
Chapter 2
The Classical Bosonic String

Abstract Even though we will eventually be interested in a quantum theory of
interacting strings, it will turn out to be useful to start two steps back and treat the
free classical string. We will set up the Lagrangian formalism which is essential for
the path integral quantization which we will treat in Chap. 3. We will then solve the
classical equations of motion for single free closed and open strings. These solutions
will be used for the canonical quantization which we will discuss in detail in the next
chapter.

2.1 The Relativistic Particle

Before treating the relativistic string we will, as a warm up exercise, first study the
free relativistic particle of mass m moving in a d -dimensional Minkowski space-
time. Its action is simply the length of its world-line1

S D �m

Z s1

s0

dx D �m

Z �1

�0

d�

�
�dx�

d�

dx�

d�
���

�1=2

; (2.1)

where � is an arbitrary parametrization along the world-line, whose embedding
in d -dimensional Minkowski space is described by d real functions x�.�/; � D
0; : : : ; d � 1. We use the metric ��� D diag.�1; C1; : : : ; C1/. The action (2.1) is
invariant under �-reparametrizations � ! Q�.�/. Under infinitesimal reparametriza-
tions � ! � C �.�/, x� transforms like

ıx�.�/ D ��.�/ @� x�.�/ : (2.2)

1It is easy to generalize the action to the case of a particle moving in a curved background by
simply replacing the Minkowski metric ��� by a general metric G��.x/.
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8 2 The Classical Bosonic String

The action is invariant as long as �.�0/ D �.�1/ D 0. The momentum conjugate
to x�.�/ is

p� D @L

@ Px�
D m

Px�

p� Px2
; (2.3)

where Px D @�x and Px2 D ���x�x� . Equation (2.3) immediately leads to the follow-
ing constraint equation

� � p2 C m2 D 0 : (2.4)

Constraints which, as the one above, follow from the definition of the conjugate
momenta without the use of the equations of motion are called primary constraints.
Their number equals the number of zero eigenvalues of the Hessian matrix @p�

@ Px� D
@2L

@ Px�@ Px� which, in the case of the free relativistic particle, is one, the corresponding
eigenvector being Px�. The absence of zero eigenvalues is necessary (via the inverse
function theorem) to express the ‘velocities’ Px� uniquely in terms of the ‘momenta’
and ‘coordinates’, p� and x�. Systems where the rank of @2L

@ Px�@ Px� is not maximal,
thus implying the existence of primary constraints, are called singular. For singular
systems the �-evolution is governed by the Hamiltonian H D HcanCP

ck�k , where
Hcan is the canonical Hamiltonian, the �k an irreducible set of primary constraints
and the ck are constants in the coordinates and momenta. This is so since the
Hamiltonian is well defined only on the submanifold of phase space defined by
the primary constraints and can be arbitrarily extended off that submanifold. For the
free relativistic particle we find that Hcan D @L

@ Px� Px� � L vanishes identically and
the dynamics is completely determined by the constraint Eq. (2.4). The condition
Hcan � 0 implies the existence of a zero eigenvalue of the Hessian: @2L

@ Px�@ Px� Px� D
@

@ Px� Hcan D 0. This is always the case for systems with ‘time’ reparametrization
invariance and follows from the fact that the ‘time’ evolution of an arbitrary phase-
space function f .x; p/, given by df

d�
D @f

@�
C ff; H gP:B:, should also be valid for

Q� D Q�.�/ on the constrained phase-space; here f ; gP:B: is the usual Poisson bracket,

ff; ggP:B: D
�

@f

@x

@g

@p
� @f

@p

@g

@x

�
. From this we also see that a particular choice of the

constants cn corresponds to a particular gauge choice which, for the relativistic
particle, means a choice of the ‘time’ variable � . We write

H D N

2m
.p2 C m2/ (2.5)

and find that

dx�

d�
D fx�; H gP:B: D N

m
p� D N Px�

p� Px2
; (2.6)

from which Px2 D �N 2 follows. For the choice N D 1 the parameter � is the proper
time of the particle.
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At this point it is appropriate to introduce the concept of first and second class
constraints. If f�kg is the collection of all constraints and if f�a; �kgP:B: D 0; 8 k

upon application of the constraints, we say that �a is first class. Otherwise it is called
second class. First class constraints are associated with gauge conditions.

For the relativistic particle the constraint given in Eq. (2.4) is trivially first class
and reflects � reparametrization invariance.

Classically, we can describe the free relativistic particle by an alternative action
which has two advantages over Eq. (2.1): (1) it does not contain a square root, thus
leading to simpler equations of motion and (2) it allows the generalization to the
massless case. This is achieved by introducing an auxiliary variable e.�/, which
should, however, not introduce new dynamical degrees of freedom. The action
containing x� and e is

S D 1

2

Z �1

�0

e
�
e�2 Px2 � m2

�
d� : (2.7)

e plays the role of an ein-bein on the world-line. To see that (2.7) is equivalent
to (2.1), we derive the equations of motion

ıS

ıe
D 0 ) Px2 C e2m2 D 0 ;

ıS

ıx�
D 0 ) d

d�

�
e�1 Px�

� D 0 : (2.8)

Since the equation of motion for e is purely algebraic, e does not represent a
new dynamical degree of freedom. We can solve for e and substitute it back
into the action (2.7) to obtain (2.1), thus showing their classical equivalence.2 We
note that since @2L

@ Px�@ Px� D e�1��� has maximal rank, we now do not have primary
constraints. The constraint equation p2 C m2 D 0 does not follow from the definition
of the conjugate momenta alone; in addition one has to use the equations of
motion. Constraints of this kind are called secondary constraints. But since it is
first class, it implies a symmetry. Indeed, the action Eq. (2.7) is invariant under �

reparametrizations under which x0�.� 0/ D x�.�/; e0.� 0/ D .@� 0=@�/�1e.�/ or, in
infinitesimal form with � 0 D � C �

ıx� D �� @� x� ;

ıe D �@� .�e/ (2.9)

and we can make a �-reparametrization to go to the gauge e D 1=m. If we then
naively used the gauge fixed action to find the equations of motion, we would find

2It is important to point out that classical equivalence does not necessarily imply quantum
equivalence.
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Rx� D 0, whose solutions are all straight lines in Minkowski space, which we know
to be incorrect. This simply means that we cannot use the reparametrization freedom
to fix e and then forget about it. We rather have to use the gauge fixed equation of
motion for e, T � Px2 C 1 D 0, as a constraint. This excludes all time-like and
light-like lines and identifies the parameter � in this particular gauge as the proper
time of the particle. In the massless case we set e D 1 and have to supplement
the equation Rx� D 0 by the constraint T � Px2 D 0, which leaves only the light-
like world-lines. Note that the equation of motion, Rx� D 0, does not imply T D 0,
but it implies that dT

d�
D 0, i.e. T D 0 is a constraint on the initial data and is

conserved.

2.2 The Nambu-Goto Action

Let us now turn to the string. The generalization of Eq. (2.1) to a one-dimensional
object is to take as its action the area of the world-sheet ˙ swept out by the
string, i.e.

SNG D �T

Z
˙

dA

D �T

Z
˙

d 2�

�
� det ˛ˇ

�
@X�

@�˛

@X�

@�ˇ
���

	�1=2

D �T

Z
˙

d 2�
h� PX � X 0�2 � PX2X 02i1=2

� �T

Z
˙

d 2�
p�	 ; (2.10)

where �˛ D .�; �/ are the two coordinates on the world-sheet; we choose them such
that �i < � < �f and 0 � � < `. The dot denotes derivative with respect to � and
the prime derivative with respect to � . X�.�; �/; � D 0; : : : ; d � 1 are maps of
the world-sheet into d -dimensional Minkowski space and T is a constant of mass
dimension two (mass/length), the string tension. Our conventions are such that X�

has dimensions of length and so do � and � . 	˛ˇ D @X�

@�˛
@X�

@�ˇ ��� is the induced metric
on the world-sheet, inherited from the ambient d -dimensional Minkowski space
through which the string moves and 	 < 0 is its determinant. The requirement that
	 be negative means that at each point of the world-sheet there is one time-like or
light-like and one space-like tangent vector. This is necessary for causal propagation
of the string. Requiring PX� C 
X 0� to be time-like and space-like when 
 is varied
gives 	 < 0. The action Eq. (2.10) was first considered by Nambu and Goto, hence
the subscript NG.

One distinguishes between open and closed strings. The world-sheet of a free
open string has the topology of a strip while the world-sheet of a closed string has
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that of a cylinder. The string tension T is the only dimensionful quantity in string
theory. Instead of the tension, one also uses the parameter

˛0 D 1

2�T
(2.11)

also called the Regge slope. ˛0 has dimension (length)2. The open and closed string
tensions are the same because in the interacting theory an open string can close and
become a closed string and vice versa.

It is also common to introduce the string length scale

`s D 2�
p

˛0 (2.12)

and the string mass scale

Ms D .˛0/�1=2 : (2.13)

Being the area of the world-sheet, the Nambu-Goto action is invariant under repara-
metrizations under which X� transforms as a scalar3

ıX�.�; �/ D ��˛ @˛X�.�; �/ ; (2.14)

as long as �a D 0 on the boundary of the world-sheet. In addition to local coordinate
transformations, global Poincaré transformations of the space-time coordinates,
X� ! X� C a�, are also a symmetry of the action.

To derive the equations of motion for the string we vary its trajectory, keeping
initial and final positions fixed, i.e. ıX�.�; �i / D 0 D ıX�.�; �f /. This gives

@

@�

@L

@ PX�
C @

@�

@L

@X 0� D 0 (2.15)

together with the boundary conditions for the open string

3A general tensor density of rank, say (1,1), and weight w transforms under reparametrizations
�˛ ! Q�˛.�; �/ of the world-sheet as

tˇ
˛ .�; �/ ! Qtˇ

˛ .Q�; Q�/ D
ˇ̌
ˇ̌ @.Q�; Q�/

@.�; �/

ˇ̌
ˇ̌w

@��

@Q�˛

@Q�ˇ

@�ı
t ı
� .�; �/ ;

where the first factor is the Jacobian of the transformation. For infinitesimal transformations
Q�˛.�; �/ ! �˛ C �˛.�; �/, this gives

ıtˇ
˛ .�; �/ � Qtˇ

˛ .�; �/ � tˇ
˛ .�; �/ D �.�� @� � w@� �� /tˇ

˛ � tˇ
� @˛�� C t ı

˛@ı�
ˇ :

The generalization to tensors of arbitrary rank is obvious.
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@L

@X 0� ıX� D 0 at � D 0; ` (2.16)

and the periodicity condition for the closed string

X�.� C `; �/ D X�.�; �/ : (2.17)

For each coordinate direction � and at each of the two ends of the open string there
are two ways to satisfy the boundary condition of the open string:

1. we may impose Neumann boundary conditions which amounts to requiring ıX�

to be arbitrary at the boundary. This requires @L
@X 0� D 0. Physically this conditions

means that no momentum flows off the end of the string. This will be become
clear below.

2. Alternatively, we may impose Dirichlet boundary conditions where we set
ıX� D 0 at the boundary. In other words, we fix the position of the boundary
of the string. Thus Dirichlet boundary condition breaks space-time translational
invariance. We will discuss the consequences in Sect. 2.4

Due to the square root in the Lagrangian, the equations of motion are rather
complicated. The canonical momentum is

˘� D @L

@ PX�
D �T

. PX � X 0/ X 0
� � .X 0/2 PX�


.X 0 � PX/2 � PX2 X 02�1=2
: (2.18)

The Hessian @2L
@ PX�@ PX�

D @

@ PX�
˘� has, for each value of � , two zero eigenvalues with

eigenvectors PX� and X 0�. The resulting primary constraints are

˘� X 0� D 0 (2.19)

and

˘2 C T 2X 02 D 0 : (2.20)

After gauge fixing they become non-trivial constraints on the dynamics and play an
important role in string theory, as we will see later. The canonical Hamiltonian,
Hcan D R L

0 d�. PX � ˘ � L / is easily seen to vanish identically and hence the
dynamics is completely governed by the constraints.

2.3 The Polyakov Action and Its Symmetries

Due to the occurrence of the square root, the Nambu-Goto action is difficult to deal
with. As in the case of the relativistic particle, one can remove the square root at
the expense of introducing an additional (auxiliary) field on the world-sheet. This
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field is a metric h˛ˇ.�; �/ on the world-sheet with signature .�; C/. In the resulting
action the d massless world-sheet scalars X� are coupled to two-dimensional
gravity h˛ˇ:

SP D �T

2

Z
˙

d 2�
p

�h h˛ˇ @˛X� @ˇX����

D �T

2

Z
˙

d 2�
p

�h h˛ˇ 	˛ˇ ; (2.21)

where h D det h˛ˇ . This form of the string action is the starting point for the
path integral quantization of Polyakov, hence the subscript P. Note that the world-
sheet metric does not appear with derivatives, in accord with our requirement
that it is not dynamical. The components of the metric play the role of Lagrange
multipliers which impose the Virasoro constraints which are now no longer primary
constraints.

The action is easy to generalize to a string moving in a curved background: one
replaces the Minkowski metric ��� by a general metric G��.X/. In this general
form, the action is that of a non-trivial, interacting field theory: a non-linear
sigma-model. Choosing G�� D ��� can be considered as the zeroth order term in
a perturbative expansion around a flat background. This is of course a limitation
and a complete theory should determine its own background in which the string
propagates, much in the same way as in general relativity where the metric of
space-time is determined by the matter content according to Einstein’s equations.
However, at this point this is simply a consequence of how the theory is formulated
and it is not an inherent problem. We will discuss strings in non-trivial backgrounds
in Chap. 14. For now we use (2.21).

We now define the energy-momentum tensor of the world-sheet theory in the
usual way as the response of the system to changes in the metric under which
ıSP D 1

4�

R
d 2�

p�h T˛ˇ ıh˛ˇ (ıh˛ˇ D �h˛� hˇııh�ı), i.e.

T˛ˇ D 4�p�h

ıSP

ıh˛ˇ
(2.22)

is the world-sheet energy-momentum tensor. Using ıh D �h˛ˇ.ıh˛ˇ/ h we find

T˛ˇ D � 1

˛0

�
@˛X�@ˇX� � 1

2
h˛ˇ h�ı @� X� @ıX�

	
(2.23)

and the equations of motion are

T˛ˇ D 0 ; (2.24a)

�X� D 1p�h
@˛.

p
�h h˛ˇ @ˇX�/ D 0 (2.24b)
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with the appropriate boundary and periodicity conditions:

X�.�; � C `/ D X�.�; �/ (2.25)

for the closed string and

n˛@˛X� ıX�j�D0;` D 0 (2.26)

for the open string. Here n˛ is a normal vector at the boundary. We require the
boundary condition at each end of the string separately, since locality demands that
we take ıX� independently at the two ends.

Energy-momentum conservation, r˛T˛ˇ D 0, which is a consequence of the
diffeomorphism invariance of the Polyakov action, is easily verified with the help
of the equations of motion for X�. r˛ is a covariant derivative with the usual
Christoffel connection 	

�

˛ˇ D 1
2
h�ı.@˛hıˇ C @ˇh˛ı � @ıh˛ˇ/. From the vanishing of

the energy-momentum tensor we derive det˛ˇ.@˛X�@ˇX�/ D 1
4
h.h�ı@�X�@ıX

�/2

which, when inserted into SP, shows the classical equivalence of the Polyakov and
Nambu-Goto actions.

One checks that the constraints, Eqs. (2.19), (2.20), which were primary in
the Nambu-Goto formulation, follow here only if we use the equation of motion
T˛ˇ D 0, i.e. they are secondary. This is the same situation which we encountered in
the case of the relativistic particle.

Note that we have introduced two metrics on the world-sheet, namely the metric
inherited from the ambient space, i.e. the induced metric, 	˛ˇ D @˛X�@ˇX����

which enters the Nambu-Goto action and the intrinsic metric h˛ˇ which appears
in the Polyakov action. They are, a priori, unrelated. The Polyakov action is not the
area of the world-sheet measured with the intrinsic metric, which would simply beR

d 2�
p�h and could be added to SP as a cosmological term (see below). However,

for any real symmetric 2 � 2 matrix A we have the inequality .tr A/2 � 4 det A with
equality for A / 1. With the choice A˛

ˇ D h˛� 	�ˇ it follows that SP � SNG.
Equality holds if and only if h˛ˇ / 	˛ˇ , i.e. if the two metrics are conformally
related. This is the case if the equation of motion for h˛ˇ , Eq. (2.24a), is satisfied.

We can now ask whether there are other terms one could add to SP. If we restrict
ourselves to closed strings moving in Minkowski space-time without any other
background fields, the only possibilities compatible with d -dimensional Poincaré
invariance and power counting renormalizability (at most two derivatives) of the
two-dimensional theory are4

S1 D 
1

Z
˙

d 2�
p

�h (2.27)

4For the open string with boundary @˙ there are further possible terms besides S1 and S2, which
are defined on the boundary of the world-sheet: S3 D 
3

R
@˙ ds and S4 D 
4

R
@˙ kds. Here k is

the extrinsic curvature of the boundary. It turns out that these terms can also be discarded.
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which is the cosmological term mentioned above, and

S2 D 
2

4�

Z
˙

d 2�
p

�hR D 
2 
.˙/ (2.28)

where R is the curvature scalar for the metric h˛ˇ . S2 is the two-dimensional Gauss-
Bonnet term and 
 the Euler number of the world-sheet, which is a topological
invariant. The integrand is (locally) a total derivative and consequently does not
contribute to the classical equations of motion. S2 does, however, play a role in the
organization of string perturbation theory. 
2 turns out to be the constant background
value of the dilaton field ˚ , which is one of the massless excitations of the closed
string and which couples to the world-sheet via 1

4�

R
d 2�

p�h˚R. Inclusion of the
cosmological term S1 would lead to the equation of motion T˛ˇ D � 
1

2T
h˛ˇ from

which we conclude that 
1h
˛ˇh˛ˇ D 0. This is unacceptable unless 
1 D 0.5 We will

thus consider the action SP, Eq. (2.21), which is the action of a collection of d

massless real scalar fields .X�/ coupled to gravity (h˛ˇ) in two dimensions.
Let us now discuss the symmetries of the Polyakov action.

1. Global symmetries:

• Space-time Poincaré invariance:

ıX� D a�
� X� C b� .a�� D �a��/ ;

ıh˛ˇ D 0 (2.29)

2. Local symmetries:

• Reparametrization invariance

ıX� D ��˛ @˛X� ;

ıh˛ˇ D �.�� @�h˛ˇ C @˛�� h�ˇ C @ˇ�� h˛� /

D �.r˛�ˇ C rˇ�˛/ ;

ı
p

�h D �@˛.�˛
p

�h/ : (2.30)

• Weyl rescaling

ıX� D 0 ;

ıh˛ˇ D 2�h˛ˇ : (2.31)

5Note that inclusion of S1;2 breaks classical Weyl invariance. In the quantum theory the regular-
ization procedure leads to an explicit breakdown of Weyl invariance and divergent counter-terms
associated with S1 and S2 are generated.
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Here �˛ and � are arbitrary (infinitesimal) functions of .�; �/ and a�� and b� are
constants. From Eq. (2.29) we see that X� is a Minkowski space vector whereas
h˛ˇ is a scalar. Under reparametrizations of the world-sheet, Eq. (2.30), the X�

are world-sheet scalars, h˛ˇ a world-sheet tensor and
p�h a scalar density of

weight �1. The scale transformations of the world-sheet metric, Eq. (2.31), is the
infinitesimal version of h˛ˇ.�; �/ ! ˝2.�; �/h˛ˇ.�; �/ for ˝2.�; �/ D e2�.�;�/ �
1 C 2�.�; �/.

One immediate important consequence of Weyl invariance of the action is the
tracelessness of the energy-momentum tensor:

T ˛
˛ D h˛ˇ T˛ˇ D 0 (2.32)

which is satisfied by the expression Eq. (2.23) without invoking the equations of
motion. It is not difficult to see that this has to be so. Consider an action which
depends on a metric and a collection of fields �i which transform under Weyl
rescaling as h˛ˇ ! e2�h˛ˇ and �i ! edi ��i . If the action is scale invariant, i.e. if
SŒe2�h˛ˇ; edi ��i � D SŒh˛ˇ; �i �, then

0 D ıS D
Z

d 2�

(
�2

ıS

ıh˛ˇ
h˛ˇ C

X
i

di

ıS

ı�i

�i

)
ı� : (2.33)

If we now use the equations of motion for �i , ıS
ı�i

D 0 and the definition T˛ˇ / ıS

ıh˛ˇ ,
tracelessness of the energy-momentum tensor is immediate. We note that it follows
without the use of the equations of motion if and only if di D 0; 8 i . This is, for
instance, the case for the Polyakov action of the bosonic string (where f�i g D fX�g)
but will not be satisfied for the fermionic string in Chap. 7.

The local invariances allow for a convenient gauge choice for the world-sheet
metric h˛ˇ , called conformal or orthonormal gauge. Reparametrization invariance
is used to choose coordinates such that locally h˛ˇ D ˝2.�; �/�˛ˇ with �˛ˇ being
the two-dimensional Minkowski metric defined by ds2 D �d�2 C d�2. It is not
hard to show that this can always be done. Indeed, for any two-dimensional
Lorentzian metric h˛ˇ , consider two null vectors at each point. In this way we get
two vector fields and their integral curves which we label by �C and ��. Then
ds2 D �˝2d�Cd��; hCC D h�� D 0 since the curves are null. Now let

�˙ D � ˙ � ; (2.34)

from which it follows that ds2 D ˝2.�d�2 C d�2/. A choice of coordinate system
in which the two-dimensional metric is conformally flat, i.e. in which

ds2 D ˝2.�d�2 C d�2/ D �˝2d�Cd�� (2.35)

is called a conformal gauge. The world-sheet coordinates �˙ introduced above
are called light-cone, isothermal or conformal coordinates. In these coordinates
�˛ˇ � h˛ˇp�h

D �˛ˇ . We can now use Weyl invariance to set h˛ˇ D �˛ˇ .
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We collect some results about the world-sheet light-cone coordinates (2.34)
which we will frequently use below. The components of the Minkowski metric in
light-cone coordinates are

�C� D ��C D �1

2
; �C� D ��C D �2 ;

�CC D ��� D �CC D ��� D 0 : (2.36)

We will also need

@˙ D 1

2
.@� ˙ @� / (2.37)

and indices are raised and lowered according to

�C D �2�� and �� D �2�C : (2.38)

It is important to realize that reparametrizations which satisfy L�h˛ˇ D �.r˛�ˇ C
rˇ�˛/ / h˛ˇ can be compensated by a Weyl rescaling. Expressed in light-cone
coordinates the conformal gauge preserving diffeomorphisms are those which
satisfy @C�� D @��C D 0, i.e. �˙ D �˙.�˙/.6 (Here we have used that rC�C D
hC�rC�� D hC�@C�� since the only non-vanishing Christoffel symbols in con-
formal gauge with ˝ D e� are 	 C

CC D 2@C� and 	 ��� D 2@��.) Indeed, instead
of �˙ we could as well have chosen Q�˙ D Q�˙.�˙/ or, in infinitesimal form,
Q�˙ D �˙ C �˙.�˙/. Note that the transformation �˙ ! Q�˙.�˙/ corresponds

to

�
�

�

	
!

� Q�
Q�
	

D 1
2
Œ Q�C.� C �/ ˙ Q��.� � �/�; i.e. any Q� and Q� satisfying the

two-dimensional wave equation will do the job.
Conformal gauge is unique to two dimensions. In d > 0 dimensions a metric

h˛ˇ , being symmetric, has 1
2
d.d C 1/ independent components. Reparametrization

invariance allows to fix d of them, leaving 1
2
d.d�1/ components. In two dimensions

this suffices to go to conformal gauge. The Polyakov action then still has one extra
local symmetry, namely Weyl transformations, which allow us to eliminate the
remaining metric component. This also shows that gravity in two dimensions is
trivial in the sense that the graviton can be gauged away completely. For d > 2

Weyl invariance, even if present as for instance in conformal gravity, won’t suffice
to gauge away all metric degrees of freedom.7

The argument given above that conformal gauge is always possible was a local
statement. We will now set up a global criterion and consider the general case with
gauge condition

6After Wick rotation to Euclidean signature on the world-sheet these are conformal transforma-
tions. More about this later.
7Note that the action for the relativistic particle was not Weyl invariant; there reparametrization
invariance was sufficient to eliminate the one metric degree of freedom.
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h˛ˇ D e2� Oh˛ˇ : (2.39)

In conformal gauge Oh˛ˇ D �˛ˇ . Under reparametrizations and Weyl rescaling the
metric changes as

ıh˛ˇ D �.r˛�ˇ C rˇ�˛/ C 2� h˛ˇ

� �.P �/˛ˇ C 2 Q� h˛ˇ ; (2.40)

where the operator P maps vectors into symmetric traceless tensors according to

.P �/˛ˇ D r˛�ˇ C rˇ�˛ � .r� �� / h˛ˇ ; (2.41)

and we have defined 2 Q� D 2��r� �� . The decomposition into symmetric traceless
and trace part is orthogonal with respect to the inner product .ıh.1/jıh.2// DR

d 2�
p�hh˛�hˇııh

.1/

˛ˇ ıh
.2/

�ı . The trace part of ıh˛ˇ can always be cancelled by
a suitable choice of �. It then follows that for the gauge Eq. (2.39) to be possible
globally, there must exist a globally defined vector field �˛ such that

.P �/˛ˇ D t˛ˇ (2.42)

for arbitrary symmetric traceless t˛ˇ . If the operator P has zero modes, i.e. if
there exist vector fields �0 such that P �0 D 0, then for any solution � we also
have the solution � C �0. In this case the gauge fixing is not complete and those
reparametrizations which can be absorbed by a Weyl rescaling are still allowed, as
we have already seen above.

The adjoint of P , P �, maps traceless symmetric tensors to vectors via

.P �t/˛ D �2rˇ t˛ˇ : (2.43)

Zero modes of P � are symmetric traceless tensors which cannot be written as
.P �/˛ˇ for any vector field �. Indeed, if .P �t0/˛ D 0, then for all �� ; .�; P �t0/ D
.P �; t0/ D 0. This means that zero modes of P � are metric deformations which
cannot be absorbed by reparametrization and Weyl rescaling. If they do not exist,
the gauge is possible globally. This applies in particular to the conformal gauge;
there the condition is that the equations @�tCC D 0 and @Ct�� D 0 have no globally
defined solutions. We will further discuss the solutions to these equations in Chap. 6.
The equation

.P �/˛ˇ D 0 (2.44)

is the conformal Killing equation and its solutions are called conformal Killing
vectors. In contrast to Killing vectors which generate isometries, conformal Kill-
ing vectors generate Weyl rescalings of the metric; in particular, they preserve the
conformal gauge.
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In conformal gauge the Polyakov action simplifies to

SP D �T

2

Z
d 2� �˛ˇ @˛X� @ˇX�

D T

2

Z
d 2� . PX2 � X 02/

D 2T

Z
d 2� @CX � @�X : (2.45)

Varying with respect to X� such that ıX�.�0/ D 0 D ıX�.�1/ we obtain8

ıSp D T

Z
d 2� ıX� .@2

� � @2
� / X� � T

Z �1

�0

d� X 0
� ıX�

ˇ̌
ˇ̌�D`

�D0

: (2.46)

The surface term is absent for the closed string for which we impose the periodicity
condition9

(closed string) X�.� C `/ D X�.�/ : (2.47)

To achieve the vanishing of the boundary term for the open string we have to impose
either Dirichlet or Neumann boundary conditions for each X� and at each of the
two ends of the string:

@� X�j�D0;` D 0 (Neumann) (2.48)

or (open string)

ıX�j�D0;` D 0 (Dirichlet) : (2.49)

The Dirichlet boundary condition means that the end-point of the open string is fixed
in space-time. This boundary condition thus breaks space-time Poincaré invariance.
As we will discuss below, these boundary conditions have important implications.

The vanishing of (2.46) leads to the following equations of motion

.@2
� � @2

� / X� D 4@C@�X� D 0 (2.50)

which have to be solved subject to (2.47) or (2.48), (2.49).

8One can show that on the strip and the cylinder one can always go to conformal gauge and preserve
0 � � � `.
9More general periodicity conditions X�.� C `/ D M �

�X�.�/ for any constant O.1; d � 1/

matrix M also leave the action invariant. If we want to interpret X� as coordinates in Minkowski
space, only (2.47) is allowed, i.e. they are the only periodicity conditions which are invariant under
d -dimensional Poincaré transformations. When we consider compactifications of the string we
will consider so-called twisted boundary conditions for which M is non-trivial.
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Eq. (2.50) is the two-dimensional massless wave equation with the general
solution

X�.�; �/ D X
�
L.�C/ C X

�
R.��/ : (2.51)

Here X
�
L;R are arbitrary functions of their respective arguments, subject only to peri-

odicity or boundary conditions. They describe the “left”- and “right”-moving modes
of the string, respectively. In the case of the closed string the left- and right-moving
components are completely independent for the unconstrained system, an observa-
tion which is crucial for the formulation of the heterotic string. This is however not
the case for the open string where the boundary condition mixes left- with right-
movers through reflection at the ends of the string. We will present explicit Fourier
series solutions for all possible boundary conditions in the next two subsection.

On a solution of the equations of motion we still have to impose the constraints
resulting from the gauge fixed equations of motion for the metric: we have to require
that the energy-momentum tensor vanishes; i.e.

T01 D T10 D �2�T . PX � X 0/ D 0 ; (2.52a)

T00 D T11 D ��T . PX2 C X 02/ D 0 (2.52b)

which can be alternatively expressed as

. PX ˙ X 0/2 D 0 : (2.53)

In light-cone coordinates they become

TCC D �2�T .@CX � @CX/ D 0 ; (2.54a)

T�� D �2�T .@�X � @�X/ D 0 ; (2.54b)

TC� D T�C D 0 ; (2.54c)

where TCC D 1
2
.T00 C T01/, T�� D 1

2
.T00 � T01/; Eq. (2.54c) expresses the trace-

lessness of the energy-momentum tensor. In terms of the left- and right-movers
the constraints Eqs. (2.54a), (2.54b) become PX2

R D PX2
L D 0. Energy-momentum

conservation, i.e. r˛T˛ˇ D 0 becomes

@�TCC C @CT�C D 0 ; (2.55a)

@CT�� C @�TC� D 0 (2.55b)

which, using Eq. (2.54c), simply states that

@�TCC D 0 ; (2.56a)

@CT�� D 0 (2.56b)
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i.e.

TCC D TCC.�C/ and T�� D T��.��/ : (2.57)

The conservation equations (2.56) imply the existence of an infinite number of
conserved charges. In fact, for any function f .�C/ we have @�.f .�C/ TCC/ D 0

and the corresponding conserved charges are

Lf D 2T

Z `

0

d� f .�C/ TCC.�C/ (2.58)

and likewise for the right-movers.
The Hamiltonian for the string in conformal gauge is

H D
Z `

0

d� . PX � ˘ � L /

D T

2

Z `

0

d� . PX2 C X 02/

D T

Z `

0

d�
�
.@CX/2 C .@�X/2

�
; (2.59)

where, as before, the canonical momentum is ˘� D @L =@ PX� D T PX�. We note
that the Hamiltonian is just one of the constraints. This was to be expected from our
discussion of constrained systems in the context of the relativistic particle. Indeed,
we saw that the canonical Hamiltonian derived from the Nambu-Goto action van-
ishes identically and the �-evolution is completely governed by the constraints, i.e.

H D
Z `

0

d�
n
N1.�; �/ ˘ � X 0 C N2.�; �/ .˘2 C T 2X 02/

o
; (2.60)

where N1 and N2 are arbitrary functions of � and � . Using the basic equal � Poisson
brackets

fX�.�; �/; X�.� 0; �/gP:B: D f˘�.�; �/; ˘�.� 0; �/gP:B: D 0 ;

fX�.�; �/; ˘�.� 0; �/gP:B: D ��� ı.� � � 0/ (2.61)

we find

PX� D N1 X 0� C 2 N2 ˘� (2.62)

and

P̆ � D @� .N1 ˘� C 2T 2 N2 X 0�/ : (2.63)
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If we choose N1 D 0 and N2 D 1
2T

, Eqs. (2.62) and (2.63) lead to the equation of
motion .@2

� � @2
� /X� D 0 which we have obtained previously from the action in

conformal gauge. This means that choosing N1 D 0 and N2 D 1
2T

is equivalent to
fixing the conformal gauge. With this choice for the functions N1 and N2 we also
get the Hamiltonian (2.59).

In conformal gauge the Poisson brackets are

fX�.�; �/; X�.� 0; �/gP:B: D f PX�.�; �/; PX�.� 0; �/gP:B: D 0 ;

fX�.�; �/; PX�.� 0; �/gP:B: D 1

T
��� ı.� � � 0/ : (2.64)

With their help one readily shows that �T
R PX � X 0d� and 1

2
T

R
. PX2 C X 02/d�

generate constant �- and �-translations, respectively. More generally, using the
explicit expression for TCC one finds that the charges Lf of Eq. (2.58) generate
transformations �C ! �C C f .�C/, i.e. those reparametrizations which do not
lead out of conformal gauge:

fLf ; X.�/gP:B: D �f .�C/ @CX.�/ : (2.65)

So far we have only discussed issues connected with world-sheet symmetries. How-
ever, invariance under d -dimensional global Poincaré transformations, Eq. (2.29),
leads, via the Noether theorem, to two conserved currents; invariance under
translations gives the energy-momentum current

P ˛
� D �T

p
h h˛ˇ @ˇX� ; (2.66)

whereas invariance under Lorentz transformations gives the angular momentum
current

J ˛
�� D �T

p
h h˛ˇ .X� @ˇX� � X� @ˇX�/ D X�P ˛

� � X�P ˛
� : (2.67)

Using the equations of motion, it is easy to check conservation of P ˛
� and J ˛

�� .
The total conserved charges (momentum and angular momentum) are obtained by
integrating the currents over a space-like section of the world-sheet, say � D 0.
Then the total momentum in conformal gauge is

P� D
Z `

0

d� P �
� D T

Z `

0

d� @�X�.�/ (2.68)

and the total angular momentum is

J�� D
Z `

0

d� J �
�� D T

Z `

0

d� .X�@� X� � X�@�X�/ : (2.69)



2.4 Oscillator Expansions 23

It is straightforward to see that P� and J�� are conserved for the closed string.

Indeed, @P�

@�
D R `

0
d� @2

� X� D R `

0
d� @2

� X� D @� X�.� D `/ � @� X�.� D 0/

which vanishes for the closed string by periodicity. For the open string it only
vanishes if we impose Neumann boundary conditions at both ends. Hence our earlier
statement that Neumann boundary conditions have the physical interpretation that
no momentum flows off the ends of the string. This is not the case, however, for
Dirichlet boundary conditions. They break Poincaré invariance and consequently
space-time momentum is not conserved. Conservation of the total angular momen-
tum is also easy to check for closed strings and open strings with Neumann boundary
conditions at both ends.

With the help of the Poisson brackets Eq. (2.64) it is straightforward to verify that
P � and J �� generate the Poincaré algebra:

fP �; P �gP:B: D 0 ;

fP �; J �� gP:B: D ��� P � � ��� P � ;

fJ ��; J �� gP:B: D ��� J �� C ��� J �� � ��� J �� � ��� J �� : (2.70)

2.4 Oscillator Expansions

Let us now solve the classical equations of motion of the string in conformal gauge,
taking into account the boundary conditions. We will do this for the unconstrained
system. The constraints then have to be imposed on the solutions. We have to
distinguish between the closed and the open string and will treat them in turn.

Closed Strings

The general solution of the two-dimensional wave equation compatible with the
periodicity condition X�.�; �/ D X�.� C `; �/ is10

X�.�; �/ D X
�
R.� � �/ C X

�
L.� C �/ (2.71)

where

X
�
R.� � �/ D 1

2
.x� � c�/ C �˛0

`
p�.� � �/ C i

r
˛0
2

X
n¤0

1

n
˛�

n e� 2�
` in.���/;

(2.72a)

10A more general condition which guarantees that the boundary term in (2.46) vanishes is
X�.�; �/ D X�.� C �; � C `/. In fact, the periodicity of the solution is not preserved under
a world-sheet Lorentz transformation. We can always find a Lorentz frame in which the more
general periodicity condition reduces to the usual one.
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X
�
L.� C �/ D 1

2
.x� C c�/ C �˛0

`
p�.� C �/ C i

r
˛0
2

X
n¤0

1

n
˛�

n e� 2�
` in.�C�/

(2.72b)

with n 2Z and arbitrary Fourier modes ˛
�
n and ˛�

n . The normalizations have been
chosen for later convenience, and we have also introduced the parameters c�, which
will become relevant in Chap. 10 when we discuss toroidal compactifications. Here
we can choose the zero mode part of the expansion (2.72a) and (2.72b) left-right
symmetric and set c� D 0. Our notation is such that the ˛

�
n are positive frequency

modes for n < 0 and negative frequency modes for n > 0. Note that the left- and
right-moving parts are only coupled through the zero modes x� and p�. The
requirement that X�.�; �/ be a real function implies that x� and p� are real and that

˛��n D .˛�
n /� and ˛��n D .˛�

n /� : (2.73)

If we define

˛
�
0 D ˛

�
0 D

r
˛0
2

p� ; (2.74)

we can write

@�X� D PX�
R D 2�

`

r
˛0
2

C1X
nD�1

˛�
n e� 2�

` in.���/ ; (2.75a)

@CX� D PX�
L D 2�

`

r
˛0
2

C1X
nD�1

˛�
n e� 2�

` in.�C�/ : (2.75b)

From

P � D
Z `

0

d� ˘� D 1

2�˛0

Z `

0

d� PX� D p� ; (2.76)

we conclude that p� is the total space-time momentum of the string. From

q�.�/ � 1

`

Z `

0

d� X� D x� C 2�˛0

`
p�� ; (2.77)

we learn that x� is the ‘center of mass’ position of the string at � D 0. Using the
expression for the total angular momentum, we find

J �� D
Z `

0

d� .X�˘� � X�˘�/ D 1

2�˛0

Z `

0

d� .X� PX� � X� PX�/

D l�� C E�� C E
��

(2.78)
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with

l�� D x�p� � x�p� (2.79)

and

E�� D �i

1X
nD1

1

n
.˛��n ˛�

n � ˛��n ˛�
n / (2.80)

with a similar expression for E
��

.
From the Poisson brackets Eq. (2.64) we derive the brackets for the ˛

�
n , ˛�

n , x�

and p�:

f˛�
m; ˛�

ngP:B: D f˛�
m; ˛�

ngP:B: D �imımCn ��� ; (2.81a)

f˛�
m; ˛�

ngP:B: D 0 ; (2.81b)

fx�; p�gP:B: D ��� : (2.81c)

We have introduced the notation ım D ım;0. x� and p�, the center of mass position
and momentum, are canonically conjugate. The Hamiltonian (2.59), expressed in
terms of oscillators, is

H D �

`

C1X
nD�1

.˛�n � ˛n C ˛�n � ˛n/ : (2.82)

We have seen above that the constraints (2.54a) and (2.54b), together with energy-
momentum conservation, give rise to an infinite number of conserved charges
Eq. (2.58), with a similar expression for the right-movers. We now choose for the
functions f .�˙/ a complete set satisfying the periodicity condition appropriate for
the closed string: fm.�˙/ D exp. 2�i

`
m�˙/ for all integers m. We then define the

Virasoro generators as the corresponding charges at � D 0 11

Ln D � `

4�2

Z `

0

d� e� 2�i
` n� T�� D 1

2

X
m

˛n�m � ˛m ;

NLn D � `

4�2

Z `

0

d� eC 2�i
` n� TCC D 1

2

X
m

N̨n�m � N̨m : (2.83)

With the help of the representation of the periodic ı-function

11Since the Hamiltonian is one of the constraints and the constraints form a closed algebra under
Poisson brackets (i.e. they are first class; cf. below), it is clear that the Ln are constant in � (modulo
the constraints); this is indeed easily verified.
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1

`

X
n2Z

e
2�i

` n.��� 0/ D ı.� � � 0/ ; (2.84)

one can invert the above definitions:

T��.�/ D �
�

2�

`

	2 X
n

Ln e
2�i

` n� (2.85)

and likewise for TCC.
The Lm’s satisfy the reality condition

Ln D L��n; Ln D L
�
�n : (2.86)

Comparing with Eq. (2.83), we find that the Hamiltonian is simply

H D 2�

`
.L0 C L0/ : (2.87)

The general � evolution operator would have been H D P
n.cnLn C cnLn/;

the choice implied by Eq. (2.87), cn D cn D ın is the conformal gauge. Since the
constraint T

R `

0
d� PX �X 0 D 2�

`
.L0 � NL0/ generates rigid �-translations and since on

a closed string no point is special, we need to require that L0 �L0 D 0. It is through
this condition that the left-movers know about the right-movers. The Virasoro
generators satisfy an algebra, called the (centerless) Virasoro algebra:

fLm; LngP:B: D �i.m � n/ LmCn ;

fLm; LngP:B: D �i.m � n/ LmCn ;

fLm; LngP:B: D 0 : (2.88)

In the mathematical literature this algebra is called Witt algebra. Equation (2.88) is
straightforward to verify. It is nothing but the Fourier decomposition of the (equal �)
algebra of the Virasoro constraints:

fT��.�/; T��.� 0/gP:B: D C2�ŒT��.�/ C T��.� 0/� @� ı.� � � 0/ ;

fTCC.�/; TCC.� 0/gP:B: D �2�ŒTCC.�/ C TCC.� 0/� @� ı.� � � 0/ ;

fTCC.�/; T��.� 0/gP:B: D 0 : (2.89)

It is useful to recognize that if we replace the Poisson brackets by Lie brackets, a
realization of the Virasoro algebra is furnished by the vector fields Ln D e

2�i
` n�C

@C
and Ln D e

2�i
` n��

@�. They are the generators of the reparametrizations �˙ ! �˙ C
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fn.�˙/. If we define the variable z D e
2�i

` �� 2 S1, we get Ln D iznC1@z, which
are reparametrizations of the circle S1. The algebra (2.89) expresses the conformal
invariance of the classical string theory. Its quantum version will be one of the
central themes in the following chapters.

Open Strings

Next we discuss open strings, where we have to distinguish between Neumann and
Dirichlet boundary conditions. Because the boundary reflects left- into right-movers,
and vice versa, the open string solutions have only one set of oscillator modes.

For Neumann boundary conditions at both ends, we have to require X 0� D 0

at � D 0 and � D `. The general solution of the wave equation subject to these
boundary conditions is

.NN/ X�.�; �/ D x� C 2�˛0

`
p�� C i

p
2˛0 X

n¤0

1

n
˛�

n e�i �
` n� cos

�n��

`

�

(2.90)
from which we get

@˙X� D 1

2
. PX� ˙ X 0�/ D �

`

r
˛0
2

C1X
nD�1

˛�
n e� i�n

` .�˙�/ : (2.91)

We have defined

˛
�
0 D p

2˛0p� : (2.92)

As in the case of the closed string we easily show that x� and p� are the center of
mass position and total space-time momentum of the open string. The total angular
momentum is

J �� D 1

2�˛0

Z �

0

d� .X� PX� � X� PX�/ D l�� C E�� (2.93)

with l�� and E�� as in Eqs. (2.79) and (2.80). We again find

f˛�
m; ˛�

ngP:B: D �imımCn ��� ; (2.94a)

fx�; p�gP:B: D ��� : (2.94b)

In terms of the oscillators the Hamiltonian for the open string is

H D �

2`

C1X
nD�1

˛�n � ˛n : (2.95)
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The easiest way to derive this is to use the doubling trick and to write

H D 1

2�˛0

Z `

0

d�
�
.@CX/2 C .@�X/2

� D 1

2�˛0

Z `

�`

d�.@CX/2 (2.96)

which is possible because of X 0.�/ D �X 0.��/. On the interval �` � � � ` the
functions ei�m�=` are periodic.

The open string boundary conditions mix left- with right-movers and conse-
quently TCC with T��. We define the Virasoro generators for the open string as
(again at � D 0)

Lm D � `

2�2

Z `

0

d�
�
e

i�
` m� TCC C e� i�

` m� T��
�

D `

2�2˛0

Z `

0

d�
�
e

i�
` m� .@CX/2 C e� i�

` m� .@�X/2
�

D `

2�2˛0

Z C`

�`

d� e
i�
` m� .@CX/2

D 1

2

C1X
nD�1

˛m�n � ˛n : (2.97)

The Lm are a complete set of conserved charges respecting the open string boundary
conditions. Comparison with Eq. (2.96) gives

H D �

`
L0 ; (2.98)

which, as in the closed string case, reflects the fact that we are in conformal gauge.
The Lm satisfy the Virasoro algebra

fLm; LngP:B: D �i.m � n/ LmCn : (2.99)

The second choice of boundary conditions are Dirichlet conditions at both
ends of the string. We impose them by requiring PX� D 0 at � D 0 and at � D `.
The positions of the ends are fixed at X�.� D 0; �/ D x

�
0 ; X�.� D `; �/ D x

�
1 .

The general solution of the wave equation, subject to these boundary conditions, is

.DD/ X�.�; �/ D x
�
0 C 1

`
.x

�
1 � x

�
0 / �

C p
2˛0 X

n¤0

1

n
˛�

n e� i�
` n� sin

��n�

`

�
(2.100)
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with n 2 Z. There is no center of mass momentum. From (2.100) we derive

@˙X� D ˙�

`

r
˛0
2

1X
nD�1

˛�
n e� i�n

` .�˙�/ ; (2.101)

where

˛
�
0 D 1p

2˛0
1

�

�
x

�
1 � x

�
0

�
: (2.102)

The oscillator modes satisfy Eq. (2.94a). There is no center of mass momentum.
The center of mass position is

q� D 1

`

Z `

0

d� X�.�; �/ D
�

x
�
0 C x

�
1

2

	
: (2.103)

For the Virasoro generators Lm for m ¤ 0 one gets the same expressions as for
Neumann boundary conditions, Eq. (2.97). The Lm also satisfy the algebra (2.99).
With H D �

`
L0 we find for the Hamiltonian

H D T

2`

�
x

�
1 � x

�
0

�2 C �

2`

X
n¤0

˛�n � ˛n : (2.104)

The first term is the potential energy of the stretched string.
We can also impose mixed boundary conditions, i.e. different boundary condi-

tions at the two ends of the open string. For Neumann boundary conditions at � D 0

and Dirichlet boundary condition at � D ` the general solution reads

.ND/ X�.�; �/ D x� C i
p

2˛0 X
r2ZC 1

2

1

r
˛�

r e� i�
` r� cos

��r�

`

�
; (2.105)

where x� is the position of the � D ` end of the open string. Note that the center
of mass momentum vanishes and that the oscillators carry half-integer modes. They
also satisfy Eq. (2.94a). For completeness we also give the last possible combination
of boundary conditions

.DN/ X�.�; �/ D x� C p
2˛0 X

r2ZC 1
2

1

r
˛�

r e� i�
` r� sin

��r�

`

�
; (2.106)

where x� is the position of the � D 0 end of the open string. We have .˛
�
n /� D ˛

��n

for all possible boundary conditions. From (2.105) and (2.106) one derives
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@˙X� D

8̂
ˆ̂̂<
ˆ̂̂̂
:

�

`

r
˛0
2

X
r

˛�
r e� i�r

` .�˙�/ .ND/

˙�

`

r
˛0
2

X
r

˛�
r e� i�r

` .�˙�/ .DN/ :

(2.107)

For all four boundary conditions one can use the doubling trick and combine @˙X

into one field, say left moving which is defined on the doubled interval 0 � � � 2`:

@CX� D

8̂
<
:̂

@CX�.�/ ; 0 � � � `

˙@�X�.2` � �/ ; ` � � � 2`

� Csign for (NN) and (ND) ;

�sign for (DD) and (DN) ;

D �

`

r
˛0
2

X
˛�

n e� i�n
` .�C�/ ; 0 � � � 2`

�
n 2 Z for NN and DD ;

n 2 Z C 1
2

for DN and ND :

(2.108)

The signs are chosen to have continuity at � D `. Clearly

@CX�.� C 2`/ D @CX�.�/ for (NN) and (DD) .

@CX�.� C 2`/ D �@CX�.�/ for (DN) and (ND) . (2.109)

If the string moves in d space-time dimensions, one can combine various
boundary conditions. For instance, one can have open strings with .pC1/ Neumann
directions and .d �p �1/ Dirichlet directions. The end points of the open string are
then confined to .p C 1/ dimensional subspaces of the d dimensional target space.
Space-time translation symmetry along the .d � p � 1/ transverse directions is
broken by these solutions. As we have already remarked, this means that the space-
time momentum in the Dirichlet directions, which is carried by the open string, is
not conserved; it can flow off the ends of the string. Since the translation invariance
is spontaneously broken, momentum must be conserved. One is thus forced to
consider the subspaces, to which the endpoints are attached, as dynamical objects
which exchange momentum with the open strings ending on them. These objects are
called Dp-branes. The world-volume of a Dp-brane is .p C 1/-dimensional. String
endpoints can move along them (these are the Neumann directions), but cannot leave
them. In other words, open string cannot simply end in free space. They are always
attached to D-branes.

We will further analyze D-branes in Chaps. 6 and 9. In particular, we will show
that they also have tension and therefore a mass density. However, as we will see, the
tension scales like 1=gs with the string coupling constant, which indicates that these
objects are not visible in string perturbation theory, but should be considered as non-
perturbative objects. That means they are string theory analogues of monopoles or
instantons.
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By choosing N boundary conditions in some and D boundary conditions in the
remaining coordinate directions, we obtained static D-branes at fixed transverse
position and of infinite extent. Since branes carry a finite tension, which we
will compute in Chap. 6, branes of infinite extent are therefore infinitely heavy
and can absorb any amount of space-time momentum. But in general they are
dynamical objects and their dynamics is governed by world-volume actions which
are .p C 1/-dimensional generalizations of the Nambu-Goto action, to be discussed
in Chap. 16. The transverse fluctuations of a D-brane correspond to massless scalar
fields in this .p C 1/-dimensional field theory. These are the Goldstone bosons of
the spontaneously broken translation invariance.

If we impose N boundary conditions in all space-time directions, we obtain
space-time filling D-branes. The other extreme is a D-instanton, which only exists
at one space-time point. A D1-brane is also called a D-string, to be distinguished
from the fundamental string that we have studied so far and which might end on
a D-string. D-branes play a central role in all recent developments of string theory
and we will learn more about them as we go along.

2.5 Examples of Classical String Solutions

The solutions to the wave equations satisfying various periodicity and boundary
conditions which we have found in the previous section are still subject to the
Virasoro constraints: T00 D T01 D 0. We will now construct simple explicit solutions
of the classical equations of motion which satisfy the constraints.

Since in conformal gauge the coordinate functions X� are solutions of the wave
equation, we can use the remaining gauge freedom to set X0 D t D �� for some
constant �. The Xi , i D 1; : : : ; d � 1 then satisfy

.@2
� � @2

� /Xi D 0 (2.110)

with solution

Xi.�; �/ D 1

2
ai .� C �/ C 1

2
bi.� � �/ : (2.111)

The constraint PX �X 0 D � PX0X 00C PXi X 0i D 0 leads to a02 D b02 and PX2CX 02 D 0

to 1
2
.a02 C b02/ D �2. Combined this gives

a02 D b02 D �2 : (2.112)

The simplest example of an open string with N boundary conditions is

X1 D L cos
���

`

�
cos

���

`

�
X0 D t D �L

`
� ;
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X2 D L cos
���

`

�
sin

���

`

�
;

Xi D 0; i D 3; : : : ; d � 1 : (2.113)

It clearly satisfies the constraints. It is a straight string of length 2L rotating around
its midpoint in the .X1; X2/-plane. Its total (spatial) momentum vanishes and its
energy is E D L�T from which we derive the mass M 2 D �P �P� D .L�T /2.
The angular momentum is J D J12 D 1

2
L2�T and we find that J D 1

2�T
M 2 D ˛0M 2.

This is a straight line in the .M 2; J / plane with slope ˛0 D .2�T /�1, called a
Regge trajectory. It can actually be shown that for any classical open string solution
J < ˛0M 2. (In the gauge chosen here and in the center of mass frame J 2 D 1

2
Jij J ij ,

i; j D 1; : : : ; d � 1.) The velocity of the string is vvv2 D cos2. ��
`

/. It is one at both
endpoints. This is an immediate consequence of the constraint PX2 C X 02 D 0 and
holds for any open string with Neumann boundary conditions (X 0 D 0 at the ends).

A second simple open string solution is

X0 D t D � X1 D vt ; X2 D 1

`
L� ; X3 D � � � D 0 : (2.114)

This describes a string which is spanned between D-branes which are a distance L

apart. The string moves rigidly along the X1 direction with a velocity v. It satisfies N
b.c. along X0 and X1 and Dirichlet boundary conditions along X2. The constraints
are satisfied if L D `

p
1 � v2. This is simply the relativistic length contraction.

For the closed string the periodicity requirement leads to a.� C `/ D a.�/ and
b.� C `/ D b.�/. From

X

�
� C `

2
; � C `

2

	
D 1

2
a.� C � C `/ C 1

2
b.� � �/

D 1

2
a.� C �/ C 1

2
b.� � �/ ; (2.115)

we find that the period of a classical closed string is `=2. For an initially static closed
string configuration, i.e. one that satisfies PX.�; � D 0/ D 0, we find X.�; �/ D
1
2
.a.� C �/ C a.� � �//. After half a period, i.e. at � D `

4
, X.�; `

4
/ D X.� C `

2
; `

4
/,

the loop doubles up and goes around itself twice: X.�/ D X.� C `
2
/. A simple

closed string configuration is

X0 D t D 2�

`
R� ;

X1 D 1

2
R

h
cos

�2�

`
.� C �/

�
C cos

�2�

`
.� � �/

�i
D R cos

�2��

`

�
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�2��

`

�
;
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X2 D 1

2
R

h
sin

�2�

`
.� C �/

�
C sin

�2�

`
.� � �/

�i
D R sin

�2��

`

�
cos

�2��

`

�
:

(2.116)

At t D 0 it represents a circular string of radius R in the .X1; X2/-plane, centered
around the origin. Its energy is E D 2�RT . Linear and angular momentum vanish.
At � D `

4
(t D �

2
R) it has collapsed to a point and at � D `

2
(t D �R) it has

expanded again to its original size. Similar to the open string case, one can show
that a general classical closed string configuration satisfies J � 1

2
˛0M 2.

Further Reading

Constrained systems with applications to string theory are discussed in

• K. Sundermeyer, Constrained Dynamics. Lecture Notes in Physics, vol. 169
(Springer, Heidelberg, 1982)

• A. Hanson, T. Regge, C. Teitelboim, Constrained Hamiltonian Systems (Acca-
demia Nazionale de Lincei, Roma, 1976), also available at https://scholarworks.
iu.edu/dspace/handle/2022/3108

• J. Govaerts, Halitonian Quantization and Constrained Dynamics (Leuven
University Press, Leuven, 1991)

Discussion of various terms which can be added to the Polyakov action:

• O. Alvarez, Theory of strings with boundaries. Nucl. Phys. B 216, 125 (1983)

Classical string solutions:

• P. Shellard, A. Vilenkin, Cosmic Strings and Other Topological Defects
(Cambridge University Press, Cambridge, 1994)

https://scholarworks.iu.edu/dspace/handle/2022/3108
https://scholarworks.iu.edu/dspace/handle/2022/3108


http://www.springer.com/978-3-642-29496-9


