Waves and Instabilities in Rotating
and Stratified Flows

Patrice Le Gal

Abstract This review intended primarily for Master degree students, presents the
different types of classical waves that can occur in astro and geophysical flows.
Inertial waves, caused by the rotation of the fluid, will first be introduced as well as
their 2D version called Rossby waves. Then it will be shown how a density
stratification of the fluid can make internal gravity waves appear. In each case and
in the case where both rotation and stratification are present, the dispersion rela-
tions of the waves are derived. A differential rotation will then be added on the
flow. The classical Rayleigh criterium for the centrifugal instability is recovered in
the case of an homogeneous fluid but it will be shown that a new instability, called
the strato-rotational instability (SRI), can occur when the fluid is stratified. Some
experiments will be described. Finally, we will show how the application of a
magnetic field can create Alfven waves in a rotating electrically conducting fluid
and in which conditions the magneto-rotational instability (MRI) can grow.

1 Inertial Waves

. . . . . . . . . —
First, let us consider an inviscid fluid of density p rotating around an axis Oz at a

rate Q. The linearized Euler equation for the perturbed velocity % and pressure
field p describing the flow reads in the rotating frame of reference:
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aa—juﬁm;TW (1)

As can be seen, the Coriolis force appears here as a restoring force, forcing the
displaced fluid particles to move on circles. The Coriolis force is the generating force of
waves called “inertial waves” or “Kelvin waves” (Kelvin 1880). Searching for a local
solution (in opposition to a global one where the geometry and boundary conditions are
taken into account) of Eq. 1 under the form of a plane wave with a frequency @ and a
wave vector k — (o, B,7): (w, v, w,p/p) = (i1, v, W, p)e! > +A+12=01) \ye find easily
the following algebraic system of equations:

— ol -2y = —iop
— iV 4 2Qi = —ifp (2)
— iow = —iyp

This set of equations can be completed by the divergence free flow hypothesis that
reads in the Fourier space as the following:

init + iBy + iy = 0 (3)

Eliminating the pressure and velocity fields from these four equations leads to the
well known dispersion relation of the Kelvin or inertial waves:

4 292
w2 = V42 (4)
o + 7+ 2
This dispersion relation is special in the sense that the angle 6 of propagation of a
wave beam versus the rotation axis is simply given by the frequency of the waves:

? = 4Q%cos*(0) (5)

Another characteristic of inertial waves is that their phase velocity is perpendicular
to their group velocity. In order to illustrate the shape of the dispersion relation curve,
we can fix the values of wavenumbers o and f and plot o as functions of the axial
wavenumber ). Figure 1 shows that the frequencies are confined between £2 Q.
A classical way to produce these waves in the laboratory is to vibrate an object
in a rotating tank at a given frequency. As explained before, the angle of propa-
gation of the waves is determined by their frequency and thus the periodic fluid
motions take place along cones emerging from the oscillating generator. Figure 2b
is taken from an experiment by Messio et al. (2008) and Courtesy of University of
Paris where the velocity field is measured by PIV in a plane perpendicular to the
axis of rotation (which was here also the axis of vibration of a small cylinder).
Of course, as in a real fluid these waves are damped by viscosity, they need to
be excited as we just saw in the previous experiment. However, the shape of the
dispersion relations of inertial waves permits also parametric resonances to appear
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Fig. 1 Some dispersion relation curves of the Kelvin inertial waves as functions of axial
wavenumber y for various o and f§

y (mm)
o)

Fig. 2 a Schematic representation of the Kelvin wave cone generated by an oscillating cylinder
in a rotating fluid. b Embarqued PIV measurements of the velocity field of a Kelvin wave conical
beam generated by a vibrating cylinder, from Courtesy of University of Paris

under certain forcing conditions like those produced by precession, libration or
tidal deformations of the rotating container. These resonances can indeed trigger
the growth and interaction of inertial waves above a certain threshold. For
instance, when a cylindrical rotating container is elliptically deformed in its cross
section, two Kelvin waves can resonate with the elliptical deformation of the
streamlines. An instability, called the elliptical instability can appear when these
resonant conditions are met (Eloy et al. 2003). This instability is known to affect
the vortices behind airplanes but can also play a role in astro and geophysics.
Indeed, a planetary molten iron core flow could very well be destabilized by the
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Fig. 3 Visualization of the elliptical instability of a tidally distorted deformable rotating
cylindrical shell. In this illustration, the unstable mode is oscillating at a pulsation equal to €2 and
corresponds to a resonance between two Kelvin waves with azimuthal wavenumbers 0 and 2

tidal distortions induced by a closed orbiting object (Lacaze et al. 2005; Cébron
et al. 2010). Figure 3 presents a visualization of the elliptical instability in a
rotating cylindrical shell where a Laser plane is sent in the meridional plane and
illuminates Kalliroscope particles.

2 A Particular Case of Inertial Waves: The Rossby Waves

Laboratory observations of inertial waves are not easy and we saw in Sect. 1 that it
was only relatively recently that these waves have been precisely measured when
excited in a rotating tank. However, a particular case of these waves are known
from a long time in meteorology. These waves called Rossby waves (Rossby 1939)
can be described using first a bi-dimensional approximation of Eq. 1 (a% =0 and
w = 0), second when taking into account a linear variation of the Coriolis
parameter 2Q with the latitude (the f§ plane approximation). The flow is then
described by the following equations:

u 9

@ S20w=l (6)
0

2i200u =12

with %iy) = f3,.. The variation in time of the axial vorticity €2, of the two-dimensional
motion can then easily be expressed as:

0Q
L) = 7
6t+ﬂcv 0 (7)

As in Sect. 1, this equation is completed by the incompressibility condition and
taking their Fourier transforms leads to the following dispersion of the Rossby
waves:

-2
w:ig
o+ B

(®)
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Fig. 4 Some dispersion 5
relation curves of the Rossby f
waves as functions of the /
azimuthal wavenumber o for
various f§

o

Fig- § Illustration of the ::1;: n:n ﬂﬂtﬂl‘;:lllli 12z ECMWF Forscestts 72 VT:Friley 17 October 1887 122

propagation of a Rossby
wave in the atmosphere,
from Courtesy of University
o Oregon (1999)

As can be seen from this dispersion relation, the phase velocity of the Rossby
waves is 2<0 and this is the reason why Rossby waves propagate westward in the
Northern atmosphere. As in Sect. 1 we can fix the values of the wavenumbers f
and plot in Fig. 4 the frequency w as functions of the azimuthal wavenumber .
Classical meteorological images used for weather forecast give good illustrations
of the propagation of the Rossby waves in the atmosphere. The succession of
cyclonic and anticyclonic structures in the pressure field circumtravel around the
North Pole as illustrated in Fig. 5.
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Fig. 6 Illustration of the
propagation of a Rossby
wave in a rotating tank with a
tilted bottom, from Courtesy
of University of Washington

Fig. 7 Shadowgraph
visualizations of the

St Andrew cross formed by
the four internal wave beams
generated by a vertically
vibrated small cylinder in a
stratified layer of salt water,
from Courtesy of Sakai,
lizawa, Aramaki (1997)

1/w=5s 1/w=6s

These waves can be reproduced in laboratory experiments using rotating tanks

at constant rate (2 that possess tilted bottoms at an angle 0. The three-dimensional
inviscid equation that describes the fluid motions in the rotating frame of reference
is Eq. 1. Taking the curl and then using the divergenceless property of the flow,
leads to the equation of the axial vorticity €,:

0Q, ow

= 20" 9
ot 2 0z ©)

If we search solutions for u and v that are invariant along the z axis (the geo-
strophic hypothesis), the z derivative of the former equation gives: %ZTV{ = 0. The
vertical component of the velocity is therefore a linear function of the axial
coordinate z: w = az + b. Applying the boundary conditions (w = 0) on the top
surface supposed at z=0 and at the bottom at z=—h (vi = w(t,x,—h)
cos + v(t, x, —h)sin@ = () permits to link the axial velocity w and the velocity v
perpendicular to the axis of rotation in a neighborhood of x where /4 is supposed
constant:

3Q,  Qigh
o T h

v(t,x,h) (10)
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Equation 10 is analogous to Eq. 7 where the f§ effect is given by . = 2 % This
analogy leads to the dispersion relation of Rossby waves in rotating tanks with
tilted bottoms:

ho
Figure 6 illustrates this analogy where an oscillating cylinder generates wave
trains visualized by dye in a rotating tank with a tilted bottom.

w=-2

3 Gravity Waves

Often, planetary atmospheres or oceans are stably stratified in the vertical direction

—
Oz leading to the existence of a new set of waves called gravity or internal waves.
Starting with no rotation, the linearized equations of motion for a stratified flow are:

u _1%

o pOx

v _1op

ot pOy (12)
ow __ __19p +b

o~ poz

% — —N*w

o

where the buoyancy force is approximated by the first term of its Taylor expan-
sion: b = %2—’2’ "g’z. Traditionally, the vertical gradient of density is written in term
of a Brunt-Viisili frequency N which is defined by: N> = f%%—’; g. As before,
taking the Fourier transform of the linearized Euler equation leads to the algebraic
set of equations:

—ion = —iop
—iwv = —ifp
S (13)
—iow = —ipp+ b
—iwb= N
which leads to the dispersion relation of internal gravity waves:

2_ 2 o+
2+ B+
Or, if we note 0 the angle of the wave vector versus the vertical axis of
stratification:

(14)

w* = N%sin*(0) (15)
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Fig. 8 Some dispersion 2 . . . .
relation curves of the internal
waves as functions of axial 15}

wavenumber y for various o
and f§ values

=15}

-2

Comparing both dispersion relations (5) and (15), the parallel between inertial and
internal waves is striking. This confers to both systems of waves similar charac-
teristics: for instance, their frequency determines the angle of propagation of the
beams and their phase and group velocities are perpendicular one to the other
respectively. Figure 7 shows two shadowgraph images of the St-Andrew cross
generated by the oscillation of a small cylinder in a salt stratified layer of water
(Courtesy of Sakai, lizawa, Aramaki 1997). As explained before, it can be observed
that changing the excitation frequency changes the angle of the wave beams.

The dispersion relation given by Eq. 14 can be illustrated by plotting o as functions
of v for different values of o and f. Because of the form of this dispersion relation,
Fig. 8 shows that the frequencies of internal waves are confined between +N.

4 Gravito-Inertial Waves

—
Rotation and stratification versus Oz can be taken into account together to study
gravito-inertial waves. The linearization of the Euler equations written in the
rotating frame of reference gives the following system of equations:

u _ - _1

ot 2Qv - pOx

v _ 10p

¥y 0= 2 @

e e
w — _1%

Rl - poz +b

% = —N%w

with the same notation as before. The Fourier transform of this system of differ-
ential equations leads naturally to the dispersion relation of the gravito-inertial
waves:
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Fig. 9 Conditions of e
existence of gravito-inertial 2 @=2Q
waves in the (w, N) plane.
Two distinc domains of o= N
existence (empty areas) are N
defined by the lines w = £N

§ 5 \\‘ \ Q

-N
w=-N

N

o=-20

W 42Q% + N?(o? + )
o2 + B+ 92

(17)

which writes also as a function of the angle 6 of the wave vector versus the vertical
axis of rotation:

* = 4Q%cos*(0) + N%sin*(0) (18)

Note that this dispersion relation was only quite recently studied in Peacock and
Weidman (2005). Because of the presence of the sine and cosine functions, these
waves can only exist for certain frequencies w. Figure 9 shows that two distinct
regions of existence in the (w, ) plane are defined by the lines w = £N and
w =24+ Q. In each domain, a typical dispersion relation curve can be plotted.
Figure 10 gives some example of these curves in both cases.

5 Waves in Differentially Rotating Flows

Evaluating the dispersion relation of waves when the rotation of the flow is not a
solid-body rotation but depends upon the radius: Q = f(r) is more tricky. The
equation of motion must be written in the stationary frame of reference:

ouw

SOV T+ @V T =--L (19)
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Fig. 10 Some dispersion 5
relation curves of the gravito-
internal waves as functions of
axial wavenumber 7y for 3t 1
various o and f3. In this case,

N was chosen equal to £4 Q P
for the curves outside the 1t
range [—2Q,2Q] (solid
curve), and equal to +£0.3 @
for the curves inside the range N
[—2Q,2Q)] (dashed curves)

w/Q
o
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The difficulty in the calculation of the dispersion relations of these inertial waves
comes from the nonlinear advective term that this time, possesses a new term
coming from the variation of Q with r. However, the problem can be solved if we
search for solutions in the form of waves, but where the wave vector also rotates
around the axis of rotation of the flow:

L10p=0

Pt Qu=0 (20)
oy _

“-0

Using this property, it can be shown that¥ = 2and ¥ = g where a is the norm of the

projection of the wavevector in the plane perpendicular to the rotation axis:

a® = o® + *. The equations of motion can then be written under the form:

—ioi  — Q0+ 2% = —iup
—iwv + Qi — ﬁy%fv = —iop (21)
—iow = —iyp

z and %: g, the y and x terms can be transformed. The
dispersion relation of inertial waves (at radius r) in a differentially rotating flow
can then be calculated after some algebra:

Again, using that =2

) 20020 + r49)? )
2+ 42

As can be seen from the above equation, we retrieve the original Kelvin wave
dispersion relation when € is constant. Also, we can observe that o is a complex
number when Q(2Q + r % ) <0 which is nothing else than the Rayleigh criterium
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Fig. 11 The Strato-
Rotational Instability
between differentially
rotating cylinders (Le Bars
and Le Gal 2007)

for the appearance of the centrifugal instability in a rotating flow. Any inviscid
flow rotating with a differential rotation Q =f(r), is unstable if its angular
momentum is a decreasing function of r.

If the flow is furthermore axially stratified, the dispersion relation of these
waves can also be calculated. It takes the following form:

w* =20 (29 + r?) cos*(0) + N*sin*(0) (23)
r

where 0 is as before the angle of the wavevector versus the rotation axis of the
flow. As can be seen on this equation, the stratification term is positive and thus
stabilizes the flow as soon as 0 £ 0. However, if 0 = 0, as it is the case for Taylor-
Couette vortices, stratification has no effect on the threshold of the centrifugal
instability at least at this first order of calculation. A new instability has been
however discovered analytically recently (Molemaker et al. 2001). This instability
comes from a resonant interaction of the gravito-inertial waves and was named the
SRI. It was then studied numerically by Shalybkov and Riidiger (2005) and
experimentally by Le Bars and Le Gal (2007). Figure 11 illustrates the SRI
instability in a cylindrical Couette flow. As can be observed, two counter-rotating
helices propagate in the gap between both cylinders and produce a braided pattern.

Note that this instability was further studied in the case where the flow is not
confined between two walls (Riedinger et al. 2011). This case is particularly
interesting for modelling the stability of accretion disks around stars as the laminar
Kepler flow of the rotating gas cloud ((r) ~ r~3/?) is stable versus the Rayleigh
criterium. Another famous instability which is often invoked for the destabilization
of accretion disks, is the so-called Magneto-Rotational Instability MRI (Balbus
and Hawley 1998). As we will see in next paragraph, contrary to the SRI, the MRI
directly affects the Rayleigh criterium of rotating flows.
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6 Alfven and Magneto-Inertial Waves

Now the fluid is considered to be a perfect electric conductor. This framework is
called the Ideal Magneto-Hydrodynamics limit. If the viscous effects are still
neglected, the linearized Euler equation describes the fluid motions with an
additional Lorentz force generated by an imposed axial homogeneous magnetic

—
field B. The second equation is the induction equation for the magnetic fluctua-

—
tions b and is reduced in this case to the induction of the magnetic field by the
flow perturbations:

g (24)

. — — hend — . . . . — ﬁ)/\?
with F = J A b where J is the electric current density given by J = o

where u is the magnetic diffusivity. Solving these equations with plane waves for

w and E) leads to:

— it = %(Vl;y —ob;) — ap
— v = B(vb. — Bb.) — B 25
wb = J2(vby — Bb:) — fp (25)
—ow = —p
and

—wa = Byu
—wb, = By» (26)
fwbz = Byw

The dispersion relation of Alfven waves with the associated Alfven phase speed
V4 is then easily deduced (Alfven 1942):
2

2By, o B (27)
pu VPu

The linear form of Alfven waves dispersion relation shows that these waves are
not dispersive and propagate at a constant Alfven speed V4. Although these waves
are known in astrophysics for a long time (Tsurutani et al. 2005), it is only recently
that these waves have been observed in a laboratory experiment (Alboussiere et al.
2011). Note that the Alfven speed is around 1 m/s for liquid Gallium under a
magnetic field of 0.1 Tesla.

When rotation is added to the flow of conducting fluid, the Coriolis terms need
to be incorporated into the equations of motion that become in the Fourier space:

(0]
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Fig. 12 Some dispersion 5
relation curves of the
magneto-internal waves as
functions of axial
wavenumber ) for various o
and f. In this case V4 was
chosen equal to Qy

0 0.5 1 1.5 2 25 3
Y
wit = 2iQH — W it + ﬁufjw + op
— Yo 28
= —2iQu + p,uo) p,uof W+ ﬂp ( )
W = 7p

The analytical formula for the dispersion relation can be calculated and takes the

following form:
o = <V K 4207 £204/K2V3 + 92) (29)
2\A

where k% = o + ﬁ2 + 9?2 is the square of the norm of the wavenumber and V4 = \/%_H

the Alfven speed as before. These waves are called Magneto-inertial waves or
Magneto-Coriolis waves and their dispersion relation can be plotted the same way it
was for pure inertial waves. As observed in Fig. 12, two kinds of branches (the
magnetic (solid curves) or the hydrodynamic branches (dashed curves)) can be
distinguished. As can be seen by the curvature of the curves, the magneto-inertial
waves are dispersive except when the rotation of the flow is dominated by the
magnetic field effect where the Alfven waves characteristics are recovered at large 7.

This dispersion relation formula can then be extended to non solid body rotation
cases when introducing the axial vorticity Q, = Q + V‘ZI—?, already calculated in
Sect. 5. The dispersion relation then becomes:

o = 2 (V2k2 +QQ, + Q\/4k2V3 + 92) (30)

This dispersion relation formula shows in particular that > can become negative
and thus the flow be unstable if Vk? < — 2rQ%2 This criteria replaces the Rayleigh
criteria for the centrifugal instability and gives the threshold of the Magneto-Rota-
tional Instability which has a tremendous importance in astrophysics in particular for
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Fig. 13 Stability thresholds
for the centrifugal (Rayleigh
criterium) and the Magneto-
Rotational Instability in the
(29, r‘é—?) plane. The straight
line is the Rayleigh criterium
and the hyperbolas
correspond to the MRI
threshold for given magnetic
Alfven speed and non zero
wave number. We observe
that a stable centrifugal
inviscid flow can become
MRI unstable in the colored
and hatched region in the
limit of ideal MHD

(=

Centrifugally|[
Unstablg [

MRI Uxstable

I Unstable

the destabilization of accretion disks (Balbus and Hawley 1998). We can plot for a
given r both stability thresholds in the plane (20, #2—?). Figure 13 shows these limits
for given magnetic Alfven speed and non zero wave number. In particular, we can
notice that a centrifugally stable flow can indeed be destabilized by the effect of an
imposed magnetic field in the colored and hatched zones of the diagram. As can be
seen on the figure the smallest €2 is given by the equality of both criteria. Supposing
that the smallest wavelength in the device of typical length Lis k = n/L, it is easy to
see that the smallest velocity reached in the flow is V = 21QR = n*V,. As seen
before, the order of magnitude of the Alfven speed V, is 1 m/s in Gallium liquid
metal under a magnetic field of 0.1 Tesla. This gives a minimum experimental
velocity of 10 m/s and shows the extreme difficulties of designing such a liquid metal
experiment. Despite these technical difficulties, several experiments are attempting
today to reproduce this instability in Taylor-Couette flow devices, using Sodium as
working fluid (Sisan et al. 2004; Stefani et al. 2009).

7 Conclusion

Considering several generic cases of rotating flows, the dispersion relations of
different types of waves have been derived from the linearized equations of
motion. First inertial or Kelvin waves that propagate in solid body rotating flows
were introduced. The 2D version of these waves, known as Rossby waves, that
propagate in shallow layers when taking account the so called f effect, was then
derived. Pure inertial waves were further enriched by the effect of first a density
stratification, then by a non homogeneous rotation and finally by the application of
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a magnetic field. The Rayleigh criterium for the inviscid threshold of the cen-
trifugal instability was recovered from these dispersion relations and compared to
the Magneto-Rotational Instability threshold. Besides, it was moreover shown that
the Strato-Rotational Instability is not caused by a modification of the Rayleigh
discriminant inequality but by a resonant phenomenon of gravito-inertial waves
that can destabilize a centrifugally stable Taylor-Couette flow.
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