
Chapter 2
One-Level FETI/BETI Methods

This chapter deals with tearing and interconnecting methods based on the finite
element method (FEM) and the boundary element method (BEM). Here we allow a
mixture of FEM and BEM within a single discretization of a PDE: the computational
domain is partitioned (“torn”) into several non-overlapping subdomains, and on
each individual subdomain one may choose FEM or BEM as the local discretization.
The coupling (“interconnecting”) of these local discretizations is maintained by
Lagrange multipliers. Additionally, the tearing and interconnecting framework is
used to construct fast solvers for the resulting global system of equations.

The term “one-level” in the title of this chapter refers to a special treatment
of the so-called floating subdomains that do not touch the Dirichlet boundary. An
alternative treatment is used in the dual-primal methods, see Chap. 5.

There are two subclasses of one-level methods: the classical formulation, and the
total or all-floating formulation. The classical finite element tearing and intercon-
necting (FETI) method was proposed by Farhat and Roux [FR91, FR92, FR94]
as a solver for large-scale finite element systems. Note that some basic ideas
can already be found in an earlier work by Glowinsky and Wheeler [GW88] on
certain mixed methods. The FETI method was enhanced with the so-called Dirichlet
preconditioner by Farhat, Mandel, and Roux [FMR94]. The latter method was first
analyzed by Mandel and Tezaur [MT96], who showed that the condition number
grows at most as C .1 C log.H=h//3 where H is the subdomain size and h the
element size. See also [Tez98, Bre02, Bre03a] for further analyses. Klawonn and
Widlund [KW01] proposed new preconditioners including an earlier algorithm by
Rixen and Farhat [RF98a, RF99] and including ideas from balancing Neumann-
Neumann methods (see Sect. 2.3). They also generalized the theory in several
different respects (e.g., the case of three-dimensions and so-called fully redundant
Lagrange multipliers) and could show the improved boundC .1C log.H=h//2. The
boundary element tearing and interconnecting (BETI) and the coupled FETI/BETI
methods were proposed and analyzed by Langer and Steinbach [LS03, LS05].

The total FETI method and the all-floating BETI method were introduced
independently by Dostál, Horák, and Kučera [DHK06] and Of [Of06, Of08],

C. Pechstein, Finite and Boundary Element Tearing and Interconnecting Solvers
for Multiscale Problems, Lecture Notes in Computational Science and Engineering 90,
DOI 10.1007/978-3-642-23588-7 2, © Springer-Verlag Berlin Heidelberg 2013

63



64 2 One-Level FETI/BETI Methods

respectively (see also [OS09]), and the corresponding preconditioner was analyzed
in [Pec08b]. Note that these methods have been successfully generalized to mechan-
ical contact problems, see e.g. [BDS08, DKVC10].

The remainder of this chapter is organized as follows. In Sect. 2.1 we work
out a (discrete) skeleton formulation using the (approximate) Steklov-Poincaré
operators from Chap. 1. Section 2.2 describes the classical FETI/BETI and the all-
floating (total) FETI/BETI method in detail and discusses implementation issues.
Section 2.3 briefly introduces the related balancing Neumann-Neumann method.
The analysis of one-level FETI/BETI is performed in two steps. In Sect. 2.4 we
analyze the unpreconditioned method (which turns out to be sub-optimal) and we
begin to analyze the so-called scaled Dirichlet preconditioner on an abstract level.
After providing a set of technical tools (Sect. 2.5) we will conclude the analysis in
Sect. 2.6. Finally, we provide some numerical results in Sect. 2.7, and we discuss
generalizations to other equations and/or discretization spaces in Sect. 2.8.

2.1 Skeleton Formulations

FETI and BETI are iterative substructuring methods based on a non-overlapping
decomposition of the computational domain ˝ . A good starting point for these
methods, especially for BETI, is a discrete skeleton formulation, which is derived
from a continuous one.

2.1.1 Continuous Skeleton Formulation

Let ˝�R
d (d D 2 or 3) be a bounded Lipschitz domain whose boundary @˝

consists of a Dirichlet boundary �D D�D with positive surface measure and a
Neumann boundary �N D @˝ n�D . The outward unit normal vector to @˝ is
denoted by n. We consider the weak form of the potential equation (1.21): find
u 2 H1.˝/, uj�D D gD such that

Z
˝

A ru � rv dx
„ ƒ‚ …

DWa.u; v/

D
Z
˝

f˝ v dx C
Z
�N

gN v ds

„ ƒ‚ …
DW hf; vi

8v 2 H1
D.˝/; (2.1)

whereH1
D.˝/ WD fv 2 H1.˝/ W vj�D D 0g and

f˝ 2 L2.˝/; gN 2 L2.�N /; gD 2 H1=2.�D/ (2.2)

are given. We assume that the coefficient A fulfills Condition (1.22) from Lemma
1.39 (p. 20), such that we have unique solvability.
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Table 2.1 Geometric sets
and quantities associated to
the subdomain decomposition Hi WD diam.˝i / Subdomain diameter

�ij WD .@˝i \ @˝j / n �D Subdomain interface

� WD S
i¤j �ij Interface

�S WD S
i @˝i Skeleton

Let f˝igsiD1 be a non-overlapping partition of˝ into open Lipschitz domains˝i

(called subdomains or substructures) such that

˝ D
s[
iD1

˝i ; ˝i \˝j D ; for i ¤ j: (2.3)

Furthermore, we introduce a couple of geometric quantities summarized in Table 2.1
(recall that �D is closed!).

Thanks to the assumptions on f˝ and gN , we have the splitting property

a.u; v/ D
sX
iD1

Z
˝i

A ru � rv dx

„ ƒ‚ …
DW ai .uj˝i ; vj˝i /

; hf; vi D
sX
iD1

� Z
˝i

f˝ v dx C
Z
@˝i\�N

gN v ds
�

„ ƒ‚ …
DW hfi ; vj˝i i

(2.4)

with ai W H1.˝i / �H1.˝i / ! R and fi 2 H1.˝i/
�.

Remark 2.1. We can also allow for a general functional f 2H1.˝/� (not necessar-
ily of the form (2.1)), provided that we have a splitting into subdomain functionals
fi 2 H1.˝i/

� as in (2.4).

For each subdomain ˝i , let Si W H1=2.@˝i / ! H�1=2.@˝i / denote the Steklov-
Poincaré operator corresponding to the bilinear form ai .�; �/ and Ni W H1.˝i /

� !
H�1=2.@˝i / the corresponding Newton potential, see Definition 1.41. Furthermore,
we define the skeletal spaces

H1=2.�S/ WD fv 2 L2.�S/ W 9 Qv 2 H1.˝/ W v D Qvj�S g; (2.5)

H
1=2
D .�S/ WD fv 2 H1=2.�S/ W vj�D D 0g: (2.6)

Lemma 2.2. The variational formulation (2.1) is equivalent to finding u 2 H1.˝/

with uj�D D gD such that

sX
iD1

hSi uj@˝i ; vj@˝i i D
sX
iD1

hNifi ; vj@˝i i 8v 2 H1=2
D .�S/;

ai .uj˝i ; v0/ D hfi ; v0i˝i 8v0 2 H1
0 .˝i / 8i D 1; : : : ; s:
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Proof. The equations in the second line follow immediately from (2.1). With these
local equations fulfilled, Lemma 1.42(ii) implies that

ai .uj˝i ; vj˝i /� hfi ; vj˝i i D hSi uj@˝i ; vj@˝i i � hNifi ; vj@˝i i 8v 2 H1
D.˝/:

This proves the equivalence. ut
The system in Lemma 2.2 can be seen as an algorithm:

1. Determine uS 2 H1=2.�S/ with uS j�D D gD such that

sX
iD1

hSi uS j@˝i ; vj@˝i i D
sX
iD1

hNifi ; vj@˝i i 8v 2 H1=2
D .�S/: (2.7)

2. Determine the local functions ui D uj˝i as the solution of the variational
problems, find ui 2 H1.˝i/ with ui j@˝i D uS j@˝i such that

ai .ui ; v0/ D hfi ; v0i˝i 8v0 2 H1
0 .˝i /: (2.8)

Problem (2.7) is called skeletal variational formulation. Under the assumptions of
Lemma 1.39, it is straightforward to show (with Theorem 1.1) that Problem (2.7) is
well-posed. Should we only be interested in the trace of the solution u on �S , we
can stop after step 1.

Sometimes, the following homogeneous version of (2.7) is convenient. Find Qu 2
H
1=2
D .�S/ such that

sX
iD1

hSi Quj@˝i ; vj@˝i i D
sX
iD1

hNifi � Si QgDj@˝i ; vj@˝i i 8v 2 H1=2
D .�S/; (2.9)

where QgD 2 H1=2.�S/ fulfills QgDj�D D gD (see Lemma 1.21). Then u D QgD C Qu
solves Problem (2.7).

2.1.2 Discrete Skeleton Formulations

Discrete skeleton formulations are obtained by applying a Galerkin method to (2.7)
or (2.9).

Step 1. We project the equation to a finite-dimensional space. To this end, we
consider a shape regular triangulation T h.�S/ of the skeleton �S into line
segments (if d D 2) or triangles (if d D 3). We require that the subdomain
boundaries @˝i are unions of elements from T h.�S/.
The H1=2.�S/-conforming skeletal finite element space is defined as

V h.�S/ WD fv 2 C .�S/ W vj� 2 P1 8� 2 T h.�S/g: (2.10)
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BEM

BEM

FEM

FEM

Fig. 2.1 Example of a
skeleton mesh for a
decomposition into four
subdomains, extended to
local meshes in two of the
subdomains(� skeleton nodes,
ı interior FE nodes)

For simplicity, we assume that the Dirichlet data gD is piecewise linear too.1

Hence, there is a unique function QgD 2 V h.�S/ with QgDj�D D gD which
vanishes on all nodes except those on �D .

Step 2. We use an approximate bilinear form and right hand side. Let IBEM �
f1; : : : ; sg be an index set and assume that

Aj˝i D ˛i I; 8i 2 IBEM;

with constants ˛i > 0. In each subdomain, the restriction of T h.�S/ to @˝i is
a triangulation of @˝i , simply denoted by T h.@˝i /. For i 62 IBEM, we extend
T h.@˝i / to a shape regular triangulation T h.˝i/ of ˝i . For an example see
Fig. 2.1. We now replace the local Steklov-Poincaré operators Si and Newton
potentials Ni by the FEM- and BEM-approximations from Sects. 1.2.6 and
1.3.8.1. With IFEM WD f1; : : : ; sg n IBEM, we set

Si;h WD
�
Si;BEM if i 2 IBEM

Si;FEM if i 2 IFEM

�
; Ni;h WD

�
Ni;BEM if i 2 IBEM

Ni;FEM if i 2 IFEM

�
:

To ensure the invertibility of the discretized single layer potential operators
occurring in Si;BEM, we assume that in two dimensions, diam.˝i/ < 1 for all
i 2 IBEM, cf. Assumption 1.72, p. 46. A sufficient and practicable condition for
this is of course diam.˝/ < 1, which can be achieved by a simple scaling of the
coordinates.

The resulting discrete skeleton variational problem reads: find uh 2 V h.�S/ with
uhj�D D gD such that

sX
iD1

hSi;huhj@˝i ; vhj@˝i i D
sX
iD1

hNi;hfi ; vhj@˝i i 8vh 2 V h
D.�S/; (2.11)

1Otherwise, we can use an interpolation (if the data is continuous) or an L2-orthogonal projection
of the Dirichlet data to V h.�D/.
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where

V h
D.�S/ WD V h.�S/\H

1=2
D .�S/: (2.12)

Since the above bilinear form is symmetric, Lemma 1.3 implies

uh D argmin
vh2V h.�S /
vhj�D

DgD

sX
iD1

�
1
2
hSi;hvhj@˝i ; vhj@˝i i � hNi;hfi ; vhj@˝i i

�
: (2.13)

The homogeneous version reads: find Quh 2 V h
D.�S/ such that

sX
iD1

hSi;h Quhj@˝i ; vhj@˝i i D
sX
iD1

hNi;hfi � Si;h QgDj@˝i ; vhj@˝i i 8vh 2 V h
D.�S/:

(2.14)

Then uh D QgD C Quh solves (2.11). The minimization problem equivalent to (2.14)
reads

Quh D argmin
vh2V hD.�S /

sX
iD1

�
1
2
hSi;hvhj@˝i ; vhj@˝i i � hNi;hfi � Si;h QgDj@˝i ; vhj@˝i i

�
:

(2.15)

Remark 2.3. For a pure FE formulation (IFEM D f1; : : : ; sg), system (2.11) is the
Schur complement system (cf. Sect. 1.2.6) of the global FE system

find uFE
h 2 V h.˝/; uFE

hj�D D gD W a.uFE
h ; vh/ D hf; vhi 8vh 2 V h.˝/; vhj�D D 0;

and uh D uFE
hj�S .

Remark 2.4. For the case that both FEM and BEM are included, the present form
of the skeleton problem is also known as the symmetric coupling of FEM and
BEM [Cos87]. For the advantages of this coupling and for other types of couplings
see e.g. [ZKB77, ZKB79, BJ79, BJN78, JN80, CS90, Lan94, HHKL97, Hip02,
KS02, Ste03b, Ste11]. See also the related works [CKL98, HSW00, HW91] on pure
boundary element domain decomposition.

Remark 2.5. Note that on a FEM subdomain˝i , the Schur complement matrix may
be defined differently by eliminating non-coupling DOFs on the Neumann boundary
together with the interior DOFs, cf. [TW05, Chap. 4]. The associated operator then
maps from V h.@˝i \ .� [ �D// to its dual. Correspondingly, one can define a
modified Steklov-Poincaré operator Si W H1=2.@˝i n �N / ! H

�1=2
00 .@˝i n �N /,

and show the analogous statements of Sect. 1.2.6 for the two modified operators.
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This approach is very natural in implementations, since one only needs to know
whether a DOF is a coupling one (or a Dirichlet DOF) rather than if it is on the
subdomain boundary. On the contrary, for BEM subdomains this approach is not
natural, since all DOFs in V h.@˝i / are already on the subdomain boundary. Hence,
for a unified presentation, we have chosen the separation into “true” boundary DOFs
and interior DOFs for all subdomains. However, generalizations of the statements
below to the modified operators can be proved without major effort.

2.1.3 Error Analysis of the Discrete Skeleton Formulation

The discrete skeleton formulation (2.14) introduces variational crimes when com-
pared to (2.9). In this short section, we provide an a priori error analysis for the
simplified case that

gD D 0 and fi D 0 8i 2 IBEM:

In this case, the solution u of (2.1) lies in the space

VS;D WD ˚
v 2 H1

D.˝/ W 8i 2 IBEM W vj˝i D Hi .vj@˝i /
�
;

where Hi denotes the harmonic extension from H1=2.@˝i / ! H1.˝i/. From the
relation

ai .vj˝i ; wj˝i / D hSivj@˝i ; wj@˝i i; 8v; w 2 VS;D; i 2 IBEM;

it is straightforward to show that (2.9) is then equivalent to finding u 2 VS;D such
that

X
i2IFEM

ai .uj˝i ; vj˝i /C
X

i2IBEM

hSi uj@˝i ; vj@˝i i D
X

i2IFEM

hfi ; vj˝i i 8v 2 VS;D :

(2.16)

We now define the space

V h
S;D WD ˚

v 2 VS;D W 8i 2 IBEM W vj@˝i 2 V h.@˝i /; 8i 2 IFEM W vj˝i 2 V h.˝i /
�
:

The discrete problem (2.14) is equivalent to finding uh 2 V h
S;D such that

X
i2IFEM

ai .uhj˝i ; vhj˝i /C
X

i2IBEM

hSi;h uhj@˝i ; vhj@˝i i D
X

i2IFEM

hfi ; vhj˝i i 8vh 2V h
S;D :

(2.17)

Comparing (2.16) and (2.17), we see that the variational crime is located in the BEM
subdomains only, as we replace Si by Si;h for i 2 IBEM (for the case IBEM D ;
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see also Remark 2.3). Following the proof of [HLP10, Lemma 4.2], which involves
a Strang lemma (cf. [Cia87]), we obtain that there exists a constant C depending on
the domain˝ , the coefficient A , and on the BEM subdomains˝i , i 2 IBEM such
that

ku � uhkH1.˝/ � C inf
vh2V hS;D

ku � vhkH1.˝/

C C
� X
i2IBEM

inf
zh2Zh.@˝i /

kti .u/� zhk2H�1=2.@˝i /

�1=2
;

where ti .u/ D Si uj@˝i is the generalized conormal derivative of the solution u on
@˝i for i 2 IBEM. Alternatively, one can employ an error estimate for the associated
mixed setting, cf. [Hof11]. Using the minimizing property of the harmonic extension
(Lemma 1.54), the FE approximation estimates from Lemma 1.44, and the BE
approximation estimates from Lemma 1.89, we finally get the a priori error estimate

ku � uhkH1.˝/ � C hs
�

juj2
H1Cs.˝/

C
X

i2IBEM

kti .u/k2
H

�1=2Cs
pw .@˝i /

�1=2
;

provided that u 2 H1Cs.˝/ with s 2 .0; 1�. In terms of h, this is the same
error behavior as for a pure FEM discretization. Note, however, that the constant
C depends on the subdomain partition. Finding an estimate which is explicit in the
subdomains is non-trivial, but should be possible under the regularity assumptions
that we will introduce in Sect. 2.5.2. For the limit case Hi ! h see [HLP10].

2.1.4 Conditioning of the Skeleton Problem

Lemma 2.6. Let T H.˝/ be a shape regular and quasi uniform triangulation of˝ ,
and let each subdomain ˝i be a union of a few coarse elements of T H.˝/, such
that the number of elements per subdomain is uniformly bounded. Furthermore, let
the triangulation T h.�S/ be quasi-uniform. Then there exist uniform constants c1,
c2 > 0 such that for all v 2 V h

D.�S/,

c1 ˛min H kvk2
L2.�S /

�
sX
iD1

hSi;h vj@˝i ; vj@˝i i
„ ƒ‚ …

DWhSh v; vi

� c2 kA kL1.˝/ h
�1 kvk2

L2.�S /
;

where ˛min > 0 is the constant from (1.22) (p. 21). Hence, the conditioning of the
skeleton problems (2.11) and (2.14) is given by

�.Sh/ D O
�kA kL1.˝/

˛min
H�1h�1

�
:
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Proof. The following proof is identical to [TW05, Lemma 4.11]. To simplify its
presentation, we assume that diam.˝/ D 1, and we extend v from �S to ˝ by
setting vj˝i WD Hi v. By Theorem 1.23 and a scaling argument we get that

Hi kvk2
L2.@˝i /

� H2
i

�
jvj2

H1=2.@˝i /
CH�1

i kvkL2.@˝i /
�

. H2
i

�
jvj2

H1.˝i /
CH�2

i kvk2
L2.˝i /

�
:

Above, . stands for � C , where C is a generic, uniform constant. Summing over
i D 1; : : : ; s, using that Hi Å H � 1, Friedrichs’ inequality, as well as the spectral
equivalence relations from Sect. 1.3.8.3, we obtain

˛min H kvk2
L2.�S /

. ˛min kvk2
H1.˝/

. ˛min jvj2
H1.˝/

�
sX
iD1

hSi v; vi@˝i .
sX
iD1

hSi;h v; vi@˝i :

This shows the lower bound. For the upper bound, note first that with the same
notation as above,

sX
iD1

hSi;h v; vi@˝i .
sX
iD1

hSi v; vi@˝i . kA k2L1.˝/

sX
iD1

jvj2
H1=2.@˝i /

:

To conclude the proof, we apply the inverse inequality

jwjH1=2.@˝i /
. h�1=2 kwkL2.˝i / 8w 2 V h.@˝i/;

which can derived using interpolation theory (cf. [TW05, Lemma B.27]). ut
Remark 2.7. Preconditioners for the skeleton problem are also called Schur com-
plement preconditioners. Examples are the BPS type and wirebasket preconditioners
(see [TW05, Sect. 5] and the pioneering papers [BPS86, BPS87, BPS88, BPS89]),
the Neumann-Neumann preconditioners (Sect. 2.3) and the BDDC preconditioner
(Sect. 5.1.4). See also the related papers [HL92, HLM91a, HLM91b, CKL98, HS01,
Ste03a, KL04] as well as the work of Nepomnyaschikh [Nep91b, Nep07].

2.2 Formulation of One-Level FETI/BETI Methods

In the following Sect. 2.2.1, we derive the classical FETI/BETI methods starting
from the homogenized minimization problem (2.14). Section 2.2.2 deals with
the all-floating (total) FETI/BETI formulation starting from the non-homogenized



72 2 One-Level FETI/BETI Methods

ΩiΓD

ΓNFig. 2.2 Nodes of the set
@˝h

i for a single subdomain
˝i (� interface nodes in
� h \ @˝h

i , � Dirichlet
nodes,� remaining Neumann
nodes)

minimization problem (2.11). In Sect. 2.2.3, we give an interpretation of the
Lagrange multipliers involved in both formulations. Section 2.2.4 introduces various
preconditioners, and Sect. 2.2.5 discusses implementation issues.

Throughout the remainder of this chapter, we work exclusively in the discrete
setting. To simplify the notation, we drop the subscript h in the operators Si;h and
Ni;h. That means from now on, Si , Ni refer to discrete operators

Si W V h.@˝i / ! V h.@˝i /
�; Ni W H1.˝i /

� ! V h.@˝i/
�: (2.18)

Moreover, we need a few definitions concerning the skeletal triangulation. Let � h
S

be the set of nodes on �S . Analogously, @˝h
i , � h

D , � h, � h
ij are the sets of nodes on

the respective parts of the skeleton, see also Fig. 2.2. A typical node will be denoted
by xh.

Remark 2.8. Note that, for all FEM subdomains, we can define the discrete
operators Si , Ni differently by eliminating non-coupling Neumann DOFs together
with the interior DOFs, which is much more practicable in implementations, cf.
Remark 2.5 and [TW05, Chap. 4]. This results in operators

Si W V h.@˝i n �N / ! V h.@˝i n �N /�; Ni W H1.˝i / ! V h.@˝i n �N /�:
(2.19)

This is in fact done in the original FETI method, but for a unified presentation of
FETI/BETI, we have chosen the setting in (2.18). The theory below, however, can
be generalized without major difficulties to the case of (2.19).

2.2.1 Formulation of Classical FETI/BETI

In this section we derive the classical formulation of the FETI method (as introduced
in [FR94]) as well as the BETI and coupled FETI/BETI methods (as introduced
in [LS03, LS05]). Our presentation mainly follows [KW01, LS05], and [TW05,
Sect. 6.3]. Our starting point is the homogeneous skeleton problem (2.14).
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Ω1 Ω2

Ω4Ω3

Ω1 Ω2

Ω4Ω3

Fig. 2.3 Sketch of
non-redundant constraints
(left) and fully redundant
constraints (right) for a node
that is shared by four
subdomains

2.2.1.1 Tearing and Interconnecting

The idea of “tearing” is to introduce separate unknowns for Quj@˝i 2 V h
D.@˝i / on the

subdomain boundaries. To this end we define the spaces2

Wi WD V h
D.@˝i / and W WD

sY
iD1

Wi : (2.20)

We denote the components of w 2 W by wi and write

w WD Œwi �
s
iD1 2 W: (2.21)

A Jump Operator. Functions in the product space W are typically discontinuous
across subdomain interfaces. Continuity (“interconnecting”) is enforced by con-
straints of the form

wi .x
h/ � wj .x

h/ D 0 for xh 2 � h
ij ; i > j: (2.22)

In this book, we restrict ourselves to fully redundant constraints, i.e., we impose
all constraints of the form (2.22), see [TW05, Sect. 6.3.3] and Fig. 2.3, right. They
turn out to be advantageous in implementations due to the full symmetry. In the
non-redundant case (see [TW05, Sect. 6.3.2] and Fig. 2.3, left) a minimal number of
necessary constraints is used. For other variants, such as orthogonal constraints, see
e.g. [FP03, FP04].

Definition 2.9. Let us assume a numbering of the (fully redundant) constraints
(2.22) with M being the total number of constraints. The entry of a vector � 2 R

M

corresponding to the constraint (2.22) at the node xh 2 � h
ij is denoted by �ij .xh/.

Introducing the (linear) jump operator B W W ! R
M , given by

.B w/ij .x
h/ D wi .x

h/ � wj .x
h/ for xh 2 � h

ij ; i > j; (2.23)

2For the setting (2.19), Wi D V h
D.@˝i n �N /.
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we can write all constraints compactly as

B w D 0:

The essential property of B is (and should be) that the subspace

bW WD ˚
w 2 W W B w D 0

� D ker.B/ (2.24)

can be identified with V h
D.�S/, in short: V h

D.�S/ � bW .

Remark 2.10. With respect to the standard nodal basis, the operator B is repre-
sented by signed Boolean matrix (with entries 0, 1 or �1). For other discretization
spaces we refer to Sect. 2.8.

Saddle point formulation. In the sequel, to avoid cumbersome notation, we will
regard the approximate Steklov-Poincaré approximants Si as operators mapping
from Wi to W �

i , with the only exception of Si QgDj@˝i . In addition, we define
S W W ! W � by

hSv; wi WD
sX
iD1

hSi vi ; wi i for v; w 2 W; (2.25)

in short S WD diag.Si /siD1, and the linear functional g 2 W � by

hg; wi WD
sX
iD1

hgi ; wi i WD
sX
iD1

hNifi � Si QgDj@˝i ; wi i for w 2 W; (2.26)

in short g WD Œgi �
s
iD1 D ŒNifi � Si QgDj@˝i �siD1. Using this notation we can write the

minimization problem (2.15) equivalently as the constrained minimization problem

Qu D argmin
w2W
B w D 0

1
2
hS w; wi � hg; wi: (2.27)

For simplicity, we use the symbol Qu simultaneously for the solution of (2.14) and the
solution of the above problem. The equivalent saddle point problem reads as follows
(see also the following Sect. 2.2.1.2). Find .Qu; �/ 2 W � U :

	
S B>
B 0


 	 Qu
�



D

	
g

0



; (2.28)

whereU DR
M is the space of Lagrange multipliers. The second equation (B Qu D 0)

ensures that Qu 2 bW � V h
D.�S/.

Lemma 2.11. Under the assumptions made in Sect. 2.1, ker.S/ \ ker.B/ D f0g.
Therefore, Problem (2.28) is uniquely solvable up to adding elements from kerB>
to �. The solution Qu 2 bW � V h

D.�S/ is the unique solution of (2.14).
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Proof. Since ker.B/ D bW � V h
D.�S/ and the bilinear form hS �; �i is coercive

on V h
D.�S/, it follows that ker.S/ \ ker.B/ D f0g. The classical Brezzi theory

(cf. Lemma 1.16) implies the solvability of (2.28). Finally, Qu solves the constrained
miminization problem (2.27), which is equivalent to (2.15) and (2.14). ut

For reasons that will become clear later on, we agree that the Lagrange
multipliers are in U , but B w is in its dual:

B W W ! U �; B> W U ! W �:

Of course,U � D R
M too, and the duality pairing in U � �U is nothing else than the

Euclidean inner product, i.e., h�; �i D .�; �/`2 for � 2 U , � 2 U �. Nevertheless,
we will keep track of the subtle difference between U and U � for this has several
advantages.

The jump operator B can be decomposed into local operators Bi W Wi ! U �,
i D 1; : : : ; s such that

hB w; �i D
sX
iD1

hBi wi ; �i 8� 2 U:

2.2.1.2 Interpretation of the Lagrange Multipliers

This subsection may be skipped by readers who are mainly interested in the
derivation of the FETI/BETI method. It contains an interpretation of the Lagrange
multipliers as normal fluxes, and it discusses the adjoint B> in more detail.

The saddle point formulation (2.28) can also be derived directly from the
discrete skeleton formulation (2.14) without a detour via the minimization problem.3

We show this alternative derivation because it provides more insight on the Lagrange
multipliers. Let Qu 2 V h

D.�S/ be the solution of (2.14) and let

ti WD Si Quj@˝i � gi
denote the discrete (generalized) conormal derivative4 and set t D Œti �

s
iD1 2 W �.

Substituting this formula into (2.14) and using that V h
D.�S/ � bW D ker.B/, we

obtain

ht; wi D 0 8w 2 ker.B/: (2.29)

3This way, FETI formulations can be derived for non-symmetric or indefinite problems.
4Note that the given Neumann data gN is already incorporated in gi ; if Qu is the solution, ti vanishes
on all the interior nodes of the local Neumann boundary.
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This is equivalent to

t 2 ker.B/ı D range.B>/;

cf. Lemma 1.8. We now

• Parametrize the solution Qu 2 V h
D.�S/ by Qu 2 W with the side conditionB Qu D 0,

• Parametrize the conormal derivative t 2 W � by �B>� with � 2 U , therefore
fulfilling condition (2.29) automatically.

From the definition of t and g, we get the equation �B>� D S Qu�g. Together with
B Qu D 0, this yields exactly (2.28). Under this perspective, the Lagrange multipliers
themselves can be interpreted as normal fluxes. More precisely, they parametrize
the normal fluxes of the solution QgD C Qu of (2.11):

�B>
i � D Si. QgDj@˝i C Qui /�Nifi :

For an interpretation in a mechanical context see [RF98a, RF99].

Definition 2.12. For xh 2 � h
S we define

Nxh WD fk D 1; : : : ; s W xh 2 @˝h
k g;

i.e., the index set of the subdomains sharing the node xh. Furthermore, we set

Ni WD fk D 1; : : : ; s W @˝i \ @˝k ¤ ;g:

Definition 2.13. For i D 1; : : : ; s and xh 2 @˝h
i , let 'i;xh 2 V h.@˝i / be the nodal

basis function corresponding to node xh. For t 2 W �, we set

ti;xh WD hti ; 'i;xhi@˝i :

Lemma 2.14. For � 2 U � and � 2 U ,

h�; �i D
X
xh2� h

X
i; j2N

xh

i>j

�ij .x
h/ �ij .x

h/:

The adjoints B> W U ! W � and B>
i W U ! W �

i fulfill

.B>�/i;xh D hB>
i �; 'i;xhi@˝i D

X
j2N

xh
nfig

sign.i �j / �ij .xh/ for xh 2 @˝h
i \� h:

Proof. The proof is straightforward.
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2.2.1.3 Eliminating Local Variables

The first set of equations in (2.28) read

Si Qui D gi � B>
i � 8i D 1; : : : ; s:

The goal of this subsection is to obtain an explicit formula for Qui , which is not
straightforward as some of the operators Si are singular.

In the usual theory of iterative substructuring methods, a floating subdomain is
defined as a subdomain ˝i whose boundary @˝i does not intersect the Dirichlet
boundary �D . Here, we use a more abstract form.

Definition 2.15 (floating subdomain). A subdomain˝i is called a floating subdo-
main if Si W Wi ! W �

i is singular, otherwise it is a non-floating subdomain. The
index set corresponding to the floating subdomains is denoted by Ifloat.

In the case of the potential equation, the solution of the pure Neumann problem on
a floating subdomain is only unique up to an additive constant, and so

ker.Si / D
(

spanf1@˝i g if i 2 Ifloat;

f0g else.

In a non-floating subdomain,

Qui D S�1
i .gi � B>

i �/ 8i 62 Ifloat:

For the remaining subdomains, we need the solvability conditions

gi � B>
i � 2 range.Si / 8i 2 Ifloat:

Choosing an injective operator

Ri W Rdim.ker.Si // ! Wi ; range.Ri / D ker.Si /; (2.30)

the local solution ui can be represented by

Qui D S
�
i .gi � B>

i �/CRi 	i ; (2.31)

where S�i is a pseudo inverse of Si (see Sect. 1.1.3.4), and 	i 2 R
dim.ker.Si //. Actually,

formula (2.31) is valid for all i D 1; : : : ; s. In our setting, we choose Ri	i D 	i if
i 2 Ifloat and 0 otherwise. Since range.Si / D ker.Si /ı D range.Ri /ı D ker.R>

i /

(see Lemma 1.8), the compatibility conditions rewrite as

R>
i .gi � B>

i �/ D 0 8i D 1; : : : ; s; (2.32)
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where for i 62 Ifloat, this condition is trivial. Introducing

Z WD
sY
iD1

R
dim.ker.Si //

and the operators R D diag.Ri /siD1 W Z ! W , and S� WD diag.S�i / W W � ! W ,
we see from (2.31) and (2.32) that

Qu D S�.g � B>�/CR 	 (2.33)

for some 	 2 Z, provided that

R>B>� D R>g: (2.34)

Eliminating Qu from (2.28) using (2.33) yields

B S�.g � B>�/C B R 	 D 0:

After reordering the terms above and adding (2.34) to the set of equations, we obtain
the system

B S�B>� � B R 	 D B S�g;

R>B>� D R>g:

By defining the operators

F WD B S�B>; G WD B R; (2.35)

we see that the above system has saddle point structure. In the following, we briefly
discuss the solvability of this problem and its relation to (2.28).

Lemma 2.16. The problem of finding .�; 	/ 2 U �Z such that
	
F �G
G> 0


 	
�

	



D

	
B S�g
R>g



(2.36)

is uniquely solvable up to adding an element from ker.B>/ to �. With

Qu D S�.g � B>�/CR 	;

.Qu; �/ solves (2.28), and Qu 2 bW � V h
D.�S/ solves (2.14).

Proof. First note that the operatorsF ,G> vanish on ker.B>/. Therefore,F andG>
are well-defined on the factor space U= ker.B>/. We apply Lemma 1.16 (with V 7!
U= ker.B>/, Q 7! Z). The assumptions hold because ker.F /\ ker.G>/ D ker.B>/.
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One easily shows that ker.G/ D ker.Bjrange.R// D ker.B/ \ ker.S/ D f0g, which
implies uniqueness. The rest of the proof is straightforward. ut
Remark 2.17. For a pure FEM, i.e., IBEM D ;, the use of Schur complement opera-
tors in the derivation can be circumvented. For each i D 1; : : : ; s, let Xi WD V h

D.˝i /

be the FE space on˝i with respect to T h.˝i/ and setX WD Qs
iD1 Xi . Moreover, let

Ai WXi ! X�
i and `i 2 X�

i be the operator and functional corresponding to the local
stiffness matrix and load vector (after the homogenization). Let Bi W Xi ! U � be
the jump operator defined by Bivi WD Bivi j@˝i , then the global problem is identical
to find .u; �/ 2 V � U :

"
A B

>

B 0

# 	
u
�



D

	
`

0



;

where A D diag.Ai /siD1, and ` D Œ`i �
s
iD1 2 V �. Having at hand pseudo inversesA�i

and injective operators Ri W Rdim.ker.Ai // ! Xi such that ker.Ai / D range.Ri /, we
can reduce this system as in Sect. 2.2.1.3. The resulting system is identical to (2.36),
i.e.,

F D B S� B> D BA� B
>
; B S�g D BA�`; G D B R D B R; R>g D R

>
`;

cf. [RFTM99, Sect. 2.1.3].

Remark 2.18. The result of Remark 2.17 also holds for arbitrary combinations of
FEM and BEM if we reformulate the equations in a mixed setting. For i 2 IBEM,
we use the local space Xi WD V h

D.@˝i / � Zh.@˝i / and define Ai W Xi ! X�
i ,

Bi W Xi ! U �, and `i 2 X�
i by

Ai WD
	

Di
1
2I CK>

i
1
2 I CKi �Vi



; Bi

	
vi
ti



WD Bi vi ; `i WD

	
Nifi �Di QgDj@˝i

�. 12 I CKi/ QgDj@˝i



:

2.2.1.4 A Projection Method

Note that the saddle point problem (2.36) is different in its structure from the saddle
point problem (2.28) because the variables 	 lives in the spaceZ of small dimension:

dim.Z/ < s � dim.U /:

Therefore, an inversion of a sparse system on Z is acceptable. Since the lower right
block of System (2.36) is zero, we can use a projection method, cf. [FR91, FR94].

Following [FCM95], we define the space of admissible Lagrange increments

Uad WD ker.G>/ D f� 2 U W B>� 2 range.S/g: (2.37)
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The Case R>g D 0. Assume for a moment that R>g D 0. Then the solution � of
(2.36) lies in Uad. We can always reach this subspace by an orthogonal projection
(see Sect. 1.1.3.3). Let the self-adjoint linear operator

Q W U � ! U

be positive definite on range.G/; specific choices of Q will be given later on. The
operator

P WD I �QG .G>QG/�1G> (2.38)

is a projection from U onto Uad. Note that G>QG is SPD because of the
assumptions on Q and because ker.G/D f0g, see the proof of Lemma 2.16.
Furthermore, for a suitable choice of Q, the matrix representing G>QG is sparse,
cf. Sect. 2.2.5.

Hence, if R>g D 0, it suffices to test the first line of (2.36) (rewritten as a
variational problem) with test functions from Uad D range.P /, i.e.,

find � 2 Uad W P>F � D P>B S�g:

The Case R>g ¤ 0. In the general case, we can decompose � D �0 C e�, where
G>�0 D R>g and e� 2 Uad. Apparently, the choice

�0 D QG.G>QG/�1R>g (2.39)

fulfills these requirements, and so we can homogenize the equation. Summarizing,
we obtain the problem

find e� 2 Uad W P>F e� D P>.B S�g � F �0/„ ƒ‚ …
DB S�.g�B>�0/

: (2.40)

We will discuss this equation in detail in Sect. 2.2.1.5. Before, we need to see how
to recover the variable 	 from �0 and e�. Testing the first line of (2.36) (rewritten as
a variational problem) with test functions from range.I � P/, we obtain

.I � P>/F � � .I � P>/G 	„ ƒ‚ …
DG 	

D .I � P>/B S�g

” G 	 D .I � P>/„ ƒ‚ …
G.G>QG/�1G>Q

.F � � B S�g/„ ƒ‚ …
B S�.B>��g/

:

Applying .G>QG/�1G>Q to the last equation, we obtain the formula

	 D �.G>QG/�1 G>Q B S�.g � B>�/: (2.41)
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Algorithm 2: Classical FETI/BETI method based on PCG

g D ŒNifi � Si QgDj@˝i �siD1
�0 D QG.G>QG/�1R>g
d D P>B S�.g � B>�0/
solve P>F e� D d with PCG and initial value e�.0/ D 0 and stop after k
iterations
�.k/ D �0 Ce�.k/
	.k/ D �.G>QG/�1G>Q B S�.g � B>�.k//
Qu.k/ D S�.g � B>�.k//CR 	.k/

Table 2.2 Overview on the spaces and operators involved in FETI/BETI

Spaces

U D R
M Space of Lagrange multipliers

Uad D ker.G>/ � U Space of admissible Lagrange increments

eU ad D Uad= ker.B>/ Factor space modulo redundancies

V h
D.�S / Skeletal FE space with homogeneous Dirichlet conditions

Wi D
(
V h
D.@˝i / (classical)

V h.@˝i / (all-floating)
Local spaces

W D Qs
iD1 Wi Product space (“discontinuous” functions)

bW D ker.B/ � W Subspace of continuous functions inW , identifiable with
V h
D.�S /

Z D Qs
iD1 R

dim.ker.Si // Parameter space of ker.S/

Operators

B W W ! U � Jump operator

F W U ! U � F D B S�B>

G W Z ! U � G D B R

P W U ! Uad Projection, P D I �QG.G>QG/�1G>

P> W U � ! U �
ad Projection, P> D I �G.G>QG/�1G>Q

Q W U � ! U Self-adjoint operator, SPD on range.G/

R W Z ! W Injective operator, range.R/ D ker.S/

S W W ! W � Block operator of local approximate Steklov-Poincaré
operators

S� W W � ! W Pseudo inverse of S

The complete method is summarized in Algorithm 2, p. 81. An overview on the
spaces and operators involved is given in Table 2.2, p. 81.
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2.2.1.5 The Central FETI/BETI Equation

Herein, we discuss the solvability and a solution algorithm of Problem (2.40).
Since the Lagrange multipliers are only unique modulo ker.B>/, we introduce the
factor space

eU ad WD Uad= ker.B>/: (2.42)

As mentioned in the proof of Lemma 2.16, F is well-defined on eU ad because it
vanishes on ker.B>/. Recall from Sect. 1.1.3.3 that range.P>/ is a realization of
the dual of Uad. Moreover, one can show that range.P>/\ range.B/ is a realization
of the dual of eU ad. In short,

eU �
ad D range.P>/\ range.B/ D f� 2 range.B/ W hB z; Q �i D 0 8z 2 ker.S/g:

(2.43)

Lemma 2.19. The operator P>F maps eU ad to eU �
ad and P>FjeU ad

is SPD.

Proof. By definition, F maps Uad to range.B/. From the definition of P> we see
that P>.range.B// � range.B/ \ range.P>/ D eU �

ad.
Since F is self-adjoint and positive semi-definite and P is a projection onto Uad,

it follows immediately that P>Fj QUad
is self-adjoint and positive semi-definite. It

remains to show the definiteness. Assume that for � 2 eU ad,

0 D hP>F �; �i D hS�B>�; B>�i:
Since � 2 eU ad implies B>� 2 range.S/, we conclude from the properties of the
pseudo inverse S� that B>� D 0. Since � is in the factor space modulo ker.B>/,
this means � D 0 and concludes the proof. ut

As a consequence of Lemma 2.19, Problem (2.40) can be solved using a PCG
method, see Sect. 1.2.4.2 and Corollary 1.50. Recall that we have left the choice of
Q W U � ! U open yet, and that we need a preconditioner (at least a formal one)
mapping from eU �

ad back to eU ad.

The unpreconditioned case. We choose Q D I (recall that U D R
M D U �).

Then P> D P and U �
ad D Uad. Hence, P>Fj QUad

maps to Uad \ range.B/, which is

naturally embedded in the factor space eU ad. Summarizing, the formal preconditioner
can be chosen as the identity, i.e., we take no preconditioner.

The preconditioned case. All preconditioners under our consideration have the
form

P M�1 (2.44)

where M�1 W U � ! U . The projection P makes sure that the preconditioner maps
back to the space Uad, which is embedded in eU ad. Of course, .P M�1/j QU�

ad
must be
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SPD in order to make PCG applicable. The choice M�1 D I and Q D I gives the
unpreconditioned case.

The complete FETI/BETI method for the classical formulation is summarized in
Algorithm 2, p. 81. Note that in that algorithm, we can substitute g, B , R, S , and
S� by `, B , R, A, and A� from Remarks 2.17 and 2.18, respectively (and omit the
first line), see also Sect. 2.2.5.

Remark 2.20. By simple linear algebra, one shows the residual identity

d � P>Fe�.k/ D B Qu.k/;

(see e.g. [FR94, FCRR98]) i.e., the residual in the CG algorithm controls the jump of
the approximant Qu.k/, and equivalently the jump of u.k/ D Œ QgDj@˝i �siD1 C Qu.k/. We
note that the entire method can be rewritten in terms of the variables t .k/ WD � B>
.�0 Ce�.k// and Qu.k/, see Sects. 2.2.1.2 and 2.2.3.

Remark 2.21. In Algorithm 2, we have chosen e�.0/ D 0, but any value in Uad would
be suitable. Formally, the PCG runs in the factor space eU ad, but in a standard
implementation, we just use vectors in U (projected to Uad). Working in factor
spaces might often be dangerous in practice, but not in the current case: the
components in ker.B>/ of the iterates cannot blow up. If an iterate e�.k/ should
have a non-zero contribution from ker.B>/, the next iterate e�.kC1/ does not depend
on this contribution, see also Sect. 2.2.3.

Remark 2.22. If a preconditioner M�1 is SPD on the whole of U �, one can use
Q D M�1. In that case, P Q D QP> (cf. formula (1.5)) and so

P M�1P>F D M�1P>F;

i.e., we can leave out P in (2.44), see also Sect. 2.2.5.

We leave it up to the reader to follow the subsequent presentation linearly or not.
Here is a guide for “nonlinear” readers.

Conditioning. For the case Q D M�1 D I , the convergence of the CG method is
determined by the condition number �.P>Fj QUad

/, cf. Lemma 1.49, which we will

analyze in Sect. 2.4.1. In case of a global quasi-uniform mesh T h.�S/ with mesh
parameter h and suitable assumptions on the subdomains, it can be shown that

�.P>Fj QUad
/ � C

kA kL1.˝/

˛min

H

h
;

where H denotes the maximal subdomain diameter (see Theorem 2.38). The
constantC depends on the shape of the subdomains but is independent of A , h, and
H , in particular independent of the number of subdomains. Note that the robustness
with respect to the number of subdomains comes from the projectionP which plays
the role of a coarse solve, cf. [FMR94].
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Dirichlet boundary Dirichlet boundary

Fig. 2.4 Illustration of a classical formulation (left) and the all-floating (or total) formulation
(right). Floating subdomains are dark-shaded

Preconditioning is (in general) required if

• H=h gets large (there is a large number of local unknowns in each subdomain),
or

• kA kL1.˝/=˛min gets large (the coefficient A varies over several orders of
magnitude).

For the definition of preconditioners for piecewise constant coefficients see
Sect. 2.2.4, for their analysis see Sect. 2.6. The case of highly varying (multiscale)
coefficients is subject of Chap. 3.

All-floating (Total) FETI/BETI. An important variant of the classical FETI/BETI
method introduced in the current subsection is the all-floating (total) FETI/BETI
method, see Sect. 2.2.2, where additional Lagrange multipliers are used to enforce
the Dirichlet boundary conditions. This simplifies the method in a certain sense.

Implementation and Parallelization of the classical and the all-floating
FETI/BETI method are discussed in Sect. 2.2.5.

2.2.2 All-Floating (Total) FETI/BETI

The all-floating method is a variant of the classical FETI/BETI method, where one
introduces additional Lagrange multipliers that enforce Dirichlet conditions. For an
illustration see Fig. 2.4.

Saddle Point Formulation. We start with the inhomogeneous skeleton formula-
tion (2.11). In contrast to Sect. 2.2.1, the working spaces are chosen as5

5For the setting (2.19), Wi D V h.@˝i n �N /.
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Wi WD V h.@˝i/ and W WD
NY
iD1

Wi ; (2.45)

i.e., we do not incorporate any Dirichlet boundary conditions. In this subsection, we
regard Si as a mapping fromWi to W �

i (opposed to Sect. 2.2.1).
In addition to the (fully redundant) interface constraints

wi .x
h/ � wj .x

h/ D 0 for xh 2 � h
ij ; i > j; (2.46)

(cf. (2.22)) we also require

wi .x
h/ D QgD.xh/ for xh 2 ˝h

i \ �D : (2.47)

Definition 2.23. Let us assume a numbering of the constraints (2.46) and (2.47)
with M being the total number of constraints. The entry of a vector � 2 R

M

corresponding to constraint (2.46) is denoted by �ij .xh/, the entry corresponding to
constraint (2.47) is denoted by �iD.xh/.

We define B W W ! U � (where U D R
M ) by

.B w/ij .xh/ D wi .xh/ � wj .xh/ for xh 2 � h
ij ; i > j;

.B w/iD.xh/ D wi .xh/ for xh 2 @˝h
i \ �D:

9=
; (2.48)

Recall that we have chosen QgD 2 V h.�S/ such that it vanishes on all nodes in
� h
S n �D. Of course, we can identify QgD with a function in W , and (for simplicity)

denote it again by QgD . With these considerations, the condition

B w D B QgD
requires that w is continuous across the subdomain interfaces, and that wj�D D gD .
Hence, the space bW WD ker.B/ � V h

D.�S/

coincides with that from Sect. 2.2.1. Analogously to Sect. 2.2.1.2, we derive a saddle
point formulation from (2.11). We define

ti WD Si uj@˝i �Nifi ; t D Œti �
s
iD1 2 W �:

Equation (2.11) implies that

ht; vi D 0 8v 2 bW ;
and so t 2 ker.B/ı D range.B>/. Parametrizing t by �B>� for � 2 U and
representing the solution as u 2 W with B u D B QgD yields the saddle point
problem:
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Algorithm 3: All-floating FETI/BETI method based on PCG

g D ŒNifi �
s
iD1

�0 D QG.G>QG/�1R>g
d D P>B

�
S�.g � B>�0/ � QgD

�
solve P>F e� D d with PCG and initial value e�.0/ D 0 and stop after k
iterations
�.k/ D �0 Ce�.k/
	.k/ D �.G>QG/�1G>QB

�
S�.g � B>�.k//� QgD

�
u.k/ D S�.g � B>�.k//CR 	.k/

find .u; �/ 2 W � U such that

	
S B>
B 0


 	
u
�



D

	
ŒNifi �

s
iD1

B QgD


: (2.49)

This problem has the same properties as (2.28): the solution u is unique, and �
is unique modulo ker.B>/, cf. Lemma 2.11. Note that �B>� coincides with the
discrete (generalized) conormal derivative of the solution u (also on the Dirichlet
boundary).

Dual Saddle Point Formulation. Going through the same steps as in Sect. 2.2.1.3,
we derive the dual saddle point formulation. The spaces and operators are slightly
different because (in our setting)

ker.Si / D spanf1@˝i g 8i D 1; : : : ; s;

and so all subdomains are floating subdomains in the sense of Definition 2.15.
Hence, Z D R

s and R W Z ! ker.S/ with .R	/i D 	i . With the notations from
Table 2.2, p. 81, the dual saddle point problem reads as follows. Find .�; 	/ 2 U�Z
such that 	

F �G
G> 0


 	
�

	



D

	
B.S�ŒNifi �

s
iD1 � QgD/

R>ŒNifi �siD1



:

We see that the structure of this system is identical to (2.40). The projection
method is applied analogously to Sect. 2.2.1.4 and leads to an SPD problem for the
variable e�, see Lemma 2.24 below. The complete all-floating FETI/BETI method is
summarized in Algorithm 3. Also here, we can substitute g, B , R, S , and S� by `,
B , R, A, and A� from Remarks 2.17 and 2.18, respectively (and omit the first line),
see also Sect. 2.2.5.

Lemma 2.24. In the all-floating formulation, the operator P>F maps eU ad to eU �
ad

and P>Fj QUad
is SPD.

Proof. The proof is identical to that of Lemma 2.19.
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Remark 2.25. Similarly to Remark 2.20, one can show the residual identity

d � P>Fe�.k/ D B .u.k/ � QgD/;

where above, QgD is interpreted as an element in W . Hence, in the all-floating
method, the residual in the CG method controls the jump of the approximant u.k/ as
well as the error in the Dirichlet conditions.

Lemma 2.26. In the all-floating formulation, for � 2 U � and � 2 U ,

h�; �i D
X
xh2� h

X
i; j2N

xh

i>j

�ij .x
h/ �ij .x

h/C
sX
iD1

X
xh2@˝h

i \�D
�iD.x

h/ �iD.x
h/:

The adjoints B> W U ! W � and B>
i W U ! W �

i fulfill

.B>�/i;xh D hB>
i �; 'i;xhi@˝i D

8̂
ˆ̂<
ˆ̂̂:

P
j2N

xh
nfig

sign.i � j / �ij .x
h/ if xh 2 @˝h

i \ � h;

�iD.x
h/ if xh 2 @˝h

i \ �D;
0 else.

Proof. The proof is straightforward.

2.2.3 FETI/BETI in Terms of Fluxes and Traces

Algorithm 4 displays the FETI/BETI method (both for the classical and the all-
floating formulation) including explicitly the PCG method. Note that in order to
unify the two formulations, we have used that in the classical formulation,B QgD D 0

and
u.k/ D Qu.k/ C Œ QgDj@˝i �

s
iD1 D PZ S

�.ŒNi fi �
s
iD1 � B>�.k//;

where

PZ WD I � R.G>QG/�1G>QB: (2.50)

We note that this particular projection is also treated in [FP03, SM08]. One can now
show that for both formulations,

Qu.k/ D u.k/ � QgD D PZ


S�.g � B>�.k// � QgD

�
:

We have seen in Sect. 2.2.1.2 that the Lagrange multipliers are temporary variables
that parametrize fluxes. Also, due to Remarks 2.20 and 2.25,

d .k/ D B Qu.k/:
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Algorithm 4: FETI/BETI method in terms of Lagrange multipliers (�.k/) and
jumps (d .k/) including PCG

g D
(
ŒNifi � Si QgDj@˝i �siD1 in classical formulation

ŒNifi �
s
iD1 in all-floating formulation

�.0/ D QG.G>QG/�1R>g
d .0/ D P>B



S�.g � B>�.0//� QgD

�
k D 0

repeat
z.k/ D P M�1d .k/ (in the unpreconditioned case: z.k/ D d .k/)

q.k/ D z.k/ C ˇk�1 q.k�1/ where ˇ�1 D 0, ˇk�1 D .d .k/; z.k//`2

.d .k�1/; z.k�1//`2

�.kC1/ D �.k/ C ˛.k/ q.k/ where ˛k D .d .k/; z.k//`2

.P>F q.k/; q.k//`2
d .kC1/ D d .k/ � ˛k P

>F q.k/ D B.u.k/ � QgD/
k D k C 1

until stopping criterion fulfilled for d .k/

u.k/ D QgD C PZ


S�.g � B>�.k//� QgD

�

Introducing the additional variables

t .k/ WD �B>�.k/;

s.k/ WD B>z.k/ D B>P M�1d .k/ D B>P M�1B Qu.k/;
p.k/ WD B>q.k/;

we can rewrite the whole algorithm in terms of the fluxes t .k/, the (discontinuous)
Dirichlet traces Qu.k/, the preconditioned “residual” s.k/, and the search directions
p.k/ in the flux space, see Algorithm 5. In that algorithm we have to use the
projection operators PZ and P>

Z rather than P and P>. We have

range.PZ/ D ker.S/?B>QB ; P>B D B PZ

range.P>
Z / D range.S/ B>P D P>

Z B
>:

We notice that Algorithm 5 is formally a PCG algorithm (cf. Algorithm 1) with the
operator

PZS
� W Y ! Y �

and the preconditioner
P>
Z B

>M�1 B W Y � ! Y;

where the flux space Y and the Dirichlet trace space Y � are given by
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Algorithm 5: FETI/BETI method including PCG rewritten in terms of fluxes
(t .k/) and traces (Qu.k/)

g D
(
ŒNifi � Si QgDj@˝i �siD1 in classical formulation

ŒNifi �
s
iD1 in all-floating formulation

t .0/ D �.I � P>
Z /g

Qu.0/ D PZ


S�.g C t .0// � QgD

�
k D 0

repeat
s.k/ D P>

Z B
>M�1B Qu.k/ (in the unpreconditioned case: s.k/DB>B Qu.k/)

p.k/ D s.k/ C ˇk�1 p.k�1/ where ˇ�1 D 0, ˇk�1 D .Qu.k/; s.k//`2
.Qu.k�1/; s.k�1//`2

t .kC1/ D t .k/ � ˛k p.k/ where ˛k D .Qu.k/; s.k//`2
.PZS�p.k/; p.k//`2

Qu.kC1/ D Qu.k/ � ˛k PZS�p.k/ D PZ


S�.g C t .k//� QgD

�
k D k C 1

until stopping criterion fulfilled for B Qu.k/
u.k/ D QgD C Qu.k/

Y WD range.B>/ \ range.S/;

Y � WD fw 2 ker.S/
?
B>QB W S w 2 range.B>/g D fw 2 ker.S/

?
B>QB \ ker.B/?S g

(it can be argued that Y � above is a realization of the dual of Y ). If QDM�1 D I ,
then the operator P>

Z above can be left out (see Remark 2.22). These spaces make
perfect sense because the solution Qu must fulfill B Qu D 0, thus it must lie in
ker.S/?B>QB . On the other hand, its flux must vanish on ker.B/, i.e., the flux must
lie in ker.B/ı D range.B>/. During the algorithm, the flux iterates are indeed in
equilibrium:

t .k/ � t .0/ 2 ker.B/ı :

2.2.4 Preconditioning

As announced in Sect. 2.2.1.5, all preconditioners for P>Fj QUad
under our consider-

ation have the form
P M�1 W eU �

ad ! eU ad;

whereM�1 W U � ! U .
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2.2.4.1 The Dirichlet Preconditioner

The Dirichlet preconditioner proposed by Farhat, Mandel, and Roux [FMR94] is
given by

M�1
D D B SB> : (2.51)

It was first analyzed by Mandel and Tezaur [MT96] who showed that in two
dimensions, the condition number of FETI with the Dirichlet preconditioner and
with Q D I is bounded by

C
s

max
iD1 .1C log.Hi=hi//

ˇ;

where the constant C is independent of hi (which is the local mesh size of
subdomain ˝i ), Hi , and the number of subdomains. In general, ˇ D 3. In some
situations, ˇ D 2, see [MT96, Lemma 3.8 and Remark 3.9]. With their pioneering
article, Mandel and Tezaur paved the ground for all the refined FETI type analyses
that appeared later. Note also that Tezaur [Tez98] showed that a method by Park,
Justino, and Felippa [PJF97] is equivalent to the method in [FR91], see also
[RFTM99].

Note that in general, the constant C above depends on the coefficient A includ-
ing possible jumps. Also, classical primal substructuring methods (see [BPS86]
and [TW05, Chap. 5]) are known to have a condition number involving just two
powers of the logarithmic term. To get rid of the third power in FETI and to address
coefficient jumps, one has to use a scaling of the jump operator in the preconditioner.

2.2.4.2 The Scaled Dirichlet Preconditioner

The scaled Dirichlet preconditioner has its roots in the following works. Rixen
and Farhat [RF98a] provided a derivation using an energy-minimizing smoothing
procedure. Klawonn and Widlund [KW01] used the so-called weighted counting
functions, which are a basic ingredient of balancing Neumann-Neumann methods
[DL91, Man93, MB96] (see also Sect. 2.3) and of related methods, see [DSW94,
DW95, DSW96, Sar93, Sar94, Sar97]. A special choice of scalings leads to the
method in [RF98a]. Moreover, Klawonn and Widlund [KW01] gave a rigorous
analysis (covering also the three-dimensional case), showing that FETI with the
scaled Dirichlet preconditioner results in a condition number of

C
s

max
iD1 .1C log.Hi=hi//

2;

where the constant C is independent of the local mesh sizes hi , the diameters Hi ,
the number of subdomains, and of jumps in the coefficients (provided that A is
isotropic and piecewise constant on each of the subdomains). We will present this
analysis in detail in Sect. 2.6 below.
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Scalings and Weighted Counting Functions. Firstly, we need scalar weights


i .x
h/ > 0 (2.52)

for each i D 1; : : : ; s and for each node xh 2 @˝h
i . We will discuss several choices

below. Secondly, for each j 2 f1; : : : ; sg and xh 2 � h
S , we define the weight

ı
�
j .x

h/ WD

8̂
ˆ̂̂<
ˆ̂̂̂
:


j .x
h/�X

k2N
xh


k.x
h/�

for xh 2 @˝h
j ;

0 for xh 2 � h
S n @˝h

j ;

(2.53)

where Nxh D fi D 1; : : : ; s W xh 2 @˝i g, cf. Definition 2.12, and � 2 Œ1=2; 1/

is a fixed exponent. A default choice for � is one. The resulting piecewise linear
functions ı�j 2 V h.�S/ for j D 1; : : : ; s, are called weighted counting functions.
The union of these functions forms a partition of unity on the skeleton, i.e.,

sX
jD1

ı
�
j .x

h/ D 1 8xh 2 � h
S :

Note finally that ı�j .x
h/ D 1 for all xh 2 @˝j n � h.

Remark 2.27. The limit case � ! 1 corresponds to the choice

ı
�
j .x

h/ WD
8<
:
1=m if xh 2 @˝h

j and 
j .xh/ D max
k2N

xh


k.x
h/;

0 else,
(2.54)

where m D #
˚
k 2 Nxh W 
k.xh/ D max

`2N
xh


`.x
h/

�
is the number of times the

maximal coefficient is attained. For an early domain decomposition method with
this scaling see [WX94].

The following scalings are common.

Multiplicity Scaling. If there is no (or only very little) variation in the coefficient
A , one usually chooses


i .x
h/ D 1:

Then ı�j .x
h/ simply equals the reciprocal of the multiplicity of the node xh.

Coefficient Scaling. In case of coefficient variation, the weight 
i .xh/ should in
a way resemble the coefficient A in subdomain ˝i around xh. If Aj˝i D ˛i I ,
we can set 
i .xh/ D ˛i . The case of a varying coefficient is treated in Chap. 3.
If A is isotropic and globally constant, coefficient and multiplicity scaling are
equivalent.
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Stiffness Scaling. For a pure FETI method, 
i .xh/ is often chosen as the diagonal
entry of the subdomain stiffness matrix corresponding to the node xh, see also
Sects. 2.6.4 and 3.3.2.

Note that the coefficient scaling is frequently called 
-scaling in the literature (where
the scalar coefficient itself is denoted by 
), see e.g. [KRW08]. The stiffness scaling
was first proposed by Rixen and Farhat [RF98a, RF99], there called superlumped
smoothing. For more scalings see Sect. 2.6.4 and the recent paper [DW12b].

A Weighted Jump Operator. Recall from Definition 2.13 that

ti;xh D hti ; 'i;xhi@˝i for t 2 W;

where 'i;xh 2 V h.@˝i / is the nodal basis function associated to node xh. The
weighted jump operator BD W W � ! U is given by

.BD t/ij .x
h/ D ı

�
j .x

h/ ti;xh � ı
�
i .x

h/ tj;xh for xh 2 � h
ij ; i > j: (2.55)

In the all-floating formulation, we set

.BD t/iD.x
h/ D ti;xh for xh 2 @˝h

i \ �D: (2.56)

Lemma 2.28. The adjoint B>
D W U � ! W is given by

.B>
D�/i .x

h/ D

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

P
j2N

xh
nfig

ı
�
j .x

h/ sign.i � j / �ij .xh/ if xh 2 � h \ @˝i ;

�iD.x
h/ if xh 2 @˝h

i \ �D (in the

all-floating formulation),

0 else.

Proof. The proof is straightforward.

The Scaled Dirichlet Preconditioner is finally given by

M�1
sD D BD S B

>
D : (2.57)

Remark 2.29. Each block Si in S appearing in the preconditioner (2.57) may be
replaced by the hypersingular operator on @˝i (then called scaled hypersingular
BETI preconditioner, cf. [LS03, LS05]), or by any other operator that is spectrally
equivalent to Si .

Remark 2.30. For non-redundant Lagrange multipliers, the preconditioner takes the
same form but with

BD D .BD�1B>/�1BD�1;
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where D W W � ! W is a diagonal scaling operator where the entry corresponding
to node xh in subdomain˝i is ı�i .x

h/, cf. [KW01] and [TW05, Sect. 6.3.2]. For an
efficient algorithmic construction of BD see also [Of06, Sect. 5.5.2].

2.2.4.3 Lumped Preconditioners

For a pure FETI method, “lumped” preconditioners (see [FR91, Sect. 5] and
[FMR94, Sect. 6]) are constructed by replacing the FE Schur complements Si in
(2.51) or (2.57) by the block Ki;BB of the stiffness matrix corresponding to the
boundary/interface unknowns. In other words, instead of solving for the PDE-
harmonic extension in each subdomain, we simply extend by zero.

The application of a lumped preconditioner is more economic because one
does not need the factorizations and solves appearing in the operators Si . In some
situations, the overall CPU time of a FETI method with a lumped preconditioner can
be shorter than with a Dirichlet preconditioner, even though the condition number
of the preconditioned system might be larger. This is also due to a superconvergence
effect, cf. [FMR94, Sect. 7].

Remark 2.31. The hypersingular BETI preconditioner could be seen as a BEM
equivalent of the lumped preconditioner, because there is no additional solving
involved. However, this operator has a corresponding dense matrix and thus needs
an effective implementation. Note also that the hypersingular preconditioner is still
quasi-optimal.

For the remainder of this book, we will only treat the scaled Dirichlet precondi-
tioner, because it turns out to be quasi-optimal with respect to the condition number.

2.2.4.4 The Operator Q

If there is no (or only little) coefficient variation, one commonly chooses

Q D I;

which is supported by the analysis, see Remark 2.111. In case of large coefficient
variation, one often chooses

Q D M�1
sD :

where M�1
sD is the scaled Dirichlet preconditioner, cf. [BDFC00]. Another practi-

cally successful option is to set Q to the lumped Dirichlet preconditioner. These
choice originate from [FR94] and were further investigated in [Rix97]. There is also
a diagonal choice

Q D Qdiag

(first suggested and analyzed in [KW01]) which mimics the choice Q D M�1
sD

under certain regularity assumptions and which simplifies the implementation, see
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Sects. 2.6.3 and 3.3.5.4. Note all these different choices ofQ lead to a sparse coarse
matrix G>QG, but to different sparsity patterns, cf. [FR94].

2.2.5 Implementation Issues

In this subsection, we discuss implementation issues of the classical and the all-
floating FETI/BETI methods described above (cf. also [LP98, RF98b, Kam00]). In
particular, we address the issue of parallelization.

2.2.5.1 The Basic Input Data

To make an implementation of FETI/BETI possible, one needs the vector represen-
tations for the local spaces V h.˝i / or V h.�i / with respect to the standard nodal
basis (V h

D.˝i/ or V h
D.�i/ in the classical formulation) and a local numbering of the

degrees of freedom (DOFs). Correspondingly, for each FEM subdomain we need
the local stiffness matrix (for a floating subdomain the “Neumann” matrix) and the
load vector associated to each of these spaces. For each BEM subdomain we need
(data-sparse) matrix approximations of the boundary integral operators (for matrix-
free methods see also Sect. 2.2.6). For the classical formulation, we assume that the
system is homogenized, i.e., the prescribed Dirichlet values are already contained in
the load vector, and there are either no Dirichlet DOFs, or these are decoupled from
the remaining DOFs.

2.2.5.2 Interconnecting

In order to do interconnecting, each DOF on the interface must have a local and
a global index. With this information, one can set up the Lagrange multipliers
on the interface: each multiplier (numbered by an index) is described by two
subdomain indices and two local DOF indices, cf. (2.22). The global index is used
for identification only. In the all-floating formulation, one additionally needs to
know which DOFs are on the Dirichlet boundary in order to set up the additional
multipliers there, cf. (2.47).

If the subdomain decomposition is generated from a mesh partitioner such as
METIS [KK98], the local to global mappings come together with the output (at
least for scalar P1-elements).

2.2.5.3 Additional Input Data

For the scaled Dirichlet preconditioner, one needs the scalings 
i .xh/ corresponding
to each interface DOF. For the coefficient scaling (cf. Sect. 2.2.4.2), the coefficient is
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required, whereas for the stiffness scaling and the multiplicity scaling no additional
information is needed. See however Sect. 2.6.4.2 for undesired effects that can occur
with the stiffness scaling and/or with varying coefficients.

Most importantly, one needs a description of the local kernels, i.e., one needs
matrices Ri corresponding to Ri from (2.30). If i 2 IFEM, it is advantageous to set
up Ri such that the columns of Ri span the kernel of the local stiffness matrix Ki

(rather than that of the Schur complement Si which should never be formed).
If the kernel is not known a priori, one can run a singular value decomposition

or try to get low-frequent eigenpairs of Ki by an inverse power method (see e.g.
[GV96]) or the LOBPCG method [Kny01], but this is in general expensive. Here
lies a true advantage of the all-floating formulation: for the most widely used types
of PDEs, especially for the potential equation or linear elasticity (see also Sect. 2.8),
the kernel is known a priori in all the subdomains and the matrix Ri can be given
explicitly.

For the diagonal choice QDQdiag due to Klawonn and Widlund, which we
will expose in Sect. 2.6.3, additional mesh information (Hi and hi ) is required.
Furthermore, one needs to know whether a coupling DOF is associated to a
subdomain vertex, or if it is in the interior of a subdomain edge or face. However,
this can be figured out from the Lagrange multipliers by combinatorial means
(cf. Sect. 2.48).

2.2.5.4 Implementation of the Underlying Operators

Having R and R> at our disposal, and assuming that Q 2 fI; M�1
sD ; Qdiagg, we

can reduce Algorithms 2 and 3 to the applications of B , B>, BD , B>
D , S , S�, and

.G>QG/�1, which are discussed in the sequel.

Jump Operators. The operators B , B>, BD and B>
D need not be stored but are

encoded as routines which perform their application to vectors. These routines
mainly use the description of the Lagrange multipliers and the scalings 
i .xh/.

Local FEM Neumann Problems. For each i 2 IFEM, the action vi D S
�
i fi for

a given fi 2 range.Si / is performed as follows. Let vB and fB denote the vector
representations of vi and fi , respectively. Then, with the analogous notation as
in Sect. 1.2.6, the equation Si vB D fB is equivalent to

	
Ki;BB Ki;BI

Ki;IB Ki;II


 	
vB
vI



D

	
fB
0



;

i.e., we need to solve a local Neumann problem, cf. Sect. 1.2.5. The most
convenient way is to regularize the matrix Ki (if ˝i is floating) and store its
factorization. For the setting (2.19) (see also Remark 2.5, p. 68), the set “I ”
above includes interior DOFs as well as non-coupling Neumann DOFs.

Local BEM Neumann Problems. For each i 2 IBEM, the action vi D S
�
i fi

for a given fi 2 range.Si / is performed as follows. Let v and f denote the
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vector representations of vi and fi , respectively. Let Di , Ki , and Vi denote the
matrix representations of the hypersingular operator, the double layer potential,
and the single layer potential, respectively, and let Mi be the mass matrix
from Sect. 1.3.7. Then instead of solving Siv D f with Si D Di C . 1

2
M>
i C

K>
i /V

�1
i .

1
2
Mi C Ki /, we solve the equivalent saddle point problem

	
Di

1
2
M>
i C K>

i
1
2
Mi C Ki �Vi


 	
v
t



D

	
f
0



;

which is a standard BEM problem corresponding to the local Neumann problem.
Recall that for d D 2, we should ensure that diam.˝i / < 1 (e.g. by scaling all
the coordinates of ˝) in order to ensure the invertibility of Vi .
Again, if ˝i is a floating subdomain, we can regularize this problem by
regularizing the hypersingular operator Di similar as in Sect. 1.2.5. As briefly
described in Sect. 1.3.7, the matrices Di , Ki , and Vi can be approximated in
data-sparse form using H -matrices. Thus, also the matrix corresponding to the
above (possibly regularized) saddle point problem can be represented by an H -
matrix, and for each BEM subdomain its H -LU factorization can be built and
stored in quasi-optimal time and memory complexity in the preprocessing phase.
For matrix-free fast BEM, such as the fast multipole methods, in connection with
FETI/BETI methods see Sect. 2.2.6.

Local Dirichlet Problems. The action of Si for i 2 IFEM, corresponds essen-
tially to solving a system of the form

Ki;II vI D �Ki;IB vB :

For the input vB , the output is given by SivB D Ki;BB vB C Ki;BI vI . Hence, it
is most convenient to build and store a factorization of Ki;II in the preprocessing
phase. Again, for the setting (2.19) (see also Remark 2.5, p. 68), the set “I ”
above includes interior DOFs as well as non-coupling Neumann DOFs. For i 2
IBEM, the action of Si (see Sect. 1.3.8.1) involves the inverse of the single layer
potential, which can be realized by H -LU factorization.

The Coarse Problem. Let G and Q denote the matrix representations of G
and Q. As discussed in Remark 2.108 below, the matrix G>Q G is sparse, and
its sparsity pattern is determined by the connectivity graph of the subdomain
partition where each floating subdomain is a node of that graph. Once G>Q G is
assembled (cf. [RF98b, Sect. 3.2]), its factorization can be computed efficiently
during the preprocessing phase, as long as the number of subdomains is not very
large. If we setQ D M�1

sD , an efficient assembly of G>Q G is possible but tricky
(see Remark 2.36). Note that the extra cost of applyingQ during the FETI/BETI
algorithm (see Algorithm 2 and (2.38)) involves the solution of additional local
Dirichlet problems. However, within each step of the iterative solver, this is
compensated by the fact that we can leave out the action of P (cf. Remark 2.22).
Nevertheless, from the implementation point of view, it is more attractive to use
a diagonal choice ofQ if the context allows to do so; see Sects. 2.6.3 and 3.3.5.4
below.
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Remark 2.32. We warn the reader that if the coefficient ˛ varies extremely within
a single FEM subdomain (see also Chap. 3), the matrices Ki;II and Ki (the latter
possibly regularized) can become very ill-conditioned. For example if the coefficient
varies of between 1 and 109, even direct solvers may run into stability problems.
The same can happen with the coarse matrix G>Q G if the coefficient varies a lot
throughout the global domain˝ .

2.2.5.5 Parallelization

The FETI/BETI algorithm is very suitable for multiprocessor machines with shared
and especially with distributed memory. The coding should follow the MIMD
(multiple instruction multiple data) paradigm, cf. [DHL03, Haa99, SBG96]. In the
following, let the processors be numbered from 1 to p. For software supporting
parallelization (on different levels), we refer e.g. to the following frameworks.

• MPI (message-passing interface) standard [MPI09]
• PETSc: http://www-unix.mcs.anl.gov/petsc/petsc-as/
• Hypre: http://acts.nersc.gov/hypre/
• DUNE: http://www.dune-project.org/
• Parallel toolbox: http://paralleltoolbox.sourceforge.net/

For further literature see also [Bas96, SBG96, Zum03].
Since the main work are subdomain solves that are independent of each other, we

assign each subdomain ˝i to a processor pi 2 f1; : : : ; pg. Hence, each processor
handles one or several subdomains. There are two kinds of global objects involved
in the algorithm that need to be parallelized:

(i) Lagrange multipliers, i.e., vectors from U , U �,
(ii) Coarse vectors representing elements from Z, Z�.

The remaining variables are elements from the spacesW D ˘s
iD1Wi andW � which

are parallel by construction.
We will first show how to deal with parallelizing the Lagrange multipliers

(kind (i)) using the concept of accumulated and distributed vectors, see e.g.
[DHL03, Haa99].

Accumulated and Distributed Vectors

Definition 2.33. For � 2 R
M and q D 1; : : : ; p, we denote by �.q/acc 2 R

Mq the
vector of those entries �ij .xh/ where

pi D q or pj D q and xh 2 � h
ij ;

http://www-unix.mcs.anl.gov/petsc/petsc-as/
http://acts.nersc.gov/hypre/
http://www.dune-project.org/
http://paralleltoolbox.sourceforge.net/
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i.e., the entries shared by processor q. As for � itself, the local numbering within
�
.q/
acc can be arbitrary. To be general, we denote the entries of �.q/acc again by �.q/acc;ij .x

h/.

For the all-floating formulation, the vector �.q/acc additionally contains those entries
�iD.x

h/ where pi D q and xh 2 @˝h
i \ � h

D . The parallel vector �acc WD Œ�
.q/
acc�

p
qD1

is called accumulated realization of �. It has the property that �.q/acc;ij .x
h/ D �ij .x

h/

for all processors q.

Definition 2.34. A parallel vector �dist D Œ�
.q/
dist�

p
qD1 with �.q/dist 2 R

Mq is called
distributed realization of � 2 R

M , if

�ij .x
h/ D

X
q2fpi ; pj g

�
.q/
dist;ij .x

h/:

In the implementation, we will use both representations, but the vectors �acc, �dist

are never formed, but only their local components �.q/acc, �
.q/

dist on each processor q.
It is immediate, that for scalars ˛, ˇ 2 R and vectors �, � 2 U or U �, the

accumulated (or distributed) representation of ˛ � C ˇ� is simply ˛ �acc C ˇ �acc

(or ˛ �dist C ˇ �dist, respectively), i.e., these operations can be performed fully in
parallel.

The next lemma shows that computing the scalar product between a distributed
and an accumulated vector can be performed by computing the local scalar products
and then just communicate the (scalar) results between all processors and add them
up. In the MPI standard, this is done by the allreduce command, see [MPI09].

Lemma 2.35. For � 2 U and � 2 U �,

h�; �i D .�; �/`2 D
pX
qD1
.�

.q/
dist; �

.q/
acc/`2 :

Proof. The proof is straightforward.

With a slight abuse of notation, we will write h�dist; �acci D h�; �i in the sequel,
which indicates that the calculation of the inner product is based on the result of
Lemma 2.35.

Let Uacc, Udist and U �
acc, U

�
dist denote the (formal) spaces of accumulated and

distributed vectors representing elements in U , U �, respectively. Let A denote the
accumulation operator such that for � 2 U or in U �, A�dist D �acc. Moreover, let
D denote the distribution operator under whose action entries will be distributed
by simply dividing them by their multiplicity. We have A D D I but in general
DA ¤ I . Note also that D ¤ A>.

When we want to compute the (global) Euclidean norm of a vector � from its
accumulated representation �acc, we can calculate

p
.D�acc; �acc/`2 , without major

communication. If only �dist is available, we can calculate
p
.�dist; A�dist/`2 , which

involves more communication due to the accumulation operator.
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Setting Up Parallel Lagrange Multipliers

The most convenient starting point is a setting where each local DOF (in a sub-
domain) is associated to a global DOF. This can be easily achieved for continuous
P1 elements, if one has global indices for each vertex of the mesh (for high order
elements, one additionally needs global indices for the edges/facets of the mesh).
For simplicity, we continue with the P1 elements for the scalar elliptic equation, but
the concept can be generalized straightforwardly.

For each DOF, it should be known which subdomains are formally sharing it.
If this information is not known a priori, it can be got from the associated global
indices by sorting and communicating (see, e.g., [Lie06]). The communication can
be reduced if the next neighbors of each processor are known.

Each multiplier �ij .xh/ is identified by the triple .i; j; gxh/ where gxh is the
global index of node xh and i > j . When it comes to sending/receiving entries
to/from another processor, we order the corresponding entries with respect to the
global index triple. This ensures that the entries are sent/received in the correct order.

Parallelization of Z and Z�

Since each entry of a vector 	 2 Z or in Z� corresponds to a unique subdomain,
parallelization is easier. For 	 2 Z and q D 1; : : : ; p, let 	.q/loc be the local vector of

entries 	i such that pi D q, and let 	loc WD Œ	
.q/
loc �

p
qD1 be the corresponding parallel

vector. Moreover, let Zloc, Z�
loc be the spaces of such parallel vectors and let

A W Z�
loc ! Z�; D W Z ! Zloc

denote the accumulation and distribution operator, respectively. Opposed to the
global vectors of Lagrange multipliers, here the operator A creates a global vector
on each processor by collecting the vectors from all processors. Note that the size
of this global vector is of the same order as the number of subdomains. For the
distribution operator, we have the identity D D A>.

Parallelization of the FETI/BETI Operators

We will now replace the operators occurring in Algorithm 4 by operators involving
the parallel spaces defined above. The following operators arise naturally.
If M�1 D I , we have to set M�1 WD A as an operator mapping U �

dist to Uacc.
The implementation of Q W U �

dist ! Uacc depends on the choice of Q:

• If Q D I or Q D Qdiag, we first implement local diagonal operators Q.q/.
Applying them in parallel leads to the operator Qloc W U �

dist ! Udist. Finally, we
set Q WD A Qloc.

• If Q D M�1
sD , we set Q WD M�1

sD .
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Operator Adjoint

B : W ! U �
dist B> : Uacc ! W �

BD : W � ! Udist B>
D : U �

acc ! W

R : Zloc ! W R> : W � ! Z�
loc

G WD B R D : Z ! U �
dist G> WD A R>B> : Uacc ! Z�

F WD BS� B> : Uacc ! U �
dist –

M�1
sD WD A BD S B>

DA : U �
dist ! Uacc –

The parallel operators corresponding to the projections P , P> are as follows:

P WD I � Q G.G>QG/�1G> W Uacc ! Uacc;

P> WD I � G.G>QG/�1G> Q W U �
dist ! U �

dist :

Note that the matrix corresponding to the coarse operator .G>Q G/ W Z ! Z�
can be assembled and made available on each processor, and its factorization can be
built and stored. Recall from Remark 2.22 that if Q D M�1

sD , we can leave out P.

Remark 2.36. A parallely efficient assembly of G>Q G for the case Q D M�1
sD

is tricky but possible. One possible way of implementation is described in [FR94],
see also [BDFC00] for a parallel speed-up of the factorization. Another recipe is
the following. In Sect. 2.4.2.1, we will see that there is an averaging operator ED W
W ! bW such that G>M�1

sD G D R>.I � ED/
>S .I � ED/R D R>E>

DS ED R,
where the latter identity holds true because S R D 0. From this formula, we
see that averaging each kernel function (by ED) and employing suitable neighbor
communication, we can figure out the corresponding row of the matrix G>M�1

sD G.

The final FETI/BETI algorithm (including PCG) is displayed in Algorithm 6.

2.2.6 Inexact FETI/BETI Methods

Recall that the action of S�i requires to solve a system on subdomain ˝i . For a
FEM subdomain, the system matrix is the (regularized) stiffness matrix, for a BEM
subdomain, the system matrix has the form

	 eDi
1
2
M>
i C K>

i
1
2
Mi C Ki �Vi



;

where eDi is the matrix corresponding to the hypersingular operator, regularized
if ˝i is floating, see Sect. 2.2.5.4. We already mentioned that this matrix can be
factorized using H -LU (or Cholesky) factorization. If one uses the fast multipole
method, only the fast application of the above matrix to a vector is available. In
[LOSZ07b, LOSZ07a], (see also [KW00] for the original idea in a FETI setting), an
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Algorithm 6: Parallel FETI/BETI method including PCG

g D
(
ŒNifi � Si QgDj@˝i �siD1 in classical formulation

ŒNifi �
s
iD1 in all-floating formulation

�
.0/
acc D Q G.G>Q G/�1A R>g
d
.0/

dist D P>B


S�.g � B>�.0/dist/� QgD

�
k D 0

repeat
z.k/acc D P M�1d .k/dist (in the unpreconditioned case: z.k/acc D Ad .k/dist)

q
.k/
acc D z.k/acc C ˇk�1 q.k�1/

acc where ˇ�1 D 0,

ˇk�1 D hd .k/dist; z.k/acci
hd .k�1/

dist ; z.k�1/
acc i

�
.kC1/
acc D �

.k/
acc C ˛.k/ q

.k/
acc where ˛k D hd .k/dist; z.k/acci

hP>F q.k/acc ; q
.k/
acci

d
.kC1/
dist D d

.k/

dist � ˛k P>F q.k/acc D B.u.k/ � QgD/
k D k C 1

until stopping criterion fulfilled for d .k/dist

u.k/ D QgD C 

I � R D.G>Q G/�1G>Q B

� 

S�.g � B>�.k/acc/ � QgD

�

inexact BETI method has been developed which circumvents this factorization. The
BETI system is rewritten as the threefold saddle point system

2
4 �V 1

2
I CK 0

1
2
I CK> D B>
0 B

3
5

2
4 t

u
�

3
5 D

2
4 0

f

0

3
5 ; (2.58)

where V D diag.Vi /, D D diag.Di /, and K D diag.Ki/, see also Remark 2.18.
The authors use and extend the classical theory of saddle point preconditioners, see
[BP88, Zul02, Zul11]. Their full preconditioner is based on the scaled hypersingular
BETI preconditioner (M�1

sD with Si replaced byDi ) and further preconditioners for
the local single layer potential operators Vi . For the latter, several choices have been
proposed in the literature, see e.g. [FS97, Ste03a]. The same technique applies to
hybrid FETI/BETI methods, as outlined in [LP08].

2.3 Balancing Neumann-Neumann Methods

In this section, we define the balancing Neumann-Neumann method. Its close
connection to FETI will be subject of Sect. 2.4.2.4. The Neumann-Neumann
methods were first developed by Bourgat, Glowinski, Le Tallec, and Vidrascu, as
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well as De Roeck, see [BGLV89, De 91, DL91]. They were considerably improved
by adding a second coarse level, see Mandel and Brezina [Man93, MB96], Le
Tallec [Le 94], as well as Dryja and Widlund [DW95]. See also [TW05, Sect. 6.2]
for more details on the method. For an alternative with a different coarse space
see [BS02, Sect. 7.7]. The connection between balancing Neumann-Neumann and
FETI methods was demonstrated in [KW01], and supported with an underpinning
theory in [SM08]. Note also that the Neumann-Neumann methods have been further
developed by Dohrmann and Mandel, leading to the BDDC methods, see Sect. 5.1.4.

Assume for simplicity that gD D 0 and let W , bW , S W W ! W �, and g 2 W �
be defined either as in the classical or as in the all-floating formulation. Let V h

D.�S/

be as in (2.12) and recall that V h
D.�S/ � bW . Let A> W V h

D.�S/ ! W denote the
natural embedding and A W W � ! V h

D.�S/
� its adjoint (the latter can be seen as

an assembling operator). Furthermore, we define bS WD AS A> and Og WD Ag. The
equation

find u 2 V h
D.�S/ W bS u D Og (2.59)

is then identical to the skeleton formulation (2.11).
The balancing Neumann-Neumann preconditioner can be classified as a sym-

metric, hybrid two-level Schwarz preconditioner for bS (cf. [TW05, Sect. 2.2]; here
hybrid indicates the combination of Schwarz projectors in both an additive and
multiplicative way). First, we define the “coarse” level. Let the averaging operatorbED W W ! V h

D.�S/ be defined by

.bED/.x
h/ WD

8<
:

P
j2N

xh

ı
�
j .x

h/wj .xh/ for xh 2 @˝h
i n �D;

0 for xh 2 @˝h
i \ �D;

(2.60)

where ı�j are the weighted counting functions from (2.53) (for a fixed choice of

scalings 
j ). Let r.i/ 2 W be such that spanfr.i/i g D ker.Si / and r.i/j D 0 for all

j ¤ i . If ˝i is non-floating, then r.i/ D 0. Moreover, we define the subspace

bW 0 WD spanfbED r
.i/ W i 2 Ifloatg � V h

D.�S/;

with the basis fbED r
.i/gi2Ifloat . Let bR>

0 W bW 0 ! V h
D.�S/ denote the natural

embedding and bR0 its adjoint (bR0 is a restriction and bR>
0 the corresponding

prolongation). Let bS0 WD bR0bS bR>
0 be the corresponding projection of bS (which

is still SPD). Note that the matrix bS0 corresponding to bS0 with respect to the basis
fbED r

.i/gi2Ifloat is sparse. Moreover, it can be shown that for the choiceQ D M�1
sD ,

the matrix bS0 is identical to G>Q G from the FETI method, cf. Remark 2.36.
Let the Schwarz projector bP 0 W V h

D.�S/ ! bW 0 be defined by

bP0 WD bR>
0

bS�1
0

bR0bS; (2.61)
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see also Sect. 1.1.3.3. Finally, the balancing Neumann-Neumann preconditioner
M�1

BNN W V h
D.�S/

� ! V h
D.�S/ is given by

M�1
BNN WD .I � bP0/bED S

� bE>
D .I � bP>

0 / C bR>
0

bS�1
0

bR0 : (2.62)

Note that the operator bE>
D W V h

D.�S/
� ! W � distributes (global) residuals to the

(local) subdomains using the weights ı�j . The process of replacing a residual r 2 bS
by .I � bP>

0 /r when applying the first part of the preconditioner is called balancing,
cf. [Man93, Sect. 2].

Let PZ W W ! W be defined as in (2.50). With Lemma 2.39 in Sect. 2.4.2.1
below, one can show that

.I � bP0/bED D bED PZ : (2.63)

Since range.P>
Z / D range.S/, this identity shows that the application of the pseudo

inverse S� in (2.62) is valid and the output is always consistent, cf. Definition 1.13.
We can apply the preconditioner (2.62) either to the original Schur complement

problem (2.59) or to an auxiliary problem (2.64) that we will introduce below. In
the latter case, many simplifications can be made in the algorithm. Furthermore, it
can be shown that the two algorithms are equivalent.

In a first step, we use bP0 to project Eq. (2.59) to a subspace. Each element w 2
V h
D.�S/ can be decomposed as

w D w0 C Qw; where w0 2 bW 0; Qw 2 range.I � bP 0/; hbS w0; Qwi D 0:

Thanks to the bS -orthogonality of bW 0 and range.I � bP0/, the part u0 of the solution
u of (2.59) is given by

u0 D bR>
0

bS�1
0

bR0 Og:
It is easily seen that Og � bS u0 D .I � bP>

0 / Og. The orthogonal part Qu is given as the
solution of the following problem:

find Qu 2 range.I � bP 0/ W .I � bP>
0 /

bS Qu D .I � bP>
0 / Og: (2.64)

Then u D u0 C Qu is the solution of (2.59). We now solve (2.64) using PCG with
preconditionerM�1

BNN. Two simplifications can then be made. Firstly, when applying
M�1

BNN to this equation, the second term bR>
0

bS�1
0

bR0 in M�1
BNN can be left out, as well

as the term .I � P>
0 /. To explain the second simplification, we first rewrite the

whole procedure as a method in the original variables u D u0 C Qu (assuming that
we have chosen the initial value 0 for Qu.0/). The resulting algorithm is displayed in
Algorithm 7. Due to the properties of u.0/, all the residuals are in range.I � bP>

0 /.
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Algorithm 7: Balancing Neumann-Neumann algorithm based on PCG

u.0/ D bR>
0

bS�1
0

bR0 Og
r.0/ D Og � bS u.0/

k D 0

repeat
z.k/ D bED S

� bE>
Dr

.k/

s.k/ D .I � bP 0/z.k/

p.k/ D s.k/ C ˇk�1 pk�1 where ˇ�1 D 0, ˇk�1 D hr.k/; s.k/i
hr.k�1/; s.k�1/i

for k > 0
u.k/ D u.k/ C ˛k p

.k/ where ˛k D hr.k/; s.k/i
hbS p.k/ ; p.k/i

r.kC1/ D r.k/ � ˛k bS p.k/
k D k C 1

until stopping criterion fulfilled for r.k/

Hence, the projection step .I � bP>
0 / in the operator .I � bP>

0 /
bS can be omitted as

well (and is not included in Algorithm 7).
A brief analysis of the balancing Neumann-Neumann preconditioner will be

given in Sect. 2.4.2.4, where we will also see a close connection to FETI/BETI.

2.4 Introduction to the Analysis of FETI/BETI

In this section, we first investigate the conditioning of the FETI/BETI operator
itself (Sect. 2.4.1). Second, we introduce an abstract framework for analyzing the
condition number of the preconditioned operator (Sect. 2.4.2).

2.4.1 The Unpreconditioned Case

Following [FMR94, Sect. 3], we analyze the convergence of Algorithms 2 and 3 for
the case M�1 D Q D I . Thanks to Lemma 1.49, it suffices to find an upper bound
for the condition number of the corresponding operator. Since Q D I , the operator
P>Fj QUad

maps to U �
ad D Uad, and so, as a formal preconditioner we can choose the

natural embedding of Uad into the factor space eU ad. Since each element in the factor
space has a unique representative in range.B/, we can use Uad \ range.B/ instead
of eU ad and obtain
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�.P>Fj QUad
/ D

sup
�2Uad\range.B/

hF �; �i
k�k2

`2

inf
�2Uad\range.B/

hF �; �i
k�k2

`2

: (2.65)

In the following let a . b be a short hand for a � C b and a Å b for a . b and
b . a, where C is a generic constant.

Lemma 2.37. OnUad \ range.B/, the operatorB> is injective. Let Bi 2R
M�dim.Wi/

be the matrix representation of Bi with respect to the nodal basis of Wi . Then

sX
iD1

kB>
i �k2

`2
Å k�k2

`2
8� 2 Uad \ range.B/;

where the equivalence constants only depend on the maximal number of subdomains
that share a single node xh 2 � h

S .

Proof. In the classical formulation, we have

sX
iD1

kB>
i �k2

`2
D

X
xh2� h

X
i2N

xh

ˇ̌
ˇ X
j2N

xh
nfig

sign.i � j / �ij .xh/
ˇ̌
ˇ2

„ ƒ‚ …
DW b1.�; xh/

(see Lemma 2.14) and

k�k2
`2

D
X
xh2� h

X
i; j2N

xh
; i>j

j�ij .xh/j2

„ ƒ‚ …
DW b2.�; xh/

:

For � 2 range.B/, the expressions
p
b1.�; xh/ and

p
b2.�; xh/ are norms on

a space of dimension #.Nxh/ and as such equivalent. Since there are only a
bounded number of topologically different configurations of a shared node xh, the
equivalence in the statement of the lemma is indeed uniform. The treatment of the
additional terms in the all-floating formulation is straightforward. ut
Theorem 2.38. Assume that

(i) The triangulation T h.�S/ is shape regular,
(ii) The local triangulations T h.@˝i / are quasi-uniform with mesh parameter hi ,

(iii) The intersection @˝i \ �D is either empty or has positive surface measure,
(iv) The number of subdomains sharing a node xh 2 � h

S is uniformly bounded.

Then
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�.P>Fj QUad
/ � C

kA kL1.˝/

˛min

maxsiD1 Hi h
1�d
i

minsiD1 h2�di

;

where the constant C is independent of Hi , hi , A , and the number of subdomains,
but it depends on the subdomain shapes. If T h.�S/ is quasi-uniform, then

�.P>Fj QUad
/ D O

�H
h

�
as h ! 1;

where H WD maxsiD1 Hi .

Proof. We define the subspaces

W ?
i WD

(
fwi 2 Wi W .wi ; 1/`2 D 0g if ˝i floating,

Wi else,

where wi $ wi and 1 is the vector of ones. Furthermore, we set

jwi jSi WD hSi wi ; wi i for wi 2 Wi :

Throughout the proof, let � 2 Uad \ range.B/ be arbitrary but fixed. Due to
Lemma 1.14,

hF �; �i D hS�B>�; B>�i D
sX
iD1

sup
wi2W?

i

hB>
i �; wi i2
jwi j2Si

:

Assume first that IBEM D ;. Corollary 1.61 implies that

˛min H
�1
i hd�1

i kwik2`2 . jwi j2Si . kA kL1.˝i / h
d�2
i kwik2`2 8wi $ wi 2 W ?

i :

If IBEM ¤ ; we can use the spectral equivalence in Corollary 1.94, then the
equivalence constants depend additionally on the constant c0.@˝i / defined as in
Lemma 1.77. Moreover, sinceB>

i � 2 range.Si / implies .B>
i �; 1/`2 D 0, we obtain

sup
wi$wi2W?

i

hB>
i �; wi i2
kwik2`2

D sup
wi$wi2W?

i

.B>
i �; wi /

2
`2

kwik2`2
D kB>

i �k2
`2
:

Combining the above estimate with Lemma 2.37 yields
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hF �; �i .
sX
iD1

˛�1
min Hi h

1�d
i kB>

i �k2
`2

. ˛�1
min

s
max
iD1 .Hi h

1�d
i / k�k2

`2
;

hF �; �i &
sX
iD1

kA k�1
L1.˝/ h

2�d
i kB>

i �k2
`2

& kA k�1
L1.˝/

s

min
iD1 h

2�d
i k�k2

`2
:

Together with (2.65) this concludes the proof. ut

2.4.2 Abstract Framework for the Preconditioned Case

In this subsection, we collect abstract results, whose proofs can be performed on
the operator level. Later on, we will have to make rather strong assumptions on the
coefficient and the subdomains and use technical tools for finite element functions.

2.4.2.1 The Projection Operators PD and ED

An important role in the analysis of the scaled Dirichlet preconditioner (2.57) is
played by the projection operator

PD WD B>
DB; (2.66)

whose properties are summarized in the following lemma. The result for classical
FETI methods was proved by Klawonn and Widlund [KW01], see also [TW05].

Lemma 2.39. The operator PD W W ! W defined in (2.66) satisfies the identities

B M�1
sD B> D P>

D S PD; (2.67)

B PD D B; (2.68)

for both the classical and the all-floating formulation. Furthermore, ED WD I �PD
is a projection onto the subspace bW , and can be evaluated by

.ED w/i .x
h/ D

8<
:

P
j2N

xh

ı
�
j .x

h/wj .xh/ for xh 2 @˝h
i n �D;

0 for xh 2 @˝h
i \ �D :

(2.69)

Proof. Identity (2.67) follows from the definitions of M�1
sD and PD . Recall that

.B w/ij .x
h/ D sign.i � j /



wi .x

h/ � wj .x
h/

�
for xh 2 � h

ij ;

.B w/iD.x
h/ D wi .x

h/ for xh 2 @˝h
i \ �D;
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where the last formula holds only in the all-floating formulation. From Lemma 2.28,
we immediately obtain that

.PD w/i .x
h/ D

8̂
ˆ̂<
ˆ̂̂:

P
j2N

xh

ı
�
j .x

h/


wi .xh/ � wj .xh/

�
for x 2 @˝h

i \ � h;

wi .xh/ for xh 2 @˝h
i \ �D;

0 else.
(2.70)

This implies formula (2.69), and we see that ED w 2 bW . Hence B ED D 0, which
implies (2.68). Therefore, PD is a projection, and so is ED . ut
Corollary 2.40. For each � 2 range.B/ we can find a function w 2 range.PD/
such that � D B w.

Proof. Lemma 2.39 implies that range.B/ D range.B PD/. ut
Remark 2.41. The operator ED is a weighted averaging operator and equals the
operator bED from Sect. 2.3, up to identification of bW and V h

D.�S/, cf. [KW01]. For
the multiplicity scaling 
i .xh/ D 1, .ED w/i .xh/ is the algebraic mean value of
fwj .xh/gj2N

xh
.

2.4.2.2 Positivity of the Preconditioner

For a diagonal choice ofQ (see [KW01]), the operatorQ is SPD per definition, and
so the projections P and P> are well-defined. As the following lemma shows, P
and P> are also well-defined if Q D M�1

sD .

Lemma 2.42. The scaled Dirichlet preconditioner M�1
sD is SPD on range.G/.

Consequently, if Q D M�1
sD , then the projections P and P> are well-defined.

Proof. From (2.57) it is immediate that M�1
sD is positive semi-definite. To show the

definiteness on range.G/, assume that hB z; M�1
sD B zi D 0 for some z 2 ker.S/.

Due to identity (2.67) we obtain jPD zj2S D 0 which implies that PD z D z �
ED z 2 ker.S/ and consequently, ED z 2 ker.S/. However, ED z 2 ker.B/ and
ker.S/ \ ker.B/ D f0g imply that ED z D 0. This means that the function z,
which is piecewise constant on the subdomains, is continuous across the subdomain
interfaces and vanishes on the Dirichlet boundary. Since the domain˝ is connected,
there is no other possibility than z D 0, which shows the definiteness. ut

The next lemma discusses the positivity of P M�1
sD on eU �

ad.

Lemma 2.43. If Q is SPD on range.G/, then P M�1
sD is SPD on eU �

ad.

Proof. From (2.57) it is immediate that M�1
sD is positive semi-definite. To show the

definiteness on eU �
ad, assume that h�; M�1

sD �i D 0 for some � 2 eU �
ad. Due to
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Corollary 2.40, there exists a function w 2 range.PD/ with � D B w, and so

0 D h�; M�1
sD �i D jPD wj2S D jwj2S D 0:

Hence, w 2 ker.S/ and � D B w 2 range.G/. The definition (2.43) of eU �
ad yields

h�; Q�i D h�; QB wi D 0:

Since Q is SPD on range.G/, it follows that � D 0. ut

2.4.2.3 An Abstract Condition Number Estimate for FETI/BETI

With the following two lemmas, we can reduce the condition number estimate of the
preconditioned FETI/BETI method to a single stability estimate of the PD operator.
For the original proofs see [KW01] and also [MT96].

Lemma 2.44. Let Q be SPD on range.G/. Then, for any w 2 W , then there exists
a unique element zw 2 ker.S/ such that B.w C zw/ 2 eU �

ad, given by

zw D �R .G>QG/�1G>QB w D �.I � PZ/w;

where PZ is defined in (2.50). Moreover, if Q is SPD on eU �, then

zw D argmin
z2kerS

kB .w C z/kQ; and kB zwkQ � kB wkQ;

where k�kQ WD h�; Q�i1=2.
Proof. The statements follow from Sect. 1.1.3.3 and Lemma 1.3. ut
Lemma 2.45. Assume that P M�1

sD is SPD on eU �
ad and let ! be a parameter such

that
jPD.w C zw/j2S � ! jwj2S 8w 2 W;

where zw is the unique element from Lemma 2.44. Then

�.P M�1
sD P

>Fj QUad
/ � !:

Proof. Let MsD W eU ad ! U �
ad be the inverse of .P M�1

sD /j QU�
ad

. From Corollary 1.50,
we see that

�.P M�1
sDP

>Fj QUad
/ D

sup
�2 QUad

hF �; �i
hMsD �; �i

inf
�2 QUad

hF �; �i
hMsD �; �i

: (2.71)
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In order to estimate the numerator in (2.71), we bound F in terms of MsD. Let
� 2 eU ad arbitrary but fixed. Lemma 1.14 and our assumptions imply

hF �; �i D sup
w2W

hB w; �i2
jwj2S

� ! sup
w2W

hB w; �i2
jPD .w C zw/j2S

:

From to the definition (2.37) of Uad and from eU ad D Uad= ker.B>/, we can conclude
that

hB w; �i D hB .w C zw/; �i:
Together with the above it follows from (2.67) and Lemma 2.44 that

hF�; �i � ! sup
w2W

hB.w C zw/; �i2
hB.w C zw/;M

�1
sD B.w C zw/i

� ! sup
�2 QU�

ad

h�; �i2
h�;M�1

sD �i D !hMsD�; �i:

We now turn to the denominator in (2.71). Let � 2 eU ad be fixed and � 2 eU �
ad

arbitrary. Thanks to Corollary 2.40, there exists w 2 range.PD/ such B w D �.
Hence,

hF �; �i 	 hB w; �i2
jwj2S

D hB w; �i2
jPDwj2S

D hB w; �i2
hB w; M�1

sD B wi D h�; �i2
h�; M�1

sD �i :

Since � 2 eU �
ad was arbitrary, we get that

hF �; �i 	 hMsD �; �i 8� 2 eU ad :

Combining the two bounds concludes the proof. ut
In Sect. 2.6 we will work out in detail the missing bound

jPD.w C zw/j2S � ! jwj2S 8w 2 W;
which requires a series of assumptions and technical tools that we present in
Sect. 2.5.

2.4.2.4 An Estimate for the Balancing Neumann-Neumann Method

For the original analysis of the balancing Neumann-Neumann preconditioner we
refer to [Man93, MB96], see also [DW95] and [TW05, Sect. 6.2.3]. Here, we
provide an analysis which makes use of an abstract framework evolved from the
above works on Neumann-Neumann as well as from the analysis of the more recent
BDDC methods (see Sect. 5.1.4). We note that the following theorem (cf. [MS07a,
Theorem 2] and [Sou10, Theorem 2.5]) has certain relations to the ficticious space
lemma by Nepomnyaschikh, cf. [Nep91a, Nep92, Nep07].
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Theorem 2.46. Let bX � X be two Hilbert spaces, a.�; �/ W X�X ! R a symmetric
positive definite bilinear form, and let A W X ! X� and bA W bX ! bX� denote the
corresponding operator and its restriction to bX . Furthermore, let bQ W X ! bX be a
projector. The abstract BDDC preconditioner bB�1 W bX� ! bX is defined by

bB�1 W bQA�1bQ> :

Let XM WD ˚
v 2 X W 8z 2 X W bQ v D bQ z H) kvka � kzka

�
, where k � ka is

the norm associated to a.�; �/, and let ! be the minimal constant such that

kbQ vk2a � ! kvk2a 8v 2 XM:

Then

�.bB�1 bA/ � ! D sup
v2X

kbQ vk2a
kvk2a

:

Proof. For completeness we display the proof from [MS07a, Sou10]. Let bG W bX !
X be defined by bG v WD argmin

w2XM W v D OQw

a.w; w/:

A short computation reveals that

bG D A�1 bQ> bB; bQbG D I; bG>AbG> D bB; (2.72)

where bB W bX ! bX� is the inverse of bB�1. Using (2.72), the definition of bG, and the
fact that bQ is a projection, we obtain

hbB v; vi D a.bG v; bG v/ � a.v; v/ 8v 2 bX;
which shows that �min.bB�1bA/ 	 1. Now, we conclude from (2.72) and the defining
property of ! that for any v 2 bW ,

kvk2a D kbQ bG vk2a � ! kbG vk2a D ! hbB v; vi:

The last estimate implies that �max.bB�1 bA/ � !. The alternative characterization of
! is trivial. ut

The following lemma makes use of the above abstract theorem and shows that a
similar estimate as in Lemma 2.45 implies a bound for the condition number of the
balancing Neumann-Neumann preconditioner.

Lemma 2.47. For each i D 1; : : : ; s, let W ?
i be a subspace of Wi such that the

sum Wi D ker.Si /˚W ?
i is direct, and let W ? WD Qs

iD1 W ?
i . Then a bound of the

form
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jED wj2S � ! jwj2S 8w 2 W ? (2.73)

implies that
�.M�1

BNN
bS jrange.I�bP 0// � !:

Proof. Firstly, we convince ourselves that

M�1
BNN

bS jrange.I�bP 0/ D .I � bP0/bED S
� bE>

D.I � bP>
0 /

bS jrange.I�bP 0/ :
Using identity (2.63) and the fact that PZ S�jrange.S/ is the inverse of the restriction
of S to range.PZ/, it can be shown that the balancing Neumann-Neumann
preconditioner fits into the framework of Theorem 2.46 with

X WD range.PZ/; bX WD range.I � bP0/; bQ WD .I � bP 0/bED D bED PZ :

Hence, Theorem 2.46 implies that

�.M�1
BNN

bS jrange.I�bP 0// � sup
w2range.PZ/

jED wj2S
jwj2S

D sup
w2W?

jED PZ wj2S
jwj2S

;

where in the last step, we have used the same argumentation as in Lemma 2.103
below. Finally, the statement of the lemma follows since bED PZ D .I � bP 0/ED
and .I � bP0/ is an bS -orthogonal projector with its bS -norm less or equal than one.

ut
The connection between FETI and balancing Neumann-Neumann methods can

firstly be seen from the ingredients of the two methods, which are related by the two
operators S and S�, by B>

D B D PD D I �ED, by the fact that the coarse matrices
coincide for the case Q D M�1

sD , cf. Sect. 2.3, and by many common parts of their
analyses (see also [KW01]). Secondly, since the norm of a non-trivial projection in
a finite-dimensional Hilbert space depends only on the angle between its kernel and
range [IM95], the bound (2.73) implies

jPD wj2S � ! jwj2S 8w 2 W ?; (2.74)

and vice versa. Moreover, Sousedik and Mandel [SM08] proved that the spectra of
the FETI preconditioner (with Q D M�1

sD ) and the balancing Neumann-Neumann
preconditioner (with corresponding scalings) are identical except for the eigenvalue
of one, i.e., �.M�1

BNN
bS jrange.I� OP0// n f1g D �.M�1

sD Fj QUad
/ n f1g.
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2.5 Technical Tools

In this section, we first define a partition of the skeleton into so-called globs and
introduce associated cut-off functions. These will be used to split the contributions
in the operator PD that involve different neighbors. To estimate the effect of the
cut-off, we need regularity assumptions of the subdomains (Sect. 2.5.2) and a series
of technical estimates (Sects. 2.5.3–2.5.6). Readers interested in the main line of the
analysis may initially bypass the technical estimates, continue with Sect. 2.6, and
return to the necessary lemmas at a later stage.

2.5.1 Globs and Cut-Off Functions

When looking to formula (2.70), we see that the operator PD involves different
subsets of the functions fwi gNiD1 on different parts of the skeleton �S . This is the
main reason for the following definition.

Definition 2.48. (i) For x 2 �S we define the set of subdomains that share x:

Nx WD fi D 1; : : : ; s W x 2 @˝i g:

(ii) The interface � decomposes into equivalence classes of the relation

x 
 y ” Nx D Ny :

Each connected component of such an equivalence class is called a glob (cf.
[Mat08]). For a glob G , we simply denote by NG the set of sharing subdomains
(NG D Nx for all x 2 G ).

(iii) In three dimensions, a glob G on the interface � is called

• Subdomain vertex if it consists of a single point,
• Subdomain face or subdomain facet if it is shared by exactly two subdo-

mains,
• Subdomain edge otherwise.

In two dimensions, a glob G on the interface � is called

• Subdomain edge or subdomain facet if it is shared by exactly two subdo-
mains,

• Subdomain vertex otherwise (being a single point).

Note that subdomain edges may include one of their endpoints (see the
definition of the interface � , Table 2.1, p. 65). Similarly, there are subdomain
faces which include a part of the Neumann boundary.
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ΓD ΓN

Fig. 2.5 Example of a
decomposition of a
two-dimensional domain with
the corresponding globs on
� [ �D ,subdomain vertices
indicated by �̌ , subdomain
edges indicated by — and —�

(iv) We decompose the Dirichlet boundary�D into equivalence classes of the same
type as above, and each connected component of such an equivalence class is
called a Dirichlet glob.

(v) In three dimensions, a Dirichlet glob G is called

• Subdomain vertex if it consists of a single point,
• Subdomain face or subdomain facet if it belongs to exactly one subdomain,
• Subdomain edge otherwise.

In two dimensions, we have again subdomain vertices consisting of a single
point, all other globs are called subdomain edges or also subdomain facets.

Figure 2.5 illustrates the decomposition of � and �D into globs for a two-
dimensional example.

Remark 2.49. Our definition of subdomain faces, edges, and vertices slightly differs
from the “common” one in [TW05, Definition 4.1] because we will need to treat all-
floating methods that operate on the Dirichlet boundary as well.

Notation. We denote subdomain facets, edges, and vertices on � that are shared by
(at least) two subdomains˝i and ˝j generically by Fij , Eij , Vij , respectively. We
would like to point out that an index pair does not necessarily specify a subdomain
facet/edge/vertex uniquely. Subdomain facets, edges, and vertices on @˝i (possibly
shared by ˝i and the outer boundary) are denoted generically by Fi , Ei , and Vi ,
respectively.

Definition 2.50. For a subdomain face F , let F h be the set of nodes contained in
F , and for a subdomain edge E , let E h be the set of nodes contained in E . For a
subdomain vertex V we set V h WD fV g.

In order to separate the contributions of PD on the different globs, we define the
following cut-off functions, according to [TW05, Sect. 4.6]. Let V h.@˝i / denote the
restriction of V h.˝i / to the boundary, cf. Sect. 1.2.6.2.

Definition 2.51 (Finite element cut-off functions).

• For a subdomain vertex Vi , the piecewise linear function 
Vi 2 V h.@˝i / equals
one at the vertex Vi , and zero on all other nodes.

• For a subdomain edge Ei , the piecewise linear function 
Ei 2 V h.@˝i / equals
one at all nodes contained in Ei , and zero at all other nodes.



2.5 Technical Tools 115

• For a subdomain face Fi , the piecewise linear function 
Fi 2 V h.@˝i / equals
one at the nodes contained in Fi , and zero at all other nodes.

Extending these functions by zero, we have 
Gi 2 V h.�S/.

Definition 2.52. Let I h denote the nodal interpolator that interpolates continuous
functions to V h.˝i / or V h.@˝i /.

Notation. By writing

X
Gi

I h.
Giwi /;
X

Gi��
I h.
Giwi /; and

X
Gi��D

I h.
Giwi /;

we mean that we sum over all globs on @˝i , @˝i \ � , and @˝i \ �D, respectively.

The cut-off functions from Definition 2.51 provide a partition of unity in the
sense that

X
Gi

I h.
Gi v/ D v 8v 2 V h.@˝i /; vj@˝i\� hN D 0; (2.75)

where

� h
N WD � h

S \ .�N n � / (2.76)

denotes the set of non-coupling Neumann nodes.
Within the following sections, we work out tools in order to estimate the effect

of a single cut-off in the H1-energy norm.

2.5.2 Regularity Assumptions on the Subdomains

In this subsection we collect all the regularity assumptions that we need for the
technical tools exposed in subsequent sections. Most of the assumptions can be
relaxed (while of course complicating the theory) and we will indicate that at the
corresponding places.

Assumption 2.53. The subdomain triangulations T h.˝i /, i 2 IFEM and
T h.@˝i /, i 2 IBEM are quasi-uniform with mesh parameter hi .

Assumption 2.54. There is a shape regular simplicial coarse triangulation T H.˝/

of ˝ , such that each subdomain˝i is the union of coarse elements and the number
of coarse elements per subdomain is uniformly bounded.

Under Assumption 2.54, the subdomain diameter Hi is equivalent to the
local mesh parameter of T H.˝i /. Furthermore, we can extend the triangulations
T h.@˝i /, i 2 IBEM to auxiliary triangulations T h.˝i/ that are quasi-uniform
with mesh parameter hi . We will use these auxiliary triangulations in the analysis.
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β

Fig. 2.6 Non-convex domain
with abritrarily small exterior
angle ˇ. The displayed
subdomain decomposition
satisfies Assumptions 2.54
and 2.55 with shape regularity
constants uniform in ˇ

The next assumption essentially states that the exterior angles of the BEM
subdomains must be bounded from below. Note that even for a pure BETI method,
this does not necessarily prohibit the global domain ˝ from having bad exterior
angles, cf. Fig. 2.6.

Assumption 2.55. For each subdomain˝i , i 2 IBEM, there exists a neighborhood
˝ 0
i � ˝i and a shape regular simplicial coarse triangulation T H.˝ 0

i /, such that
the shape regularity constants and the number of coarse elements in T H.˝ 0

i / are
uniformly bounded.

Assumption 2.56. The Dirichlet boundary �D is the union of facets (faces/edges)
of the coarse triangulation T H.˝/ from Assumption 2.54.

Thanks to Assumptions 2.54 and 2.56, each glob is the union of a few vertices,
edges, and faces of the coarse triangulation T H.˝/.

Notation. We write a . b if there is a constant C depending only on the shape
regularity and quasi-uniformity constants from Assumptions 2.53–2.55 such that
a � C b. The notation a Å b is a short hand for a . b and b . a.

2.5.3 An Explicit Poincaré Inequality

In this subsection, we provide a uniform bound of the Poincaré constant CP .˝i /

(see Lemma 1.27) under Assumption 2.54. The following lemma is taken from
[PS12b, Lemma A.1]. For similar approaches see also [BH70, DS80, DW06,
VV09].

Lemma 2.57. Let T be a triangle (d D 2) or tetrahedron (d D 3) and let F be
one of its facets (edge if d D 2 and triangular face if d D 3). Then

ku � uF kL2.T / � diam.T / jujH1.T / 8u 2 H1.T /:
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Proof. Due to Veeser and Verfürth (see [VV09, Sect. 4, Remark 4.6, formula (2.3),
and Corollary 4.5]), for all v 2 H1.T /:

1

measd�1.F /
kvk2

L2.F /
� 1

measd .T /
kvk2

L2.T /
C 2 diam.T /

d measd .T /
kvkL2.T / jvjH1.T /;

(2.77)

Due to [PW60, Beb03],

ku � uT kL2.T / � diam.T /

�
jujH1.T / 8u 2 H1.T /; (2.78)

because T is convex. With the triangle inequality and Cauchy’s inequality,

ku � uF kL2.T / � ku � uT kL2.T / C p
measd .T / juT � uF j

� ku � uT kL2.T / C
p

measd .T /p
measd�1.F /

ku � uT kL2.F /

Using (2.77) and (2.78) in the estimate above yields

ku � uF kL2.T / � diam.T /
� jujH1.T / C

r
ku � uT k2

L2.T /
C 2 diam.T /

d
ku � uT kL2.T /jujH1.T /

� diam.T /
� jujH1.T / C

r
diam.T /2

�2
juj2
H1.T /

C 2 diam.T /
d

diam.T /
� juj2

H1.T /

D
�
1
� C

q
1
�2

C 2
d �

�
diam.T / jujH1.T /

Since d 	 2, the factor in the parentheses is � 0:96609936 � 1. ut
Definition 2.58. Let T H.˝/ be a simplicial triangulation. An open set Y � ˝ is
called (d -dimensional) agglomerate of T H.˝/ (in short T H -agglomerate) if Y is
a connected union of elements from T H.˝/.

Definition 2.59. Let Y be an agglomerate of T H.˝/ with Y D SL
`D1 T`. We call

the region P`1;`s D interior.T`1 [ T`2 [ � � � [ T`s /, 1 � `1; : : : ; `s � L, a path from
T`1 to T`s of length s if for each i D 1; : : : ; s � 1, the elements T`i and T`iC1

share
a common facet Fi .

The following two lemmas lift the result of Lemma 2.57 from a single simplex
to an agglomerate, cf. [PS11c, Lemmas 2 and 4]. We will revisit the same approach
in Sect. 3.4.4.
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Lemma 2.60. Let Y be an agglomerate of T H.˝/, let P`1;`s D interior.T`1 [
T`2 [ � � � [ T`s / be a path and let Fi be the facet shared by T`i and T`iC1

for i D
1; : : : ; s � 1. Furthermore, let Fs be any facet of T`s . Then

ku�uFsk2
L2.T`1 /

� 4

� sX
iD1

measd .T`1/ diam.T`i /
2

measd .T`i /

�
juj2

H1.P`1;`2 /
8u 2 H1.Y /:

Proof. By a telescoping argument we have

ku � uFskL2.T`1 / � ku � uF1kL2.T`1 / C
sX
iD2

p
measd .T`1/

ˇ̌
uFi�1 � uFi

ˇ̌
:

With Lemma 2.57,

ku � uF1kL2.T`1 / � diam.T`1/ jujH1.T`1 /
:

For fixed 2 � i � s the same lemma implies that

ˇ̌
uFi�1 � uFi

ˇ̌2 � 2

measd .T`i /

�
kuFi�1 � uk2

L2.T`i /
C ku � uFi k2

L2.T`i /

�

� 4

measd .T`i /
diam.T`i /

2 juj2
H1.T`i /

:

Combining the three estimates above, Cauchy’s inequality (in R
s) yields

ku � uFsk2
L2.T`1 /

�
h sX
iD1

4measd .T`1/ diam.T`i /
2

measd .T`i /

i
juj2

H1.P`1;`s /
;

which completes the proof. ut
Lemma 2.61. Let Y an agglomerate of T H.˝/ consisting of at most L elements.
Then

CP .Y / � C;

where C only depends on L and on the shape regularity constant of T H.˝/.

Proof. One easily shows that

measd .T / 	 cmeasd .Y /; diam.T / 	 c diam.Y /

for all elements T contained in Y , where the constant c only depends on L and on
the shape regularity constant of T H.˝/. Let F be an arbitrary facet of Y . For each
element T in Y there exists a path from T to the element containing F of maximal
length L. Summing the estimate in Lemma 2.60 over all elements in Y yields

inf
c2R ku � ck2

L2.Y /
� ku � uF k2

L2.Y /
� C diam.Y /2 juj2

H1.Y /
:

for all u 2 H1.Y /. ut
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Corollary 2.62. Under Assumption 2.54, the Poincaré constants of all the subdo-
mains are uniformly bounded.

Remark 2.63. Without Assumption 2.54, one can instead assume that the
isoperimetric constants of the subdomains are uniformly bounded, see [DKW08b,
DKW08a, KRW08]. Note that ragged boundaries alone do not make these constants
blow up.

2.5.4 Trace and Poincaré Inequalities for FE Functions

In this subsection, we elaborate on inequalities for finite element functions, which
do (in general) not hold in the Sobolev space H1. Therefore, we obtain expressions
depending on the mesh parameter h. All the estimates can e.g. be found in [TW05,
Sect. 4.6] as well as in early papers [BPS86, BPS87, BPS88, BPS89]. Here, we work
out the common pattern and the dependence of the constants on the geometry, using
the assumptions of Sect. 2.5.2.

Definition 2.64. For 0 � m � d � 1, the m-facets of a simplicial (coarse)
triangulation T H.˝/ are

• The vertices of T H.˝/ if m D 0,
• The edges if m D 1,
• The triangular faces if m D 2.

Definition 2.65. For 0 � m � d � 1, a set X � ˝ is called m-dimensional
agglomerate of T H.˝/ (in short T H -agglomerate) if X is a union of m-facets.
The dimension of X is denoted by dX WD m.

Apparently, a zero-dimensional agglomerate consists of finitely many (isolated)
vertices. We see that under Assumption 2.54, the globs from Definition 2.48 are
m-agglomerates of the coarse triangulation T H.˝/ with 0 � m � d � 1.

If X is a T H -agglomerate of dimension dX > 0, the dX -dimensional Lebesgue
measure properly defines the space L2.X/ and the average

vX WD 1

measdX .X/

Z
X

v ds for v 2 L2.X/:

The case dX D 0 is treated in the following definition.

Definition 2.66. Let X D fpj W j D 1; : : : ; J g be a zero-dimensional agglomerate
of T H.˝/, consisting of J different points. For a function v W X ! R, we define

meas0.X/ WD J;

Z
X

v ds WD
JX
jD1

v.pj /; kvkL2.X/ WD
� Z

X

jvj2ds
�1=2
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and the average

vX WD 1

meas0.X/

Z
X

v ds D J�1
JX
jD1

v.pj /:

Let fT h.˝/gh be a family of triangulations that are refinements of T H.˝/

and let V h.˝/ denote the finite element space of continuous and piecewise
linear functions with respect to T h.˝/. For any d -dimensional agglomerate Y of
T H.˝/, we denote by T h.Y / and V h.Y / the restrictions of T h.˝/ and V h.˝/

to Y .

Definition 2.67. Let Y be a d -dimensional T H -agglomerate.

(i) For a T H -agglomerate X � Y of dimension 0 � dX � d , let CP .Y; X I h/
denote the smallest parameter such that

kv � vXkL2.Y / � CP .Y; X I h/ diam.Y / jvjH1.Y / 8v 2 V h.Y /:

For dX 	 d � 1 let CP .Y; X/ denote the smallest constant such that the above
inequality holds in H1.Y /.

(ii) For T H -agglomerates X , W � Y of dimensions dX , dW 2 Œ0; d �, let
CP .Y; X; W I h/ denote the smallest parameter such that

kv � vXkL2.W / � CP .Y; X; W I h/ diam.Y /

s
measdW .W /

measd .Y /
jvjH1.Y / 8v 2 V h.Y /:

For dX 	 d �1 and dW 	 d �1 let CP .Y; X; W / denote the smallest constant
such that the above inequality holds in H1.Y /.

By definition, for dW D d and dX 	 d � 1, we have

CP .D/ � CP .D; X/; CP .D; X; W / � CP .D; X/:

Definition 2.68. For an integer j 	 0, we define the indicator function

�j .x/ WD

8̂
<̂
ˆ̂:
1 if j � 1;

1C log.x/ if j D 2;

xj�2 if j 	 3:

The following lemma states a discrete trace inequality with explicit dependence
on the geometric parameters.

Lemma 2.69 (discrete trace inequality). Let Assumption 2.54 hold, let Y and W
be T H -agglomerates of dimensions dY Dd and 0�dW �d withW �Y . Further-
more, let T h.Y / be quasi-uniform. Then
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kvk2
L2.W /

� C �d�dW

HY
h

� measdW .W /

measd .Y /

�
H2
Y jvj2

H1.Y /
C kvk2

L2.Y /

�
8v 2 V h.Y /;

where HY D diam.Y /. The constant C only depends on the shape regularity and
quasi-uniformity constants of T H.˝/ and T h.Y /, and on the number of coarse
elements contained in Y .

Proof. For dW D d � 1, the estimate follows from the trace theorem and a scaling
argument. For the case d D 2, dW D 0, see [TW05, Lemma 4.15] and also [BX91].
For d D 3, dW D 0 we combine the embedding of H1.D/ in L2d=.d�2/.D/ and
the inverse inequality kvkL1.D/ . h�.d�2/=2kvkH1.D/ on a domain of unit diameter.
Finally, the case d D 3, dW D 1 is treated by integrating the two-dimensionalL1-
estimate along the edges formingW , see also [TW05] and [PS12b, Lemma A.4].

ut
The statement of the following lemma can be found (in different form) in [TW05,

Sect. 4.6], see also the references therein.

Lemma 2.70 (discrete Poincaré type inequality). Let Assumption 2.54 hold, let
Y be an agglomerate and letX ,W be agglomerates of dimensions dX , dW 2 Œ0; d �.
Furthermore, let T h.Y / be quasi-uniform. Then

kv � vXk2
L2.W /

� C �d�min.dX ; dW /


H
h

� measdW .W /

measd .Y /
H2 jvj2

H1.Y /
8v 2 V h.Y /;

where H D diam.Y /. The constant C only depends on the shape regularity and
quasi-uniformity constants of T H.˝/ and T h.Y /, respectively, and on the number
of elements that Y contains.

Proof. We have

1
2 kv � vXk2

L2.W /
� kv � vY k2

L2.W /
C measdW .W /

ˇ̌
vY � vX

ˇ̌2

� kv � vY k2
L2.W /

C 2
measdW .W /

measdX .X/

�
kv � vY k2

L2.X/
C kv � vXk2

L2.X/

�
:

Due to the Ritz minimum principle (cf. Lemma 1.3),

kv � vXk2
L2.X/

D inf
c2R kv � ck2

L2.X/
� kv � vY k2

L2.X/
:

Hence, applying Lemma 2.69 for the manifoldsX and W , we obtain

1
2 kv � vXk2

L2.W /
� kv � vY kL2.W / C 4

measdW .W /

measdX .X/
kv � vY k2

L2.X/

�
�
�d�dW


H
h

� C 4 �d�dX

H
h

�� measdW .W /

measd .Y /

�
jvj2
H1.Y /

C diam.Y /�2kv � vY k2
L2.Y /

�
:
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Applying Poincaré’s inequality on Y and taking Lemma 2.61 into account concludes
the proof. ut
Corollary 2.71. Under the assumptions of Lemma 2.70,

CP .Y; X; W I h/ � C

q
�d�min.dX ; dW /



H
h

�
;

CP .Y; X I h/ � C

q
�d�dX 


H
h

�
:

2.5.5 Cut-Off Estimates

In this subsection, we estimate the effect of a cut-off in the energy norm. As for
Sect. 2.5.4, the following estimates can be found in [TW05]. They mainly stem from
the early works [BPS86, BX91, Dry87, DW94, DW95] on iterative substructuring.

Definition 2.72. Let Fi be a subdomain facet (i.e., a subdomain face if d D 3, a
subdomain edge if d D 2) on @˝i . We set

#Fi WD H h
i .
Fi / 2 V h.˝i/:

Here, the space V h.˝i / and the discrete harmonic extension H h
i are defined with

respect to the (possibly auxiliary) triangulation T h.˝i /. For any Gi on @˝i that is
not a subdomain facet, we define #Gi 2 V h.˝i / as the extension of 
Gi 2 V h.@˝i /

that vanishes at all interior nodes of ˝i .

Remark 2.73. For simplicity, we did not indicate the subdomain index in the
definition above. For any interface glob G we may regard #G as a global function in
V h.˝/ only supported in the subdomains that share the glob G .

For any v 2 V h.˝i /, the function I h.#Gi v/ is an extension of I h.
Gi vj@˝/ and
so by the minimizing property of H h

i (cf. Definition 1.55),

jH h
i .
Gi v/jH1.˝i / � jI h.#Gi v/jH1.˝i /:

Notation. Above and in the following, with a small abuse of notation, whenever v
is a function with well-defined values at the nodes contained in Gi , by

H h
i .
Gi v/ (2.79)

we mean that we first interpret the expression 
Gi v as a function in V h.@˝i / (by
interpolating at the nodes contained in Gi , and choosing zero at all other nodes) and
then apply H h

i to it.

The following lemmas give further bounds in terms of the original function v.
First, we discuss the case of lower-dimensional globs.
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Lemma 2.74. Let T h.˝i/ be quasi-uniform. Then for any glob Gi of dimension
0 � m < d � 1 (a subdomain vertex or edge if d D 3, a subdomain vertex if
d D 2),

jI h.#Gi v/j2H1.˝i /
� C hd�2�m

i kvk2
L2.Gi /

8v 2 V h.˝i /;

where kvkL2.Vi / D jv.Vi /j. In particular,

j#Vi j2H1.˝i /
� C hd�2

i :

For d D 3, let Ei be a subdomain edge such that Vi 2 Ei . Then

jI h.#Vi v/j2H1.˝i /
� C kvk2

L2.Ei /
8v 2 V h.˝i/:

If d D 3 and if Assumption 2.54 holds then

j#Ei j2H1.˝i /
� C Hi :

The constant C only depends on the shape regularity constants of T h.˝i/ (and on
the shape regularity of T H.˝/ in the last estimate).

Proof. Let v 2 V h.˝i/ be arbitrary but fixed and note that I h.#Gi v/ vanishes on all
nodes of T h.˝i/ except those on Gi . Then, by a an inverse inequality,

jI h.#Gi v/j2H1.˝i /
� C

X
xh2Gi

hd�2
i jv.xh/j2 � C hd�2�m

i

X
xh2Gi

hmi jv.xh/j2:

The sum in the last expression is equivalent to kvk2
L2.Gi /

. For d D 3, we obtain from

the above that jI h.#Vi v/j2H1.˝i /
� C hi jv.Vi /j2 � C kvk2

L2.Ei /
. The last estimate

follows from k1k2
L2.Ei /

D meas1.Ei / � C Hi . ut
Combining Lemma 2.74 with the trace inequality from Lemma 2.69, we obtain

the following result.

Lemma 2.75. Let Assumptions 2.53 and 2.54 hold. Then for any glob Gi of
dimension 0 � m < d � 1 (a subdomain vertex or edge if d D 3, a subdomain
vertex if d D 2),

jI h.#Gi v/j2H1.˝i /
.



1C log



Hi
hi

�� �
jvj2

H1.˝i /
CH�2

i kvk2
L2.˝i /

�
8v 2 V h.˝i/:

Proof. First, we select a glob Xi of dimension at least d � 2. If d D 3 and m D 0,
we choose Xi as a subdomain edge touching Gi , otherwise we set Xi D Gi . Thanks
to Lemma 2.74,
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jI h.#Gi v/j2H1.˝i /
. kvk2

L2.Xi /
:

Lemma 2.69 yields

kvk2
L2.Xi /

. �2


Hi
hi

� measd�2.Xi /H
2
i

measd .˝i/

�
jvj2

H1.˝i /
CH�2

i kvk2
L2.˝i /

�
:

Since measd�2.Xi / Å Hd�2
i and measd .˝i/ Å Hd

i , this concludes the proof. ut
We now turn to the case of a subdomain facet (i.e., a subdomain face if d D 3, a

subdomain edge if d D 2).

Lemma 2.76. Let Assumptions 2.53 and 2.54 hold. Then for any subdomain
facet Fi ,

jI h.#Fi v/j2H1.˝i /
.



1C log



H
h

��2 �
jvj2

H1.˝i /
CH�2

i kvk2
L2.˝i /

�
8v 2 V h.˝i/;

and
j#Fi j2H1.˝i /

.


1C log



H
h

��
Hd�2
i :

Proof. For a proof in three dimensions, we refer to [TW05, Lemmas 4.24 and 4.25].
For the two-dimensional case, see [MB96] as well as the pioneering paper [BPS86].
Sharpness of the estimates is shown in [BS00].

Remark 2.77. On a subdomain facet Fi , the term jH h
i .
Fi v/jH1.˝i / realizes the

H
1=2
00 .Fi /-norm of v 2 V h.Fi /, see also [TW05, Lemma 4.26] and Sect. 2.5.7.

Combining the cut-off lemmas and the discrete Poincaré inequality straightfor-
wardly may create several powers of the term .1 C log.Hi=hi//. The following
corollaries help to keep a power of two.

Corollary 2.78. Let Assumptions 2.53 and 2.54 hold, and let Gi be a glob. Then

jI h.#Gi v/j2H1.˝i /
.
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Hi
hi

��2 jvj2
H1.˝i /

C 

1C log



Hi
hi

��
H�2
i kvk2

L2.˝i /

for all v 2 V h.˝i /.

Proof. If the dimension of Gi is less than d � 1, the statement follows from
Lemma 2.74. If Gi D Fi is a subdomain facet, we have

jI h.#Fi v/j2H1.˝i /
. jI h.#Fi .v � v˝i //j2

H1.˝i /
C j#Fi j2H1.˝i /

jv˝i j2 :

By Cauchy’s inequality (cf. (1.13)) and the estimates from Lemma 2.76, we get

jI h.#Fi v/j2H1.˝i /
.



1C log



Hi
hi

��2 �
jvj2

H1.˝i /
CH�2

i kv � v˝i k2
L2.˝i /

�

C 

1C log



Hi
hi

��
Hd�2
i j˝i j�1 kvk2

L2.˝i /
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ωint
p

p
pωext

(−1,0)

(0,1)

ωext

(1,0)

ωint

Fp

(0,−1)

Ωi

’Ω i
Fig. 2.7 Mapping of a node
patch !p in two dimensions

Poincaré’s inequality (Lemma 2.61) and using that j˝i j Å Hd
i concludes the proof.

ut
Corollary 2.79. Let Assumptions 2.53 and 2.54 hold, and let Gi , Xi be two globs
of ˝i , such that the dimension of Xi is at least d � 2. Then

jI h.#Gi .v � vXi //j2
H1.˝i /

.


1C log



Hi
hi

��2 jvj2
H1.˝i /

8v 2 V h.˝i/:

Proof. The statement follows immediately from Corollary 2.78 and Lemma 2.70.
ut

Summing the estimate from Corollary 2.78 over all globs of a subdomain,
we obtain the following stable decomposition (recall our convention (2.79) from
p. 122),

X
Gi

jH h
i .
Gi v/j2H1.˝i /

.


1C log



Hi
hi

��2 jvj2
H1.˝i /

(2.80)

C 

1C log



Hi
hi

��
H�2
i kvk2

L2.˝i /
8v 2 V h.˝i /:

The following lemma is kind of inverse to (2.80).
Lemma 2.80. Let Assumption 2.54 hold. Then

jH h
i vj2

H1.˝i /
� C

X
Gi

jH h
i .
Gi v/j2H1.˝i /

8v 2 V h.@˝i /; vj@˝i\� hN D 0;

where the constant C only depends on the shape regularity constant of Assumption
2.54.

Proof. Since the functions f
Gi g provide a partition of unity on @˝i n �N , the
function

P
Gi

H h
i .
Gi v/ is a discrete extension of v from @˝i to ˝i . Therefore, the

result follows from Lemma 1.54, the triangle inequality, and the fact that the number
of globs of ˝i is uniformly bounded (see Assumption 2.54). See also Lemma 3.21,
p. 169. ut

Remark 2.81. Almost all proofs of the cut-off estimates in this section rely on
Assumption 2.54 and so does Lemma 2.69. An extension to less regular subdomains
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(so-called John domains that can have ragged boundaries) for two dimensions can
be found in [KRW08]. The three-dimensional case seems to be open yet.

2.5.6 An Explicit Sobolev Extension

In this subsection, we define a Sobolev extension operator for Lipschitz polytopes
in the spirit of Stein [Ste70] and provide an explicit estimate in terms of shape
regularity constants only.

For a Lipschitz polytope ˝i , let ˝ 0
i � ˝i be a neighborhood such that both

domains are resolved by a shape regular coarse triangulation T H.˝ 0
i / consisting of

a bounded number of elements, cf. Assumption 2.55. For an illustration see Fig. 2.7
(right). Let @˝H

i denote the set of coarse vertices of T H.˝ 0
i / that lie on @˝i . For

each vertex p 2 @˝H
i , we define the open vertex patch !p by

!p D
[ ˚

T W T 2 T H.˝ 0/; p 2 T �
;

and
!int
p WD !p \˝i; !ext

p WD !p \ .˝ 0
i n˝i/;

cf. Fig. 2.7 (right). Without loss of generality, we assume that !int
p and !ext

p each
contain at least one coarse vertex that does not lie on @˝i . This condition can always
be fulfilled by formally subdividing some of the coarse elements.

We define the open reference patch b! by

b! D
(

conv.f.�1; 0/; .1; 0/; .0; 1/; .0;�1/g/ if d D 2;

conv.f.�1; 0; 0/; .1; 1; 0/; .1;�1; 0/; .0; 0; 1/; .0; 0;�1/g/ if d D 3;

where conv.S/ denotes the convex hull of the set S . Furthermore, we define the
subsets

b! int WD b! \ fx W xd < 0g; b!ext WD b! \ fx W xd > 0g;

where xd refers to the d -th component of x.
Let Tp.b!/ be a shape regular simplicial triangulation of b! such that there exists

a bijective continuous mapping Fp W b! ! !p with the following properties.

• For each element T 2 Tp.b!/, the restricted mapping FpjT is affine linear,
• Fp.0/ D p,
• Fp.b! \ fx W xd D 0g/ D !p \ @˝i ,
• Fp.b! int/ D !int

p and Fp.b!ext/ D !ext
p ,

• For each element T 2 Tp.b!/,
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c1 H
d
i � det.F 0

pjT / � c2 H
d
i ;

kF 0
pjT k`2 � c3 Hi ; k.F 0

pjT /
�1k`2 � c4 H

�1
i ;

where the constants c1, c2, c3, and c4 only depend on the shape regularity
constants of T H.˝ 0

i /.

For an illustration in two dimensions, see Fig. 2.7. Under the conditions on T H.˝i /

stated in Assumption 2.55, such a triangulation and mapping exists for every coarse
vertex p 2 @˝H

i .
On the reference patch, we define the linear operator

bE W C 1.b!int/ ! C 1.b!ext/; .bEw/.x1; : : : ; xd / WD w.x1; : : : ; xd�1; �xd /;

i.e., the reflection of w across the hyperplane fx W xd D 0g. By construction we have
kbEwkH1. O!ext/ D kwkH1. O!int/. Since the C 1-functions are dense in H1, it follows

that bE W H1.b! int/ ! H1.b!ext/ is linear and continuous. For each coarse node
p 2 @˝H

i , we define the linear operator

E.p/ W H1.!int
p / ! H1.!ext

p /; E.p/v WD 
bE.v ı Fp/
� ı F �1

p :

Since Fp is continuous and piecewise affine linear, E.p/ maps indeed into H1 and
is linear and continuous. Furthermore, one easily shows that

.E.p/v/j!p\@˝i D vj!p\@˝i :

Finally, we define the extension operator

Ei W H1.˝i / ! H1.˝ 0
i /; Ei v WD

8̂
ˆ̂̂<
ˆ̂̂̂
:

v in ˝i ;X
p2@˝H

i

'p E
.p/v in ˝ 0

i n˝i;

0 else.

(2.81)

where 'p is the nodal finite element basis function on T H.˝ 0
i / associated with the

coarse node p.

Lemma 2.82. Let ˝i be a subdomain and ˝ 0
i � ˝i a Lipschitz domain that fully

contains˝i and that is resolved by a shape regular coarse triangulation T H.˝ 0
i /.

Then the extension operator Ei as defined above maps into H1.Rd /. Furthermore,
there exists a constant CEi depending only on the number of coarse elements in ˝i

and on the shape regularity constants of T H.˝ 0
i / such that

jEi vj2
H1.Rd /

CH�2
i kEi vkL2.Rd / � CEi

�
jvj2
H1.˝i /

CH�2
i kvkL2.˝i /

�
8v 2 H1.˝i /:
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Proof. Let v 2 H1.˝i / be arbitrary but fixed. For each coarse vertex pj , j D
1; : : : ; J , the function 'pj E

.pj /v vanishes on R
d n .˝i [ !ext

p /. Hence,

.Ei v/jRd n˝i
2 H1.Rd n˝i/:

Thanks to the partition of unity property

JX
jD1

'pj .x/ D 1 8x 2 @˝i ;

we can conclude that .Eiv/j@˝i D vj@˝i . Since in addition .Eiv/j@˝0
i

D 0, it

follows that Eiv 2 H1.Rd /. With standard finite element techniques (see e.g.
[BS02, Cia87]), one shows that for each coarse node p on @˝j ,

jE.p/vjH1.!ext
p / � C jvjH1.!int

p /
; kE.p/vkL2.!ext

p / � C kvkL2.!int
p /
:

The constant C is uniform because there are only a small number of different
triangulations Tp.b!/. Since k'pkL1 D 1, it follows from the above that

k'pE.p/vkL2.!ext
p / � C kvkL2.!int

p /
:

Summing over p 2 @˝H
i , we obtain

kEi vkL2.˝0
i n˝i / �

X
p2@˝H

i

C kvkL2.!int
p /

� C kvkL2.˝i /; (2.82)

where we have used that the number of coarse nodes on @˝i is uniformly bounded.
We now turn to the H1-seminorm. Since kr'pkL1 � C H�1

i , we can conclude
from the product rule and the local L2-estimate from above that

j'p.E.p/v/j2
H1.!ext

p /
� C

�
jE.p/vj2

H1.!ext
p /

CH�2
i kE.p/vk2

L2.!ext
p /

�

� C
�
jvj2

H1.!int
p /

CH�2
i kvk2

L2.!int
p /

�
:

Summing over all coarse nodes p 2 @˝H
i , we get

jEi vj2
H1.˝0

i n˝i / � C
�
jvj2

H1.˝i /
CH�2

i kvk2
L2.˝i /

�
(2.83)

Using the definition ofEi and combining (2.82) and (2.83) concludes the proof. ut
Remark 2.83. The relaxation of Assumptions 2.54 and 2.55 is possible by using
Jones’ extension operator introduced in [Jon81], which is defined for the so-called
"-ı domains or uniform domains, and which employs a bound of the same form as
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in Lemma 2.82. The constant can be made explicit in a geometric parameter linked
to the domain, see also [DKW08b, DKW08a, KRW08]. As for Poincaré’s constant,
ragged boundaries alone do not make the extension constant blow up. For a degree-
independent extension operator see also [Rog06].

Remark 2.84. The extension operator Ei is also well-defined and bounded from
L2.˝i / to L2.Rd /, and by classical interpolation theory (see [AF03, Sect. 7.22f]) it
follows that it is bounded fromHs.˝i / to Hs.Rd / for s 2 Œ0; 1�, cf. [Ste70].

Lemma 2.85. The operator eEi W H1.˝i / ! H1.˝ 0
i / defined by

eEi v WD

8̂
<̂
ˆ̂:

v in ˝i ;

Nv˝i C
X

p2@˝H
i

'p E
.p/.v � Nv˝i / in ˝ 0

i n˝i

(cf. (2.81)) is linear and continuous, and it preserves constants, i.e.,

eEi c D c 8c 2 R: (2.84)

Furthermore, we have the separate stability estimates

keEi vkL2.˝0
i /

� C kvkL2.˝i /
jeEi vjH1.˝0

i /
� C jvjH1.˝i /

)
8v 2 H1.˝i /;

where the constant C depends only on the number of coarse elements in ˝i and on
the shape regularity constants of T H.˝ 0

i /.

Proof. The proof of the L2-stability follows from (2.82), from Cauchy’s inequality,
and the fact that measd .˝ 0

i n ˝i/ Å measd .˝i /. The H1-stability immediately
follows from Poincaré’s inequality (Lemma 2.61). ut

2.5.7 A Subdomain Transfer Operator for FE Functions

In this subsection, we construct an extension operator that transfers finite element
functions from a subdomain to its neighboring subdomains. This technique was
first used in [KRW08, Lemma 4.5], see also the references therein. Note that the
original analysis of FETI [KW01] was performed using trace norms, which we can
circumvented by the transfer operators. Such, one can make the dependence on the
shapes of the subdomains more explicit.

Definition 2.86. For any glob G , the glob patch UG is given by

UG WD
[
k2NG

˝k :
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Lemma 2.87. Let Assumption 2.54 hold. Then, for any glob Gi there exists a
discrete extension operator Eh

i;Gi
W V h.˝i / ! V h.UGi / such that .Eh

i;Gi
v/j˝i D v

and

jEh
i;Gi

vjH1.UGi /
� C jvjH1.˝i /

kEh
i;Gi

vkL2.UGi /
� C kvkL2.˝i /

)
8v 2 V h.˝i/;

where the constant C only depends on the shape regularity constant of T H.˝/. In
particular, Eh

i;Gi
preserves the (fine) nodal values on Gi and it preserves constants.

Proof. Assume that Gi � � (otherwise UGi D ˝i and the extension is trivial).
Therefore, UGi n ˝i contains at least one coarse element and measd .UGi n
˝i/ Å measd .˝i /. Let eEi;Gi W H1.˝i/ ! H1.UGi / be defined analogously to
Lemma 2.85, with the only modification that we work on the coarse mesh on UGi

instead of˝ 0
i and that we sum only the reflections corresponding to the coarse nodes

on Gi . Doing so, we obtain

keEi;Gi vkL2.UGi /
� C kvkL2.˝i /

jeEi;Gi vjH1.UGi /
� C jvjH1.˝i /

)
v 2 H1.˝i /: (2.85)

Note that, again, the extension preserves constants: eEi;Gi c D c for all c 2 R. Let
˘h W H1.UGi n ˝i/ ! V h.UGi n ˝i/ denote the Scott-Zhang operator, which
preserves piecewise linear data on the boundary. We set

Eh
i;Gi

v WD
(

v in ˝i;

˘heEi;Gi v in UGi n˝i :

Indeed, Eh
i;Gi

v is continuous across @˝i \ UGi and the stability estimates follow
immediately from (2.85) and Lemma 1.45. ut
Remark 2.88. We note that the essential assumption in Lemma 2.87 is that the
target domain UGi obeys a shape regular coarse triangulation consisting of a
bounded number of coarse elements.

2.5.8 Uniform Bounds for the Constants c0 and cK

Let Vi denote the single layer potential operator on @˝i and Di the corresponding
hypersingular integral operator. Moreover, let c0;i and cK;i denote the respective
constants from Lemma 1.77. In this subsection, we show that under the assumptions
made in Sect. 2.5.2, at least in three dimensions, we can bound c0;i from below in
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terms of the shape regularity constants of T H.˝/ and T H.˝ 0
i /. The following

presentation is based on [Pec12].
To get a bound for c0, we introduce special trace norms.

Definition 2.89. For v 2 H1=2.@˝i/ we define

kvk?;H1=2.@˝i /
WD

�
jHivj2

H1.˝i /
CH�2

i kHi vk2
L2.˝i /

�1=2

and

kwk?;H�1=2.@˝i /
WD sup

v2H1=2.@˝/

hw; vi
kvk?;H1=2.@˝i /

:

According to Definition 1.41 and Sect. 1.2.1.6, these norms are equivalent to
k � kH1=2.@˝i /

and k � kH�1=2.@˝i /
.

Definition 2.90. Assume that Vi is coercive and let c?Vi and c?Di be the largest
constants and C?

P;i the smallest constant such that

hw; Viwi 	 c?Vi kwk2
?;H�1=2.@˝i /

8w 2 H�1=2.@˝i /;

hDiv; vi 	 c?Di jHivj2
H1.˝i /

8v 2 H1=2.@˝i/;

kHi vkL2.˝i / � C?
P;i Hi jHivjH1.˝i / 8v 2 H1=2

� .@˝i/:

Lemma 2.91. We have that

c0;i 	 c?Vi c
?
Di

1C .C ?
P;i /

2
:

Proof. With a standard duality argument, it follows that

hV �1
i v; vi � .c?Vi /

�1 kvk2
?;H1=2.@˝i /

8v 2 H1=2.@˝i /:

Using the definition of c0;i , Definition 2.90, and the above boundedness result, we
obtain

c0;i D inf
v2H1=2

� .@˝i /

hDi v; vi
hV �1
i v; vi � inf

v2H1=2
� .@˝i /

c?Di
jHi vj2

H1.˝i /

.c?Vi
/�1 .jHi vj2

H1.˝i /
CH�2

i kHi vk2
L2.˝i /

/
:

Using the definition of C?
P;i concludes the proof. ut

Lemma 2.92. Let Assumption 2.55 holds. Then in three dimensions,

c?Vi 	 1

2C 2
Ei

;
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where CEi is the constant from Lemma 2.82. Hence c?Vi can be bounded from below
in terms of the shape regularity constants of T H.˝ 0

i /.

Proof. For a proof see [Pec12, Corollary 6.2]. It follows basically the line of the
standard coercivity proof (see e.g. [Ste08, Sect. 6.6.1]), but uses the carefully chosen
norms and the extension operator.

To bound the constant for the hypersingular integral operator, we need another
extension operator which extends functions in the annulus˝ 0

i n˝i back to ˝i . By
changing the roles of˝i and the annulus in the construction of Lemma 2.85, we get
the extension operator

eE 0
i W H1.˝ 0

i n˝i/ ! H1.˝ 0
i /

which preserves constants and obeys the following stability estimates.

Lemma 2.93. There exists a constant CeE0
i

depending only on the maximal number

of coarse elements per subdomain and on the shape regularity constants of T H.˝ 0
i /

such that for each subdomain˝i ,

jeE 0
ivjH1.˝0

i /
� C QE0

i
jvjH1.˝0

i n˝i /

keE 0
ivkL2.˝0

i /
� C QE0

i
kvkL2.˝0

i n˝i /

)
8v 2 H1.˝ 0

i n˝i/:

Lemma 2.94. Let Assumption 2.55 hold. Then

c?Di 	 1

2C 2
QE0
i

;

where C QE02
i

is the constant from Lemma 2.93. Hence c?Di can be bounded from below

in terms of the shape regularity constants of T H.˝ 0
i /.

Proof. For a proof see [Pec12, Lemma 6.4].

Lemma 2.95. Let Assumption 2.55 holds. Then in three dimensions,

C?
P;i �

h
2CP .˝i /

2 C 1C CP .˝i/
2

C 2
Ei

i1=2
:

Hence, C?
P;i can be bounded from above in terms of the shape regularity constants

from T H.˝ 0
i /.

Proof. For a proof see [Pec12, Lemma 6.7].
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Corollary 2.96. Let Assumption 2.55 holds. Then in three dimensions, the constant
c0;i can be bounded from below and cK;i from above in terms of the shape regularity
constants of T H.˝ 0

i /.

Remark 2.97. The generalization of these uniformity results to the case of two
dimensions is not yet known, mainly due to the particularity of the two-dimensional
exterior problem, see Sect. 1.3.3, or one might say due to the logarithm in the
fundamental solution. Ideas towards such estimates are given in [Pec12, Remark 4].

2.5.9 An Elementary Inequality

The following lemma provides an important inequality involving the weighted
counting functions from (2.53). See e.g. [DW95, MB96, Sar94] for early works
where this result has been used.

Lemma 2.98. For xh 2 � h
S , let f
k.xh/gk2N

xh
be arbitrary positive weights and

let fı�k.xh/gk2N
xh

be defined as in (2.53). Then


i .x
h/



ı
�
j .x

h/
�2 � min.
i .xh/; 
j .xh// 8i; j 2 Nxh

for any choice of the exponent � 2 Œ1=2; 1/. The same estimate holds for the choice
(2.54), which corresponds to � ! 1.

Proof. For simplicity, we drop the dependence on xh during the proof. Recall that

ı
�
j D 


�
jP

k2N 

�

k

:

Assume that #.N / 	 2 (otherwise the inequality is trivial). Since 0 < ı
�
j � 1, we

immediately get that 
i


ı
�
j

�2 � 
i . Secondly,


i


ı
�
j

�2 � 
i 

2�
j

.
i C 
j /2�
D 
i

.
i C 
j /



2��1
j

.
i C 
j /2��1 
j :

The first factor on the right-hand side is less than one. Since the function y 7! y2��1
is monotonically non-decreasing for � 2 Œ1=2; 1/, the second factor is less than
one as well. This implies 
i



ı
�
j

�2 � 
j . The proof of the estimate for the choice
(2.54) (corresponding to � ! 1) is trivial. ut
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2.6 Preconditioner Analysis for Subdomain Resolved
Coefficients

In this section, we give the complete convergence analysis of FETI/BETI (both
classical and all-floating) for the case that the diffusion coefficient A is isotropic
and piecewise constant in each subdomain, and with two further assumptions stated
below.

Assumption 2.99. In each subdomain˝i , there exists a constant ˛i > 0 such that

Aj˝i D ˛i I:

Assumption 2.100. The coefficient scaling is used, i.e., 
i .xh/ D ˛i , cf. Sect.
2.2.4.2.

Remark 2.101. Note that the theory below can be carried over to matrix-valued
coefficients with mild anisotropy that are piecewise constant in each subdomain. In
such a case, the value of 
i .xh/ should be chosen as the maximal eigenvalue of the
matrix coefficient on ˝i .

Assumption 2.102. For the classical formulation of FETI/BETI in three dimen-
sions only, we assume that �D\@˝i is either empty or contains at least a subdomain
edge (i.e., it should not collapse to a subdomain vertex).

Recall the missing estimate of the operator PD from Lemma 2.45,

jPD.w C zw/j2S � ! jwj2S 8w 2 W:

Lemma 2.103. For each i D 1; : : : ; s, let W ?
i be a subspace of Wi such that the

sum

Wi D ker.Si /˚W ?
i

is direct. Let W ? WD Qs
iD1 W ?

i . Then

jPD.w C zw/j2S � ! jwj2S 8w 2 W ?

implies

jPD.w C zw/j2S � ! jwj2S 8w 2 W:

Proof. Let w 2 W ? be arbitrary but fixed. First, Lemma 2.44 states that the
mapping v 7! zv (for v 2 W ) is linear and that zy D �y for y 2 ker.S/. Therefore,
we have the invariants

w C zw D .w C y/C .zwCy/
jw C yjS D jwjS

�
8y 2 ker.S/:
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Since W D W ? ˚ ker.S/ the second inequality follows immediately. ut
Throughout this section, we choose

W ?
i WD

n
wi 2 Wi W H h

i wi
˝i D 0

o
if i 2 Ifloat; (2.86)

andW ?
i WD Wi else. The strategy is to show bounds for PD w and PD zw separately,

for w 2 W ?.

2.6.1 An Energy Estimate of PD

The following lemma is essential for the condition number estimate and goes back
to [KW01, Lemma 4.7], see also [MT96, Sect. 3.3] and [TW05, Lemma 6.3].

Lemma 2.104. Let Assumptions 2.53–2.56 and 2.99–2.102 hold. Then

jPD wj2S . max
iD1;:::;s.1C log.Hi=hi//

2 jwj2S 8w 2 W ?:

Proof. Let w 2 W ? and i D 1; : : : ; s be fixed. Recall the characterization (2.70)
of the PD operator (p. 108), which reveals that there is no contribution from � h

N

(the non-coupling Neumann nodes). Recall also that Nxh D NGi for all xh 2 Gi .
Using the BEM-FEM spectral equivalence from Corollary 1.94 and the cut-off result
from Lemma 2.80 (with convention (2.79) from p. 122) we obtain

j.PD w/i j2Si . ˛i jH h
i .PD w/i j2H1.˝i /

(2.87)

. ˛i
X

Gi��

ˇ̌
ˇH h

i

�

Gi

X
j2NGi

ı
�
j .wi � wj /

�ˇ̌
ˇ2
H1.˝i /

„ ƒ‚ …
DW �i

C ˛i
X

Gi��D
jH h

i .
Giwi /j2H1.˝i /
:

Since 
i .xh/ D ˛i , the functions ı�j are constant on each glob Gi . Using the fact
that each glob is shared by a uniformly bounded number of subdomains and the
elementary inequality from Lemma 2.98, we obtain

�i .
X

Gi��

X
j2NGi

˛i


ı
�
j jGi

�2 jH h
i .
Gi .wi � wj //j2H1.˝i /

�
X

Gi��

X
j2NGi

min.˛i ; ˛j / jH h
i .
Gi .wi � wj //j2H1.˝i /
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Inserting the estimate for �i into (2.87) and using the triangle inequality yields

j.PD w/i j2Si (2.88)

.
X

Gi��

X
j2NGi

min.˛i ; ˛j / jH h
i .
Gi .wi � wj //j2H1.˝i /

C
X

Gi��D
˛i jH h

i .
Gi wi /j2H1.˝i /

.
X

Gi��[�D

X
j2NGi

˛j jH h
i .
Gi wj /j2H1.˝i /

: (2.89)

Note that the function wj from ˝j is cut down to Gij and harmonically extended
to the (possibly different) subdomain ˝i . In order to estimate the energy of the
extension in terms of the energy of the original function, we use the transfer operator
from Sect. 2.5.7. Let Qwj D H h

j wj 2 V h.˝j /. Then the function

I h.#Gi E
h
j;Gi

Qwj /

extends 
Giwj to ˝i . Using Corollary 2.78 and Lemma 2.87, we get

jH h
i .
Gi wj /j2H1.˝i /

� jIh.#Gi E
h
j;Gi

Qwj /j2H1.˝i /

. .1C log.Hi=hi //
2 jEhj;Gi Qwj j2

H1.˝i /
CH�2

i .1C log.Hi=hi // kEhj;Gi Qwj k2
L2.˝i /

. .1C log.Hi=hi //
2 jH h

j wj j2
H1.˝j /

CH�2
i .1C log.Hi=hi // kH h

j wj k2
L2.˝j /

:

If ˝j is floating, wj 2 W ?
j , and we can eliminate the L2-term using Poincaré’s

inequality. If ˝j is non-floating, we know that wj vanishes at least on a glob of
dimension d � 2 (see Assumption 2.102). Hence, we can eliminate the L2-term at
the cost of another factor of .1 C log.Hi=hi// using Lemma 2.70. In either case,
what we obtain is

jH h
i .
Giwj /j2H1.˝i /

. .1C log.Hi=hi //
2 jH h

j wj j2
H1.˝j /

: (2.90)

Combining (2.89) with (2.90) and using that the number of globs and neighbors per
subdomain is uniformly bounded yields

sX
iD1

j.PDw/i j2Si . s
max
iD1 .1C log.Hi=hi //

2

sX
jD1

˛j jH h
j wj j2

H1.˝j /
:

The proof is concluded by the fact that ˛j jH h
j wj j2

H1.˝j /
D jwj j2Sj for j 2 IFEM

and ˛j jH h
j wj j2

H1.˝j /
. jwj j2Sj for j 2 IBEM (by Corollary 1.94). ut
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2.6.2 The Case Q D M �1
sD

To complete the estimate from Lemma 2.45, we still need to bound jPD zwjS . The
next lemma stems from [KW01, Lemma 4.8].

Lemma 2.105. Let zw be defined as in Lemma 2.44 and let Q D M�1
sD . Then

jPD zwjS � jPD wjS 8w 2 W:

Proof. Using identity (2.67), i.e., P>
D S PD D B>M�1

sD B D B>QB , and
Lemma 2.44 we have jPD zwj2S D kB zwk2Q � kB wk2Q D jPD wj2S . ut

The next theorem estimates the condition number of classical an all-floating
FETI/BETI.

Theorem 2.106. Let Assumptions 2.53–2.56 and 2.99–2.102 hold. Then, for the
classical or the all-floating FETI/BETI method with the scaled Dirichlet precondi-
tionerM�1

sD and with the choiceQ D M�1
sD ,

�.P M�1
sDP

>Fj QUad
/ � C

s
max
iD1 .1C log.Hi=hi//

2;

where the constant C depends only on the uniform constants from the mentioned
assumptions. If the subdomain meshes are not quasi-uniform (but still shape-
regular), the analogous bound holds but then hi has to be replaced by the minimal
element diameter of T h.˝i/.

Proof. The estimate follows immediately by combining Lemmas 2.45 and 2.103–
2.105. ut

2.6.3 Diagonal Choice of Q

An implementation of the FETI/BETI method with Q a diagonal matrix is of
course much easier. The following choice, proposed and analyzed by Klawonn and
Widlund [KW01], still gives a robust method with respect to coefficient jumps.

Definition 2.107. For each node xh � � h [ � h
D we define

qi .x
h/ WD

(
.1C log.Hi=hi //

hd�1
i

Hi
if xh lies on a subdomain facet,

hd�2
i else.

Furthermore, we define the operatorQdiag W U � ! U by

.Qdiag�/ij .x
h/ WD min.
i .xh/; 
j .xh// qij .xh/ �ij .xh/ for � 2 U �; (2.91)
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4
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7 8

Ω1 Ω2
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Ω7 Ω8

Dirichlet boundary

Ω3

Fig. 2.8 Left: Subdomains
with Dirichlet boundary.
Right: Corresponding
connectivity graph

where qij .xh/ D min.qi .xh/; qj .xh// and (in case of the all-floating formulation)

.Qdiag �/iD.x
h/ WD 
i .x

h/ qi .x
h/ �iD.x

h/ for � 2 U �; (2.92)

cf. [KW01, (4.14)] and [Of06, Pec08b].

Note that ifHi Å Hj and hi Å hj for neighboring subdomains˝i and˝j , then
we have also qi .xh/ Å qj .x

h/. The operatorQdiag mimics the action of M�1
sD when

restricted to range.G/, and it will be better understood in the proof of Lemma 2.109
below, where we analyze FETI/BETI withQ D Qdiag. Note that if the coefficient is
globally constant, we may also chooseQ D I , see Remark 2.111.

Remark 2.108. ForQDQdiag, let us investigate the structure of the matrixG>QG

that appears in the projections P and P>. Consider the connectivity graph whose
nodes correspond to the subdomains˝i with an edge between two nodes whenever
the corresponding subdomains are neighboring, cf. Fig. 2.8. Recall that G D B R

and that R W Z ! kerS with

Z D
sY
iD1

R
dim.ker.Si //:

We can think of elements from Z as discrete functions on the nodes of the
connectivity graph which satisfy homogeneous boundary conditions at the nodes
which correspond to the non-floating subdomains, cf. Fig. 2.8. Using the definition
of the jump operator B , we find that

hG>QG y; zi D
X
i>j

�ij¤;

.yi � yj /
�

min.˛i ; ˛j /
X
xh2� hij

qij .x
h/

�

„ ƒ‚ …
DWˇij

.zi � zj / 8y; z 2 Z:

In the all-floating formulation, we have to add
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sX
iD1

yi

�
˛i

X
xh2@˝h

i \�D
qi .x

h/
�

„ ƒ‚ …
DWˇiD

zi :

This bilinear form corresponds to the (sparse) matrix induced by the graph Laplacian
(see e.g., [Fie73]) where we assign each edge between node i and j in G the
weight ˇij . As the subsequent analysis will show, the operator .G>QG/�1, as
such solving a discrete Laplace problem on the connectivity graph, acts as a coarse
problem for the FETI/BETI algorithm. In three dimensions, under Assumption 2.53,
each subdomain face Fi contains O..Hi=hi/

2/ nodes and each subdomain edge Ei
contains O.Hi=hi / nodes. Hence,

ˇijÅ

8<
:

min.˛i ; ˛j / .1C log.Hi=hi //Hi if ˝i and ˝j share a subdomain face,
min.˛i ; ˛j /Hi if ˝i and ˝j share only a subd. edge,
min.˛i ; ˛j / hi if ˝i and ˝j share only a subd. vertex.

In two dimensions,

ˇij Å
�

min.˛i ; ˛j / .1C log.Hi=hi // if ˝i and ˝j share a subdomain edge,
min.˛i ; ˛j / if ˝i and ˝j share only a subd. vertex.

We observe that vertex connections in three dimensions are weighted weaker than
others, and that connections between subdomains with large coefficients are in
general weighted stronger than others.

The following lemma is essentially [KW01, Lemma 4.10] (there stated for the
classical FETI method).

Lemma 2.109. Let Assumptions 2.53–2.56 and 2.99–2.102 hold. Then, for Q D
Qdiag,

jPD zwj2S . s
max
iD1 .1C log.Hi=hi//

2 jwj2S 8w 2 W ? :

Proof. Note that zw is constant on each subdomain and vanishes on the non-floating
subdomains. We denote the components by zi . Using inequality (2.88) from the
proof of Lemma 2.104 we obtain

jPD zwj2S .
X

Gi��

X
j2NGi

min.˛i ; ˛j /jH h
i .
Gi .zi � zj //j2H1.˝i /

C
X

Gi��D
˛i jH h

i .
Gi zi /j2H1.˝i /

.
X

Gi��

X
j2NGi

min.˛i ; ˛j /jH h
i 
Gi j2H1.˝i /

jzi � zj j2 C
X

Gi��D
˛i jH h

i 
Gi j2H1.˝i /
jzi j2:

By the subdomain facet estimate from Lemma 2.76, Definition 2.107, and the fact
that a subdomain facet contains O..Hi=hi/

d�1/ nodes, we can conclude that



140 2 One-Level FETI/BETI Methods

jH h
i 
Fi j2H1.˝i /

. .1C log.Hi=hi //H
d�2
i .

X
xh2Fi

qi .x
h/:

For the remaining globs, we can conclude from Lemma 2.74, Definition 2.107, and
the fact that a subdomain edge contains O.Hi=hi/ nodes, we can conclude that

jH h
i 
Vi j2H1.˝i /

. hd�2
i .

X
xh2Vi

qi .x
h/

jH h
i 
Ei j2H1.˝i /

. Hi .
X
xh2Ei

qi .x
h/ if d D 3:

Since qi .xh/ Å qj .x
h/ for xh 2 Gij , and since

.B zw/ij .x
h/ D ˙jzi � zj j; .B zw/iD.x

h/ D zi ;

we obtain (comparing with Definition 2.107) that

jPD zwj2S . kB zwk2Qdiag
� kB wk2Qdiag

; (2.93)

where in the last step we have used Lemma 2.44. The particular choice of Qdiag

actually stems from the estimates above.
In order to bound kB wk2Qdiag

in terms of jwj2S , we sort the contributions with
respect to the globs. Using the definition of Qdiag and the quasi-uniformity of
T h.˝i / we obtain

kB wk2Qdiag

.
X

Gi��

X
j2NGi

min.˛i ; ˛j /
X

xh2Gi
h

qij.x
h/jwi .xh/ � wj .x

h/j2 C
X

Gi��D
˛i

X
xh2Gi

h

qi .x
h/jwi .xh/j2

.
X

Gi��[�D
˛i

X
xh2Gi

h

qi .x
h/ jwi .xh/j2

.
X

Gi��[�D
˛i qi jGi h h

�dGi
i kwk2

L2.Gi /
; (2.94)

where Gi
h is as in Definition 2.50 and qi jGi h denotes the constant value of qi on the

nodes on Gi . Note that in the classical formulation, the globs on �D can be left out.
Combining this estimate with the discrete trace inequality from Lemma 2.69 yields

kB wk2Qdiag
.

X
Gi��[�D

˛i rGi .Hi ; hi /
�
jH h

i wi j2H1.˝i /
CH�2

i kH h
i wik2L2.˝i /

�
;

(2.95)
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where
rGi .Hi ; hi / WD qi jGi h h

�dGi
i �d�dGi



Hi
hi

�
H
2CdGi�d
i :

In the all-floating formulation, we obtain the desired bound

jPD wj2S . kB wk2Qdiag
. s

max
iD1 .1C log.Hi=hi//

2 jwj2S 8w 2 W ?

(by Poincaré’s inequality from Lemma 2.61) if

rGi .Hi ; hi / . .1C log.Hi=hi //
2: (2.96)

For quasi-uniform fine and coarse triangulations, condition (2.96) is even necessary.
A short computation reveals that (2.96) holds if and only if

.1C log.Hi
hi
//
hd�1
i

Hi
. qi .x

h/ . .1C log.Hi
hi
//2

hd�1
i

Hi
if xh 2 Fi ;

hi . qi .x
h/ . .1C log.Hi

hi
// hi if xh 2 Ei ; d D 3;

hd�2
i . qi .x

h/ . .1C log.Hi
hi
//d�1 hd�2

i if xh D Vi ;

where we have included the lower bounds for qi .xh/ that we have used in the
beginning of the proof. In the classical formulation, we need to be able to apply a
discrete Poincaré inequality in each non-floating subdomain (cf. Assumption 2.56)
at the cost of a factor of .1 C log.Hi=hi //. Hence, this factor must be taken away
from the upper bounds above unless all non-floating subdomains have a subdomain
face in common with the Dirichlet boundary. In any case, we see that the respective
bounds for qi .xh/ hold for the choice made in Definition 2.107, which concludes
the proof. ut
Theorem 2.110. Let Assumptions 2.53–2.56 and 2.99–2.102 hold. Then, for the
classical and the all-floating FETI/BETI method with the scaled Dirichlet precon-
ditionerM�1

sD and with the choiceQ D Qdiag (cf. Definition 2.107),

�.P M�1
sDP

>Fj QUad
/ � C

s
max
iD1 .1C log.Hi=hi //

2 :

where the constant C depends only on the uniform constants from the mentioned
assumptions.

Proof. The estimate follows immediately by combining Lemmas 2.45, 2.103, 2.104,
and 2.109. ut

Opposed to Theorem 2.106, the statement of Theorem 2.110 does not generalize
to the case of non quasi-uniform meshes, as we heavily used the quasi-uniformity
in the proof of Lemma 2.109.
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Remark 2.111. Let us suppose that the coefficients are locally quasi-monotone, i.e.,
for each glob Gij we can find an admissible face path Fk1;k2 , Fk2;k3 , : : :, Fkm�1;km

with
min.˛i ; ˛j / D ˛k1 � ˛k2 � : : : � ˛km D max.˛i ; ˛j /:

In that situation, the weights qij .xh/ for subdomain vertices (and edges if d D
3) on the interface � can be decreased arbitrarily, see also the remarks after
Theorems 4.11 and 5.7 in [KW01]. As a consequence, if the coefficient is globally
constant (or at least ˛i Å ˛j for all neighboring subdomains ˝i , ˝j ), and if the
subdomain decomposition and the global mesh are quasi-uniform (hi Å h and
Hi Å H ), then the matrix Q can be chosen as the identity matrix or any multiple
thereof.

2.6.4 Alternative Scalings

In this short section we discuss other scalings than the coefficient scaling, which is
assumed in the theory above (cf. Assumption 2.100). Note a further scalings (not
discussed below) based on eigensolves can be found in [DW12b].

2.6.4.1 Multiplicity Scaling

If we use the multiplicity scaling (which also effectsQdiag, cf. Definition 2.107), the
statements of Theorems 2.106 and 2.110 remain true under the stated assumptions,
but the condition number bounds have to be multiplied by a factor of

s
max
iD1 max

j2Ni

˛i

˛j
;

i.e., the maximal jump between subdomains, where Ni contains the indices of the
subdomains neighboring ˝i , cf. Definition 2.12, This is seen from the proofs of
Lemmas 2.104 and 2.109 by using that ı�j .x

h/ � 1 as well as the simple fact that

˛i �
�

s
max
iD1 max

k2Ni

˛i

˛k

�
˛j

whenever j 2 Ni .

2.6.4.2 On the Stiffness Scaling and on Effects of Varying Coefficients

If one has no a priori knowledge on the coefficient ˛i , a common choice in FETI is
the stiffness scaling, where 
i .xh/ is set to the diagonal entry of the stiffness matrix
Ki corresponding to the node xh. Assuming an isotropic coefficient A D ˛I , the
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stiffness scaling is given by


i .x
h/ D

Z
!
i;xh

˛ jr'i;xhj2 dx;

where !i;xh is the union of all elements � from T h.˝i / such that xh 2 � . Similar
choices are the local average


i .x
h/ D 1

meas!
i;xh

Z
!
i;xh

˛ dx

and the local maximum

i .x

h/ D ess.sup
x2!

i;xh

˛.x/:

If ˛j˝i D ˛i is constant, the latter two choices reproduce the coefficient scaling

i .x

h/ D ˛i . For the stiffness scaling, 
i .xh/ Å hd�2
i ˛i (if T h.˝i/ is quasi-

uniform) which may look promising. However, in the presence of rough (or
ragged) interfaces as they appear in METIS partitions, the stiffness scaling leads
to extremely poor convergence of FETI type methods as it has been demonstrated in
[KRW08, Sect. 5] (the term 
-scaling therein corresponds to the coefficient scaling
in this book).

In the analysis, we used that (for the coefficient scaling) ı�j is constant at the
nodes of each glob, which is not anymore true for the stiffness scaling. In the case
of rough interfaces, the function 
i 2 V h.@˝i / becomes oscillatory, i.e.,


i .x
h/ � 
i .yh/

i .xh/

� jxh � yhj
Hi

:

Typically, the weighted counting functions ı�j have the same property, which is at
high probability the reason behind the poor convergence.

Even if the interfaces are smooth, the phenomenon of an oscillatory function
ı
�
j can occur when the coefficient A D ˛I is mildly varying in ˝i . By this we

mean that ess.supx;y2˝i
˛.x/

˛.y/
is relatively small, but the coefficient may change from

element to element.
Summarizing, in case of rough interfaces or a mildly varying (isotropic) coeffi-

cient, provided that the subdomain meshes are quasi-uniform, a good choice is


i .x
h/ D max

xh2@˝h
i

ki;xh or 
i .x
h/ D max

xh2˝h
i

ki;xh ;

where ki;xh denotes the diagonal entry of the stiffness matrix Ki at node xh. For
an analysis with mildly varying coefficients (but smooth interfaces) see Sect. 3.2.
For a sound theory of FETI-DP methods for the case of rough interfaces in two
dimensions (using the coefficient scaling) see [KRW08].
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ΓD

f = 1

Fig. 2.9 Setup for the
experiments on the unit
square with a homogeneous
coefficient

2.7 Numerical Results

In this section, we present some numerical results for one-level FETI/BETI methods
for a two-dimensional model problem with and without coefficient jumps. This
is mainly to give the reader an impression on how small the condition numbers
and the number of PCG iterations actually are. The main implementation was
done in C++. The FEM stiffness matrices and the coarse matrix were factorized
using PARDISO [PAR05, SG04, SG06]. For the boundary element method we have
used Olaf Steinbach’s Fortran package OSTBEM [Ste00]. The condition numbers
are estimated using the Lanczos method, see Remark 1.51. Mainly interested in
verifying the theoretical results of this chapter, we have not used any data-sparse
approximation of the boundary element matrices.

Note that computational results for FETI methods (including the case of linear
elasticity) can be found in [FR91, FR91, LP98, RFTM99, Rhe02]; for all-floating
BETI methods see [Of06, Of08].

Unit Square – Homogeneous Coefficient. We consider the unit square ˝ D
.0; 1/2, subdivided into 64 equally-sized square-shaped subdomains, with homo-
geneous Dirichlet boundary conditions on the left side �D , and homogeneous
Neumann boundary conditions on the rest of @˝ . The source term f is chosen
to be zero except for the four shaded subdomains in Fig. 2.9, and the coefficient ˛ is
set uniformly to one.

Tables 2.3 and 2.4 show the results for FETI and FETI/BETI, respectively.
There, the column entitled “Lagr. mult.” indicates number of Lagrange multipliers
(additional multipliers enforcing the Dirichlet boundary conditions in the all-
floating method are not counted). For simplicity, H denotes the height/width of the
subdomain. In the columns entitled “PCG” we give the number of PCG steps needed
to get a reduction of " D 10�8 in the residual, and the columns entitled “cond.”
show the estimated condition number using the Lanczos method. We see that the
condition numbers of the preconditioned systems behave as predicted by the theory.
From the first column in the two tables one can observe the reduction in the global
DOFs when using the boundary element method. In Table 2.5 we demonstrate the
scalability, i.e., the robustness with respect to the number of subdomains.
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Table 2.3 Unit square with homogeneous coefficient; classical one-level vs. all-floating FETI
method; 64 subdomains

Std. one-level All-floating

Global DOFs Lagr. mult. Local DOFs H=h PCG Cond. PCG Cond.

289 406 9 2 9 1.67 8 1.40
1,089 630 25 4 11 2.20 10 1.88
4,225 1,078 81 8 13 2.97 12 2.43

16,641 1,974 289 16 16 3.92 14 3.15
66,049 3,766 1,089 32 18 5.05 16 4.05

263,169 7,350 4,225 64 21 6.33 18 5.12
1,050,625 14,518 16,641 128 23 7.77 19 6.36
4,198,403 28,854 66,049 256 24 9.38 21 7.76

16,785,409 57,526 263,169 512 25 11.15 23 9.33

Table 2.4 Unit square with homogeneous coefficient; classical one-level vs. all-floating
FETI/BETI method; 64 subdomains (60 BEM, 4 FEM)

Std. one-level All-floating

Global DOFs Lagr. mult.
FEM loc.
DOFs

BEM loc.
DOFs H=h PCG Cond. PCG Cond.

229 406 9 8 2 9 1.65 9 1.64
549 630 25 16 4 10 1.91 9 1.67

1,285 1,078 81 32 8 13 2.58 11 2.08
3,141 1,974 289 64 16 15 3.44 13 2.72
8,389 3,766 1,089 128 32 18 4.48 16 3.54

25,029 7,350 4,225 256 64 20 5.68 18 4.54
82,885 14,518 16,641 512 128 23 7.03 20 5.71

296,901 28,854 66,049 1,024 256 24 8.55 22 7.05
1,118,149 57,526 263,169 2,048 512 25 10.24 23 8.55

Table 2.5 Unit square with homogeneous coefficient; classical vs. all-floating FETI method;
fixed ratio H=h D 32; fixed number 1,089 of local FEM DOFs, varying number of subdomains

Std. one-level All-floatingNumber of
subdomains Global DOFs PCG Cond. PCG Cond.

64 66,049 18 5.049 16 4.045
256 263,169 18 5.055 16 4.064

1,024 591,361 18 5.055 16 4.064
4,096 1,050,625 18 5.053 15 4.057

Unit Square – Heterogeneous Coefficient. In this example we consider the unit
square .0; 1/2 with the same partitioning as in Fig. 2.9, but we choose the coefficient
˛ and the source f according to Fig. 2.10, left. The Dirichlet boundary conditions
read

u.x1; x2/ D 8 x2.1 � 8 x2/ for .x1; x2/ 2 �D D f.0; x2/ W x2 2 .0; 1/g:
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Fig. 2.10 Left: Setup of unit square with heterogeneous coefficient. Right: Visualization of the
solution u via the graph .x1; x2; u.x1; x2//; different colors indicate different subdomains

On the remainder of @˝ we impose homogeneous Neumann boundary conditions.
Tables 2.6 and 2.7 show the number of PCG steps and the estimated condition

number for the classical one-level and all-floating FETI and FETI/BETI method,
respectively. In the second case, the BEM subdomains are exactly those where
f D 0. The numbers in the tables demonstrate the robustness with respect to the
heterogeneous coefficient, which would not be the case without the careful scalings
in BD and Q. Figure 2.10, right displays the solution u to the problem. We see that
in the areas with large coefficients the solution is relatively flat.

2.8 Other PDEs and Other Discretization Spaces

The theory of the preceding sections carries over immediately from P1 to Q1

elements, i.e., bilinear quadrilateral or trilinear hexahedral elements. In this section,
however, we give a brief overview (mostly in form of references) on FETI/BETI and
related methods for PDEs other than the potential equation, and for discretizations
other than piecewise linear FEM/BEM. For DD methods other than substructuring
methods, we refer to [Mat08, TW05]. In Sect. 2.8.1 we discuss the influence of
the discretization on the coupling (interconnecting), whereas Sect. 2.8.2 treats the
change of the PDE (possibly implying specific discretizations).

More developments than mentioned below are and will be documented in the
proceedings of the international conferences on domain decomposition methods,
see http://www.ddm.org/.

2.8.1 Other Discretizations Spaces for H 1-Problems

Let ˝ be the computational domain, and V.˝/ a space of functions on ˝ related
to the problem, e.g., V D H1.˝/. First, we treat the case of a conforming finite

http://www.ddm.org/
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Table 2.6 Unit square with heterogeneous coefficient; classical one-level vs. all-floating FETI,
64 subdomains

Std. one-level All-floating

Global DOFs Local DOFs H=h PCG Cond. PCG Cond.

289 9 2 10 2.23 8 1.54
1,089 25 4 11 2.69 11 2.12
4,225 81 8 13 3.18 13 2.90

16,641 289 16 15 3.84 15 3.84
66,049 1,089 32 17 4.91 17 4.91

263,169 4,255 64 19 6.10 19 6.10
1,050,625 16,641 128 21 7.42 22 7.43
4,198,401 66,049 256 23 8.91 24 8.88

16,785,409 263,169 512 26 10.60 25 10.47

Table 2.7 Unit square with heterogeneous coefficient; classical one-level vs. all-floating FETI/
BETI, 32 FEM, 32 BEM subdomains

Std. one-level All-floating

Global DOFs FEM loc. DOFs BEM loc. DOFs H=h PCG Cond. PCG Cond.

257 9 8 2 7 1.68 7 1.64
801 25 16 4 10 2.24 9 2.24

2,657 81 32 8 11 3.09 12 3.09
9,441 289 64 16 13 4.08 13 4.08

35,297 1,089 128 32 14 5.21 15 5.21
136,161 4,255 256 64 16 6.46 17 6.46
534,497 16,641 512 128 17 7.83 18 7.83

2,117,601 66,049 1,024 256 18 9.33 20 9.33
8,429,537 263,169 2,048 512 19 10.96 21 10.96

element space V h.˝/ � V that fulfills Assumption 2.112 below. Other types of
discretization spaces will be treated in Sects. 2.8.1.3–2.8.1.5.

Assumption 2.112. (i) The FE space V h.˝/ is based on a triangulation T h.˝/

of ˝ , i.e., to each mesh element T 2 T h there is an associated space VT of
shape functions and a set NT � V �

T of DOFs (nodal variables), cf. [BS02,
Definition 3.1.1] and [Cia87].

(ii) Each DOF is associated to a (fine) vertex, edge, face, or element of the mesh.
(iii) The global space V h.˝/ is composed of the local spaces VT , where corre-

sponding DOFs on the same entity (vertex, edge, face) are globally identified.

Assumption 2.112 holds for the case for high order H1-conforming spaces
(either of hierarchical nature as in Sect. 1.2.3.7, or for spectral elements; see
e.g., [BM97, KS99, Sch98b]). Note that Assumption 2.112 holds as well for
the H.curl/-conforming Nédélec edge elements, the H.div/-conforming Raviart-
Thomas (Nédélec face) elements of any order, see, e.g., [RT77, Néd80, Néd86,
Mon03, Zag06], and the mixed elements in [Sin08, PS11a, PS12a].
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With Assumption 2.112 being fulfilled, we can define the interface (or skeleton)
DOFs as those DOFs associated to (fine) vertices, edges, or faces lying on the
(geometrical) interface � (or the skeleton �S , respectively) and eliminate the
remaining (interior) DOFs. This yields a discrete skeleton formulation. Furthermore,
we can define the local restrictions to ˝i or @˝i , which leads to the local spaces
Wi and the (discontinuous) product space W . Reinstalling the original continuity
follows the finite element construction above. Let  i;k and  j;` be two DOFs on
subdomain ˝i and ˝j , respectively, that are globally identified. Then the correct
jump condition simply reads

 i;k.wi /�  j;`.wj / D 0;

and all these conditions together define the jump operator B W W ! U � D R
M .

If we represent B as a matrix B with respect to the nodal FE basis, then B is again
signed Boolean (see, e.g., [TK01, TV03]).

Corresponding boundary element spaces on the skeleton �S can be easily derived
by restricting V h.˝/ to the skeleton. This restricted space is parameterized by the
DOFs associated to �S , and the coupling procedure is identical to the above one.

The following two sections deal with specific H1-conforming discretizations.

2.8.1.1 H 1-Conforming Interface Concentrated FETI/BETI

The interface concentrated FETI method was introduced by Beuchler, Eibner,
and Langer [BEL08] as a solver for the scalar potential equation in H1, see
also [LP08] for a generalization to interface concentrated FETI/BETI. The main
idea is to employ a boundary concentrated FEM (cf. [KM03] and Sect. 1.2.3.8)
in each FEM subdomain, such that the polynomial degree equals one on each
subdomain boundary. See Fig. 2.11 for an illustration. Obviously, the coupling is
the same as for the low-order FETI/BETI methods. Since it can be shown that the
corresponding FEM Schur complement in each subdomain is spectrally equivalent
to the Steklov-Poincaré operator (cf. [BEL08, Theorem 3.13]), provided that the
boundary mesh is quasi uniform, all the theoretical results of Sect. 2.6 carry over
immediately to the interface concentrated FETI/BETI. Numerical results can be
found in [BEL08, LP08], and also in [Pec08b, Sect. 2.3].

2.8.1.2 High Order H 1-Conforming Spaces

There are two classes of high order elements. Spectral elements [BM97, KS99]
have uniform polynomial degree throughout the domain. The associated DOFs
are point evaluations at Gauss-Lobatto-Legendre points. Hierarchical high order
elements (see e.g. [Dem07, Zag06]) allow for variable polynomial degree, but the
DOFs are associated to vertices, edges, faces, or elements and not necessarily point
evaluations, but typically averages.
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Fig. 2.11 Example for an
interface concentrated mesh
for a partition of the unit
square into four subdomains

For spectral elements of degree k, it was shown that Neumann-Neumann and
FETI type methods (in two and three dimensions) lead to condition number bounds
of the form

� � C .1C log.k//2;

cf. [TW05, Sect. 7.2] as well as [Pav97, Pav07, KPR08]. However, in three dimen-
sions these bounds do not carry over to the hierarchical high order elements, even
if spanning the same polynomial space, see [TW05, Sect. 7.5] (this is because the
coupling relies on the underlying DOFs, which are different for the two approaches).
Indeed, the convergence can slow down for the hierarchichal case. For numerical
studies of Neumann-Neumann and FETI methods see also [TV03, TV04, TV06].

Remark 2.113. Instead of coupling directly the DOFs, one could also introduce a
suitable set of interpolation points and couple function values there. This is possible
for any basis of a high order H1-conforming FE space. In that case the structure of
B is more involved.

2.8.1.3 Mortar Discretizations

Mortar discretizations (see e.g. [BMP94]) are FEM or BEM on non-conforming
meshes. The coupling is done by integrating the jumps on the coupling interface
against test functions that act as Lagrange multipliers. Thus, mortar methods contain
already the needed interconnecting. A FETI like jump operator can be derived using
the mass matrices on the coupling interface. See [SK98, Ste01, KL05, Kim07,
KDW08, Kim08a, Kim08c, Kim08b, KT09] for FETI and balancing type methods
for such mortar discretizations. Moreover, see [Rou09] for a related method called
FETI-2LM.
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2.8.1.4 Discontinuous Galerkin Method

Discontinuous Galerkin methods (see e.g. [DE12, HW08a, Riv08]) typically work
with spaces of discontinuous functions across elements. The coupling is performed
by suitable jump terms that are added to the bilinear form. Balancing type methods
for DG discretizations on conforming and non-conforming meshes have been
thoroughly investigated by Dryja, Galvis, and Sarkis [DGS07, DGS08, DGS11,
DGS12].

2.8.1.5 Isogeometric Analysis

For the discretizations in isogeometric analysis (cf, [HCB05, BBCC06, CHB09]),
Assumption 2.112 is not necessarily fulfilled. This is because for Ck-elements, the
NURBS basis functions cannot be localized to individual elements, and thus it is
difficult to associate the DOFs to a geometric interface. See however [BSEH11]
for a localization by a change to the Bernstein basis. The recently introduced
IETI method, cf. [KPJT12], covers the case of C0-continuity across subdomain
interfaces, which makes the coupling more natural. The case of Ck-continuity with
k > 0 has been studied recently in [BCPS12], using the concept of fat interfaces.

2.8.2 FETI and Balancing Type Methods for General PDEs

This section consists mainly of an (incomplete) list of references for FETI and
balancing type methods for a variety of different PDEs. Note that many of the
references are on FETI-DP and BDDC methods, which will be dealt with later on
in Chap. 5. In the following, we briefly touch advection-diffusion problems, and
problems in continuum mechanics, acoustics, and electromagnetics.

2.8.2.1 Dynamic Problems and Advection-Diffusion Problems

In this section, we consider the modified PDE

�div.˛ru/C ˇ � ru C � u D f; (2.97)

The Case ˇ D 0 and � > 0. Assume that ˇ D 0 and that �.x/ 	 �0 > 0 a.e. in˝ .
This kind of problem occurs particularly in implicit time stepping for the dynamic
problem

@u

@t
� div.˛ru/ D f:
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In each time step, one has to solve a problem of the form (2.97) with ˇ D 0 and
� D 1=�t , where �t is the time step.

Let Wi and W be the spaces from either the classical or the all-floating
formulation and let Si W Wi ! W �

i denote the corresponding (discrete) Steklov-
Poincaré operators. On a FEM subdomain, Si corresponds to the Schur complement
of the matrix

Ki C Mi

where Ki is the stiffness matrix corresponding to
R
˝
˛ru � rv dx and Mi the mass

matrix corresponding to
R
˝
� u v dx. For a BEM subdomain, the operator Si is

given analogously to Sect. 1.3 but the fundamental solution in the boundary integral
operators has to modified accordingly (see, e.g., [SS11]). Using S WD diag.Si /siD1,
one derives the FETI/BETI saddle point formulation analogously to Sect. 2.2.1.1:
find .u; �/ 2 W � U such that

	
S B>
B 0


 	
u
�



D

	
g

0



;

see also [FCM95, FM98, Tos01]. For convenience we split the local Steklov-
Poincaré operators into the part corresponding to the stationary term �div.˛ru/
and a remainder,

Si D SKi C SMi :

Observe that, even if SKi might have a non-trivial kernel, the operator Si is always
SPD, and so

ker.Si / D f0g:
That is, according to Definition 2.15, all subdomains are non-floating. Therefore, no
projection is needed to eliminate the unknown u from the saddle point problem, and
the resulting dual system simply takes the form

find � 2 U W B S�1B>„ ƒ‚ …
DWF

� D B S�1g„ ƒ‚ …
DWd

;

where S�1 D diag.S�1
i /siD1. The solution � is unique up to ker.B>/. Hence, leteU WD U= ker.B>/ and eU � D range.B/, then we can seek (formally) � 2 eU .

Due to the lack of the projection, there is no coarse problem, and so using the
(scaled) Dirichlet preconditioner only results in a method that is not scalable, i.e., it
deteriorates when the number s of subdomains grows.

We now reinstall a coarse problem using an outer projection. This technique is
also called deflation (cf. [VSMW01, KR12]) and was first used for a FETI method
by Farhat, Chen, and Mandel [FCM95] (see also [FM98]) in the context of dynamic
elasticity. Let Ri span the kernel of SKi and define R D ŒRi �

s
iD1 and G WD Q B R,

where Q W U � ! U is a suitable SPD operator. The outer projector P W eU ! eU is
then given by

P WD I �G.G>F G/�1 G>F;
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Algorithm 8: FETI/BETI algorithm for a dynamic problem based on PCG

�.0/ D G.G>F G/�1 G>d
r.0/ D d � F �.0/
k D 0

repeat
z.k/ D M�1

sD r.k/

s.k/ D P z.k/

p.k/ D s.k/ C ˇk�1 pk�1 where ˇ�1 D 0, ˇk�1 D hr.k/; s.k/i
hr.k�1/; s.k�1/i

for k > 0
�.k/ D �.k/ C ˛k p

.k/ where ˛k D hr.k/; s.k/i
hbF p.k/ ; p.k/i

r.kC1/ D r.k/ � ˛k bF p.k/
k D k C 1

until stopping criterion fulfilled for r.k/

cf. [FM98, Sect. 5] (where Q D I ) and [Tos01, Sect. 3]. To assemble the (sparse)
matrix corresponding to .G> F G/, one has to apply the operator to the kernel
vectors. To do this efficiently in a parallel regime, one needs similar techniques
as described in Remark 2.36. Since range.P / and range.I � P/ are F -orthogonal,
we can split � D �0 C e� where �0 2 range.I � P/ and e� 2 range.P /. Due to the
F -orthogonality,

�0 D G .G>F G/�1G>d:

To solve for e�, we apply a PCG to the (SPD) equation

P>F e� D P>d

with initial value 0 and with the preconditioner P M�1
sD , where

M�1
sD D BD S B

>
D ; S D diag.Si /

s
iD1 :

As for the algorithm in Sect. 2.3, one can rewrite this PCG algorithm as an iteration
for the original variable �, see Algorithm 8. Thanks to the choice of the initial value,
one needs to perform only one projection step (cf. [FM98] and [Tos01, Lemma 3.1]).

Including Advection. A generalization of the above algorithm to the non-
symmetric problem (2.97) with ˇ ¤ 0 (but further assumptions on ˇ and � )
can be found in [Tos01], where the PCG is replaced by a preconditioned GMRes
method. For a BDDC method we refer to [TL08].

The Case ˇ D 0, � � 0. Assume that on some subdomains � D 0 and on the
remaining ones � > 0. This means that some of the Steklov-Poincaré operators
already have kernels, and some do not. A method called generalized FETI has been
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proposed by Farhat and Mandel [FM97], see also [Mat08, Sect. 4.3]. It introduces a
projection that includes both the existing kernels and the artificial ones.

Unification by Dual-Primal Methods. We note that using a dual-primal approach
(see Chap. 5), no case distinction is necessary, at least for the symmetric problems,
cf. Sect. 5.3.5.1.

Acceleration for Dynamic Problems. In [FCR94] it has been proposed to accel-
erate the iterative solves by recycling the Krylov space of previous time steps. This
technique can be used for FETI, Neumann-Neumann, FETI-DP, and BDDC.

2.8.2.2 Continuum Mechanics

Linear Elasticity. We consider the primal formulation of linear elasticity in
variational form, for simplicity with homogeneous Dirichlet boundary conditions:
find the displacement u 2 H1.˝/d , uj�D D 0 such that

Z
˝

C ".u/ W ".v/ dx D
Z
˝

f � v dx C
Z
�N

tN � v ds 8v 2 H1.˝/d ; vj�D D 0;

where ".v/ D 1
2
.rv C .rv/>/ is the linearized strain tensor and C the (linear)

material tensor due to Hooke’s law, such that � .u/ D C ".u/ is the stress tensor. It
depends on the Young modulus E and the Poisson ratio � in the usual way, see e.g.
[Bra01, SDH04] or [TW05, Sect. A.6.2]. Here, we assume that the Poisson ratio �
is bounded away from the incompressible limit 1=2.

The classical FETI method was originally introduced for the above problem, cf.
[FR91, FR94]. When using the continuous piecewise linear finite elements for the
components of the displacement u, the derivation of FETI is in large parts analogous
to the presentation in Sect. 2.2. The crucial difference lies in the local kernels which
can have dimension of 0 up to 6 in three dimensions. Here lies an advantage of all-
floating (total) FETI (cf. [DHK06]), where the local kernel is always the space of
rigid body modes,

RB WD

8̂
<̂
ˆ̂:

n
a C b

	
x2

�x1



W a 2 R

2; b 2 R

o
for d D 2;

fa C b � x W a; b 2 R
3g for d D 3:

For an analysis of FETI for linear elasticity see [KW00] and [TW05, Sect. 8.5].
Here, the key ingredient is a spectral equivalence between the stiffness matrix of
linear elasticity and the stiffness matrix of the vector Laplacian, which holds at least
for vectors orthogonal to the kernel of the elasticity matrix, cf. [KW00, Lemma 5].
Using that equivalence, the FETI analysis can in large parts be reduced to the scalar
elliptic case of Sect. 2.6.
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For the FETI-DP method (where the local kernels do not have to be known
explicitly) we refer to [FLLC01, KR06, KW06, KR07b, KR10]. For the BETI
method see [Of06, Of08, OS09]. For FETI(-DP) and BDDC for mortar discretiza-
tions of linear elasticity see [Kim08a, Kim08c, Kim08b]. Finally, for a novel
approach using the Smith factorization, see [CDNQ12].

Plate and Shell Problems. The FETI method was generalized for plate and
shell problems by Farhat, Mandel, and Tezaur, see [MTF99, FM98]. Without a
special treatment, however, the convergence is not satisfying, and a further outer
projection of the Lagrange multipliers is necessary, see [FM98, FCMR98]. Due to
the introduction of this second level, the resulting method is now called FETI-2.
Note also that this method was important for the development of the dual-primal
methods (cf. Chap. 5).

FETI-DP and BDDC methods for plate problems can be found in [FLLC01,
BCLP10]. For an analysis see also [Bre03b].

Almost Incompressible Elasticity. In the almost incompressible case of elasticity,
the Poisson ratio is close to 1=2, which needs special treatment. Here we refer to
[KRW07, PWZ10, GKR12], see also the related papers [DW09, DW10].

Nonlinear Elasticity and Contact Problems. There are three major sources of
nonlinearities in solid mechanics:

(i) Geometric nonlinearities (due to large deformations),
(ii) Nonlinear material laws (other than Hooke’s linear law),

(iii) Nonlinearities due to contact (introducing active or inactive constraints).

FETI type methods for contact problems can, e.g., be found in [BDS08, DHKC05,
DKVC10, HKD04, JKR12]. For FETI type methods for nonlinear material laws in
biomechanics, we refer to [BKRS08, BBKC09, KNRV11].

The Stokes Problem. For FETI-DP and BDDC for Stokes we refer to [PW02,
Li05, LW06a, KLP10a, KLP10b, KL10, ŠSBC11], see also [TW05, Sect. 9.4.2].
For a novel approach using the Smith factorization, see [DNR08, DNR09].

Porous Media Flow. For BDDC methods on mixed and hybrid discretizations of
porous media flow problems, also called Darcy’s problem (cf. [TW05, Sect. A.7.2]),
we refer to [Tu05, Tu07a, Tu11, Sou12].

2.8.2.3 Acoustic Scattering

The acoustic scattering problem is governed by the (scalar) Helmholtz equation

��u � k2 u D f;

where k is the wave number. Besides Dirichlet and Neumann conditions, one
often considers non-reflecting boundary conditions modeling waves that are only
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outgoing. Besides the “standard” difficulties of this indefinite problem (including a
proper discretization), there are more difficulties when considering non-overlapping
domain decomposition: local Dirichlet and Neumann problems can be unsolv-
able, when k2 hits an eigenvalue of the corresponding local Helmholtz problem.
A remedy was proposed by Farhat, Macedo, and Tezaur [FMT99], see also
[FML00a]. The local problems are consistently supplemented with Robin boundary
conditions, which guarantee the solvability of the local problems. This method is
now called FETI-H. The dual-primal generalization, FETI-DPH, was introduced
later in [FLLA05, FATL05]. The generalization to BEM discretizations (“BETI-H”)
was investigated by Steinbach and Windisch, see [Win10, SW11a, SW11b]. For a
related method called FETI-2LM method see [FMLC00b].

2.8.2.4 Electromagnetic Problems

Eddy current problems are governed by the equation

curl.˛ curl u/C ˇu D f ;

with ˛, ˇ >0, where u is a vector field in H.curl/, usually discretized by
Nédélec edge elements. Neumann-Neumann and FETI type methods have been first
investigated by Toselli and coworkers [Tos99, Tos00, RT01, TK01, Tos06]. The
results were further refined by Dohrmann and Widlund [DW12a, DW12b].

In electromagnetic scattering problems, the coefficient ˇ above is negative. For
a BETI approach on such kind of problems we refer to [Win10, SW12].
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