
Chapter 2
Stochastic Modelling in Life Sciences

The dynamics of natural phenomena such as the growth of populations of species,
the spread of epidemics, changes in gene frequencies or the course of chemical reac-
tions are all subject to random variation. Their evolution is not exactly predictable.
However, the application of mathematical models enables insight into such complex
processes.

This chapter motivates and reviews representative application fields from life
sciences and appropriate mathematical models. These applications and models
will recur throughout the entire book. They give rise to the model constructions
in Chaps. 3–5 and the investigation and development of estimation procedures in
Chaps. 6 and 7. Moreover, they form the basis for the application studies in Chaps. 8
and 9.

The emphasis of this and the following chapters is on the important role of
chance. In the literature, there is a vast number of works for modelling the mentioned
dynamics where randomness is not taken into account. Such deterministic models
provide a convenient and sometimes also appropriate way to represent a situation
of interest. For comparison purposes, this deterministic approach is also introduced
here. In general, however, deterministic models are not able to capture the natural
stochastic behaviour of a real-world phenomenon. For instance, a deterministic
model for the spread of an infectious disease may predict a major outbreak in a
marginal situation and possibly prove wrong (cf. Sect. 2.2). Deterministic models
for the dynamics of chemical reactions typically fail when the number of reactants
is small (e.g. McQuarrie 1967). As another example, Lande et al. (2003) invoke
harvest strategies, say in fishery, which may do harm to small populations of
endangered species when they are developed based on deterministic models. For that
reason, this book particularly focuses on the application of stochastic models. These
account for random fluctuations of the considered processes and assign probabilities
to critical events.

The structure of the present chapter is as follows: Sect. 2.1 introduces the very
general class of compartment models. From such a model, both deterministic and
stochastic processes can be derived. Sections 2.2 and 2.3 provide introductions to
two emerging fields of life sciences, namely to models for the spread of infectious
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diseases and to models for processes in molecular biology, biochemistry and
genetics. Both sections start from a compartmental representation and then consider
three types of models. These are stochastic jump processes, deterministic continuous
processes and stochastic diffusion processes. The first type of process mirrors the
exact dynamics of the compartmental system, whereas the second and third can be
considered as approximations of the first. The development of an exact simulation
algorithm for the jump process in 1976 hence meant a considerable advancement in
the field of statistical modelling. This algorithm is presented in Sect. 2.4. In many
situations, however, its application is computationally costly. Hence, numerical
approximation algorithms for the second and third type of process are outlined as
well. Section 2.5 concludes this chapter.

2.1 Compartment Models

In a compartment model, all objects involved in a system of interest are arranged
in a finite number of compartments, i.e. in groups of objects that are defined
through certain specified properties (Jacquez 1972). The compartments are mutually
disjoint, and the assignment of each object to a compartment is unambiguous.
The elements of each compartment are assumed to be homogeneous and well-
mixed. Interaction between different compartments happens through the exchange
of objects which is described by transition equations. Such passages are assigned
with some rate that typically depends on the concentrations of objects from the
distinct compartments. In this book, the considered compartmental systems are
usually closed, i.e. there is no flow of objects to and from the environment.

The classification of objects into different compartments may, for example, be
due to the location of animals or humans in a geographical region, the kinetic
properties of molecules, or the age or physical conditions of individuals that are
susceptible to a disease. Figures 2.1 and 2.2 display two compartment models from
the fields of applications that are considered in Sects. 2.2 and 2.3.

A compartment model is a convenient fundament for a dynamical system one
wishes to represent. From this model, different types of processes can be derived,
all of them standing for the same considered phenomenon. This book will consider
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Fig. 2.1 Compartmental representation of the susceptible–infectious–removed (SIR) model that
will be investigated in Sect. 2.2.2. In this model, a population of interest is classified into
susceptible, infectious and removed individuals. Transitions between these three groups are due
to infections and recoveries
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Fig. 2.2 Compartmental representation of the dimerisation of nitrogen dioxide. In this model, all
nitrogen dioxide (NO2) and dinitrogen tetroxide (N2O4) molecules in a gas are summarised in
two compartments. Depending on the temperature and pressure, two of the NO2 molecules may
dimerise, yielding one N2O4 molecule. The other way round, an N2O4 molecule may dissociate
into two NO2 molecules

the following three kinds: pure Markov jump process, deterministic processes with
continuous sample paths, and diffusion processes. First examples are shown in the
next two sections.

2.2 Modelling the Spread of Infectious Diseases

Epidemics of infectious diseases have shaped the history of humankind. They have
directly affected economy, politics and demography, the course of wars, social
behaviour and religious beliefs (McNeill 1976; Cunha 2004; Smallman-Raynor and
Cliff 2004; Sherman 2006; Oldstone 2010).

Devastating historic epidemics and pandemics include the Black Death in 1347–
1350 with 25 million deaths in Europe, where there was up to 50% mortality of the
urban population in England and Southern Europe; outbreaks of smallpox, measles
and typhus in Mexico in 1518–1520 with 2–15 million deads out of a population of
20 million; several cholera epidemics in India during the seventeenth century with
more than 20 million deaths; and the Spanish influenza pandemic in 1918–1920 with
estimated numbers of worldwide deaths lying between 25 and 50 million (Dobson
and Carper 1996; Smallman-Raynor and Cliff 2004; Vasold 2008).

Present-day pandemics comprise for instance the acquired immunodeficiency
syndrome (AIDS) caused by the human immunodeficiency virus (HIV) which was
identified in the 1980s. It is assumed that in 2008 there were 2.7 million new
infections, 2 million AIDS-related deaths and 33.4 million people living with the
virus worldwide (UNAIDS 2009). Quite recently, in 2009, an influenza pandemic
spread from Mexico over the whole world within a few months. It possibly affected
between 11 and 21% of the global population (Kelly et al. 2011) and caused more
than 18,000 deaths (WHO 2010). During the early stages of the epidemic, one even
feared much higher mortality. Hence, the spread of diseases is still a serious concern
in both the developed and developing world.

The elimination of infectious disease epidemics is desirable not only from a
humane viewpoint but also regarding economic factors such as manpower and
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public health costs. Even for diseases with relatively mild courses it is generally
favourable to invest in prevention rather than cure. Considerable progress in
understanding the propagation of infectious diseases from a medical point of view
has been achieved by Louis Pasteur (1822–1895) and Robert Koch (1843–1910),
who discovered the cause of infections by microorganisms. Targeted intervention
against the spread of diseases, such as vaccination or isolation, however requires an
overall comprehension of the typically complex dynamics of an epidemic. This is
achieved by application of mathematical modelling (Brauer 2009).

The objectives of this section are the following: First, to introduce basic models
for the spread of infectious diseases, and second, to motivate the utilisation of
stochastic rather than deterministic models. This presentation is oriented towards
the needs of subsequent chapters. For further information, the reader is referred to
Bailey (1975), Anderson (1982), Becker (1989), Anderson and May (1991), Daley
and Gani (1999), Andersson and Britton (2000), Diekmann and Heesterbeek (2000)
and Keeling and Rohani (2008).

2.2.1 History of Epidemic Modelling

Detailed statistics on disease counts go back to John Graunt (1620–1674) who
recorded weekly death counts in London together with their causes. The first mathe-
matical model for the spread of infectious diseases, however, is generally accredited
to Daniel Bernoulli (1700–1782), but epidemic modelling has not received much
attention until the beginning of the twentieth century. Early works include En’ko
(1889), Hamer (1906), Ross (1915) and Kermack and McKendrick (1927). Detailed
historical accounts on the development of mathematical epidemiology can be found
in Bailey (1975), Dietz (1967), Anderson and May (1991) and Daley and Gani
(1999).

In the early stages of epidemic modelling, the spread of diseases was generally
formulated as a deterministic process. According to Bailey (1975), the first author
who included a random component in an epidemic model was McKendrick (1926),
but that particular approach was only continued 20 years later. Instead, the class
of chain binomial models, independently introduced by Lowell Reed and Wade
Hampton Frost (see Abbey 1952 or Costa Maia 1952) and Greenwood (1931),
established itself. A model of this type considers the evolution of an epidemic
at discrete time points. To that end, the number of susceptible and infectious
individuals in a population is assumed to be binomially distributed, conditioned
on the state of the epidemic at the previous time point. An overview about chain
binomial models is given in Becker (1989) and Daley and Gani (1999).

In subsequent years, both stochastic and deterministic models were refined and
their mathematical analysis was extended; see e.g. Isham (2004) for a review. The
class of susceptible–infective–removed (SIR) models, which is introduced in the
next section, emerged as the most prominent description of the spread of infectious
disease epidemics.
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While the comprehension of disease dynamics and the development of mathe-
matical tools progresses, the general framework of modelling the spread of diseases
changes as well: First of all, the increased mobility of humans raises the risk
of fast spreading pandemics. On the other hand, detailed medical knowledge of
infection processes and improved hygienic conditions in many countries help
prevent transmission of diseases. Modern epidemiological models take into account
travel, social behaviour, the effect of intervention such as vaccination or isolation,
and many other aspects.

The following section introduces a standard model from epidemiology which
serves as the basis for many extensions as indicated in Sect. 2.2.3 and implemented
in Chap. 5. This section concentrates on infectious diseases for humans. The
considered diseases are assumed to be directly transmittable rather than vector-
borne, i.e. transmitted for example by insects.

2.2.2 SIR Model

An SIR model (Kermack and McKendrick 1927; Bartlett 1949) classifies a popula-
tion of fixed size N into susceptible (S), infectious (I) and removed (R) individuals.
Transitions between these classes are

S©+ I© α−→ 2 I© and I© β−→ R©. (2.1)

The first transition means that each contact between a susceptible and an
infectious individual will cause an infection with rate α ∈ R+, resulting in two
infectious individuals. The second transition denotes that each of these infectious
individuals will be removed with rate β ∈ R+ due to being recovered and immune,
or quarantined, or dead. The parameter α is the contact rate of an infectious
individual for spreading the disease, and β is the reciprocal average infectious
period. Some authors also refer to α and β as the infection rate and removal rate,
respectively.

Modifications of the SIR model e.g. disregard recovery (SI), allow a return to the
susceptible status (SIS, SIRS), or incorporate a latent/exposed period (SLIR/SEIR).
For simplicity, we assume in this section that an individual is infectious as
soon as it is infected. The terms infected, infectious and infective are considered
interchangeable.

The SIR model is conveniently described as a time-homogeneous Markov
process. Unless otherwise stated, we assume the population closed during the time
of consideration, ignoring births, non-related deaths, and migration. Furthermore,
the population is presumed to mix homogeneously.

Different constructions of the SIR model can be found in the literature, see for
example Andersson and Britton (2000) for an overview. The following paragraphs
present three of the most common descriptions.
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Representation as Pure Markov Jump Process

Denote by S and I the absolute numbers of susceptible and infectious individuals in
the population under consideration. Due to the fixed population size N , the current
state of an SIR process is completely described by the tuple (S, I)′, which is an
element of the state space D = {(S, I)′ ∈ [0, N ]2 ∩N2

0 |S + I ≤ N}; the number
of removed individuals can be calculated as R = N − S − I .

Hence, let (S, I)′ ∈ D be the state of the process at time t ∈ R0. Assuming that
at most one event can occur within a small time interval of length Δt, there are three
possibilities for the state of the process at time t+Δt:

1. (S − 1, I + 1)′ in case one infection occurs,
2. (S, I − 1)′ in case one recovery occurs,
3. (S, I)′ in case nothing happens.

These transitions come up with probabilities

p1 = αSI/N Δt+o(Δt), p2 = βI Δt+o(Δt) and p3 = 1−p1−p2, (2.2)

respectively, where o(Δt)/Δt → 0 as Δt → 0. See Sect. 5.1.2 for the derivation
of (2.2). For (S, I)′ �∈ ([0, N−1]× [1, N−1]) ∩ D, the above target states may not
be an element of D. In those cases, however, the respective transition probabilities
leading to them are o(Δt). For an initial condition (S0, I0)

′ ∈ D, the process can
therefore never leave the admissible state space.

A Markov process with the above described dynamics is also termed the general
stochastic epidemic. Section 2.4.1 describes how an according Markov chain can
exactly be simulated. Figure 2.3a shows a realisation of such a Markov chain.

A notable insight into the dynamics of the general stochastic epidemic is the
following stochastic threshold result: Let (S0, I0)

′ ∈ D denote the initial state of
the process and defineR0 = α/β. Then, in large populations, a major outbreak will
occur with probability tending to

1−
(
min

{
1,

N

S0
R−1

0

})I0

as N and S0 = N − I0 grow to infinity for fixed I0 (Whittle 1955; Williams 1971;
Ball 1983). This probability is positive if and only if the relative removal rateR−1

0 is
smaller than the initial fraction of susceptibles S0/N . In this formulation, the term
major outbreak means that the fraction S/N of susceptibles will fall below R−1

0

roughly as far as it was above this threshold before, provided that the difference
between S0/N and R−1

0 is not too large. For more details, see for example Daley
and Gani (1999, Chap. 3.4).R0 is called the basic reproductive ratio and interpreted
as the average number of infections caused by an infectious individual during
its entire infectious period, provided that the infective enters a totally susceptible
population.
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Fig. 2.3 Illustration of SIR model for parameters α = 0.5, β = 0.25 and population size
N = 100. (a) Temporal evolution of numbers of susceptible, infective and removed individuals in
the stochastic SIR model with transition probabilities (2.2) for initial value (S0, I0)′ = (95, 5)′.
The graphs have been simulated by application of Gillespie’s Algorithm, i.e. Algorithm 2.1 on
p. 26. (b) Temporal evolution of fractions of susceptible, infective and removed individuals in the
standard deterministic SIR model (2.3) for initial value (s0, i0)′ = (0.95, 0.05)′ . The graphs have
been obtained by application of the standard Euler scheme with step length 0.025. The vertical
line marks the instant at which the fraction of susceptibles falls below R−1

0 = β/α = 0.5.
The fraction of infectives reaches its maximum at this point. (c) Temporal evolution of fractions
of susceptible, infective and removed individuals in the SIR diffusion model (2.4) for initial
value (s0, i0)′ = (0.95, 0.05)′. The graphs have been obtained by application of the Euler-
Maruyama scheme from Sect. 6.3.2 with step length 0.025

Representation Through a System of Ordinary Differential Equations

Another possibility to describe the infection dynamics in the SIR model is a
deterministic representation via the set of ordinary differential equations (ODEs)

ds/dt = −αsi, di/dt = αsi− βi, (2.3)

where s = S/N and i = I/N denote the fractions of susceptible and infectious
individuals. In this description, the state space C = {(s, i)′ ∈ [0, 1]2∩R2

0 | s+i ≤ 1}
is considered continuous, which is an eligible assumption for large populations. The
remaining fraction r = R/N can again be obtained as r = 1−s−i. The ODEs (2.3)
are subject to an initial condition (s0, i0)

′ ∈ C. See Sect. 5.1.4 for their formal
derivation.

Figure 2.3b shows the typical evolution of an epidemic following the determin-
istic description (2.3). While recovery follows a linear process, infections occur at
high rate only when both the fractions of susceptibles and infectives are sufficiently
large. As the ODEs are not explicitly solvable, the trajectories have been obtained
numerically by application of the standard Euler scheme (cf. Sect. 2.4.2). Figure 2.4
displays the course of the deterministic SIR process for different values of α and β.
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Fig. 2.4 Fractions of susceptibles (dashed) and infectives (solid lines) in an SIR epidemic
following the deterministic model (2.3) for different values of α and β and initial value (s0, i0)′

equal to (0.99, 0.01)′ . The graphs have been obtained by application of the standard Euler scheme
with step length 0.025 for solving the ODE system. In both graphics, the parameters correspond
to R0 = α/β ∈ {1.5, 2.0, 2.5}

The first equation in (2.3) implies that the fraction of susceptibles is strictly
decreasing as long as both s and i are nonzero. Solving di/dt < 0 leads to s < β/α.
That means, whenR−1

0 := β/α is greater than the initial fraction of susceptibles s0,
no epidemic will develop. Otherwise, the epidemic will rise first but fall off as soon
as the fraction s drops below this threshold. This is the famous threshold theorem
by Kermack and McKendrick (1927). An obvious strategy to eradicate an epidemic
is hence to vaccinate the population until the latter requirement is met. The vertical
line in Fig. 2.3b indicates the first time point at which the fraction of susceptibles
falls below R−1

0 . Apparently, this mark agrees with the time point at which the
epidemic reaches its maximum with respect to the number of infected individuals.

Representation Through a System of Stochastic Differential Equations

A third variant to express the SIR dynamics (2.1) as a mathematical process is by a
stochastic differential equation (SDE)

(
ds

di

)
=

( −αsi
αsi− βi

)
dt+

1√
N

( √
αsi 0

−√αsi √βi
)(

dB1

dB2

)
. (2.4)

In this equation, s and i denote again the fractions of susceptible and infectious
individuals in the population. The right hand side of the differential equation (2.4)
consists of a deterministic and a stochastic component, that is the first and the
second summand, respectively. B1 and B2 are independent Brownian motions, rep-
resenting stochasticity in disease transmission and recovery. As for the multivariate
ODE (2.3), an appropriate initial condition has to be specified for the SDE (2.4).
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Fig. 2.5 Different courses of stochastic SIR model with transition probabilities (2.2). The
simulations base on parameters α = 0.5, β = 0.25, population size N = 100 and initial
value (S0, I0)′ = (95, 5)′. The graphs have been obtained by application of Gillespie’s Algorithm
(Algorithm 2.1)

Stochastic differential equations and their solutions, which are typically diffusion
processes, will be formally introduced in Chap. 3. Diffusion processes possess
extremely wiggly but almost surely continuous trajectories. Figure 2.3c displays
the course of an SIR epidemic as described by Eq. (2.4).

Concluding Remarks

This section introduced three different representations of the standard SIR model.
There naturally arises the question which type of process is the most appropriate
one. The pure Markov jump process, considered first, mirrors the exact dynamics
following the transitions (2.1). In many cases, however, this type of process is
rather inconvenient for the purpose of simulation and statistical inference. The
ODE representation, considered next, has the advantage of a non-individual-based
view point. It facilitates interpretation and mathematical analysis, but unfortunately
ignores possible variation by chance. In particular, the ODEs (2.3) do not even
take into account the population size N and hence unrealistically predict identical
fractions of infectives and susceptibles in small and large populations. Finally,
the representation of the SIR model in terms of a multivariate SDE consists of
both a deterministic and a stochastic component and this way compromises on
the former two processes. For this reason, the utilisation of SDEs is favourable in
many contexts. Their statistical analysis is the subject of this book. A more elaborate
discussion concerning the three above representations is the topic of Chap. 4.

In order to further ellucidate the impact of random events in the SIR model,
recall the above deterministic and stochastic threshold results. Both the stochastic
model with transition probabilities (2.2) and the deterministic model following
the ODEs (2.3) possess the same threshold R−1

0 = s0. The interpretation of this
threshold, however, differs substantially in these two models: In the deterministic
case, a major epidemic will always occur whenever R−1

0 < s0. In the stochastic
case, a major outbreak does not necessarily happen if R−1

0 < s0. The probability
for this event lies strictly between zero and one. Figure 2.5 illustrates that different
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realisations of the course of an epidemic may clearly differ in a stochastic
framework. A deterministic simulation for the same model parameters is displayed
in Fig. 2.3b. A further investigation of the SDE (2.4) requires its formal definition,
which is the subject of Chap. 3. An illustration of this model is for example given in
Sect. 5.1.5.

Epidemics will usually terminate due to a lack of infectives, not due to a lack of
susceptibles, i.e. at the end of an epidemic outbreak not all individuals will typically
have suffered from the disease. According to the above thresholds, major epidemics
occur or have positive probability, respectively, when R0 < s. Suppose that this
is the case. Then, there are three general measures to weaken the strength of an
epidemic: First, to reduce the number of susceptibles, typically by vaccination, i.e.
to decrease the fraction s. Second, to reduce the number of potentially infectious
contacts, possibly by closing schools or simply invoking caution, i.e. to decrease α.
Third, to reduce the time until an infectious individuals goes over to the removed
class, for example by isolation, i.e. to reduce the average infectious period β−1.
Each of these three strategies aims at lowering the difference between R0 = α/β
and s, at best accomplishing R0 > s. The fact that an epidemic does not start
or fades out after sufficiently many individuals have left the susceptible state is
known as herd immunity. The subject of herd immunity, including many examples,
is discussed by Anderson and May (1985) and Fine (1993), corresponding control
strategies by Morton and Wickwire (1974).

2.2.3 Model Extensions

So far, the SIR model considered in the previous section is fairly simplistic,
assuming a homogeneously mixing population, homogeneity of individuals and a
time-homogeneous course of an epidemic. In most contexts, some modifications
are necessary in order to adapt the mathematical model to a real life situation in
which an epidemic develops. Some of these aspects are outlined in the following.

First of all, one very often experiences heterogeneity in contacts among the
population. In those cases, individuals typically mix homogeneously in certain
subgroups but not with respect to the entire population. It is then meaningful to
incorporate patterns into the model such as the age structure of the population
e.g. for childhood diseases, a risk structure e.g. for sexually transmitted infections,
a geographical structure like an assignment of individuals to different cities or
countries, or social structures such as households, schools or circles of friends.

Moreover, there is typically heterogeneity among individuals in the population.
For example, susceptible persons may differ in their degree of susceptibility,
such as children or elderly people that possibly have a weaker immune system,
or individuals that have acquired partial immunity to a disease due to previous
epidemics.

In some cases, it is also appropriate to extend an epidemic model such that
it accounts for time-varying background conditions. For example, the weather
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and temperature may well have an effect on the susceptibility of individuals.
Furthermore, there may be changes in social behaviour, either independently or
dependently on the course of an ongoing epidemic, leading to a variation of
contact rates. When observing the spread of a disease over a long period of time,
demographic changes such as births and non-related deaths may be included in the
model. Other models consider endemic components, i.e. the sustained presence of a
certain number of infectious cases in the population, or the presence of carriers that
are apparently healthy but infective.

Ample examples and references for the above model extensions are given
by Isham (2004) and Keeling and Rohani (2008). In order to mention just a few
of them, multipopulation epidemics are for example investigated by Rushton and
Mautner (1955), Ball (1986), Sattenspiel (1987), Sattenspiel and Dietz (1995)
and Ball et al. (1997). Such models can often be applied to any kind of contact
heterogeneity but are in most cases described for the division of a population
into several communities in distinct geographical areas. Chapter 5 in this book
introduces a multitype SIR model for arbitrary contact heterogeneities as well.
Concerning the remaining model modifications mentioned above, Hethcote (2000)
takes into account the age of individuals, and Hethcote (1994) gives many references
for models which take into account varying population sizes. Neal (2007) analyses
an epidemic model where individuals differ with respect to both their susceptibility
and infectivity. Ireland et al. (2007) consider seasonality in birth-rates of hosts. Riley
(2007) reviews some recent approaches for spatial modelling. Finally, Lloyd-Smith
et al. (2005) and Galvani and May (2005) investigate the impact of the presence of
superspreaders, that are individuals that communicate a disease in a substantially
greater extent than other individuals.

Appropriate modifications of the basic SIR model improve the compatibility
between the model assumptions and reality and hence increase the applicability of
the model. On the other hand, each extension automatically requires additional in-
formation such as community sizes or contact patterns between groups. One should
hence balance carefully between complex and oversimplistic models. Stochastic
models typically get along with fewer details as minor aspects can be covered by
random fluctuations. Chapters 5 and 8 in this book derive and statistically infer on a
probabilistic multitype model for the spread of an infectious disease.

2.3 Modelling Processes in Molecular Biology,
Biochemistry and Genetics

Understanding the mechanisms of heredity and variation of living organisms,
senescence and the emergence of diseases such as cancer has fascinated mankind
within living memory. Nowadays one knows that these phenomena are based
on chemical processes in living organisms and the structures and functions of
living cells.
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This section briefly considers mathematical modelling in the overlapping areas of
molecular biology, biochemistry and genetics. These fields comprise an enormous
variety of different applications and models, the complete review of which would
be far beyond the scope of this book. Hence, this section exemplarily addresses
one specific branch of the above research areas: That is, applications which utilise
the framework of chemical reactions for the modelling of selected key processes.
This section hence starts with historical background information and a mathematical
review on that subject in Sects. 2.3.1 and 2.3.2, followed by an outline of cross
connections to other disciplines in Sect. 2.3.3.

2.3.1 History of Chemical Reaction Modelling

The first landmark in the development of chemical reaction modelling was set in
1850 by Ludwig Wilhelmy, who empirically derived a mathematical expression for
the progress of the inversion of cane sugar in the presence of acids (McQuarrie
1967; Arnaut et al. 2007). In several articles published between 1864 and 1879, Cato
Maximilian Goldberg and Peter Waage proposed the law of mass action, which says
that the hazard of an elementary reaction is proportional to the product of the con-
centrations of all reactants; cf. Sect. 2.3.2 for details. Important further contributions
to the understanding of the order and temperature dependence of chemical reactions
were made between 1865 and 1889 by Augustus Harcourt, William Esson, Jacobus
Henricus van’t Hoff, Wilhelm Ostwald and Svante Arrhenius (Laidler 1993). Until
1940, many mathematical models were formulated which described the mechanism
of a chemical reaction in a deterministic way. According to McQuarrie (1967),
Kramers (1940) was the first author who applied the theory of stochastic processes
to chemical reactions models.

Nowadays, detailed knowledge about molecular structures and mechanisms is
available, in addition to sophisticated mathematical and statistical modelling tools.
This enables the description and analysis of complex chemical networks. A detailed
historical review on chemical kinetics modelling is provided by Arnaut et al. (2007).
McQuarrie (1967) considers this subject from a statistician’s point of view.

2.3.2 Chemical Reaction Kinetics

Chemical reactions are typically specified by reaction equations of the form

a1A1 + . . .+ akAk −→ b1B1 + . . .+ blBl. (2.5)

This equation describes a reaction in which k different reactants A1, . . . , Ak are
transformed into l distinct products B1, . . . , Bl. The numbers ai, i = 1, . . . , k, and
bj , j = 1, . . . , l, are the stoichiometries of the reaction and denote the numbers of
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reactants Ai and products Bj involved. They are assumed to be natural numbers
with greatest common divisor equal to one. In this chapter, equations like (2.5)
are declared to represent elementary reactions, i.e. reactions that do not consist of
several intermediate steps. Equation (2.1) on p. 13 was of type (2.5) as well.

As in the context of modelling the spread of infectious diseases in the previous
section, there are various approaches to mathematically describe the dynamics of a
process in which reactions such as (2.5) occur. In what follows, three possibilities
are briefly introduced in the same order as for the SIR model in Sect. 2.2.2. All
representations have in common that they assume the underlying system well-stirred
and the process to be Markovian and time-homogeneous. In particular, external
parameters such as temperature and pressure are presumed to be constant.

Representation as Pure Markov Jump Process

The sets of reactants {A1, . . . , Ak} and products {B1, . . . , Bl} are typically non-
disjoint subsets of a collection {C1, . . . , Cm} of particles that are present in the
considered system. The reaction equation (2.5) can hence be rewritten as

c1C1 + . . .+ cmCm −→ c̃1C1 + . . .+ c̃mCm, (2.6)

where

ci =

{
aj if Ci = Aj

0 if Ci �∈ {A1, . . . , Ak}
and c̃i =

{
bj if Ci = Bj

0 if Ci �∈ {B1, . . . , Bl}.

For i ∈ {1, . . . ,m}, let Xi denote the number of particles Ci in the system and
define (X1, . . . , Xm)′ as the state variable of a stochastic process describing the
system dynamics. The chemical reaction (2.6) then causes a state change

⎛
⎜⎝

X1

...
Xm

⎞
⎟⎠ −→

⎛
⎜⎝

X1 − (c1 − c̃1)
...

Xm − (cm − c̃m)

⎞
⎟⎠ . (2.7)

In real applications, one typically has several chemical reactions such as (2.6),
each causing a transition like (2.7). Every reaction is associated with a reaction rate
indicating the hazard with which the specific reaction is going to occur within the
next infinitesimal time interval. These rates are assumed to depend on the left hand
side of (2.6) only. Wilkinson (2006) exemplarily states the following reactions and
associated reaction rates, where the current state of the process is (X1, . . . , Xm)′:

Ci −→ c̃1C1+ . . .+ c̃mCm (first-order reaction) with rate k1Xi (2.8)
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Ci+Cj−→ c̃1C1+ . . .+ c̃mCm (second-order reaction) with rate k2XiXj (2.9)

2Ci −→ c̃1C1+ . . .+ c̃mCm (second-order reaction) with rate k3Xi(Xi−1)/2.
(2.10)

In the second equation, one requires i �= j. The variables k1, k2, k3 ∈ R+ are
called rate constants. They are usually unknown and hence the subject of statistical
inference based on available experimental data. The remaining parts of the reaction
rates result from combinatorial considerations, counting the number of possible
collisions between the reactants, and the fact that the hazard of two specific particles
colliding is constant (Gillespie 1992).

As a consequence of the above specified reaction rates, the probability that,
for example, reaction (2.8) will occur within a time interval of length Δt, pro-
vided that the current number of particles Ci is Xi, equals k1XiΔt + o(Δt),
where o(Δt)/Δt → 0 as Δt → 0. Without any other reactions taking place, the
expected time until the occurrence of this reaction is exponentially distributed with
mean k1Xi.

Representation Through a System of Ordinary Differential Equations

A different possibility to describe the state of a system which is subject to elemen-
tary chemical reactions of type (2.6) is via the rates of change of the concentrations
of all reaction participants. To that end, consider the concentrations x1, . . . , xm of
the particles X1, . . . , Xm. These concentrations are considered continuous rather
than discrete quantities. The chemical reaction (2.6) induces a change of the current
state (x1, . . . , xm)′ which is typically described by a set of ordinary differential
equations (ODEs): For all i = 1, . . . ,m, one has

dxi/dt = k̄ (c̃i − ci)x
c1
1 · . . . · xcm

m

for some positive (stochastic) rate constant k̄. This equation results from the law
of mass action, which was already mentioned in Sect. 2.3.1. The sum of exponents
c1 + . . .+ cm is called the order of the reaction (McQuarrie 1967). The right hand
side of the ODE is positive if ci < c̃i, i.e. if the chemical reaction described by (2.6)
increases the amount of particles Xi in the system. It is negative or equal to zero if
the reaction decreases the number Xi or leaves it unaltered, respectively. If there is
more than one possible reaction, each reaction is assigned a different rate constant,
and the ODEs resulting from each reaction equation are added in order to arrive at
a description for the whole reaction dynamics. For example, consider the following
set of coupled reactions for m = 2, which is a special case of Eqs. (2.8)–(2.10):

C1 −→ c̃
(1)
1 C1 + c̃

(1)
2 C2 (2.11)

C1 + C2 −→ c̃
(2)
1 C1 + c̃

(2)
2 C2 (2.12)

2C2 −→ c̃
(3)
1 C1 + c̃

(3)
2 C2. (2.13)
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For these reactions, one obtains the ODEs

dx1/dt = k̄1

(
c̃
(1)
1 − 1

)
x1 + k̄2

(
c̃
(2)
1 − 1

)
x1x2 + k̄3c̃

(3)
1 x2

2 (2.14)

dx2/dt = k̄1c̃
(1)
2 x1 + k̄2

(
c̃
(2)
2 − 1

)
x1x2 + k̄3

(
c̃
(3)
2 − 2

)
x2
2 (2.15)

for appropriate rate constants k̄1, k̄2, k̄3 > 0. Additionally, a suitable initial state of
the process needs to be specified. The constants k1, k2, k3 in Eqs. (2.8)–(2.10) and
the constants k̄1, k̄2, k̄3 in (2.14)–(2.15) depend on the units of X1, X2 and x1, x2,
respectively, and are not necessarily the same. See Wilkinson (2006, Chap. 6.6)
for the conversion from ki to k̄i in case the concentrations are measured in moles
per litre.

Representation Through a System of Stochastic Differential Equations

Finally, a third way to represent the evolution of a system which is subject to
chemical reactions utilises stochastic differential equations (SDEs). In case of the
reactions (2.11)–(2.13), the multi-dimensional SDE reads

(
dx1

dx2

)
=

⎛
⎜⎝k̄1

(
c̃
(1)
1 − 1

)
x1+k̄2

(
c̃
(2)
1 −1

)
x1x2+k̄3c̃

(3)
1 x2

2

k̄1c̃
(1)
2 x1+k̄2

(
c̃
(2)
2 −1

)
x1x2+k̄3

(
c̃
(3)
2 − 2

)
x2
2

⎞
⎟⎠ dt+

(
σ11 σ12

σ21 σ22

)(
dB1

dB2

)
,

where σ11, σ12, σ21 and σ22 are functions of the state variables, rate constants and
stoichiometries not explicitly given here. The first summand on the right hand side
represents the deterministic component of the process and agrees with Eqs. (2.14)
and (2.15). The second summand stands for the probabilistic component with B1

and B2 being two independent Brownian motion processes. SDEs and Brownian
motion will formally be defined in Chap. 3.

2.3.3 Reaction Kinetics in the Biological Sciences

Reaction equations and their associated mathematical theory are convenient tools
also in the biological sciences. They are particularly used to describe the natural
laws which underlie the functioning of cells. This section gives some examples.

Chemical work can be performed by cells only if there is enough energy
available. Such energy is gained through cellular catabolism, which is a mechanism
consisting of a series of enzymatic reactions like

enzyme + substrate ←→ complex −→ enzyme + product,
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where the enzyme acts as a catalyst (Keener and Sneyd 1989). Double-sided
arrows mean that the reaction can take place in both directions. Kinetic models for
metabolic systems are, for example, developed by Demin et al. (2005).

Within each cell, there are several thousand types of interacting proteins.
Depending on its environment, a cell determines the required amount of each protein
by means of transcription networks (Alon 2007). Transcription is one out of several
regulatory mechanisms in genetic networks and can be described by a set of coupled
elementary reactions (Wilkinson 2006). At a less detailed level, transcription and
other key processes can be assembled to construct genetic networks. For example,
the following components of a prokaryotic auto-regulatory network are summarised
by Wilkinson (2006):

g −→ g + r (transcription)

g + P2 ←→ g · P2 (repression)

r −→ r + P (translation)

2P ←→ P2 (dimerisation)

r −→ ∅ (mRNA degradation)

P −→ ∅ (protein degradation).

In these equations, P stands for a protein, P2 for the compound of two of these
proteins, g for a gene and r for a transcript of g. The empty set ∅ indicates that the
product of a reaction is not part of the model, and a dot represents the compound of
two components.

The close connection between models for chemical reactions and genetic
mechanisms is hardly surprising as genetics is based on the chemistry of nucleid
acids. There are, however, also cases of compartmental systems in cellular biology
where reaction equations represent transitions other than chemical reactions. In the
application in Chap. 9, for example, the location of a diffusing protein between
a bleached and an unbleached part of the cell nucleus is observed. This can be
written as

Xbleached ←→ Xunbleached.

A molecule that undergoes this transition does not change any of its chemical
or kinetic properties but only its location, so the compartments reflect the spatial
dimension of the problem here.

Plenty of further applications are, for example, presented in Jacquez (1972) and
McQuarrie (1967). Ehrenberg et al. (2003) give a brief overview about current
research questions in systems biology. For general reviews on mathematical models
in biology, see Goel and Richter-Dyn (1974), Renshaw (1991), Allen (2003) or
Lande et al. (2003).

Though representing entirely different natural phenomena, the above mentioned
applications have in common that they are intrinsically stochastic. A number of
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papers is devoted to the importance of the utilisation of probabilistic instead of
deterministic models in systems biology, biochemistry and genetics, see for example
Kimura (1964), Zheng and Ross (1991), Arkin et al. (1998), Sveiczer et al. (2001),
Rao et al. (2002), Bahcall (2005), Tian et al. (2007) and Boys et al. (2008). In
agreement with this point of view, the present book motivates, constructs and
statistically infers on stochastic models from life sciences.

2.4 Algorithms for Simulation

In Sects. 2.2 and 2.3, different kinds of processes were considered to represent
the dynamics of different phenomena in life sciences. For the simulation of
these processes, one requires algorithms for the exact or approximate generation
of according sample paths. Such algorithms have already been applied for the
generation of Figs. 2.3–2.5.

2.4.1 Simulation of Continuous-Time Markov Jump Processes

Continuous-time pure Markov jump processes can always exactly be simulated. An
according algorithm is presented in what follows.

Consider a system consisting of n different types of objects such as molecules
in a fluid, predator and prey in a specified region or susceptibles and infectives in
a population. Assume that the time-continuous evolution of these objects can be
described by a time-homogeneous stochastic Markov process with state variable
X(t) = (X1(t), . . . , Xn(t))

′ ∈ Zn, where Xi(t) is the number of type i objects
at time t ∈ R+. Suppose that there are m possible events k ∈ {1, . . . ,m} like
chemical reactions or interactions within a population, each causing a change
Δk ∈ Zn\{0} in the state variable. Let λk = fk(X) denote the hazard for event k,
where fk is an appropriate function depending on the state X . That means, the
probability that a type k event will occur within the next time interval of length Δt
conditioned on the current state X is λkΔt + o(Δt), where o(Δt)/Δt → 0
as Δt → 0. The objective is to exactly simulate realisations of the considered
process, that means to successively draw pairs (τ, k) ∈ R+ × {1, . . . ,m}, where
τ is the waiting time until the occurrence of the next event, and k is the type of
event happening at that time.

Denote by p(τ, k) the joint probability density function of τ and k. Under the
assumption that only one event can happen at the same time, Gillespie (1976)
shows that

p(τ, k) = λk exp

⎛
⎝−τ

m∑
j=1

λj

⎞
⎠ = λk exp(−λτ) for τ ∈ R+ and k ∈ {1, . . . ,m},
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where λ =
∑m

j=1 λj . This joint density can be expressed as p(τ, k) = p(τ)p(k|τ),
where

p(τ) =

m∑
k=1

p(τ, k) = λ exp(−λτ), i.e. τ ∼ Exp(λ),

and

p(k|τ) = p(τ, k)

p(τ)
=

λk

λ
(2.16)

are the density of τ and the conditional probability function of k, respectively.
This leads to an exact and efficient method to obtain sample trajectories of the

considered process on a time interval [tmin, tmax]. The procedure has been called
stochastic simulation algorithm (SSA) by its originator, but is usually known as
Gillespie’s algorithm:

Algorithm 2.1 (Gillespie’s Algorithm, Gillespie 1976).

1. Set t = tmin and initialise X(t).
2. While t < tmax:

i. Calculate λk for all k and their sum λ. Terminate if the system has reached
an absorbing state, i.e. λ = 0.

ii. Draw τ ∼ Exp(λ). Set τ∗ = min{τ, tmax − t}.
iii. Draw k from (2.16).
iv. Set X(s)=X(t) for all s ∈ (t, t+τ∗) and X(t+τ∗)=X(t)+Δk1(τ

∗ = τ).
v. Set t = t+ τ .

Estimates of the average or the variation of the sample paths can be obtained
by respective Monte Carlo statistics. For further details and experimental results,
see Gillespie (1976, 1977). Extensions, later elaborations and improvements with
respect to computing time are contained in Gillespie (2007). Manninen et al. (2006)
provide ample references for different implementations of the Gillespie algorithm,
such as the next reaction method by Gibson and Bruck (2000), and alternative
approaches, for example the StochSim algorithm by Le Novère and Shimizu (2001).
Another good review is Wilkinson (2006, Chap. 8).

2.4.2 Simulation of Solutions of ODEs and SDEs

When a system consists of a large number of objects, the just described simulation
of a pure Markov jump process becomes expensive in terms of computing time.
In contrast, the most convenient process with respect to its simulation is the
deterministic process described by a set of ODEs, because this process has no
random component. If there is an analytically explicit solution of the ODEs
available, one can simply calculate the according multivariate sample path without
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any approximation error. Otherwise, numerical schemes such as the Euler scheme
can be applied to obtain approximate trajectories. Such algorithms can be found in
any standard textbook on numerical mathematics.

Similarly, a stochastic process described by a set of SDEs can exactly be
simulated if an explicit solution for the differential equations is known. Otherwise,
numerical approximation schemes are utilised. The consideration of respective
procedures is postponed to Sect. 3.3 in the next chapter, because this subject
requires a preliminary introduction to stochastic calculus. The numerical ap-
proximation of a solution of an ODE arises as a special case of the algorithm
for an SDE.

2.5 Conclusion

Assessment of key mechanisms in life sciences cannot be imagined without the
application of mathematical models. Moreover, real situations can particularly
be rendered by the consideration of random events. This chapter provided an
introduction to established models in life sciences, starting with the general
class of compartment models in Sect. 2.1 and then proceeding to applications in
mathematical epidemiology and biology in Sects. 2.2 and 2.3. To that end, three
types of processes were considered, namely stochastic jump processes, deterministic
continuous processes and stochastic diffusion processes, the simulation of which
is the subject of Sect. 2.4. The latter type of process emerges as a convenient
compromise between the former two, and hence this book focuses on diffusion
processes.

However, diffusions have not been defined formally in this book yet. For that
reason, Chap. 3 introduces the theory of stochastic calculus to an extent which
is oriented towards the needs of subsequent chapters. Chapter 4 discusses the
application of the three above process classes and considers the derivation of
diffusion processes from the compartmental description of some phenomenon. This
methodology is applied in Chap. 5, where a multitype SIR model for heterogeneous
contact patterns is developed.

Until that point, this book is mainly concerned with the construction of models,
which enables the simulation of a considered mechanism for given sets of model
parameters. In practice, however, such parameters are unknown and hence to be
estimated statistically based on available observations. Therefore, Chaps. 6 and 7
consider the important subject of statistical inference for diffusion processes.

The methodology of all preceding parts is applied in Chaps. 8 and 9 on the
example of modelling the spread of influenza and the binding behaviour of
molecules, respectively. These chapters also point out challenges arising from
typical data situations such as partial observations or measurement errors.
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