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Abstract The problem of the proper dimension of the solution of a Multiple
Correspondence Analysis (MCA) is discussed, based on both the re-evaluation
of the explained inertia sensu Benzécri (Les Cahiers de 1’Analyse des Données
4:377-379, 1979) and Greenacre (Multiple correspondence analysis and related
methods, Chapman and Hall (Kluwer), Dordrecht, 2006) and a test proposed by
Ben Ammou and Saporta (Revue de Statistique Appliquée 46:21-35, 1998). This
leads to the consideration of a better reconstruction of the off-diagonal sub-tables of
the Burt’s table crossing the nominal characters taken into account. Thus, Greenacre
(Biometrika 75:457-467, 1988) Joint Correspondence Analysis (JCA) is introduced,
the results obtained on an application are shown, and the quality of reconstruction
of both MCA and JCA solutions are compared to that of a series of Simple
Correspondence Analyses run on the whole set of two-way tables. It results that
JCA’s reduced-dimensional reconstruction is much better than the MCA’s one, that
reveals highly biased and non-monotone, but also than the MCA’s re-evaluation,
as suggested by Greenacre (Multiple correspondence analysis and related methods,
Chapman and Hall (Kluwer), Dordrecht, 2006).

1 Introduction

The identification of the dimension of a data table under study is a crucial issue
in most multidimensional scaling techniques, in particular in the linear methods,
since most of the analyses that follow the scaling depend on this choice. To quote
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only some, the number of factors to be interpreted, those on which to attempt a
classification, the dimension in which to search for a non-linear solution or for a
factor analysis, etc.

In this paper, we focus on this problem in Multiple Correspondence Analysis
(MCA, Benzécri et al., 1973-1982; Greenacre, 1984), in particular considering its
alternative, the Joint Correspondence Analysis (JCA, Greenacre, 1988), whose solu-
tion depends on an a priori selected dimensionality, and on the partial reconstruction
of the original data that results by the application of reconstruction formulas.

The application of these methods to a small example taken from a recent study
(Camiz and Gomes, 2009) will show unexpected results when comparing the
reconstruction: even if JCA was supposed to perform better, the results of MCA,
in comparison with those of JCA, would seriously get questionable its use, unless
without some adjustments. Indeed, the application to the Burt’s table of the chi-
square metrics, and the following correspondence analysis, biases the results, by
improving the reconstruction of the diagonal blocks while raising the bias of the
off-diagonal ones that contain the most interesting information.

2 Theoretical Framework

In exploratory multidimensional scaling the identification of the proper dimension
of the solution is strictly tied to the crucial distinction between relevant and non-
relevant information, something similar to the identification of errors in classical
statistics, but not the same. For metric scaling, the percentage of explained inertia
is usually taken as a measure of information, also tied to its interpretability. Thus,
taking into account a large share of inertia is the most often used rule of thumb,
but without a good theoretical grounding. Indeed, in literature stopping rules may
be found: for Principal Component Analysis, Jackson (1993) compared some of the
existing ones. For Simple Correspondence Analysis (SCA, Benzécri et al., 1973—
1982; Greenacre, 1984) a classical test for goodness of fit (Kendall and Stuart, 1961)
may be applied as approximated by the Malinvaud (1987) test (see also Saporta and
Tambrea, 1993):
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where 71,; is the cell value estimated by the a-dimensional solution. @a, asymptoti-
cally chi-square distributed with (r —a — 1) x(c — o — 1) degrees of freedom, tests
the independence of the residuals in respect to the «-dimensional representation.
This is possible because the eigenvalues of SCA sum, up to the grand total, to the
table chi-square, namely
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2.1 Multiple Correspondence Analysis

It is well known that MCA is but a generalization of SCA and it is based on SCA of
either the indicator matrix Z, gathering all characters involved, or the Burt’s table
B = Z'Z, that includes the diagonal tables with the marginals. The eigenvectors
of both Z and B are the same, whereas the B’s eigenvalues are the squares of Z’s
(also called B’s singular values): u2 = v,. As SCA, it may be shown that, given a
Burt matrix B, MCA may be defined as the weighted least-squares approximation
of B by another matrix H of lower rank, that minimizes

n~'Q *trace (D; (B — H)D;'(B— H)').

that is, considering the subtables of B, that minimizes
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where the norm | A;; ”lzj = trace (Di_lAij D! Afj) is the usual chi-square.
Indeed, in SCA this is limited to only one table.

In MCA the identification of the dimensionality is particularly difficult: indeed,
for B, crossing Q characters with J = ZiQ=1 [; pooled levels (with /; the number
of levels of the i-th character) a statistic may again be calculated as if it were a
contingency table

0 -1
X5 =2 x5 +n(J =0, 2)
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where X?j is the chi-squared statistic for the off-diagonal subtable N;; = Z/Z;, and
n(J — Q) is that of the diagonal subtables. As X% is not chi-square distributed, no
test is possible. Thus, the current users refer to the total inertiaof Z: I, = ﬂ, and
consider its share explained by the highest level eigenvectors, although it is very low,
due to their high number of pooled levels. In practice, they are satisfied when the
first factors are enough larger than the following, regardless of the figures involved,
as it is generally admitted that the explained inertia is “highly underestimated”. This
underestimation was raised by Benzécri (1979) argumented by the arbitrary number
of levels and by the relation between the eigenvalues issued by either SCA or MCA

% is thus interpreted
to limit attention to the eigenvalues larger than the trivial average %, the smaller
considered as “artifacts”. This argument is generalized to consider in MCA only the
eigenvalues larger than their mean, thatis u > [, = é As a consequence, each
factor inertia is re-evaluated as the average deviation from the mean eigenvalue,
according to the formula

of Z applied on a two characters table: the relation p, =
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and its share of total inertia is based on the inertias sum, thus taking the ratio

%. Greenacre (1988, 2006) too suggests to re-evaluate the inertia according
>z o

to (3), but compares each one to the total off-diagonal inertia of the table, that is

0 , J-0
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a share that results always lower than Benzécri’s one.

Regardless of the re-evaluation, to decide the number of factors to take into
account, the only test currently available is proposed by Ben Ammou and Saporta
(1998), based on the distribution of the average eigenvalue under the null hypothesis
of independence: its expected variance is

1
o’ = ElS}1 = 55 =gy 2 (i = D~ .
B i#]

so that one may assume for é the confidence interval at 95% level é + 20. Indeed,
since the kurtosis is lower than for a normal distribution, the actual proportion is
larger than 95%.

2.2 Joint Correspondence Analysis

In order to remove the bias due to the diagonal submatrices, Greenacre (1988)
proposes the Joint Correspondence Analysis (JCA) as a better generalization of SCA.
JCA fits only the off-diagonal contingency tables by minimizing, instead of (1),

Q i—-1

ntS NNy - Hy @)

i=1j=1

and considers as measure of inertia, instead of (2), the sum of the chi-squares of all
off-diagonal tables
0 i-1
G=2.> 1
i=1
that unfortunately may not be tested for significance. JCA is an alternating
weighed least-squares algorithm that reminds the MINRES method for least-squares

j=1
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Table 1 Burt’s table of the three-characters data set of 2,000 words

L2 L3 L4 WN WV WA TC TR TD TS
L2 1,512 0 0 788 483 241 433 385 399 295
L3 0 375 0 203 23 149 64 82 86 143
L4 0 0 113 62 9 42 3 29 21 60
WN 788 203 62 1,053 0 0 229 284 273 267
wv 483 23 9 0 515 0 174 133 125 83
WA 241 149 42 0 0 432 97 79 108 148
TC 433 64 3 229 174 97 500 0 0 0
TR 385 82 29 284 133 79 0 496 0 0
TD 399 86 21 273 125 108 0 0 506 0
TS 295 143 60 267 83 148 0 0 0 498

L2 L3 L4 WN LAY WA TC TR TD TS

Table 2 First one-dimensional layer of the layers by kind of words table, one-dimensional
reconstruction, and corresponding residuals of SCA

Layer Reconstruction Residual
TC TR TD TS TC TR ™D TS TC TR TD TS

L2 57 7 17 —80 435 382 400 296 2 3 -1 —1
L3 -33 —4 -—10 47 60 89 85 141 4 =7 1 2
L4 -23 =3 —7 33 5 25 22 61 -2 4 -1 —1

factor analysis, where the off-diagonal elements of a correlation matrix are fitted
(Thomson, 1934). In the special case Q = 2, the solution is exactly the SCA of the
off-diagonal table N = Ny,.

3 An Application

To show the different behavior of the different correspondence analyses, we refer
to a data set taken from Camiz and Gomes (2009), consisting in 2,000 words
taken from four different kind of periodic reviews (Childish (TC), Review (TR),
Divulgation (TD), and Scientific Summary (TS)), classified according to their
grammatical kind (Verb (WV), Noun (WN), and Adjective (WA)) and the number of
internal layers (Two- (L2), Three- (L3), and Four and more layers (L4)), as a measure
of the word complexity (Table 1). All the computations have been performed with
the ca package (Nenadic and Greenacre, 2006, 2007) contained in the R environment
(R-project, 2009).

We first limit attention to the table crossing Layers by Kind of words, with
a chi-square = 125.262 with six degrees of freedom, thus highly significant (test
value = 10.177). According to Malinvaud (1987) its SCA gives only one significant
eigenvalue (0.061891, test-value = 10.439) summarizing 98.82 of total inertia. The
one-dimensional reconstruction is reported in Table 2, with a reduction of absolute
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Table 3 Results of MCA on the Burt’s table crossing two characters: singular values and
eigenvalues, percentages of inertia, total and off-diagonal residuals of the corresponding recon-
struction, re-evaluated inertia and percentages, total and off-diagonal residuals of the correspond-
ing reconstruction

Singular  Eigen Perc.  Cumul. Reconstruction  Re-evaluation Reconstruction
value value Inertia Perc.  Total Off-diag Inertia Perc. Total Off-diag
5,215 328 5,215 328

0.389863 0.624390 24.98  24.98 4,357 483 0.061891 98.82 4,125 29
0.263783 0.513598 20.54  45.52 3,978 730 0.000740 1.18 4,026 0
0.250000 0.500000 20.00  65.52 3,102 730
0.236587 0.486402 19.46  84.98 1,946 487
0.141083 0.375610 15.02 100.00 0 0

N =]

residuals from 328, in respect to independence, to only 29. Indeed, the two-
dimensional solution has no residuals and identical results are found with JCA, as
expected.

The MCA, applied to the corresponding 2 x 2 Burt’s table, gives the results
shown in Table 3. In the table, both singular values and eigenvalues are reported
with their percentage to the trace (=2.5), the absolute residuals of the total and
off-diagonal reconstructions, then the re-evaluated inertias with the corresponding
reconstructions, limited to the two main eigenvalues larger than the mean (0.5).
According to Ben Ammou and Saporta (1998) only the first factor should be taken
into account, since the confidence interval for the mean eigenvalue is 0.47658 <
A < 0.52342.

In the last two columns of Table 3 the absolute residuals for the re-evaluated
MCA, both total and off-diagonal, are reported according to the dimension, the O
corresponding to the deviation from independence: the results are identical to those
of SCA. Instead, looking at the columns 6 and 7, we have a surprise: whereas the
total residuals of the reconstruction decrease monotonically to zero, the off-diagonal
ones immediately increase, until the mean eigenvalue, then monotonically decrease,
with a better approximation only at the last step. That is, only the total reconstruction
is better that the independent table in estimating the table itself.

If we apply both MCA and JCA to the three-characters data table from which
the previous table was extracted, we find a similar but worst pattern. Here, only 3
out of 7 MCA eigenvalues are above the mean, with only one significant, as the
confidence interval at 95% level is now (0.30146 < A < 0.36521), and a second
one non-significant but very close to its upper bound. This is in agreement with
the Malinvaud (1987) test applied to the three two-way tables, only one of which
has a significant second factor. In Table 4 total and off-diagonal absolute residuals
for normal MCA, JCA, and re-evaluated MCA inertias are reported according to the
dimension (the 0 corresponds to the independence).

Observing the table one may note the same pattern of the residuals of MCA
as before: a monotone reduction of the total residuals and an increase of the
off-diagonal ones until the average eigenvalue, then a reduction of the latter, so
that only a six-dimensional solution shows off-diagonal residuals lower than the
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Table 4 Total and off-diagonal absolute residuals of normal MCA, JCA, and re-evaluated MCA
on the Burt’s table crossing three characters

MCA JCA Re-evaluated MCA

Dim Total Off-diag. Total Oft-diag. Total Off-diag.
0 8,905 954 8,905 954 8,905 954

1 7,557 1,044 6,629 240 6,885 311

2 7,378 1,537 6,206 145 6,581 232

3 7,089 1,813 5,836 18 6,509 214

4 5,949 1,572

5 3,675 977

6 2,335 729

7 0 0

independence. On the opposite, the re-evaluated inertias get a monotone pattern but
far from the quality of adjustment of JCA, that performs quite well. Indeed, the re-
evaluated MCA needs two dimensions to approach the one-dimensional solution of
JCA, but never reaching the two-dimensional one.

4 Conclusion

The results of this experimentation show that the Ben Ammou and Saporta (1998)
test reveals useful for estimating the suitable dimension of an MCA solution. Instead,
the reconstruction of the Burt’s table performed by normal MCA is so biased that it
is not the case to keep on using MCA as it is normally performed. The re-evaluated
inertias avoid the dramatic bias introduced by the diagonal blocks, but its quality of
reconstruction, limited to the factors whose eigenvalue is larger than the mean, is
far from being acceptable. In particular, it is so poor in respect to JCA that one may
wonder why not eventually shift to this method. Indeed, some questions may arise
whether the chi-square metrics would be really suitable for a Burt’s table, but this is
a question that deserves a broader discussion.
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