we define the “coarse” level. Let the averaging operator
Ep : W — VI(Is) be defined by

I > STMw (") forx! € 92)\ I'p.
(Ep)(x") = { j&Nu (2.60)
0 for x" € 92" N I'p,

where 8; are the weighted counting functions from (2.53) (for a fixed choice of
scalings p;). Let 7@ € W be such that span{r"’} = ker(S;) and r;i) = 0 for all
j #i.1If §£2; is non-floating, then r = 0. Moreover, we define the subspace

ﬁ/o = span{ED rD i€ Fout C VDh(Fs),

with the basis {ED r Y ic s Let RT CWo — VE(Is) denote the natural
embedding and RO its adJ01nt (Ro is a restriction and RT the correspondlng
prolongation). Let SO = Ro S R(—)'— be the corresponding projection of S (which

is still SPD). Note that the matrix §0 corresponding to So with respect to the basis
{Ep rD}ie s, is sparse. Moreover, it can be shown that for the choice Q = M !,

the matrix §0 is identical to GIQ G from the FETI method, cf. Remark 2.36.
Let the Schwarz projector Py : Vg (I's) — W be defined by

~

Py := R]S;' R,S. (2.61)
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see also Sect.1.1.3.3. Finally, the balancing Neumann-Neumann preconditioner
Mgy VA(Is)* — VJ(Is) is given by

Mgly = U-P)EpSTEL(I—PJ) + RIS;'Ry. (262

Note that the operator E—g : VA(I's)* — W* distributes (global) residuals to the
(local) subdomains using the weights 8;. The process of replacing a residual r € S

by (I — ﬁ(‘)r )r when applying the first part of the preconditioner is called balancing,
cf. [Man93, Sect. 2].

Let P, : W — W be defined as in (2.50). With Lemma 2.39 in Sect.2.4.2.1
below, one can show that

(I-Po)Ep = Ep Pz. (2.63)

Since range(PZT ) = range(S), this identity shows that the application of the pseudo
inverse ST in (2.62) is valid and the output is always consistent, cf. Definition 1.13.

We can apply the preconditioner (2.62) either to the original Schur complement
problem (2.59) or to an auxiliary problem (2.64) that we will introduce below. In
the latter case, many simplifications can be made in the algorithm. Furthermore, it
can be shown that the two algorithms are equivalent.

In a first step, we use Py to project Eq. (2.59) to a subspace. Each element w €
VDh (I's) can be decomposed as

w = wo+w, where wy € Wo, w € range(l — ﬁo), (:S’\wo, w) = 0.

Thanks to the §-0rth0g0nality of WO and range(/ — ﬁo), the part uq of the solution
u of (2.59) is given by

uy = ﬁg?alﬁog

It is easily seen that & — Suy = - ﬁ(‘)l’ )&. The orthogonal part i is given as the
solution of the following problem:

find it € range(I — Po): (I —PJ)Sia = (I —PJ)g. (2.64)

Then u = uy + u is the solution of (2.59). We now solve (2.64) using PCG with
preconditioner Mgy Two simplifications can then be made. Firstly, when applying
MB_I\}N to this equation, the second term ﬁg ga 1 ﬁo in MB_I\}N can be left out, as well
as the term (I — POT ). To explain the second simplification, we first rewrite the
whole procedure as a method in the original variables u = uy + u (assuming that
we have chosen the initial value 0 for #?’). The resulting algorithm is displayed in
Algorithm 7. Due to the properties of %, all the residuals are in range(/ — ﬁ(‘)r ).
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Algorithm 7: Balancing Neumann-Neumann algorithm based on PCG
WO — RIS Rod
r® = _§ 4O
k=0
repeat
) = By 5T Er®
s® = (I = Pg)z®

_ *)_ gk
pO =sO 4+ B ptt where oy =0, Proi = M
fork >0 © o
(k) — (k) (k) —_ _(r® %)
u® =u"™ + o p where o = 50 500
Pt — ) _ g § pk)
k=k+1

until stopping criterion fulfilled for r®

Hence, the projection step (I — ﬁ(‘)r ) in the operator (I — ﬁg— )§ can be omitted as
well (and is not included in Algorithm 7).

A brief analysis of the balancing Neumann-Neumann preconditioner will be
given in Sect. 2.4.2.4, where we will also see a close connection to FETI/BETI.

2.4 Introduction to the Analysis of FETI/BETI

In this section, we first investigate the conditioning of the FETI/BETI operator
itself (Sect.2.4.1). Second, we introduce an abstract framework for analyzing the
condition number of the preconditioned operator (Sect. 2.4.2).

2.4.1 The Unpreconditioned Case

Following [FMR94, Sect. 3], we analyze the convergence of Algorithms 2 and 3 for
the case M ~! = Q = I. Thanks to Lemma 1.49, it suffices to find an upper bound
for the condition number of the corresponding operator. Since Q = I, the operator
PTﬂ 7, Maps to Ua":i = Uy, and so, as a formal preconditioner we can choose the
natural embedding of U,q into the factor space ﬁad. Since each element in the factor

space has a unique representative in range(B), we can use Uy N range(B) instead
of U ,q and obtain
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(F A7)
Demge(s) A2
A€UygNrange(B)
“(PTF,) = SR 269

in 5
A€UygNrange(B) |IA ”K2
In the following let @ < b be a short hand fora < C b anda < b fora < b and
b < a, where C is a generic constant.

Lemma 2.37. On U,q Nrange(B), the operator BT is injective. Let B; € RM>dim(W)
be the matrix representation of B; with respect to the nodal basis of W;. Then

s
DTIBTAIL = Al YA € U N range(B).

i=1

where the equivalence constants only depend on the maximal number of subdomains
that share a single node x" € FSh.

Proof. In the classical formulation, we have

SIB AL = Y Y| X sienG - iy eh[

i=1 xherh i€y jeN ;\li}

=:by (1, xh)

(see Lemma 2.14) and

e = 3 Ryehe.

xherh i.jeN.i>j

=:by (A, x")

For A € range(B), the expressions /bi(A, x") and /by(A, x") are norms on
a space of dimension #(.4,:») and as such equivalent. Since there are only a
bounded number of topologically different configurations of a shared node x”, the
equivalence in the statement of the lemma is indeed uniform. The treatment of the
additional terms in the all-floating formulation is straightforward. O

Theorem 2.38. Assume that

(i) The triangulation 7" (Is) is shape regular,

(ii) The local triangulations T"(382;) are quasi-uniform with mesh parameter h;,
(iii) The intersection 0§2; N I'p is either empty or has positive surface measure,
(iv) The number of subdomains sharing a node x" € Fé’ is uniformly bounded.

Then
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| || Lo () maxi_, H; h}™*

Omin min}_, h?~¢

C(PTFg,) = C

’

where the constant C is independent of H;, h;, </, and the number of subdomains,
but it depends on the subdomain shapes. If 7" (I's) is quasi-uniform, then

H
K(PTF\ﬁad) = ﬁ(?) ash — oo,
where H := maxj_, H;.

Proof. We define the subspaces

wt =

1

{wi € W; 1 (w;, )2 =0} if £2; floating,
w; else,

where w; <> w; and 1 is the vector of ones. Furthermore, we set
[wils, == (Si wi, wi) forw; € W; .

Throughout the proof, let A € U,y N range(B) be arbitrary but fixed. Due to
Lemma 1.14,

. BTA, wi)?
(Fa ) = (S'BT2, BTA) = 3 sup B
Siwewt  Iwily,

Assume first that .#ggy = @. Corollary 1.61 implies that
omin H7 BT Wil S wilf, S 19 oo b2 Iwillpy  Ywi < wi € Wi

If #spm # @ we can use the spectral equivalence in Corollary 1.94, then the
equivalence constants depend additionally on the constant ¢y(d£2;) defined as in
Lemma 1.77. Moreover, since BI-T/\ € range(S;) implies (BZT/\, 1),2 = 0, we obtain

(BTA, w;i)? B A, i),
sup ——— = sup @ ———————

2
Wi<—>WiEWil ”Wl ”(2 wi<—>w,~€WiL

= B A|%.
Iwi 112, ’

Combining the above estimate with Lemma 2.37 yields
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N
(FA.2) 5 ) omn Hihi™ [BTAIG < o max(H; hi™) [ A[17.
i=1 =

(F X, A)

Vv

N
-1 2=d |pT 712 -1 S o4 2
DN ooy T IBIANG 2 [l 700y min 7~ A7 -

i=1

Together with (2.65) this concludes the proof. O

2.4.2 Abstract Framework for the Preconditioned Case

In this subsection, we collect abstract results, whose proofs can be performed on
the operator level. Later on, we will have to make rather strong assumptions on the
coefficient and the subdomains and use technical tools for finite element functions.

2.4.2.1 The Projection Operators Pp and Ep

An important role in the analysis of the scaled Dirichlet preconditioner (2.57) is
played by the projection operator

Pp == B} B, (2.66)

whose properties are summarized in the following lemma. The result for classical
FETI methods was proved by Klawonn and Widlund [KWO01], see also [TWO05].

Lemma 2.39. The operator Pp : W — W defined in (2.66) satisfies the identities
BMG' BT = P} S Pp, (2.67)
B Py, = B, (2.68)

for both the classical and the all-floating formulation. Furthermore, Ep := I — Pp
is a projection onto the subspace W, and can be evaluated by

. > StMwi (") forxh € 320\ Ip.
(Epw)i(x") = JEN (2.69)
0 forx" e 02" N Ip.

Proof. 1dentity (2.67) follows from the definitions of M ;' and Pp. Recall that
(Bw)i; (x") = sign(i — j) (wi(x") —w;(x"))  forx" e I

ij>
(Bw)ip(x") = wi(x") for x" € 92! N I'p,



108 2 One-Level FETI/BETI Methods

where the last formula holds only in the all-floating formulation. From Lemma 2.28,
we immediately obtain that

> 5;(36/1) (wi (x") —w;(x"))  forx € a2 NI,

JEN
(Ppw)i(x") = { wi(xh) for x" € 32! N I'p,
0 else.

(2.70)

This implies formula (2.69), and we see that Ep w € W.Hence B E p = 0, which
implies (2.68). Therefore, Pp is a projection, and so is Ep. O

Corollary 2.40. For each i € range(B) we can find a function w € range(Pp)
such that @ = B w.

Proof. Lemma 2.39 implies that range(B) = range(B Pp). O

Remark 2.41. The operator Ep is a weighted averaging operator and equals the
operator E p from Sect. 2.3, up to identification of W and Vh (I's), cf. [KWO1]. For
the multiplicity scaling p; (x") = 1, (Ep w); (x") is the algebralc mean value of

wi (")} jer,

2.4.2.2 Positivity of the Preconditioner

For a diagonal choice of Q (see [KWO1]), the operator Q is SPD per definition, and
so the projections P and P are well-defined. As the following lemma shows, P
and P T are also well-defined if Q = M.

Lemma 2.42. The scaled Dirichlet preconditioner My is SPD on range(G).
Consequently, if Q = Msl_jl, then the projections P and P are well-defined.

Proof. From (2.57) it is immediate that M is positive semi-definite. To show the
definiteness on range(G), assume that (Bz, M3' Bz) = 0 for some z € ker(S).
Due to identity (2.67) we obtain | Pp z|§ = 0 which implies that Ppz = z —
Epz € ker(S) and consequently, Ep z € ker(S). However, Ep z € ker(B) and
ker(S) N ker(B) = {0} imply that Epz = 0. This means that the function z,
which is piecewise constant on the subdomains, is continuous across the subdomain
interfaces and vanishes on the Dirichlet boundary. Since the domain 2 is connected,
there is no other possibility than z = 0, which shows the definiteness. O

The next lemma discusses the positivity of P M5! on ﬁ:d.
Lemma 2.43. If Q is SPD on range(G), then P Mg is SPD on U%,.

Proof. From (2.57) it is immediate that M, D is positive semi-definite. To show the
definiteness on U*d, assume that (u, M'p) = 0 for some p € U* Due to

S
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Corollary 2.40, there exists a function w € range(Pp) with u = B w, and so
0 = (. Mgp'p) = |Powly = |wls = 0.
Hence, w € ker(S) and u = B w € range(G). The definition (2.43) of ﬁ:d yields

(w, Q) = {n, QBw) = 0.

Since Q is SPD on range(G), it follows that & = 0. O

2.4.2.3 An Abstract Condition Number Estimate for FETI/BETI

With the following two lemmas, we can reduce the condition number estimate of the
preconditioned FETI/BETI method to a single stability estimate of the Pp operator.
For the original proofs see [KWO01] and also [MT96].

Lemma 2.44. Let Q be SPD on range(G). Then, for any w € W, then there exists

*

a unique element z,, € ker(S) such that B(w + z,,) € U}, given by
ze = —R(G'QG)'GTQBw = —(I — P7)w.
where Pz is defined in (2.50). Moreover, if Q is SPD on U*, then

zw = argmin||[B(w+2)llg.  and  [[Bzullo = [Bwllo.

z€ker §

where |[illg == (1. O u)'/2.

Proof. The statements follow from Sect. 1.1.3.3 and Lemma 1.3. O

Lemma 2.45. Assume that PMg} is SPD on ﬁ:d and let w be a parameter such
that
IPD(W+ZW)|§ < (I)|W|§~ VWEW,

where z,, is the unique element from Lemma 2.44. Then
k(PMp PTFg) < .

Proof. Let Myp : ﬁad — U} be the inverse of (PMS_DI)“;‘»S. From Corollary 1.50,
we see that

(FA,A)
sup ———
(PMAPTF, ) = 20 07 71 WMo 2, ) 2.71)
K 7o) = .
sD [Uaa ", (FA, A)

kEﬁad (MSD As A)
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In order to estimate the numerator in (2.71), we bound F' in terms of Mp. Let
A € U ,q arbitrary but fixed. Lemma 1.14 and our assumptions imply

(Bw, A)? (Bw, 1)?

(FA, A) = sup < o sup

wew |W|§ wew IPD (W + Zw)|%§‘ ’

From to the definition (2.37) of U, and from ﬁad =,

ad/ ker(BT)> We can conclude
that

(Bw, A) = (B(w+z,), A).
Together with the above it follows from (2.67) and Lemma 2.44 that

2 2
(FA, 1) < sup (Bw+2v).4) < w sup . 4)

wew (B(W+Zw), MS]_DIB(W+ZW)> B Meﬁ;& (M,MSBI/L)

= w(MspA. A).

We now turn to the denominator in (2.71). Let A € Usq be fixed and u € 5:‘1
arbitrary. Thanks to Corollary 2.40, there exists w € range(Pp) such Bw = L.
Hence,

(Bw, )2 (Bw, A2 (Bw,A)? (A2

(Fa ) = 202 = L A - R
i [Powly  (Bw. Mg Bw) (. My 1)

Since pu € ﬁ;‘d was arbitrary, we get that
(FA, 1) > (MpA, ) VAeUg.
Combining the two bounds concludes the proof. O

In Sect. 2.6 we will work out in detail the missing bound

|Pow+z)3 < olw:  VYweW,

which requires a series of assumptions and technical tools that we present in
Sect.2.5.

2.4.2.4 An Estimate for the Balancing Neumann-Neumann Method

For the original analysis of the balancing Neumann-Neumann preconditioner we
refer to [Man93, MB96], see also [DW95] and [TWO0S, Sect.6.2.3]. Here, we
provide an analysis which makes use of an abstract framework evolved from the
above works on Neumann-Neumann as well as from the analysis of the more recent
BDDC methods (see Sect.5.1.4). We note that the following theorem (cf. [MS07a,
Theorem 2] and [Soul0, Theorem 2.5]) has certain relations to the ficticious space
lemma by Nepomnyaschikh, cf. [Nep91a, Nep92, Nep07].
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Theorem 2.46. Let X C X be two Hilbert spaces, a(-,-) : XxX — Ra symmetric
positive definite bilinear form, and let A : X — X* and A:X - X* denote the
corresponding operator and its restriction to X Furthermore, let Q X > Xbea
projector. The abstract BDDC preconditioner B7':X* > Xis defined by

-1 @A—IQT'

Let XM = {ve X :Vze X: Ov=0z = |y|. < Izlla}, where || - |la is
the norm associated to a(-,-), and let w be the minimal constant such that

~ , N
1OV]Z < wlvlZ  Vve XM,

Then

~
-~ v

k(B™'4) < w = sup 1o 2”“.
vex IVIIZ

~

Proof. For completeness we display the proof from [MS07a, Soul0]. Let G:X >
X be defined by

Gv = argmin  a(w, w).
wexM: y= Q w
A short computation reveals that

G = A" 0" B, 0G =1, G'AG' = B, (2.72)

where B ,:\? — X* is the inverse of B~". Using (2.72), the definition of 6, and the
fact that Q is a projection, we obtain

(§v,v) =a(av,av) < a(v,v) Vye X,

which shows that kmm(ﬁ_lZ) = 1. Now, we conclude from (2.72) and the defining
property of w that forany v € W,

2 DA l2 O l2 B
iz = 12 Gvlz = @llGvl; = w(Bv,v).

The last estimate implies that )Lmax(ﬁ_l 2) < w. The alternative characterization of
w is trivial. ]

The following lemma makes use of the above abstract theorem and shows that a
similar estimate as in Lemma 2.45 implies a bound for the condition number of the
balancing Neumann-Neumann preconditioner.

Lemma 2.47. For eachi = 1,...,s, let WiJ‘ be a subspace of W; such that the
sum W; = ker(S;) & WiJ‘ is direct, and let W+ := ]_[‘;=1 WiJ‘. Then a bound of the

form
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|Epw): < o|wz  VYweWw? (2.73)
implies that
—1 S
K(MBNNslrange(I—?())) =

Proof. Firstly, we convince ourselves that

19 RY A T T DT\ Q -
MBNNSIrcmge(I Po) (1 - PO)ED S ED(I - PO ) S\range(l—Po) :

Using identity (2.63) and the fact that Pz S T|range( s) is the inverse of the restriction

of S to range(Pz), it can be shown that the balancing Neumann-Neumann
preconditioner fits into the framework of Theorem 2.46 with

X :=range(Pyz), X = range(/ — ﬁo), @ = - ﬁo)ED = ED P;.

Hence, Theorem 2.46 implies that

3 - |[Epwls |Ep Pz wl5
K( BNN |range (I — Po)) - Su 2 B
werange(Pz) |W|S wew-L |W|S

where in the last step, we have used the same argumentation as in Lemma 2.103

below. Flnally, the statement of the lemma follows since £ p Py =(—- Po) Ep

and (I — Po) isan S- orthogonal projector with its S-norm less or equal than one.
|

The connection between FETI and balancing Neumann-Neumann methods can
firstly be seen from the ingredients of the two methods, which are related by the two
operators S and ST, by B-Dr B = Pp = I — Ep, by the fact that the coarse matrices
coincide for the case Q = M, cf. Sect. 2.3, and by many common parts of their
analyses (see also [KWO01]). Secondly, since the norm of a non-trivial projection in
a finite-dimensional Hilbert space depends only on the angle between its kernel and
range [IM95], the bound (2.73) implies

|Powl3 < wlw:  Ywe W, (2.74)

and vice versa. Moreover, Sousedik and Mandel [SMO8] proved that the spectra of
the FETI preconditioner (with Q = M) and the balancing Neumann-Neumann
preconditioner (with corresponding scalings) are identical except for the eigenvalue

of one, i.e., 6 (M S panger—20y) \ {1} = 0 (M5! Fig ) \ {1},
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2.5 Technical Tools

In this section, we first define a partition of the skeleton into so-called globs and
introduce associated cut-off functions. These will be used to split the contributions
in the operator Pp that involve different neighbors. To estimate the effect of the
cut-off, we need regularity assumptions of the subdomains (Sect. 2.5.2) and a series
of technical estimates (Sects. 2.5.3-2.5.6). Readers interested in the main line of the
analysis may initially bypass the technical estimates, continue with Sect. 2.6, and
return to the necessary lemmas at a later stage.

2.5.1 Globs and Cut-Off Functions

When looking to formula (2.70), we see that the operator Pp involves different
subsets of the functions {Wi},N=1 on different parts of the skeleton I's. This is the
main reason for the following definition.

Definition 2.48. (i) For x € I's we define the set of subdomains that share x:
N ={i=1,...,5 :x € 082;}.
(ii) The interface I" decomposes into equivalence classes of the relation
X~y &= M=,

Each connected component of such an equivalence class is called a glob (cf.
[Mat08]). For a glob ¢, we simply denote by .4 the set of sharing subdomains
(Ng = Ny, forall x € ¥9).

(iii) In three dimensions, a glob ¢ on the interface I is called

*  Subdomain vertex if it consists of a single point,

* Subdomain face or subdomain facet if it is shared by exactly two subdo-
mains,

*  Subdomain edge otherwise.

In two dimensions, a glob ¢ on the interface I” is called

* Subdomain edge or subdomain facet if it is shared by exactly two subdo-
mains,
*  Subdomain vertex otherwise (being a single point).

Note that subdomain edges may include one of their endpoints (see the
definition of the interface I, Table 2.1, p. 65). Similarly, there are subdomain
faces which include a part of the Neumann boundary.
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Fig. 2.5 Example of a
decomposition of a
two-dimensional domain with
the corresponding globs on ®
I" U I'p,subdomain vertices
indicated by @, subdomain
edges indicated by — and —e

(iv) We decompose the Dirichlet boundary I'p into equivalence classes of the same
type as above, and each connected component of such an equivalence class is
called a Dirichlet glob.

(v) In three dimensions, a Dirichlet glob ¢ is called

*  Subdomain vertex if it consists of a single point,
e Subdomain face or subdomain facet if it belongs to exactly one subdomain,
e Subdomain edge otherwise.

In two dimensions, we have again subdomain vertices consisting of a single
point, all other globs are called subdomain edges or also subdomain facets.

Figure 2.5 illustrates the decomposition of I" and I'p into globs for a two-
dimensional example.

Remark 2.49. Our definition of subdomain faces, edges, and vertices slightly differs
from the “common” one in [TWO05, Definition 4.1] because we will need to treat all-
floating methods that operate on the Dirichlet boundary as well.

Notation. We denote subdomain facets, edges, and vertices on I that are shared by
(at least) two subdomains §2; and §2; generically by .%;;, &;, ¥i;, respectively. We
would like to point out that an index pair does not necessarily specify a subdomain
facet/edge/vertex uniquely. Subdomain facets, edges, and vertices on 9£2; (possibly
shared by £2; and the outer boundary) are denoted generically by .%;, &;, and %,
respectively.

Definition 2.50. For a subdomain face .%, let .Z" be the set of nodes contained in
%, and for a subdomain edge &, let & " be the set of nodes contained in &. For a
subdomain vertex 7 we set ¥ := {¥}.

In order to separate the contributions of Pp on the different globs, we define the
following cut-off functions, according to [TWOS5, Sect. 4.6]. Let V" (3£2;) denote the
restriction of V" (£2;) to the boundary, cf. Sect. 1.2.6.2.

Definition 2.51 (Finite element cut-off functions).

* For a subdomain vertex 7;, the piecewise linear function 4, € V"(3£2;) equals
one at the vertex ¥;, and zero on all other nodes.

* For a subdomain edge &, the piecewise linear function 65 € V"(3£2;) equals
one at all nodes contained in &;, and zero at all other nodes.
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 For a subdomain face .%;, the piecewise linear function 6z, € V'(32;) equals
one at the nodes contained in .%;, and zero at all other nodes.

Extending these functions by zero, we have 6y, € V" (Is).

Definition 2.52. Let /" denote the nodal interpolator that interpolates continuous
functions to V" (£2;) or V(352;).

Notation. By writing
Y 1M Ogw), Y I"(Ogw), and Y IM(Ogwi),
; 4, Ccr %, Clp
we mean that we sum over all globs on 0£2;, 0§2; N I", and 0§2; N I'p, respectively.

The cut-off functions from Definition 2.51 provide a partition of unity in the
sense that

Y I'Ogv) = v Yve Vo). Ve = 0 (2.75)
4

where
rf=rinIy\I) (2.76)

denotes the set of non-coupling Neumann nodes.
Within the following sections, we work out tools in order to estimate the effect
of a single cut-off in the H '-energy norm.

2.5.2 Regularity Assumptions on the Subdomains

In this subsection we collect all the regularity assumptions that we need for the
technical tools exposed in subsequent sections. Most of the assumptions can be
relaxed (while of course complicating the theory) and we will indicate that at the
corresponding places.

Assumption 2.53. The subdomain triangulations .7"(£2;), i€ .%gm and
Th (082;),1 € Sggm are quasi-uniform with mesh parameter £; .

Assumption 2.54. There is a shape regular simplicial coarse triangulation .7 7 (£2)
of £2, such that each subdomain £2; is the union of coarse elements and the number
of coarse elements per subdomain is uniformly bounded.

Under Assumption 2.54, the subdomain diameter H; is equivalent to the
local mesh parameter of .7 (§2;). Furthermore, we can extend the triangulations
Th082;), i € Hypm to auxiliary triangulations .7 (£2;) that are quasi-uniform
with mesh parameter /;. We will use these auxiliary triangulations in the analysis.
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Fig. 2.6 Non-convex domain
with abritrarily small exterior
angle B. The displayed
subdomain decomposition
satisfies Assumptions 2.54
and 2.55 with shape regularity
constants uniform in

The next assumption essentially states that the exterior angles of the BEM
subdomains must be bounded from below. Note that even for a pure BETI method,
this does not necessarily prohibit the global domain §2 from having bad exterior
angles, cf. Fig. 2.6.

Assumption 2.55. For each subdomain £2;,i € .#ggy, there exists a neighborhood
2] D £2; and a shape regular simplicial coarse triangulation .7/ (£2/), such that
the shape regularity constants and the number of coarse elements in .77 (82]) are
uniformly bounded.

Assumption 2.56. The Dirichlet boundary I'p is the union of facets (faces/edges)
of the coarse triangulation .7 (£2) from Assumption 2.54.

Thanks to Assumptions 2.54 and 2.56, each glob is the union of a few vertices,
edges, and faces of the coarse triangulation .7 7 (£2).

Notation. We write a < b if there is a constant C depending only on the shape
regularity and quasi-uniformity constants from Assumptions 2.53-2.55 such that
a < C b. The notationa < b is a shorthand fora < band b < a.

2.5.3 An Explicit Poincaré Inequality

In this subsection, we provide a uniform bound of the Poincaré constant Cp(£2;)
(see Lemma 1.27) under Assumption 2.54. The following lemma is taken from
[PS12b, Lemma A.1]. For similar approaches see also [BH70, DS80, DWO06,
VV09].

Lemma 2.57. Let T be a triangle (d = 2) or tetrahedron (d = 3) and let F be
one of its facets (edge if d = 2 and triangular face if d = 3). Then

lu—u" |2y < diam(T) lulpiry  Yue H'(T).
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Proof. Due to Veeser and Verfiirth (see [VV09, Sect. 4, Remark 4.6, formula (2.3),

and Corollary 4.5]), forallv € H'(T):

1

) 2 diam(T')
gy S
measy—1 (F) measy (7))

2
”V”LZ(T) +

Due to [PW60, Beb03],

diam(7")

_T |
lu—u" |20y < |ul 1) Yue H (T),

because 7' is convex. With the triangle inequality and Cauchy’s inequality,

_F —T =T _ =F
lu—u" 200y < llu—u" |20y + vmeasq(T) [u" —u" |

vmeasy (T) _r
———lu—1u ||L2(F)
vmeasy_1(F)

Using (2.77) and (2.78) in the estimate above yields

A

IA

T
lu—u" |20y +

||V 1% s
T e M2 My

(2.77)

(2.78)

_ diam(T — 2 diam(T =
e =77 L2y < 2D fuf 1 oy + \/||u =" 2,y + 2D = oyl 1
diam(7T diam(T)? 2diam(7T") diam(7T
< S0 Jul gy + \/ S Wl gy + 2R R b

(% + \/%)Cﬁam(n lul g1 (1)

Since d > 2, the factor in the parentheses is < 0.96609936 < 1.

O

Definition 2.58. Let .7 (£2) be a simplicial triangulation. An open set ¥ C £ is
called (d-dimensional) agglomerate of 7 (£2) (in short 7 -agglomerate) if Y is

a connected union of elements from .7 7 (£2).

Definition 2.59. Let Y be an agglomerate of .77 (£2) with Y = U, Te. We call
the region Py, ¢, = interior(7Ty, U Ty, U---U Ty ), 1 < €y,..., ¢ < L, apath from
Ty, to Ty, of length s if foreachi = 1,...,s — 1, the elements Ty, and Ty, share

a common facet F;.

The following two lemmas lift the result of Lemma 2.57 from a single simplex
to an agglomerate, cf. [PS11c, Lemmas 2 and 4]. We will revisit the same approach

in Sect. 3.4.4.
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Lemma 2.60. Let Y be an agglomerate of TH(RQ), let Py, = iﬂterior(ﬂ1 u
Ty, U---UTy,) be a path and let F; be the facet shared by Ty, and Ty, for i =
1,....s — L. Furthermore, let Fy be any facet of Ty,. Then

N

—F2 meas, (T, ) diam (77, )? ) .
=" 3o, < 4(2 moaa (17 uliyip,,,y  Yue H'(Y).

i=1

Proof. By a telescoping argument we have

N
[ —ﬁF“'”LZ(nl) < flu—u" 27, + Z Vmeas; (Ty,) [ —u'i|.
i=2

With Lemma 2.57,
|l —uh lr2r,) = diam(Te,) [ulgrr, ) -

For fixed 2 < i < s the same lemma implies that

uhi—1 Fi |2 2
meas, (Ty,)

—u

IA

—Fi_ 2 —F;i 12
(||u -1 _””LZ(T@.) + lu—u l||L2(T4i))

< ——  diam(7y,)? |ul? .
— mean(T[l.) ( Zl) | |H1(T€,')

Combining the three estimates above, Cauchy’s inequality (in R¥) yields

N .
4measy (Ty,) diam(Ty, )?
”u_ﬁp\,nzz < [ d( ll) ( lfl) ]|u|2 1 ’
) < | 22 measq (T7,) H(Pyy 1)

which completes the proof. O

Lemma 2.61. Let Y an agglomerate of 71 (2) consisting of at most L elements.
Then
Cp(Y) = C,

where C only depends on L and on the shape regularity constant of 7 (£2).

Proof. One easily shows that
measy (7)) > c¢measy(Y), diam(7") > cdiam(Y)

for all elements 7" contained in Y, where the constant ¢ only depends on L and on
the shape regularity constant of .7 (£2). Let F be an arbitrary facet of Y. For each
element 7 in Y there exists a path from T to the element containing F' of maximal
length L. Summing the estimate in Lemma 2.60 over all elements in Y yields

LZ(Y) —

: 2 —F |2 : 210,12
ggﬂg ||M—C|| = ”u_“ ||L2(Y) = Cdlam(Y) IMIHI(Y)‘

forallu € H'(Y). O
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Corollary 2.62. Under Assumption 2.54, the Poincaré constants of all the subdo-
mains are uniformly bounded.

Remark 2.63. Without Assumption 2.54, one can instead assume that the
isoperimetric constants of the subdomains are uniformly bounded, see [DKWOSb,
DKWO08a, KRWO08]. Note that ragged boundaries alone do not make these constants
blow up.

2.5.4 Trace and Poincaré Inequalities for FE Functions

In this subsection, we elaborate on inequalities for finite element functions, which
do (in general) not hold in the Sobolev space H'. Therefore, we obtain expressions
depending on the mesh parameter /. All the estimates can e.g. be found in [TWOS5,
Sect. 4.6] as well as in early papers [BPS86, BPS87, BPS88, BPS89]. Here, we work
out the common pattern and the dependence of the constants on the geometry, using
the assumptions of Sect.2.5.2.

Definition 2.64. For 0 < m < d — 1, the m-facets of a simplicial (coarse)
triangulation .7 (§2) are

» The vertices of 77 (2)if m = 0,
e Theedgesifm =1,
e The triangular faces if m = 2.

Definition 2.65. For 0 < m < d — 1, a set X C £2 is called m-dimensional
agglomerate of 71 (£2) (in short 7 -agglomerate) if X is a union of m-facets.
The dimension of X is denoted by dy := m.

Apparently, a zero-dimensional agglomerate consists of finitely many (isolated)
vertices. We see that under Assumption 2.54, the globs from Definition 2.48 are
m-agglomerates of the coarse triangulation .77 (2) with0 <m < d — 1.

If X is a .7 -agglomerate of dimension dy > 0, the dy-dimensional Lebesgue
measure properly defines the space L?(X) and the average

1
o= —/ vds forv e L*(X).
measg, (X) Jx

The case dxy = 0 is treated in the following definition.

Definition 2.66. Let X = {p; : j = 1,...,J} be a zero-dimensional agglomerate
of 71 (£2), consisting of J different points. For a function v : X — R, we define

J

1/2
measo(X) = J, /des =Y v IVl = (/X|v|2ds)

J=1
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and the average

J
1
W= ——— [ vds = J! ).
' measO(X)/xv ’ 2 "(rp)

J=1

Let {7"(£2)}, be a family of triangulations that are refinements of .7 (£2)
and let V'(£2) denote the finite element space of continuous and piecewise
linear functions with respect to .7 (£2). For any d-dimensional agglomerate ¥ of
TH(2), we denote by .7"(Y) and V" (Y) the restrictions of .7"(£2) and V" (£2)
toY.

Definition 2.67. Let Y be a d-dimensional .7 7 -agglomerate.
(i) For a fH-agglomerate X C Y of dimension 0 < dy < d, let Cp Y, X; h)

denote the smallest parameter such that

v =5l 2ry < Cp(Y. X; hydiam(Y) [v|1yy Vv e V(Y).

Fordy > d — 11et Cp(Y, X) denote the smallest constant such that the above
inequality holds in H!(Y).

(i1) For fH-agglomerates X, W C Y of dimensions dy, dw € [0, d], let
Cp(Y, X, W; h) denote the smallest parameter such that

=X . . [measg,, (W) "
”V—V ||L2(W) < CP(Y, X, W, I’l) dlam(Y) WZ(Y) |V|H1(Y) VveV (Y)

Fordy >d—1anddy > d —11et Cp(Y, X, W) denote the smallest constant
such that the above inequality holds in H'(Y).

By definition, for dy = d and dy > d — 1, we have

CP(D) = CP(Ds X)v CP(Dv X, W)E CP(Ds X)

Definition 2.68. For an integer j > 0, we define the indicator function

1 if j <1,
o/ (x) = {1 +1log(x) ifj =2,
x/ 72 if j > 3.

The following lemma states a discrete trace inequality with explicit dependence
on the geometric parameters.

Lemma 2.69 (discrete trace inequality). Ler Assumption 2.54 hold, let Y and W
be T -agglomerates of dimensions dy = d and 0 <dy <d with W CY. Further-
more, let 7" (Y) be quasi-uniform. Then
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2 d—dy( Hy Measay (W) ¢ 5 5 2 h

WlZ2wy = Co () W:(Y) (Hy Wl + IIVIILz(Y)) Vv e V'(Y),
where Hy = diam(Y'). The constant C only depends on the shape regularity and
quasi-uniformity constants of 71 (2) and T"(Y), and on the number of coarse

elements containedin Y.

Proof. For dyw = d — 1, the estimate follows from the trace theorem and a scaling
argument. For the case d = 2, dy = 0, see [TW05, Lemma 4.15] and also [BX91].
For d = 3, dy = 0 we combine the embedding of H'(D) in L?>¢/?=2(D) and
the inverse inequality ||| zoo(p) < h~@72)/2 [Vl 71 (py on a domain of unit diameter.
Finally, the case d = 3, dw = 1 is treated by integrating the two-dimensional L°°-
estimate along the edges forming W, see also [TWO05] and [PS12b, Lemma A.4].

O

The statement of the following lemma can be found (in different form) in [TWO5,
Sect. 4.6], see also the references therein.

Lemma 2.70 (discrete Poincaré type inequality). Let Assumption 2.54 hold, let
Y be an agglomerate and let X, W be agglomerates of dimensions dy, dw € [0, d].
Furthermore, let 7" (Y) be quasi-uniform. Then

measg,, (W)

H? v Vv e Vi(Y).

=X 2 d—min(dy,d H
v =71 7o ) = Codmmnt@rdn(l) H(Y)

measy (Y)

where H = diam(Y'). The constant C only depends on the shape regularity and
quasi-uniformity constants of 71 (2) and T"(Y), respectively, and on the number
of elements that Y contains.

Proof. We have

— — — X2

% ”V_ VX”iZ(W) = ||V _VY”iZ(W) + meade(W) ’vY - X‘
_ Y2 meade(W)( Y2 X2 )
= ”V v ||L2(W)+ WX(X) ”V v ||L2(X)+”v v ||L2(X) .

Due to the Ritz minimum principle (cf. Lemma 1.3),
”V _vX ”iZ(X) = 612]12 ||V - c”iZ(X) =< ”V _vY ”iZ(X) .
Hence, applying Lemma 2.69 for the manifolds X and W, we obtain

meas,, (W) v — 5 ”2

1 =X 2 =Y
E”V_v ||L2(W) = ”V_V ||L2(W)+ meanX(X) L2(X)

_ _ measg,, (W . _ —
< (o) + 4ot BRI (L i) =5 ).
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Applying Poincaré’s inequality on Y and taking Lemma 2.61 into account concludes
the proof. O

Corollary 2.71. Under the assumptions of Lemma 2.70,

Ce(Y, X, W; h)

IA

C \/gd—min(dx,dw)(%),

C Jod—dx (1),

Cp(Y, X; h)

IA

2.5.5 Cut-Off Estimates

In this subsection, we estimate the effect of a cut-off in the energy norm. As for
Sect. 2.5.4, the following estimates can be found in [TWO05]. They mainly stem from
the early works [BPS86, BX91, Dry87, DW94, DWO95] on iterative substructuring.

Definition 2.72. Let .%; be a subdomain facet (i.e., a subdomain face if d = 3, a
subdomain edge if d = 2) on 952;. We set

bz = HO07) € V().

Here, the space V/(£2;) and the discrete harmonic extension S " are defined with
respect to the (possibly auxiliary) triangulation .7 (£2;). For any %; on 052; that is
not a subdomain facet, we define 94, € V" (£2;) as the extension of g, € V' (352;)
that vanishes at all interior nodes of £2;.

Remark 2.73. For simplicity, we did not indicate the subdomain index in the
definition above. For any interface glob ¢ we may regard ¥ as a global function in
V'(£2) only supported in the subdomains that share the glob 4.

For any v € V'(£2;), the function /" (9, v) is an extension of 1" (0, vjsq) and
so by the minimizing property of %’jh (cf. Definition 1.55),
|«%’§h(9%")|1{1(9i) =< |1]1(79%V)|H1(:2i)-

Notation. Above and in the following, with a small abuse of notation, whenever v
is a function with well-defined values at the nodes contained in ¥;, by

A (0,v) (2.79)

we mean that we first interpret the expression ;v as a function in V/(3£2;) (by
interpolating at the nodes contained in &;, and choosing zero at all other nodes) and
then apply 7" to it.

The following lemmas give further bounds in terms of the original function v.
First, we discuss the case of lower-dimensional globs.
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Lemma 2.74. Let T"(82;) be quasi-uniform. Then for any glob ¥; of dimension
0 < m < d —1 (a subdomain vertex or edge if d = 3, a subdomain vertex if
d=2)

1" @a) gy < CH TGy, — Yve Vi@,

where ||v|| 12y = V(¥})|. In particular,
2 d—2
19411 = Chi™™

Ford = 3, let & be a subdomain edge such that ¥; € & Then

|1h(79"f/iv)|§.11(gi) =< C “v”iZ(gl.) Vv e Vh(Ql)

If d = 3 and if Assumption 2.54 holds then
The constant C only depends on the shape regularity constants of 7" (£2;) (and on
the shape regularity of 7 (§2) in the last estimate).
Proof. Letv € V"(£2;) be arbitrary but fixed and note that 1" (%, v) vanishes on all
nodes of .7 (£2;) except those on %;. Then, by a an inverse inequality,
") gy < C D HT2IVEMIP < CRETE™ Y R (e,
xhew; xhe@;

2

The sum in the last expression is equivalent to ||v|| For d = 3, we obtain from

L2(4;)"
the above that |Ih(l97/iv)|§1l(9i) <Ch )P <C ||v||iz(£,i). The last estimate
follows from |12 = meas; (&) < C H;. O

L2(&})
Combining Lemma 2.74 with the trace inequality from Lemma 2.69, we obtain
the following result.

Lemma 2.75. Let Assumptions 2.53 and 2.54 hold. Then for any glob ¥; of
dimension 0 < m < d — 1 (a subdomain vertex or edge if d = 3, a subdomain
vertex if d = 2),

|1h(l9giv)|§.11(gi) 5 (1 + 10g (%)) (|v|§-11(gi) + Hi_2 ”v”iZ(Ql.)) Vv e Vh(Ql)

Proof. First, we select a glob Z; of dimension at leastd —2.If d = 3 and m = 0,
we choose .Z; as a subdomain edge touching ¢;, otherwise we set Z; = ¥%;. Thanks
to Lemma 2.74,
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11" G0y S V320 -
Lemma 2.69 yields

measy_(Z7) H,.2

2 2( H; 2 -2 2
Mo 5 0700 = e () (WBran + H72 Wl22(g,)-

Since meas;—»(2;) ~ H{ ™2

and meas, (£2;) = H¢, this concludes the proof. O

We now turn to the case of a subdomain facet (i.e., a subdomain face if d = 3, a
subdomain edge if d = 2).

Lemma 2.76. Let Assumptions 2.53 and 2.54 hold. Then for any subdomain
facet F;,

2 —
|1h(l9,gi1))|§_11(9i) 5 (1 + IOg (%)) (lvﬁ-]l(gi) + Hi 2 ”v”iZ(Ql.)) Vv e Vh(Qi)v
and

|l9gi|§11(9i) < (1 +log (2) Hf 2.

Proof. For a proof in three dimensions, we refer to [TWO05, Lemmas 4.24 and 4.25].
For the two-dimensional case, see [MB96] as well as the pioneering paper [BPS86].
Sharpness of the estimates is shown in [BS00].

Remark 2.77. On a subdomain facet .%;, the term L%’jh(é? 7:V)| 1 () Tealizes the
H&gz(%)-norm of v e VH(%), see also [TWO05, Lemma 4.26] and Sect. 2.5.7.

Combining the cut-off lemmas and the discrete Poincaré inequality straightfor-
wardly may create several powers of the term (1 + log(H,/h;)). The following
corollaries help to keep a power of two.

Corollary 2.78. Let Assumptions 2.53 and 2.54 hold, and let G; be a glob. Then
\2 , _
11" @) g, < (1+10g (52) Vg, + (1 +log () H7? V1172 g,

forallv e V().

Proof. 1If the dimension of & is less than d — 1, the statement follows from
Lemma 2.74. If &, = .%; is a subdomain facet, we have

11" @z g,y S 'Oz 0=V g, + 1921514, P9
By Cauchy’s inequality (cf. (1.13)) and the estimates from Lemma 2.76, we get
S\ 2 _ _o.
|1h(l9.?iv)|§.11(gi) S (1 + log (;1—;)) <|v|§‘11(91) =+ Hi 2 ||V — V‘Q’ ”iz(.{?l))

+ (1 + log (%)) HI72 2™ ||V||iZ(:2i)
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Fig. 2.7 Mapping of a node 0,1) ,
patch ), in two dimensions £y £

s

(-1.0) A{%

(1,0)

0,-1)

Poincaré’s inequality (Lemma 2.61) and using that |£2;| =< H id concludes the proof.
O

Corollary 2.79. Let Assumptions 2.53 and 2.54 hold, and let ¥;, Z; be two globs
of §2;, such that the dimension of Z; is at least d — 2. Then

- S\ 2
(1B (0 =7 Dy S (L4102 () Wi, Yve V().

Proof. The statement follows immediately from Corollary 2.78 and Lemma 2.70.
O

Summing the estimate from Corollary 2.78 over all globs of a subdomain,
we obtain the following stable decomposition (recall our convention (2.79) from
p- 122),

DA )10 < (1410g (1) Vi1, (2.80)
<

+ (L+log (F2) H72 VG2, Vv e Vi($20).

The following lemma is kind of inverse to (2.80).
Lemma 2.80. Let Assumption 2.54 hold. Then

|'%€hv|§.11(gi) =< C Z |f%h(9g{v)|§.11(gi) Vv e Vh(agi)v V|3_Ql.m['l/\§ =0,
<

where the constant C only depends on the shape regularity constant of Assumption
2.54.

Proof. Since the functions {0y } provide a partition of unity on 92; \ Iy, the
function ) ¢, " (04, v) is a discrete extension of v from 02; to £2;. Therefore, the
result follows from Lemma 1.54, the triangle inequality, and the fact that the number
of globs of £2; is uniformly bounded (see Assumption 2.54). See also Lemma 3.21,
p. 169. O

Remark 2.81. Almost all proofs of the cut-off estimates in this section rely on
Assumption 2.54 and so does Lemma 2.69. An extension to less regular subdomains
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(so-called John domains that can have ragged boundaries) for two dimensions can
be found in [KRWOS]. The three-dimensional case seems to be open yet.

2.5.6 An Explicit Sobolev Extension

In this subsection, we define a Sobolev extension operator for Lipschitz polytopes
in the spirit of Stein [Ste70] and provide an explicit estimate in terms of shape
regularity constants only.

For a Lipschitz polytope £2;, let £2] D £2; be a neighborhood such that both
domains are resolved by a shape regular coarse triangulation .7 7 (§2/) consisting of
a bounded number of elements, cf. Assumption 2.55. For an illustration see Fig. 2.7
(right). Let 322} denote the set of coarse vertices of 7 (£2/) that lie on 02;. For
each vertex p € 3.QiH , we define the open vertex patch w, by

w, =\ J{T:TeT"R). peT},

and ‘ o
a)};“ = w, N2, a);’“ = w, N (2] \ £2,),
cf. Fig.2.7 (right). Without loss of generality, we assume that wg“ and w;’“ each
contain at least one coarse vertex that does not lie on d52;. This condition can always
be fulfilled by formally subdividing some of the coarse elements.
We define the open reference patch @ by

= conv({(—1,0), (1,0), (0,1), (0,—1)}) ifd =2,
conv({(—1,0,0), (1,1,0), (1,—1,0), (0,0,1), (0,0,—1)}) ifd = 3,

where conv(S) denotes the convex hull of the set S. Furthermore, we define the
subsets

~int ~ext

o™ = oN{x:xg <0}, o™ = o N{x:xy >0},

where x, refers to the d-th component of x.
Let .7,(®) be a shape regular simplicial triangulation of @ such that there exists
a bijective continuous mapping F, : @ — w, with the following properties.

* For each element 7' € .7,(®), the restricted mapping F |7 is affine linear,
° FP (O) =D,

o Fp(wNi{x:xg =0}) =w,Nad;,

. Fp (aint) — a)gn and Fp (aext) — w;xt’
* For each element T’ € 7,(®),
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et HY < det(Fp;) < ea HY,
—1 —1
IFyrlle < esHi,  (Fyp) e < caH

where the constants ¢, ¢z, ¢3, and ¢4 only depend on the shape regularity
constants of 7 (£2]).

For an illustration in two dimensions, see Fig. 2.7. Under the conditions on .7 # (£2;)
stated in Assumption 2.55, such a triangulation and mapping exists for every coarse
vertex p € 921

On the reference patch, we define the linear operator

E €@ - €°@),  (Ew)(X1s....Xxq) := W(X1,. .., Xd—1, —Xq),

i.e., the reflection of w across the hyperplane {x : x; = 0}. By construction we have
IEwll g1sey = (W]l g1 (@) Since the ¢"*°-functions are dense in H', it follows

that £ : H @™ — H'(@%") is linear and continuous. For each coarse node
pE BQI-H , we define the linear operator

EP : HY (o)) - H' (o), EPyv = (E(vo Fp))o F,".

Since F), is continuous and piecewise affine linear, £ () maps indeed into H' and
is linear and continuous. Furthermore, one easily shows that

(E(p)v)\wpnaxz,- = Vw,noe; -

Finally, we define the extension operator

1% in .Q,',
E H' (2) - H(Q)., Evi=1 2 @eEPv n@2\2. (@3
peal!
0 else.

where ¢, is the nodal finite element basis function on 7 (£2/) associated with the
coarse node p.

Lemma 2.82. Let §2; be a subdomain and §2] D 2, a Lipschitz domain that fully
contains §2; and that is resolved by a shape regular coarse triangulation 7 (£2]).
Then the extension operator E; as defined above maps into H'(R?). Furthermore,
there exists a constant Cg,; depending only on the number of coarse elements in £2;
and on the shape regularity constants of 7" ($2]) such that

|En v gy + H2NEi v ey < C, (|v|§11(m +H? ||v||L2(QI_)) Vv e HY(Q)).
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Proof. Let v € H'(£2;) be arbitrary but fixed. For each coarse vertex p;, j =
1,....J, the function ¢, E?/)y vanishes on R?\ (£2; U w%"). Hence,

(Ei V)UR‘]\EI- S Hl(Rd \ﬁ,)
Thanks to the partition of unity property
J
Y ey (x) =1 Vxeo,
j=1

we can conclude that (E;v)jpe, = Vjag,. Since in addition (EiV)laQi/ = 0, it
follows that E;v € H'(RY). With standard finite element techniques (see e.g.
[BS02, Cia87]), one shows that for each coarse node p on 952;,

IE(p)VIHl(a);’“) = C|V|H1(w}§“)v ||E(p)V||L2(w;xt) =C ”V”Lz(wip"‘)‘

The constant C is uniform because there are only a small number of different
triangulations .7, (®). Since ||¢, || o = 1, it follows from the above that

||</’pE(p)V||L2(w;,XI) =C ”V”Lz(wi[}“)-
Summing over p € 322/, we obtain

IEi vil2@ene) =< Z C vl = Clvlirza). (2.82)
pEE)QiH

where we have used that the number of coarse nodes on 9£2; is uniformly bounded.
We now turn to the H '-seminorm. Since [VopllLee < C H,-_l, we can conclude
from the product rule and the local L?-estimate from above that

IA

C (1B sy + H2 IV )

1 (ext
H (a)p

|¢P (E(P) V) |§_]1 (w;xl)

IA

C (1B gy + H2 )
Summing over all coarse nodes p € 3.QiH , we get

EBongy = € (Mg, + H72 V220, (2.83)
Using the definition of E; and combining (2.82) and (2.83) concludes the proof. 0O

Remark 2.83. The relaxation of Assumptions 2.54 and 2.55 is possible by using
Jones’ extension operator introduced in [Jon81], which is defined for the so-called
&-6 domains or uniform domains, and which employs a bound of the same form as
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in Lemma 2.82. The constant can be made explicit in a geometric parameter linked
to the domain, see also [DKWO08b, DKW08a, KRWO08]. As for Poincaré’s constant,
ragged boundaries alone do not make the extension constant blow up. For a degree-
independent extension operator see also [Rog06].

Remark 2.84. The extension operator E; is also well-defined and bounded from
L?(£2;) to L>(R?), and by classical interpolation theory (see [AF03, Sect. 7.22f]) it
follows that it is bounded from H*(£2;) to H*(R¥) for s € [0, 1], cf. [Ste70].

Lemma 2.85. The operator E;: H'($2;) — H'($2]) defined by
% in $2;,
Eivi= 92 43 g, EV0—3%) n@\ 2
pGB.Ql-H

(cf- (2.81)) is linear and continuous, and it preserves constants, i.e.,

~

Eic=c VYceR (2.84)

Furthermore, we have the separate stability estimates

IE: vll 2@y < C VI,
! ) () Vv e H'Y(2)),
IE,’ VIHI(_QI_’) <C |V|1-11(_Q,-)

where the constant C depends only on the number of coarse elements in §2; and on
the shape regularity constants of 7" (£2]).

Proof. The proof of the L2-stability follows from (2.82), from Cauchy’s inequality,
and the fact that measy(£2/ \ £2;) < meas;(£2;). The H!-stability immediately
follows from Poincaré’s inequality (Lemma 2.61). O

2.5.7 A Subdomain Transfer Operator for FE Functions

In this subsection, we construct an extension operator that transfers finite element
functions from a subdomain to its neighboring subdomains. This technique was
first used in [KRWO0S8, Lemma 4.5], see also the references therein. Note that the
original analysis of FETI [KWO01] was performed using trace norms, which we can
circumvented by the transfer operators. Such, one can make the dependence on the
shapes of the subdomains more explicit.

Definition 2.86. For any glob ¢, the glob patch %4 is given by

@g = U ﬁk.
keNg
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Lemma 2.87. Let Assumption 2.54 hold. Then, for any glob ¥; there exists a
discrete extension operator Elh% : VI(2) — V" (Ug) such that (Elhg, Vg =V
and

El, vy <Clv
| i.9; |H1 (Ugq;) = | |H1(Q) Yy e Vh(-Qi),
||E, g,V”LZ(%g) C ||V||L2(:2)

where the constant C only depends on the shape regularity constant of 7 A(2). In
particular, E" i'q, preserves the (fine) nodal values on G, and it preserves constants.

Proof. Assume that &4 C I' (otherwise %g = $2; and the extension is trivial).
Therefore, %, \ £2; contains at least one coarse element and measq (% \
£2;) < measg(§2;). Let E; @ : HY(2)) — H'(%4) be defined analogously to
Lemma 2.85, with the only modiﬁcation that we work on the coarse mesh on %,
instead of §2/ and that we sum only the reflections corresponding to the coarse nodes
on ?ﬁ Doing so, we obtain

E, C
[ %V”LZ(%g) ||V||L2(:2) ve Hl(Qi)' (2.85)
|E:,£¢,V|Hl (Ueg;) = <C |V|H1(Q)

Note that, again, the extension preserves constants: Ei,%c = c forall c € R. Let
" . H (% \ ) — V(U \ $2;) denote the Scott-Zhang operator, which
preserves piecewise linear data on the boundary. We set

v in £2;,

El, v ~
o M"Eiqv in g\ 2.

Indeed, E" i@V Is continuous across a2, N %g and the stability estimates follow
1mmed1ately from (2.85) and Lemma 1.45. O

Remark 2.88. We note that the essential assumption in Lemma 2.87 is that the
target domain % obeys a shape regular coarse triangulation consisting of a
bounded number of coarse elements.

2.5.8 Uniform Bounds for the Constants cy and cg

Let V; denote the single layer potential operator on d52; and D; the corresponding
hypersingular integral operator. Moreover, let ¢p; and cg; denote the respective
constants from Lemma 1.77. In this subsection, we show that under the assumptions
made in Sect.2.5.2, at least in three dimensions, we can bound cy; from below in
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terms of the shape regularity constants of 77 (£2) and .7 (£2/). The following
presentation is based on [Pec12].
To get a bound for ¢(, we introduce special trace norms.

Definition 2.89. Forv € H'/?(32;) we define

1/2
. 2 —2 2
”V”*,HI/Z(BQ,') = (I%V|H1(Q,’) + H,' ”‘%VHLZ(QI.))

and
, {w. v)

||W||*,H*1/2(a:2i) = sup -

veH/2(382) ”V”*,HI/Z(BQ,-)

According to Definition 1.41 and Sect.1.2.1.6, these norms are equivalent to
[ - ||H1/2(89,~) and || - ||H*1/2(a.rz,~)-
Definition 2.90. Assume that V; is coercive and let ¢}, and ¢}, be the largest
constants and C ; the smallest constant such that

(w, Viw) = ¢ W2 g, Ywe HT2(020),
(Div, v) = cp, |56V, Vv e HY2(382),
1) 20y < Chi Hi |V g, — Vve Hi?(092).

Lemma 2.91. We have that

Proof. With a standard duality argument, it follows that

(V‘_l v, V) = (C;'l-)_l ”v”z,Hl/Z(a_Qi) Vv e Hl/Z(an)

1

Using the definition of ¢¢;, Definition 2.90, and the above boundedness result, we
obtain

a0 12
(Divov) _ . b 11 )

i

coi = inf

oo T 0) entiogn @ (AP + H= [ )
veH, “(082;) \Vi s vEH, T(052;) \*v; P HY @) i 22

Using the definition of C; concludes the proof. o
Lemma 2.92. Let Assumption 2.55 holds. Then in three dimensions,

N 1
v = gcz
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where Cg, is the constant from Lemma 2.82. Hence ¢y, can be bounded from below
in terms of the shape regularity constants of 71 (£2}).

Proof. For a proof see [Pecl2, Corollary 6.2]. It follows basically the line of the
standard coercivity proof (see e.g. [Ste08, Sect. 6.6.1]), but uses the carefully chosen
norms and the extension operator.

To bound the constant for the hypersingular integral operator, we need another
extension operator which extends functions in the annulus £2; \ 2 back to ;. By
changing the roles of §2; and the annulus in the construction of Lemma 2.85, we get
the extension operator

E/: H'(2/\ Q) - H' (X))

which preserves constants and obeys the following stability estimates.

Lemma 2.93. There exists a constant C3 depending only on the maximal number

of coarse elements per subdomain and on the shape regularity constants of 7 (82))
such that for each subdomain $2;,

|Efv|H1 o) < Cp Vg, re)
- ) , (@2\2:) Yve H' (2 \ 2)).
”E’-V”LZ(QI_/) = CEI’ ||V||L2(Ql-’\§i)

Lemma 2.94. Let Assumption 2.55 hold. Then

1
*

> —

TS

where Cgr is the constant from Lemma 2.93. Hence ¢}, can be bounded from below

in terms of the shape regularity constants of 71 (£2}).
Proof. For a proof see [Pec12, Lemma 6.4].

Lemma 2.95. Let Assumption 2.55 holds. Then in three dimensions,

1+ CP(Qi)2]1/2

Cpi = [2CP(91')2+ o’
E;

Hence, C; can be bounded from above in terms of the shape regularity constants

from TH ().
Proof. For a proof see [Pecl12, Lemma 6.7].
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Corollary 2.96. Let Assumption 2.55 holds. Then in three dimensions, the constant

co.; can be bounded from below and ck ; from above in terms of the shape regularity
constants of T 1 (£2!).

Remark 2.97. The generalization of these uniformity results to the case of two
dimensions is not yet known, mainly due to the particularity of the two-dimensional
exterior problem, see Sect. 1.3.3, or one might say due to the logarithm in the
fundamental solution. Ideas towards such estimates are given in [Pec12, Remark 4].

2.5.9 An Elementary Inequality

The following lemma provides an important inequality involving the weighted
counting functions from (2.53). See e.g. [DW95, MB96, Sar94] for early works
where this result has been used.

Lemma 2.98. For x" ¢ FS”, let {px (xh)}ke%h be arbitrary positive weights and
let {8} (x")}es, be defined as in (2.53). Then

pi (x™) (8;()6}'))2 < min(p; (x"), p; (x")) Vi, j € N

for any choice of the exponenty € [1/2, 00). The same estimate holds for the choice
(2.54), which corresponds to y — 00.

Proof. For simplicity, we drop the dependence on x" during the proof. Recall that

¥
st P
! Zke/V PZ

Assume that #(.4") > 2 (otherwise the inequality is trivial). Since 0 < 8; <1, we
immediately get that p; (8;)2 < p;. Secondly,
2y 2y—1
2 Pi p; Pi Pj
Pi ((Sj) = ’ 2y ’ 21 Pi -
(pi +pj) (pi +pj) (oi +pj)

The first factor on the right-hand side is less than one. Since the function y > y2’~!

is monotonically non-decreasing for y € [1/2, 00), the second factor is less than
one as well. This implies p; (8;)2 < p;. The proof of the estimate for the choice
(2.54) (corresponding to y — 00) is trivial. O
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2.6 Preconditioner Analysis for Subdomain Resolved
Coefficients

In this section, we give the complete convergence analysis of FETI/BETI (both
classical and all-floating) for the case that the diffusion coefficient <7 is isotropic
and piecewise constant in each subdomain, and with two further assumptions stated
below.

Assumption 2.99. In each subdomain §2;, there exists a constant o; > 0 such that

M_Q. = 1.

i

Assumption 2.100. The coefficient scaling is used, i.e., p;(x") = «;, cf. Sect.
2.2.4.2.

Remark 2.101. Note that the theory below can be carried over to matrix-valued
coefficients with mild anisotropy that are piecewise constant in each subdomain. In
such a case, the value of p; (x*) should be chosen as the maximal eigenvalue of the
matrix coefficient on £2;.

Assumption 2.102. For the classical formulation of FETI/BETI in three dimen-
sions only, we assume that I'p Nd£2; is either empty or contains at least a subdomain
edge (i.e., it should not collapse to a subdomain vertex).

Recall the missing estimate of the operator Pp from Lemma 2.45,
[Pp(w+2,)]3 < o|w Vw e W.

Lemma 2.103. Foreachi = 1,...,s, let Wl-J' be a subspace of W; such that the
sum

Wi = ker(S;) & W;*

is direct. Let W+ := [[i_, W/X. Then
[PoOv+ )5 < oWl Ywe Wt

implies
[Pow+2z))5 < oWy  VYweW.

Proof. Let w € W+ be arbitrary but fixed. First, Lemma 2.44 states that the
mapping v — z, (for v € W) is linear and that z, = —y for y € ker(S). Therefore,
we have the invariants

w + Iy = (W + y) + (Zw—{—y)

Vy € ker(S).
I+ yls = wls y € ker(S)
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Since W = W+ & ker(S) the second inequality follows immediately. O
Throughout this section, we choose

1 o %
Wt = {w,- e W : A = o} ifi € Fnous (2.86)

4

and W,.J- := W, else. The strategy is to show bounds for Pp w and Pp z,, separately,
forw e W,

2.6.1 An Energy Estimate of Pp

The following lemma is essential for the condition number estimate and goes back
to [KWO1, Lemma 4.7], see also [MT96, Sect. 3.3] and [TWO05, Lemma 6.3].

Lemma 2.104. Let Assumptions 2.53-2.56 and 2.99-2.102 hold. Then

|Ppw|% < ‘Ellax‘(l—}—log(Hi/h,-))z wz  VYwewt

Proof. Letw € WL andi = 1,...,s be fixed. Recall the characterization (2.70)
of the Pp operator (p. 108), which reveals that there is no contribution from I’ Nh
(the non-coupling Neumann nodes). Recall also that .4, = A4, for all x" e @.
Using the BEM-FEM spectral equivalence from Corollary 1.94 and the cut-off result
from Lemma 2.80 (with convention (2.79) from p. 122) we obtain

[(Ppw)ils, < i | (Pow)ilig, (2.87)
2
S ) ‘%’1(9% 2 82(Wi_wf))‘m<:z-) +ai D 1A Oawdli, -
@.cr jENg, ' @, CI'p

=:7;

Since p; (x") = a;, the functions 8} are constant on each glob ¢;. Using the fact
that each glob is shared by a uniformly bounded number of subdomains and the
elementary inequality from Lemma 2.98, we obtain

2
< Y ) e (8,) 1 O v =),
%CF]’E/V{(;I-

= Z Z min(aisaj)'%h(egi(wi_Wj))|§.11(9i)

& Cr jE/V(gi
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Inserting the estimate for 7; into (2.87) and using the triangle inequality yields

|(Ppw)i3, (2.88)

S Y > min(i @) | O i —w)) o, + D @ 1 Ogwili g,
%CFjEJVgi 9, CIp

D DD DT A T AT (2.89)

¢ Cr'Ulp jEJchi

Note that the function w; from £2; is cut down to %;; and harmonically extended
to the (possibly different) subdomain £2;. In order to estimate the energy of the
extension in terms of the energy of the original function, we use the transfer operator
from Sect. 2.5.7. Let w; = .#/'w; € V"(52;). Then the function

I"(94,El ;)
extends O, w; to §2;. Using Corollary 2.78 and Lemma 2.87, we get

|<}fih(9§fiwj)|%{l(9i) =< |Ih(l9g, E?%“’j)'i]l(ﬂ})

< (U4 log(Hi/hi)) |E} ;13 g, + Hi? (14 Tog(Hi /b)) | E] 0 172,

S (L log(Hi /) | w1 ) + H7 (L log(Hi [ hi) |16 w; |-

If £2; is floating, w; € le, and we can eliminate the L%-term using Poincaré’s
inequality. If £2; is non-floating, we know that w; vanishes at least on a glob of
dimension d — 2 (see Assumption 2.102). Hence, we can eliminate the L2-term at
the cost of another factor of (1 4 log(H;/h;)) using Lemma 2.70. In either case,
what we obtain is

1 Ogw i gy S (1 +10g(H; /1) | W; I3y 0 - (2.90)
Combining (2.89) with (2.90) and using that the number of globs and neighbors per
subdomain is uniformly bounded yields

S s s
D 1Pow)ils, < max(l+log(H;/hi))* Y ey | wj 510, -
i=1 j=1
The proof is concluded by the fact that «; L%”jhwj i]l(_oj) = |wj I??, for j € Jrem
and o L%”jhwjﬁ{l(gj) < |wj|§j for j € #gpm (by Corollary 1.94). O
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2.6.2 The Case Q = M3

To complete the estimate from Lemma 2.45, we still need to bound | Pp z,,|s. The
next lemma stems from [KWO1, Lemma 4.8].

Lemma 2.105. Let z,, be defined as in Lemma 2.44 and let Q = M. Then
|Ppzwls < |Ppw|s Ywe W.

Proof. Using identity (2.67), i.e, PJSPp = B'My B = BTQB, and

Lemma 2.44 we have | Pp z,[5 = [Bzully < [Bwlg = [Ppwls. O

The next theorem estimates the condition number of classical an all-floating
FETI/BETL

Theorem 2.106. Let Assumptions 2.53-2.56 and 2.99-2.102 hold. Then, for the
classical or the all-floating FETI/BETI method with the scaled Dirichlet precondi-
tioner MS]_)l and with the choice Q = Msl_jl,

K(PMp PTF,) < C max(l + log(H; / hi))’.

where the constant C depends only on the uniform constants from the mentioned
assumptions. If the subdomain meshes are not quasi-uniform (but still shape-
regular), the analogous bound holds but then h; has to be replaced by the minimal
element diameter of T"(2;).

Proof. The estimate follows immediately by combining Lemmas 2.45 and 2.103—
2.105. O

2.6.3 Diagonal Choice of Q

An implementation of the FETI/BETI method with Q a diagonal matrix is of
course much easier. The following choice, proposed and analyzed by Klawonn and
Widlund [KWO01], still gives a robust method with respect to coefficient jumps.

Definition 2.107. For each node x* C I'" U I'i we define

(1 + log(H;/ hi)) h;—jl if x” lies on a subdomain facet,

h
qi(x") ==
hl-d_2 else.

Furthermore, we define the operator Q i, : U* — U by

(Quiag 11)ij (x") 1= min(o; (x"), pj (x")) gij (x") pij (x") forp e U™, (291)
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Fig. 2.8 Left: Subdomains
with Dirichlet boundary. (O] Q) Q3
Right: Corresponding
connectivity graph

Dirichlet boundary

where g;; (x") = min(g; (x"), g g (x")) and (in case of the all-floating formulation)

(Quaiag Win(x") 1= pi(x") g (") pip(x")  for p e U™, (2.92)

cf. [KWO1, (4.14)] and [Of06, PecOSb.

Note that if H; < H; and h; < h; for neighboring subdomains £2; and £2;, then
we have also ¢; (x") < ¢ g (x™). The operator O diag mimics the action of M;' when
restricted to range(G ), and it will be better understood in the proof of Lemma 2.109
below, where we analyze FETI/BETI with O = Q giae. Note that if the coefficient is
globally constant, we may also choose Q = I, see Remark 2.111.

Remark 2.108. For Q = Q gig, let us investigate the structure of the matrix G'0G
that appears in the projections P and P . Consider the connectivity graph whose
nodes correspond to the subdomains £2; with an edge between two nodes whenever
the corresponding subdomains are neighboring, cf. Fig.2.8. Recall that G = B R
and that R : Z — ker S with

N
Z — anim(ker(Si)).

i=1

We can think of elements from Z as discrete functions on the nodes of the
connectivity graph which satisfy homogeneous boundary conditions at the nodes
which correspond to the non-floating subdomains, cf. Fig. 2.8. Using the definition
of the jump operator B, we find that

(GTOGy. 2 = Y (i-yp)(min@ ) D ay(6M)@—z)  Vrzez
i>j Xher,-?
I #0

=:Bij

In the all-floating formulation, we have to add
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ZS:)’:' (Oli Z qi (xh)) Zi .

i=1 xhedlnrp

=:Bip
This bilinear form corresponds to the (sparse) matrix induced by the graph Laplacian
(see e.g., [Fie73]) where we assign each edge between node i and j in ¢ the
weight B;;. As the subsequent analysis will show, the operator (GTQOG)™!, as
such solving a discrete Laplace problem on the connectivity graph, acts as a coarse
problem for the FETI/BETI algorithm. In three dimensions, under Assumption 2.53,

each subdomain face .%; contains @' ((H; / h;)*) nodes and each subdomain edge &;
contains &(H; / h;) nodes. Hence,

min(e;, o;) (1 4+ log(H;/h;)) H; if £2; and §2; share a subdomain face,
Bij~ 4 min(e;, o) H; if §£2; and £2; share only a subd. edge,
min(e;, o) h; if £2; and §2; share only a subd. vertex.

In two dimensions,

min(e;, ;) (1 + log(H;/h;)) if £2; and £2; share a subdomain edge,
min(e;, o) if £2; and £2; share only a subd. vertex.

IBij ~

We observe that vertex connections in three dimensions are weighted weaker than
others, and that connections between subdomains with large coefficients are in
general weighted stronger than others.

The following lemma is essentially [KWO01, Lemma 4.10] (there stated for the
classical FETI method).
Lemma 2.109. Let Assumptions 2.53-2.56 and 2.99-2.102 hold. Then, for Q =
Qdiagy
Ppauls < max(l+log(Hi/hi)’ Wy Ywe Wh.
i=

Proof. Note that z,, is constant on each subdomain and vanishes on the non-floating
subdomains. We denote the components by z;. Using inequality (2.88) from the
proof of Lemma 2.104 we obtain

1Ppawls <) Y min(er.ap)| " (0, @i = 2)) 310, + D il Og,3) 31 g,

G CI' jeENg, 4 CI'p

: ohy 12 2 ohy 12 2
<S>0 ) min(ei.e))| O, L1 i — 21> + > il O, |51 (g 2 1%
G CI' jeNg, 4 CI'p

By the subdomain facet estimate from Lemma 2.76, Definition 2.107, and the fact
that a subdomain facet contains & ((H;/h;)?~") nodes, we can conclude that



140 2 One-Level FETI/BETI Methods

A0 10, S (L4 Tog(Hi/h) HIT2 S qi(xh).

xhez;

For the remaining globs, we can conclude from Lemma 2.74, Definition 2.107, and
the fact that a subdomain edge contains &'(H; / h;) nodes, we can conclude that

h 2 d—2 h
|05 By S HET2 S Y e
xhe;

H Y qi(x") ifd =3

xhe&;

2

h 2
|jfi 95} |H1(Ql)

A

Since ¢; (x") < q; (x") for x* € &, and since
(Bz)ij(x") = |z —zl, (Bzw)in(x") = z,
we obtain (comparing with Definition 2.107) that
1Ppzuls S 1B 2wllpgy = 1B WGy (2.93)

where in the last step we have used Lemma 2.44. The particular choice of Qgiag
actually stems from the estimates above.

In order to bound || B w||2Qdmg in terms of |w|%, we sort the contributions with
respect to the globs. Using the definition of Qgiae and the quasi-uniformity of
T"(£2;) we obtain

2
”BW”Qdiag
: h h hy |2 h hy (2
< Y Y min(ie)) Y giMwi ") —wi P4 D e Y g wi ()]
%CFjEng X/legl./l ¢, CI'p xhegi/l

S Y w Y eGP

GCIrUrp  yhegh

—d,l-
S Y @idugn b Il (2.94)
@, CIr'Urp

where % is as in Definition 2.50 and 4, denotes the constant value of g; on the
nodes on ¢;. Note that in the classical formulation, the globs on I' can be left out.
Combining this estimate with the discrete trace inequality from Lemma 2.69 yields

1Bwldy, S D aira(He h) (176w Bpg, + B2 16 Wi 0, ).
& CI'Ulp
(2.95)
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where
(H;, hi) = p Ud—dgi(Hi) g2tde—d
Iy, i 1) -— qth i _hi . .

1

In the all-floating formulation, we obtain the desired bound
s
1Powls S 1B wlig,,, < max(l+log(H;/h))* Wi Ywe W
(by Poincaré’s inequality from Lemma 2.61) if
rg,(Hi, hi) < (1+log(H:/hi))*. (2.96)

For quasi-uniform fine and coarse triangulations, condition (2.96) is even necessary.
A short computation reveals that (2.96) holds if and only if

d—1 d—1
(I +log() i < (6™ < (1 +log()* - ifx" e 7,
hi < qi(x") < (1+log(55) hi ifx" e &, d =3,

WS g S (L4 log(H) ™ {2 it x" = 7,

where we have included the lower bounds for ¢;(x") that we have used in the
beginning of the proof. In the classical formulation, we need to be able to apply a
discrete Poincaré inequality in each non-floating subdomain (cf. Assumption 2.56)
at the cost of a factor of (1 + log(H;/h;)). Hence, this factor must be taken away
from the upper bounds above unless all non-floating subdomains have a subdomain
face in common with the Dirichlet boundary. In any case, we see that the respective
bounds for g; (x") hold for the choice made in Definition 2.107, which concludes
the proof. O

Theorem 2.110. Let Assumptions 2.53-2.56 and 2.99-2.102 hold. Then, for the
classical and the all-floating FETI/BETI method with the scaled Dirichlet precon-
ditioner M," and with the choice Q = Qing (cf. Definition 2.107),

kK(PMp P Fg ) < C méf(l + log(H;/ hi))?.
na

where the constant C depends only on the uniform constants from the mentioned
assumptions.

Proof. The estimate follows immediately by combining Lemmas 2.45,2.103,2.104,
and 2.109. O

Opposed to Theorem 2.106, the statement of Theorem 2.110 does not generalize
to the case of non quasi-uniform meshes, as we heavily used the quasi-uniformity
in the proof of Lemma 2.109.
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Remark 2.111. Let us suppose that the coefficients are locally quasi-monotone, i.e.,
for each glob ¢;; we can find an admissible face path Fy, x,, T, kss - - o> Fhp—1.kim
with

min(e;, o) = o, < o, < ... <oy, = max(o;, o).

m

In that situation, the weights g;; (x") for subdomain vertices (and edges if d =
3) on the interface I" can be decreased arbitrarily, see also the remarks after
Theorems 4.11 and 5.7 in [KWO1]. As a consequence, if the coefficient is globally
constant (or at least ; <~ «; for all neighboring subdomains £2;, §2;), and if the
subdomain decomposition and the global mesh are quasi-uniform (h; < h and
H; < H), then the matrix Q can be chosen as the identity matrix or any multiple
thereof.

2.6.4 Alternative Scalings

In this short section we discuss other scalings than the coefficient scaling, which is
assumed in the theory above (cf. Assumption 2.100). Note a further scalings (not
discussed below) based on eigensolves can be found in [DW12b].

2.6.4.1 Multiplicity Scaling

If we use the multiplicity scaling (which also effects Q giag, cf. Definition 2.107), the
statements of Theorems 2.106 and 2.110 remain true under the stated assumptions,
but the condition number bounds have to be multiplied by a factor of

s (071

1
max max —,
i=1 jeN o;

i.e., the maximal jump between subdomains, where .4; contains the indices of the
subdomains neighboring §2;, cf. Definition 2.12, This is seen from the proofs of
Lemmas 2.104 and 2.109 by using that 8; (x") < 1 as well as the simple fact that

s o;
o; < ( max max —) a;j
i=1 ke O

whenever j € ;.

2.6.4.2 On the Stiffness Scaling and on Effects of Varying Coefficients

If one has no a priori knowledge on the coefficient o;, a common choice in FETI is
the stiffness scaling, where p; (x”) is set to the diagonal entry of the stiffness matrix
K; corresponding to the node x”. Assuming an isotropic coefficient &7 = o, the
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stiffness scaling is given by

p,-(xh) = / ot|Vq0i’xh|2dx,

wi.xh

where w; 1 is the union of all elements 7 from 7 "(£2;) such that x" € 7. Similar
choices are the local average

pi(x") = ; / adx
meaSw, 1 Jo,
and the local maximum
pi(x") = ess.supa(x).
XEC()I-.X//,

If oo, = a; is constant, the latter two choices reproduce the coefficient scaling
pi(x") = @;. For the stiffness scaling, p; (x") = h¢72q; (if 7"(£2;) is quasi-
uniform) which may look promising. However, in the presence of rough (or
ragged) interfaces as they appear in METIS partitions, the stiffness scaling leads
to extremely poor convergence of FETI type methods as it has been demonstrated in
[KRWOS, Sect. 5] (the term p-scaling therein corresponds to the coefficient scaling
in this book).

In the analysis, we used that (for the coefficient scaling) 8; is constant at the
nodes of each glob, which is not anymore true for the stiffness scaling. In the case
of rough interfaces, the function p; € vh (02;) becomes oscillatory, i.e.,

/Oi(xh)_pi(yh) > |xh —yh|
pi (x™) H,

Typically, the weighted counting functions 8} have the same property, which is at
high probability the reason behind the poor convergence.

Even if the interfaces are smooth, the phenomenon of an oscillatory function
8; can occur when the coefficient .o/’ = «/ is mildly varying in £2;. By this we

mean that ess.sup, o,

element to element.
Summarizing, in case of rough interfaces or a mildly varying (isotropic) coeffi-

cient, provided that the subdomain meshes are quasi-uniform, a good choice is

% is relatively small, but the coefficient may change from

pi(x") = max k; or pi(x") = max k; i,
xhea !l xheo!

where k; .» denotes the diagonal entry of the stiffness matrix K; at node x". For
an analysis with mildly varying coefficients (but smooth interfaces) see Sect.3.2.
For a sound theory of FETI-DP methods for the case of rough interfaces in two
dimensions (using the coefficient scaling) see [KRWO0S].
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Fig. 2.9 Setup for the

experiments on the unit
square with a homogeneous 21
coefficient Ty

2.7 Numerical Results

In this section, we present some numerical results for one-level FETI/BETI methods
for a two-dimensional model problem with and without coefficient jumps. This
is mainly to give the reader an impression on how small the condition numbers
and the number of PCG iterations actually are. The main implementation was
done in C**. The FEM stiffness matrices and the coarse matrix were factorized
using PARDISO [PAROS, SG04, SG06]. For the boundary element method we have
used Olaf Steinbach’s Fortran package OSTBEM [Ste00]. The condition numbers
are estimated using the Lanczos method, see Remark 1.51. Mainly interested in
verifying the theoretical results of this chapter, we have not used any data-sparse
approximation of the boundary element matrices.

Note that computational results for FETI methods (including the case of linear
elasticity) can be found in [FR91, FR91, LP98, RFTM99, Rhe02]; for all-floating
BETI methods see [Of06, Of08].

Unit Square — Homogeneous Coefficient. We consider the unit square 2 =
(0, 1)2, subdivided into 64 equally-sized square-shaped subdomains, with homo-
geneous Dirichlet boundary conditions on the left side I'p, and homogeneous
Neumann boundary conditions on the rest of d§2. The source term f is chosen
to be zero except for the four shaded subdomains in Fig. 2.9, and the coefficient « is
set uniformly to one.

Tables 2.3 and 2.4 show the results for FETI and FETI/BETI, respectively.
There, the column entitled “Lagr. mult.” indicates number of Lagrange multipliers
(additional multipliers enforcing the Dirichlet boundary conditions in the all-
floating method are not counted). For simplicity, H denotes the height/width of the
subdomain. In the columns entitled “PCG” we give the number of PCG steps needed
to get a reduction of ¢ = 1078 in the residual, and the columns entitled “cond.”
show the estimated condition number using the Lanczos method. We see that the
condition numbers of the preconditioned systems behave as predicted by the theory.
From the first column in the two tables one can observe the reduction in the global
DOFs when using the boundary element method. In Table 2.5 we demonstrate the
scalability, i.e., the robustness with respect to the number of subdomains.
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Table 2.3 Unit square with homogeneous coefficient; classical one-level vs. all-floating FETI
method; 64 subdomains

Std. one-level

All-floating

Global DOFs Lagr. mult. Local DOFs H/h PCG Cond. PCG Cond.
289 406 9 2 9 1.67 8 1.40
1,089 630 25 4 11 2.20 10 1.88
4,225 1,078 81 8 13 2.97 12 2.43
16,641 1,974 289 16 16 3.92 14 3.15
66,049 3,766 1,089 32 18 5.05 16 4.05
263,169 7,350 4,225 64 21 6.33 18 5.12
1,050,625 14,518 16,641 128 23 7.77 19 6.36
4,198,403 28,854 66,049 256 24 9.38 21 7.76
16,785,409 57,526 263,169 512 25 11.15 23 9.33

Table 2.4 Unit square with homogeneous coefficient; classical one-level vs. all-floating
FETI/BETI method; 64 subdomains (60 BEM, 4 FEM)

FEM Ioc. BEM loc. Std. one-level All-floating

Global DOFs  Lagr. mult. DOFs DOFs H/h PCG Cond. PCG Cond.
229 406 9 8 2 9 1.65 9 1.64
549 630 25 16 4 10 1.91 9 1.67
1,285 1,078 81 32 8 13 2.58 11 2.08
3,141 1,974 289 64 16 15 3.44 13 2.72
8,389 3,766 1,089 128 32 18 4.48 16 3.54
25,029 7,350 4,225 256 64 20 5.68 18 4.54
82,885 14,518 16,641 512 128 23 7.03 20 5.71
296,901 28,854 66,049 1,024 256 24 8.55 22 7.05
1,118,149 57,526 263,169 2,048 512 25 10.24 23 8.55

Table 2.5 Unit square with homogeneous coefficient; classical vs. all-floating FETI method;
fixed ratio H/h = 32; fixed number 1,089 of local FEM DOFs, varying number of subdomains

Std. one-level

All-floating

Number of
subdomains Global DOFs PCG Cond. PCG Cond.
64 66,049 18 5.049 16 4.045
256 263,169 18 5.055 16 4.064
1,024 591,361 18 5.055 16 4.064
4,096 1,050,625 18 5.053 15 4.057

Unit Square — Heterogeneous Coefficient. In this example we consider the unit
square (0, 1)? with the same partitioning as in Fig. 2.9, but we choose the coefficient
« and the source f according to Fig.2.10, left. The Dirichlet boundary conditions

read

u(xl, XZ) = SXZ(l — SXZ)

for (x1, x2) € I'p = {(0, x2) : xo € (0, 1)}.



146 2 One-Level FETI/BETI Methods

Ooa=103

W o=10%
f =

Wo=1

Wo=10°

Fig. 2.10 Left: Setup of unit square with heterogeneous coefficient. Right: Visualization of the
solution u via the graph (xy, X2, u(x;, x»)); different colors indicate different subdomains

On the remainder of 052 we impose homogeneous Neumann boundary conditions.

Tables 2.6 and 2.7 show the number of PCG steps and the estimated condition
number for the classical one-level and all-floating FETI and FETI/BETI method,
respectively. In the second case, the BEM subdomains are exactly those where
f = 0. The numbers in the tables demonstrate the robustness with respect to the
heterogeneous coefficient, which would not be the case without the careful scalings
in Bp and Q. Figure 2.10, right displays the solution u to the problem. We see that
in the areas with large coefficients the solution is relatively flat.

2.8 Other PDEs and Other Discretization Spaces

The theory of the preceding sections carries over immediately from P! to Q'
elements, i.e., bilinear quadrilateral or trilinear hexahedral elements. In this section,
however, we give a brief overview (mostly in form of references) on FETI/BETI and
related methods for PDEs other than the potential equation, and for discretizations
other than piecewise linear FEM/BEM. For DD methods other than substructuring
methods, we refer to [Mat08, TWO05]. In Sect.2.8.1 we discuss the influence of
the discretization on the coupling (interconnecting), whereas Sect. 2.8.2 treats the
change of the PDE (possibly implying specific discretizations).

More developments than mentioned below are and will be documented in the
proceedings of the international conferences on domain decomposition methods,
see http://www.ddm.org/.

2.8.1 Other Discretizations Spaces for H'-Problems

Let £2 be the computational domain, and V' (£2) a space of functions on £2 related
to the problem, e.g., V = H l(.Q). First, we treat the case of a conforming finite
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Table 2.6 Unit square with heterogeneous coefficient; classical one-level vs. all-floating FETI,
64 subdomains

Std. one-level All-floating
Global DOFs Local DOFs H/h PCG Cond. PCG Cond.
289 9 2 10 2.23 8 1.54
1,089 25 4 11 2.69 11 2.12
4,225 81 8 13 3.18 13 2.90
16,641 289 16 15 3.84 15 3.84
66,049 1,089 32 17 4.91 17 491
263,169 4,255 64 19 6.10 19 6.10
1,050,625 16,641 128 21 7.42 22 7.43
4,198,401 66,049 256 23 8.91 24 8.88
16,785,409 263,169 512 26 10.60 25 10.47

Table 2.7 Unit square with heterogeneous coefficient; classical one-level vs. all-floating FETI/
BETI, 32 FEM, 32 BEM subdomains

Std. one-level ~ All-floating
Global DOFs  FEM loc. DOFs BEMloc. DOFs H/h PCG Cond. PCG Cond.

257 9 8 2 7 1.68 7 1.64

801 25 16 4 10 2.24 9 2.24
2,657 81 32 8 11 3.09 12 3.09
9,441 289 64 16 13 408 13 4.08
35,297 1,089 128 32 14 521 15 5.21
136,161 4,255 256 64 16 6.46 17 6.46
534,497 16,641 512 128 17 783 18 7.83
2,117,601 66,049 1,024 256 18 933 20 9.33
8,429,537 263,169 2,048 512 19 1096 21 10.96

element space V" (£2) C V that fulfills Assumption 2.112 below. Other types of
discretization spaces will be treated in Sects. 2.8.1.3-2.8.1.5.

Assumption 2.112. (i) The FE space V" (£2) is based on a triangulation .7 (£2)
of 2, i.e., to each mesh element 7 € 7" there is an associated space Vr of
shape functions and a set .47 C V;* of DOFs (nodal variables), cf. [BS02,
Definition 3.1.1] and [Cia87].

(ii)) Each DOF is associated to a (fine) vertex, edge, face, or element of the mesh.

(iii) The global space V" (£2) is composed of the local spaces V7, where corre-
sponding DOFs on the same entity (vertex, edge, face) are globally identified.

Assumption 2.112 holds for the case for high order H'-conforming spaces
(either of hierarchical nature as in Sect. 1.2.3.7, or for spectral elements; see
e.g., [BM97, KS99, Sch98b]). Note that Assumption 2.112 holds as well for
the H (curl)-conforming Nédélec edge elements, the H(div)-conforming Raviart-
Thomas (Nédélec face) elements of any order, see, e.g., [RT77, Néd80, NédS8o6,
Mon03, Zag06], and the mixed elements in [Sin08, PS11a, PS12a].
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With Assumption 2.112 being fulfilled, we can define the interface (or skeleton)
DOFs as those DOFs associated to (fine) vertices, edges, or faces lying on the
(geometrical) interface I" (or the skeleton [’s, respectively) and eliminate the
remaining (interior) DOFs. This yields a discrete skeleton formulation. Furthermore,
we can define the local restrictions to £2; or d£2;, which leads to the local spaces
W, and the (discontinuous) product space W. Reinstalling the original continuity
follows the finite element construction above. Let ¥; x and ¥, be two DOFs on
subdomain £2; and §2;, respectively, that are globally identified. Then the correct
jump condition simply reads

Vikwi) = ¥je(w;) = 0,

and all these conditions together define the jump operator B : W — U* = R,
If we represent B as a matrix B with respect to the nodal FE basis, then B is again
signed Boolean (see, e.g., [TKO1, TVO03]).

Corresponding boundary element spaces on the skeleton I's can be easily derived
by restricting V" (£2) to the skeleton. This restricted space is parameterized by the
DOFs associated to s, and the coupling procedure is identical to the above one.

The following two sections deal with specific H '-conforming discretizations.

2.8.1.1 H!'-Conforming Interface Concentrated FETI/BETI

The interface concentrated FETI method was introduced by Beuchler, Eibner,
and Langer [BELOS] as a solver for the scalar potential equation in H', see
also [LPOS8] for a generalization to interface concentrated FETI/BETI. The main
idea is to employ a boundary concentrated FEM (cf. [KMO03] and Sect. 1.2.3.8)
in each FEM subdomain, such that the polynomial degree equals one on each
subdomain boundary. See Fig.2.11 for an illustration. Obviously, the coupling is
the same as for the low-order FETI/BETI methods. Since it can be shown that the
corresponding FEM Schur complement in each subdomain is spectrally equivalent
to the Steklov-Poincaré operator (cf. [BELO8, Theorem 3.13]), provided that the
boundary mesh is quasi uniform, all the theoretical results of Sect. 2.6 carry over
immediately to the interface concentrated FETI/BETI. Numerical results can be
found in [BELOS8, LP08], and also in [PecO8b, Sect.2.3].

2.8.1.2 High Order H'-Conforming Spaces

There are two classes of high order elements. Spectral elements [BM97, KS99]
have uniform polynomial degree throughout the domain. The associated DOFs
are point evaluations at Gauss-Lobatto-Legendre points. Hierarchical high order
elements (see e.g. [Dem07, Zag06]) allow for variable polynomial degree, but the
DOFs are associated to vertices, edges, faces, or elements and not necessarily point
evaluations, but typically averages.
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Fig. 2.11 Example for an
interface concentrated mesh =
for a partition of the unit 2
square into four subdomains
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For spectral elements of degree k, it was shown that Neumann-Neumann and
FETI type methods (in two and three dimensions) lead to condition number bounds

of the form
Kk < C(1+1log(k))?,

cf. [TWO0S5, Sect.7.2] as well as [Pav97, Pav07, KPRO8]. However, in three dimen-
sions these bounds do not carry over to the hierarchical high order elements, even
if spanning the same polynomial space, see [TWO0S5, Sect. 7.5] (this is because the
coupling relies on the underlying DOFs, which are different for the two approaches).
Indeed, the convergence can slow down for the hierarchichal case. For numerical
studies of Neumann-Neumann and FETI methods see also [TV03, TV04, TVO06].

Remark 2.113. Instead of coupling directly the DOFs, one could also introduce a
suitable set of interpolation points and couple function values there. This is possible
for any basis of a high order H '-conforming FE space. In that case the structure of
B is more involved.

2.8.1.3 Mortar Discretizations

Mortar discretizations (see e.g. [BMP94]) are FEM or BEM on non-conforming
meshes. The coupling is done by integrating the jumps on the coupling interface
against test functions that act as Lagrange multipliers. Thus, mortar methods contain
already the needed interconnecting. A FETI like jump operator can be derived using
the mass matrices on the coupling interface. See [SK98, Ste01, KLO05, Kim07,
KDWO08, Kim08a, Kim08c, Kim08b, KT09] for FETI and balancing type methods
for such mortar discretizations. Moreover, see [Rou09] for a related method called
FETI-2LM.
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2.8.1.4 Discontinuous Galerkin Method

Discontinuous Galerkin methods (see e.g. [DE12, HWO08a, Riv08]) typically work
with spaces of discontinuous functions across elements. The coupling is performed
by suitable jump terms that are added to the bilinear form. Balancing type methods
for DG discretizations on conforming and non-conforming meshes have been
thoroughly investigated by Dryja, Galvis, and Sarkis [DGS07, DGS08, DGS11,
DGS12].

2.8.1.5 Isogeometric Analysis

For the discretizations in isogeometric analysis (cf, [HCB05, BBC*06, CHB09]),
Assumption 2.112 is not necessarily fulfilled. This is because for C*-elements, the
NURBS basis functions cannot be localized to individual elements, and thus it is
difficult to associate the DOFs to a geometric interface. See however [BSEH11]
for a localization by a change to the Bernstein basis. The recently introduced
IETI method, cf. [KPJT12], covers the case of C 0-continuity across subdomain
interfaces, which makes the coupling more natural. The case of C*-continuity with
k > 0 has been studied recently in [BCPS12], using the concept of fat interfaces.

2.8.2 FETI and Balancing Type Methods for General PDEs

This section consists mainly of an (incomplete) list of references for FETI and
balancing type methods for a variety of different PDEs. Note that many of the
references are on FETI-DP and BDDC methods, which will be dealt with later on
in Chap.5. In the following, we briefly touch advection-diffusion problems, and
problems in continuum mechanics, acoustics, and electromagnetics.

2.8.2.1 Dynamic Problems and Advection-Diffusion Problems
In this section, we consider the modified PDE
—diveVu) + B-Vu+yu = f, (2.97)

The Case 8 = 0and y > 0. Assume that § = 0 and that y(x) > yo > O a.e. in £2.
This kind of problem occurs particularly in implicit time stepping for the dynamic
problem

%—div(aVu) = f
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In each time step, one has to solve a problem of the form (2.97) with § = 0 and
y = 1/At, where At is the time step.

Let W; and W be the spaces from either the classical or the all-floating
formulation and let S; : W; — W,* denote the corresponding (discrete) Steklov-
Poincaré operators. On a FEM subdomain, S; corresponds to the Schur complement
of the matrix

K; + M;

where K; is the stiffness matrix corresponding to | o @Vu-Vvdx and M; the mass
matrix corresponding to fQ y uvdx. For a BEM subdomain, the operator S; is
given analogously to Sect. 1.3 but the fundamental solution in the boundary integral
operators has to modified accordingly (see, e.g., [SS11]). Using S := diag(S;)i_,,
one derives the FETI/BETI saddle point formulation analogously to Sect.2.2.1.1:
find (u, A) € W x U such that

SBTI[u]l _[g

B o |lA] Lo
see also [FCM95, FM98, TosO1]. For convenience we split the local Steklov-
Poincaré operators into the part corresponding to the stationary term —div(aVu)

and a remainder,
S; = SK4+sM.

Observe that, even if S iK might have a non-trivial kernel, the operator S; is always
SPD, and so
ker(S;) = {0}.

That is, according to Definition 2.15, all subdomains are non-floating. Therefore, no
projection is needed to eliminate the unknown u from the saddle point problem, and
the resulting dual system simply takes the form

findAeU: BS'B'"A = BS g,
F
=: =:d

where S~ = diag(S;")j_,. The solution A is unique up to ker(B ). Hence, let
U = UjergT) and U* = range(B), then we can seek (formally) A € U.
Due to the lack of the projection, there is no coarse problem, and so using the
(scaled) Dirichlet preconditioner only results in a method that is not scalable, i.e., it
deteriorates when the number s of subdomains grows.

We now reinstall a coarse problem using an outer projection. This technique is
also called deflation (cf. [VSMWO1, KR12]) and was first used for a FETI method
by Farhat, Chen, and Mandel [FCM95] (see also [FM98]) in the context of dynamic
elasticity. Let R; span the kernel of SX and define R = [R;]{_, and G := QBR,
where Q : U* — U is a suitable SPD operator. The outer projector P : U—Uis
then given by

P:=1-GG"FG)'GTF,
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Algorithm 8: FETI/BETT algorithm for a dynamic problem based on PCG
A9 =GGTFG)'GTd
r® =g - F0
k=0
repeat
20 = Mt r®
s = p 0
p® =50 4 g\ pk1 where f_1 =0, fri= %

fork >0 © o
(k) — k) (k) — (. sY)
AR =A%) 4oy p where o = PN
Pt — ) _ g B p®)

k=k+1

until stopping criterion fulfilled for r®

cf. [FM9S8, Sect.5] (where Q@ = [I) and [TosO1, Sect. 3]. To assemble the (sparse)
matrix corresponding to (G F G), one has to apply the operator to the kernel
vectors. To do this efficiently in a parallel regime, one needs similar techniques
as described in Remark 2.36. Since range(P) and range(/ — P) are F-orthogonal,
we can split A = A9 + A where Ay € range(/ — P) and A € range(P). Due to the
F-orthogonality,

‘o = G(GTFG)'G4d.

To solve for FAV, we apply a PCG to the (SPD) equation
PTFX = P'd
with initial value 0 and with the preconditioner P M;}, where
My = BpSB), S = diag(Si)i_,.

As for the algorithm in Sect. 2.3, one can rewrite this PCG algorithm as an iteration
for the original variable A, see Algorithm 8. Thanks to the choice of the initial value,
one needs to perform only one projection step (cf. [FM98] and [Tos01, Lemma 3.1]).

Including Advection. A generalization of the above algorithm to the non-
symmetric problem (2.97) with B # 0 (but further assumptions on B and y)
can be found in [TosO1], where the PCG is replaced by a preconditioned GMRes
method. For a BDDC method we refer to [TLOS].

The Case f§ = 0, y > 0. Assume that on some subdomains y = 0 and on the
remaining ones y > 0. This means that some of the Steklov-Poincaré operators
already have kernels, and some do not. A method called generalized FETI has been
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proposed by Farhat and Mandel [FM97], see also [Mat08, Sect. 4.3]. It introduces a
projection that includes both the existing kernels and the artificial ones.

Unification by Dual-Primal Methods. We note that using a dual-primal approach
(see Chap. 5), no case distinction is necessary, at least for the symmetric problems,
cf. Sect.5.3.5.1.

Acceleration for Dynamic Problems. In [FCR94] it has been proposed to accel-
erate the iterative solves by recycling the Krylov space of previous time steps. This
technique can be used for FETI, Neumann-Neumann, FETI-DP, and BDDC.

2.8.2.2 Continuum Mechanics

Linear Elasticity. We consider the primal formulation of linear elasticity in
variational form, for simplicity with homogeneous Dirichlet boundary conditions:
find the displacementu € H'(£2)?, u|r, = 0 such that

/Ce(u):e(v)dx = / f-vdx+/ ty-vds VveHl(.Q)d,vm) =0,
2 2 I'y

where e(v) = %(Vv + (Vv)T) is the linearized strain tensor and C the (linear)
material tensor due to Hooke’s law, such that o () = C &(u) is the stress tensor. It
depends on the Young modulus E and the Poisson ratio v in the usual way, see e.g.
[BraO1, SDHO04] or [TWO05, Sect. A.6.2]. Here, we assume that the Poisson ratio v
is bounded away from the incompressible limit 1/2.

The classical FETI method was originally introduced for the above problem, cf.
[FRO1, FR94]. When using the continuous piecewise linear finite elements for the
components of the displacement u, the derivation of FETT is in large parts analogous
to the presentation in Sect. 2.2. The crucial difference lies in the local kernels which
can have dimension of O up to 6 in three dimensions. Here lies an advantage of all-
floating (total) FETI (cf. [DHKO06]), where the local kernel is always the space of
rigid body modes,

{a+b|:x2 }:aeRz,beR} ford =2,

RAPB = —X]

{a+bxx:a, beR3} ford = 3.

For an analysis of FETI for linear elasticity see [KWO00] and [TWO05, Sect. 8.5].
Here, the key ingredient is a spectral equivalence between the stiffness matrix of
linear elasticity and the stiffness matrix of the vector Laplacian, which holds at least
for vectors orthogonal to the kernel of the elasticity matrix, cf. [KWO00, Lemma 5].
Using that equivalence, the FETI analysis can in large parts be reduced to the scalar
elliptic case of Sect. 2.6.
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For the FETI-DP method (where the local kernels do not have to be known
explicitly) we refer to [FLL101, KR06, KW06, KR0O7b, KR10]. For the BETI
method see [Of06, Of08, OS09]. For FETI(-DP) and BDDC for mortar discretiza-
tions of linear elasticity see [Kim0O8a, Kim08c, Kim08b]. Finally, for a novel
approach using the Smith factorization, see [CDNQ12].

Plate and Shell Problems. The FETI method was generalized for plate and
shell problems by Farhat, Mandel, and Tezaur, see [MTF99, FM98]. Without a
special treatment, however, the convergence is not satisfying, and a further outer
projection of the Lagrange multipliers is necessary, see [FM98, FCMR98]. Due to
the introduction of this second level, the resulting method is now called FETI-2.
Note also that this method was important for the development of the dual-primal
methods (cf. Chap.5).

FETI-DP and BDDC methods for plate problems can be found in [FLL01,
BCLP10]. For an analysis see also [Bre0O3b].

Almost Incompressible Elasticity. In the almost incompressible case of elasticity,
the Poisson ratio is close to 1/2, which needs special treatment. Here we refer to
[KRWO07, PWZ10, GKR12], see also the related papers [DW09, DW10].

Nonlinear Elasticity and Contact Problems. There are three major sources of
nonlinearities in solid mechanics:

(i) Geometric nonlinearities (due to large deformations),
(ii) Nonlinear material laws (other than Hooke’s linear law),
(iii) Nonlinearities due to contact (introducing active or inactive constraints).

FETI type methods for contact problems can, e.g., be found in [BDS08, DHK 05,
DKV ™10, HKD04, JKR12]. For FETI type methods for nonlinear material laws in
biomechanics, we refer to [BKRS08, BBKT09, KNRV11].

The Stokes Problem. For FETI-DP and BDDC for Stokes we refer to [PW02,
Li05, LW06a, KLP10a, KLP10b, KL10, SSB* 11], see also [TWO05, Sect.9.4.2].
For a novel approach using the Smith factorization, see [DNR08, DNR09].

Porous Media Flow. For BDDC methods on mixed and hybrid discretizations of

porous media flow problems, also called Darcy’s problem (cf. [TWOS5, Sect. A.7.2]),

we refer to [Tu05, Tu07a, Tull, Soul2].

2.8.2.3 Acoustic Scattering

The acoustic scattering problem is governed by the (scalar) Helmholtz equation
—Au—FKku = f,

where k is the wave number. Besides Dirichlet and Neumann conditions, one
often considers non-reflecting boundary conditions modeling waves that are only
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outgoing. Besides the “standard” difficulties of this indefinite problem (including a
proper discretization), there are more difficulties when considering non-overlapping
domain decomposition: local Dirichlet and Neumann problems can be unsolv-
able, when k? hits an eigenvalue of the corresponding local Helmholtz problem.
A remedy was proposed by Farhat, Macedo, and Tezaur [FMT99], see also
[FMLOOa]. The local problems are consistently supplemented with Robin boundary
conditions, which guarantee the solvability of the local problems. This method is
now called FETI-H. The dual-primal generalization, FETT-DPH, was introduced
later in [FLLAOS5, FATLOS]. The generalization to BEM discretizations (“BETI-H”)
was investigated by Steinbach and Windisch, see [Win10, SW1la, SW11b]. For a
related method called FETI-2LM method see [FML*T00b].

2.8.2.4 Electromagnetic Problems
Eddy current problems are governed by the equation
curl(ox curlu) + fu = f,

with o, >0, where u is a vector field in H(curl), usually discretized by
Nédélec edge elements. Neumann-Neumann and FETT type methods have been first
investigated by Toselli and coworkers [Tos99, Tos00, RT01, TKO01, Tos06]. The
results were further refined by Dohrmann and Widlund [DW12a, DW12b].

In electromagnetic scattering problems, the coefficient 8 above is negative. For
a BETI approach on such kind of problems we refer to [Win10, SW12].
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