Chapter 2

Agrobacterium rhizogenes-Mediated
Transformation in Medicinal Plants:
Prospects and Challenges

Dipasree Roychowdhury, Anrini Majumder and Sumita Jha

2.1 Introduction

Root cultures have been studied since the early days of tissue culture research, but
have created little interest because of their slow growth rate, although root and
shoot organ cultures have been used for studies of alkaloids (Hashimoto et al.
1986; Hirata et al. 1990; Jha et al. 1991; Baiza et al. 1999a; Khanam et al. 2001;
Ghosh et al. 2002; Ghosh and Jha; 2005), coumarins (Panichayupakarananta et al.
1998), saponins (Kusakari et al. 2000; Kim et al. 2005a), phenolic acids (Karam
et al. 2003), essential oils (Olszowska et al. 1996), terpenes (Pannuri et al. 1993),
glycosides (Swanson et al. 1992), steroidal lactones (Ray and Jha 2001), etc.

However, in all but a few species, they are difficult to culture and the auxin
concentrations optimal for growth may reduce productivity (Siah and Doran 1991;
Bourgaud et al. 2001). Few studies on secondary metabolite production with root
and shoot organ cultures in bioreactors have been reported (Kevers et al. 1999;
Choi et al. 2000; Bondarev et al. 2002; Piatczak et al. 2005; Kim et al. 2005a).

Although, root and shoot organ cultures are genetically and biosynthetically
more stable than cell cultures, interest in root and shoot organ cultures as a source
of secondary metabolites has been limited (Flores and Curtis 1992; Flores and
Medina-Bolivar 1995).
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2.2 Ri-Transformed Root Cultures

Agrobacterium rhizogenes infects higher plants to produce so-called “hairy roots”
with altered phenotype from the wound sites. The transformed roots can be excised
to establish axenic root cultures and indefinitely propagated in growth regulator
free medium. The root exhibit fast, plagiotropic growth characterized by profuse
lateral branching and rapid root tip elongation (Tepfer and Tempé 1981; Chilton
et al. 1982; Tepfer 1984). Putatively transformed root lines can be easily screened
with these morphological markers. Foreign genes can also be introduced into
transformed roots by using binary vectors (Hamill et al. 1988). The rapid biomass
accumulation in transformed root cultures is comparable, if not superior, to
unorganized cell cultures and the fastest biomass doubling time is 1-day in Datura
stramonium (Maldonado-Mendoza et al. 1993). The advantage of this transfor-
mation approach is that each primary root produced at the infection site is the
result of a single transformation event—a clone (Chilton et al. 1982). However,
somaclonal variations in transformed root cultures are also known (Sevon et al.
1998; Wilhelmson et al. 2005). Transformed root cultures have been established
in several species, including many medicinal plants (Tepfer 1989; Sevén and
Oksman-Caldentey 2002).

Transformed clones vary in morphology (Amselem and Tepfer 1992), growth,
and metabolite productivity (Aoki et al. 1997; Batra et al. 2004). This is attributed
to the nature, site, and number of T-DNA integration into the host genome
(Ambros et al. 1986a, b; Jouanin et al. 1987; Amselem and Tepfer 1992).
Therefore, clone selection is critical for metabolite productivity through trans-
formed root cultures (Mano et al. 1986). Transformed root clones are genetically
and biosynthetically stable for long periods. Growth and alkaloid production were
stable over a period of 5 years in transformed roots of D. stramonium (Maldonado-
Mendoza et al. 1993). Ri-transformed roots also exhibit a high degree of cyto-
genetic stability (Baiza et al. 1999b). In Beta vulgaris and Nicotiana rustica
(Benson and Hamill 1991), growth, secondary metabolite production, and T-DNA
structure in several transformed root lines were unchanged after cryopreservation.
However, progressive loss of growth rate under conditions that favor the
production of tropane alkaloids was reported in Duboisia myoporoides (Yukimune
et al. 1994).

Plant roots can synthesize, store, and secrete a vast array of compounds and
transformed root cultures have a wide range of biosynthetic capacities (Flores et al.
1999). They can produce the full range of secondary products characteristics of
roots of the parent plants (Parr and Hamill 1987; Zarate 1999) as well as novel
compounds (Fukui et al. 1998, 1999). The secondary metabolite levels are often
comparable to or greater than that of intact plants (Sevén and Oksman-Caldentey
2002). Unlike cell cultures, actively growing transformed roots can continuously
produce secondary metabolites (Holmes et al. 1997). Transformed root cultures are
reported to synthesize secondary products, including alkaloid, in numerous
medicinal plant species (Table 2.1). Many of these have already been reviewed
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Fig. 2.1 Ri-transformed roots of Tylophora indica showing pigmentation a white root
(bar = 9 mm), b green root (bar = 9 mm), and ¢ red root (bar = 9 mm)

(Verpoorte et al. 1991; Rhodes et al. 1997; Mukundan et al. 1998; Shanks and
Morgan 1999; Sevén and Oksman-Caldentey 2002).

Secretion is a fundamental function of plant cells and it is especially
well-developed in plant roots (Roschina and Roschina 1993). Their ability to
secrete plethora of compounds into the rhizosphere is a remarkable physio-
logical feature and up to nearly 21 % of all carbon fixed by photosynthesis
can be transferred to the rhizosphere in the form of root exudates (Marschner
1995) and contains both low molecular weight (e.g. secondary metabolites)
and high molecular weights (e.g. proteins) compounds. Secondary metabolites
that are produced in the roots that are transported and stored in other parts of
the plants may be released in the culture medium from excised roots (Rhodes
et al. 1986). Several secondary products, including a few alkaloids produced
in transformed root culture of a number of plant species are released into the
culture medium. In transformed root cultures the released secondary metab-
olites can be adsorbed and removed by a variety of high affinity polymeric
resins (Freeman et al. 1993). In addition to a reduction in the production cost,
this operation is known to stimulate the productivity of a number of com-
pounds by transformed root cultures (Muranaka et al. 1993a; Holmes et al.
1997, Saito et al. 2001).

Ri-transformed root cultures of Tylophora indica shows variation in pigmen-
tation when cultured under light (unpublished data). While, the hairy root cultures
of T. indica remains white when cultured in dark, on exposure to light, they
become green to red depending on the light intensity (Fig. 2.1). Hairy root turning
green on exposure to light is also reported in other plants like in Solanum
khasianum (Jacob and Malpathak 2005), red, and green hairy root lines in addition
to white Ri-transformed root cultures are also reported by Yang and Choi (2000) in
Panax ginseng.
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2.3 Ri-Transformed Plants

Regeneration of whole viable plants from hairy root cultures, established from
transformation with A. rhizogenes, has been reported in a number of plant species.
Such transgenic plants frequently show a very characteristic phenotype which
differ from their normal counterparts, such as, wrinkled leaf, shortened internodes,
decreased apical dominance, altered flower morphology, increase in number of
branches, reduced pollen and seed production, and abundant production of highly
branched plagiotropic roots. All these altered phenotypic characters the so-called
“Hairy Root Syndrome” is due to the combined expression of rolA, rolB, and rolC
genes. rolA gene is associated with shortening of internodes, wrinkling of leaves,
etc., whereas rolB gene causes reduced length of stamens, protruding stigmas, and
increased adventitious roots on stems. rolC gene is responsible for reduced apical
dominance, internodes shortening, and increased branching (Nilsson and Olsson
1997; Tepfer 1984). The hairy root phenotype was first described by Ackerman
(1977) in Tobacco regenerants. In addition to the above-mentioned changes,
biennial species frequently becomes annuals on transformation and regeneration
with A. rhizogenes (Tepfer 1984; Sun et al. 1991; Kamada et al. 1992). Regen-
eration of transgenic plants from hairy roots can be either spontaneous or can be
induced with the help of plant growth regulators.

2.3.1 Spontaneous Plant Regeneration from Ri-Transformed
Root Cultures

One of the various advantages of using A. rhizogenes-mediated transformation
system is direct regeneration of transgenic plants from root cultures as it avoids the
problems due to somaclonal variations. Spontaneous and direct development of
adventitious shoot buds from older regions of transformed hairy roots in hormone-
free media without any callus formation is reported in a number of plant species
like Armoracia lapathifolia (Noda et al. 1987), Taraxacum platycarpum (Lee et al.
2004), Centaurium erythraea (Suboti¢ et al. 2003), Hypericum perforatum
(Vinterhalter et al. 2006), T. indica (Chaudhuri et al. 2006), Bacopa monnieri
(Majumdar et al. 2011), Atropa belladonna (Jaziri et al. 1994), Plumbago indica
(Gangopadhyay et al. 2010), Brassica oleracea var. Botrytis (David and Tempé
1988), B. oleracea var. sabauda, B. oleracea var. capitata (Christey et al. 1997,
Sretenovic¢-Rajici¢ et al. 2006), Populus tremula (Tzfira et al. 1996), Lotus
corniculatus (Petit et al. 1987), Blackstonia perforiata (Bijelovi¢ et al. 2004),
Pelargonium graveolens cv. Hemanti (Saxena et al. 2007), Ajuga reptans var.
atropurpurea (Tanaka and Matsumoto 1993), etc. These adventitious shoots when
excised and cultured on hormone-free basal media regenerated into whole plants.
However, culture conditions and time required for regeneration varied from plant
to plant.
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Shoot regeneration from transformed roots can be light dependent or
independent. In A. lapathifolia (Noda et al. 1987), roots maintained in dark showed
induction of shoot buds on transfer to light throughout the root except the root tips,
but no adventitious shoot bud formation took place in those kept in dark. Non-
transformed roots rarely developed adventitious shoot buds on transfer to light.
LBA 9402 transformed roots of P. tremula (Tzfira et al. 1996) and A4 transformed
roots of B. monnieri (Majumdar et al. 2011) showed spontaneous shoot bud
regeneration when cultured under 16/8 h (light/dark) photoperiod. Interestingly,
LBA 9402 transformed roots of B. monnieri did not show any regeneration but
spontaneously dedifferentiated into callus. In L. corniculatus (Petit et al. 1987) and
P. indica (Gangopadhyay et al. 2010), spontaneous shoot organogenesis is
reported, when transformed roots were transferred to continuous light from dark.
The hairy roots of P. indica did not regenerate in dark even after application of
exogenous hormones to the media. Contrastingly, in 7. indica (Chaudhuri et al.
2006), 17 % of transformed root clones are reported to regenerate shoots directly
on hormone-free MS media in light independent manner. Suboti¢ et al. (2003) also
reported development of adventitious shoot primordial on older regions of hairy
root cultures of C. erythraea both under light and in dark. In Amoracia rusticana,
effect of light on shoot regeneration from transformed root cultures have been
studied in details by Saitou et al. (1992). In dark conditions, shoot formation was
rarely observed in the hairy roots, but the longer the culture period in the light,
higher the frequency of shoot formation, and number of shoots per explant were
noted. When cultured under light conditions (16 h light/8 h dark) for the first
4 weeks, no shoot bud regeneration was observed from the hairy roots, but when
they were precultured in darkness for 2 weeks and then transferred to light, shoot
formation was observed within 1 week of transfer. Shoot regeneration also varied
with exposure time of hairy roots to light. A short exposure (1.68 h) to a high light
intensity (78 pmol/m? s) showed less shoot formation than a long exposure
(168 h) to lower light intensity (0.78 pmol/m2 s). Thus, for adventitious shoot
formation from transformed roots of A. rusticana, duration of light exposure is
more important than the light intensity. The authors also showed that shoot
formation in the hairy roots can be induced by white light and red light when
precultured for 12 weeks in dark but not by the far red light. Far red light
irradiation after red light irradiation partially inhibited shoot formation. Red light
is also reported to stimulate shoot formation in Pseudotsuga menziesi, Petunia, and
Apple (Kadkade and Jopson 1978; Economou and Read 1986; Predieri and
Malavasi 1989). Shoot formation in tobacco calli is reported to be stimulated by
blue light and inhibited by red light (Seibert et al. 1975; Weis and Jaffe 1969).
Hence, effect of light on adventitious shoot organogenesis in hairy roots appeared
to be plant specific. Time requirement for regeneration of shoot buds from the
Ri-transformed roots also varied from plant to plant. In A. lapathifolia (Noda et al.
1987) and B. monnieri (Majumdar et al. 2011), shoot bud development was
observed within 7 and 10 days of transfer to light, respectively. In others like,
L. corniculatus (Petit et al. 1987), P. tremula (Tzfira et al. 1996), and P. indica
(Gangopadhyay et al. 2010), shoot bud regeneration took place within 3—4 weeks.
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Again, in T. indica (Chaudhuri et al. 2006) and A. belladona (Jaziri et al. 1994)
shoot buds were seen only when transformed roots were kept for more than
8 weeks without subculture.

Regeneration potential of hairy roots also varied with the concentration of sucrose
used in the media. When hairy roots of A. belladona (Jaziri et al. 1994) were cultured
on half strength MS media with 1.5 % sucrose, spontaneous shoot bud regeneration
took place. For rooting and further development, these shoot buds were transferred to
the same media with 3 % sucrose. Hairy roots of H. perforatum (Vinterhalter et al.
2006) is reported to have high potential for spontaneous shoot regeneration which
increased from first subculture (40.5 %) to second subculture (62 %) in hormone-
free basal media. However, the regeneration frequency varied with the concentration
of the sucrose used in the media. Highest shoot bud regeneration took place on
hormone-free medium with 1 and 2 % sucrose with 50.3 and 48.8 shoot buds per
culture, respectively. Higher concentration of sucrose at and above 4 % have got an
adverse effect on both root growth and shoot differentiation, making them necrotic
with characteristic brown color. Thus, low level of sucrose seems to favor regen-
eration of shoot buds from hairy roots in A. belladona and H. perforatum.

In addition to direct shoot bud regeneration from transformed root cultures,
spontaneous callus formation is reported in many plant species like in 7. indica
(Chaudhuri et al. 2006), Carica papaya (Cabrera-Ponce et al. 1996), Catharanthus
roseus (Brillanceau et al. 1989), Solanum nigrum (Wei et al. 1986), etc. Shoots
regenerated from these calli either in hormone-free medium or with application of
hormones. In 7. indica (Chaudhuri et al. 2006), 44 % of the root clones sponta-
neously produced yellow friable callus from older regions of root, when kept for
more than 8 weeks without subculture. Regeneration occurred via somatic
embryogenesis from these calli within 3 weeks on hormone free MS medium
(Fig. 2.2). Spontaneous callus development is also reported in many hairy root
lines of C. roseus (Brillanceau et al. 1989), one of which evolved rapidly on
hormone-free media with spontaneous shoot bud formation.

2.3.2 Plant Regeneration from Ri-Transformed Root Cultures
Induced by Plant Growth Regulators

Induction of shoot bud directly from the transformed roots in presence of plant
growth regulators are reported in many plants like A. belladonna (Aoki et al.
1997), A. reptans var. atropurpurea (Uozumi et al. 1996), T. platycarpum (Lee
et al. 2004), Plumbago rosea L. (Satheeshkumar et al. 2009), Linum usitatissimum
(Zhan et al. 1988), etc. To induce shoot formation, in most of the cases the
cytokinin BA (6-Benzyladenine) is used either alone or in combination with some
auxin. Concentration of hormones used for effective regeneration varied from plant
to plant along with other conditions like, size of transformed root used as explant,
concentration of sucrose used, photoperiod at which cultures were maintained,
media used for rooting, etc.
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Fig. 2.2 Regeneration of Ri-transformed plant from hairy roots of Tylophora indica. a Spon-
taneous induction of callus in transformed roots (bar = 3.3 mm), b developing somatic embryos
from the embryogenic callus (bar = 5 mm), ¢ a single somatic embryo (bar = 1 mm),
d germinated somatic embryo developing into plantlet (bar = 1.4 mm), e Ri-transformed plantlet
developed from somatic embryo (bar = 2.5 mm), and f Ri-transformed plant transferred to
potted soil (bar = 25 mm)

Shoot buds regenerated from hairy roots of A. reptans var. atropurpurea
(Uozumi et al. 1996), T. platycarpum (Lee et al. 2004), Aesculus hippocastanum
(Zdravkovi¢-Kora¢ et al. 2004), and P. rosea (Satheeshkumar et al. 2009), when
cultured on media with BA as the sole hormone supplement. Whereas, in A.
reptans var. atropurpurea (Uozumi et al. 1996) high concentration of BA (10 mg/1)
supplementation in media exhibited highest number of plantlet formation in hairy
roots. In T. platycarpum (Lee et al. 2004) 100 % shoot bud regeneration was noted
when the hairy roots were cultured on media supplemented with 1 mg/l BA.
In P. rosea (Satheeshkumar et al. 2009) when concentration of BA used was within
0.5-2 mg/I shoot formation took place without callusing. But with increase of BA
concentration from 2.5 mg/l onwards, callusing increased with less number of
shoot bud production. Best shoot bud regeneration frequency was noted on media
supplemented with 2 mg/l BA. Root explants cultured in medium containing BA
with auxin did not differentiate into shoot buds but proliferated into callus.

As mentioned above, in some species, induction of shoot buds from trans-
formed root cultures was also noted when auxin was used in combination with BA.
In A. belladonna (Aoki et al. 1997), Cichorium intybus cv. Lucknow local (Bais
et al. 2001), and Mexican lime (Pérez-Molphe-Balch and Ochoa-Alejo 1998),
shoot buds regenerated when root segments were cultured on medium supple-
mented with low concentration of NAA along with BA. Whereas, in apple
(Lambert and Tepfer 1992), low concentration of IBA is reported to be used along
with high concentration of BA for development of adventitious shoot buds from
the transformed roots. Transformed roots of L. usitatissimum (Zhan et al. 1988)
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were cultured on MS medium containing NAA, BA, and adenine, for successful
shoot bud regeneration. Hence, for efficient regeneration of shoot buds from hairy
roots, type, combination, and concentration of hormones to be used varies from
plant to plant.

Hormone supplementation in media increases the regeneration frequency in
some plants when compared to that on hormone-free media. For example, in hairy
roots of T. platycarpum (Lee et al. 2004), the regeneration frequency increased
from 88.5 & 9.8 % on hormone-free media to 100 % on BA supplemented media.
Similarly, in hairy roots of A. hippocastanum (Zdravkovi¢-Koraé et al. 2004),
regeneration frequency was significantly increased on media supplemented with
BA compared to that in phytohormone-free media. Contrastingly, in some other
plants, like in B. oleracea var. sabauda and B. oleracea var. capitata (Sretenovic-
Rajicic et al. 2006), average number of shoots regenerated from transformed roots
were lower on hormone supplemented media compared to hormone-free media.
Thus, use of phytohormone does not always increase the regeneration frequency.

Hairy roots of different species were maintained under different photoperiod for
efficient regeneration of shoot buds from the roots. Ri-transformed roots of
A. belladonna (Aoki et al. 1997), A. hippocastanum (Zdravkovic-Korac et al.
2004), and L. usitatissimum (Zhan et al. 1988) were maintained under 16/8 h
photoperiod, while hairy root explants of A. reptans var. atropurpurea (Uozumi
et al. 1996) and P. rosea (Satheeshkumar et al. 2009) were cultured under 14/10 h
(light/dark) and 12 h photoperiod, respectively, for shoot bud induction.
Continuous exposure to light was given to transformed root explants of Mexican
lime (Pérez-Molphe-Balch and Ochoa-Alejo 1998). Thus, like in case of sponta-
neous regeneration, effect of light on shoot bud regeneration in presence of
phytohormones also varies from species to species.

Apart from use of plant growth regulators to induce shoot from transformed
roots, some other agents are also reported to induce shoot regeneration either alone
or in addition to exogenous hormones. In Antirrhinum majus, Hoshino and Mii
(1998) studied effect of phosphinothricin-based herbicide, Bialaphos (a tripeptide
antibiotic produced by Streptomyces hygroscopicus), and plant growth regulators
on regeneration from transformed roots. The various concentrations of phytohor-
mones, NAA in combination with BA or TDZ, tried by them did not result in any
improvement in shoot bud induction compared to that in hormone-free media. But
bialaphos, although toxic at and above 0.9 mg/l, when added at or below 0.5 mg/l,
enhanced shoot regeneration. Fifty-six percent of hairy roots regenerated shoots
when cultured on half strength MS with 0.5 mg/l bialaphos after 3 months.

Shoot organogenesis from transformed root cultures induced by phytohormones
via callus formation is also reported in many plant species like, Stylosanthes
humilis cv. Paterson (Manners and Way 1989), Medicago arborea L. (Damiani
and Arcioni 1991), Glycine argyrea (Kumar et al. 1991), Lotus japonicus (Stiller
et al. 1997), Alhagi pseudoalhagi (Wang et al. 2001), C. roseus (Choi et al. 2004),
Crotalaria juncea (Ohara et al. 2000), cultivars of B. oleracea, and Brassica
campestris (Christey et al. 1997), etc. Concentration and combinations of plant
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growth regulators used to induce callus formation and for regeneration of shoot
buds from callus varied from plant to plant.

In S. humilis cv. Paterson (Manners and Way 1989), G. argyrea (Kumar et al.
1991), C. roseus (Choi et al. 2004), C. juncea (Ohara et al. 2000), L. japonicus
(Stiller et al. 1997) and different cultivars of B. oleracea and B. campestris
(Christey et al. 1997), callus induction from Ri-transformed roots and shoot
organogenesis from those calli took place in the same hormone supplemented
media. In some of these plants, the development and elongation of the regenerated
shoot buds required transferring the regenerating callus or regenerated shoot buds
to a different medium. When hairy root segments of S. humilis cv. Paterson
(Manners and Way 1989) were cultured on MS with 2 mg/l BA, callus induction
took place and within 2-3 weeks shoot regeneration occurred on the same media.
When less than 2 mg/l BA was used, callus formation took place without any
shoot bud regeneration, while shoot regeneration frequency from callus was very
low when 4 mg/l BA was used. In G. argyrea (Kumar et al. 1991), when Ri-
transformed root segments were cultured on B5 medium with BA and IBA
(Indole-3-butyric acid), green nodular callus was induced within 20 days. These
nodular calli produced shoots within 40-50 days. Shoot elongation was noted
when regenerating callus was transferred to B5 medium with IBA and reduced
level of BA. When hairy root segments of C. roseus (Choi et al. 2004) were
cultured on MS supplemented with BA and NAA (a-Naphthaleneacetic acid),
callus induction was noted after 2 weeks, from which shoot buds regenerated with
80 % frequency on the same medium. Transformed root fragments of C. juncea
(Ohara et al. 2000) when cultured on solid BS medium supplemented with 3 mg/1
BA, callus induction followed by shoot bud regeneration was observed. Regen-
eration frequency which was 30 % in 3 mg/l BA supplemented media reduced to
14 % when concentration of BA increased to 5 mg/l. The induced shoot buds
showed severe hyperhydricity, thus mostly failed to develop further on 0.8 % agar
and 0.2 % gelrite solidified media. Elevated concentrations of gelling agent (1.2 %
agar) was found to be effective in lowering the hyperhydricity and in promoting
further development of the shoot buds. In L. japonicus (Stiller et al. 1997), when
hairy root segments were cultured on B5 medium supplemented with BA and
NAA, callogenesis followed by development of shoot primordial took place. Shoot
elongation of these regenerated shoot buds was achieved when concentration of
NAA was reduced to half.

Contrastingly, in M. arborea (Damiani and Arcioni 1991), the Ri-transformed
callus only proliferated on the callus induction media (B5 media containing 2,4-D
and kinetin). Shoot regeneration needed transfer of these calli to a different media,
i.e. on hormone-free solid MS media. Similarly, Wang et al. (2001) reported use of
two different media, one for callus induction from the hairy root of A. pseudoalhagi
and other for regeneration from those calli. Hence, for induction of callus from Ri-
transformed roots and subsequent shoot bud regeneration, choice and concentration
of exogenous hormone supplementation varies with species.

Induction of embryogenic callus from hairy roots using phytohormones and
regeneration of transgenic plants from such calli is reported in many plant species
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like in Cucumis sativus L. (Trulson et al. 1986), P. ginseng (Yang and Choi 2000),
Prunus avium x P. pseudocerasus (Gutierrez-Pesce et al. 1998), etc.

Yang and Choi (2000) cultured green, white, and red root lines of P. ginseng on
MS medium supplemented with 1 mg/l 2,4-D. Low frequency of embryogenic
callus formation was noted until 1 month which increased with duration of the
culture. Among the three root lines, best induction of embryogenic callus was
noted in the red line. Efficient production of somatic embryos from this embryo-
genic callus was achieved by transferring them to MS medium containing 0.5 mg/1
2,4-D, which matured into cotyledonary stage after 2 months. Germination of
these cotyledonary somatic embryos were only found when transferred to MS
medium containing 10 mg/l GA3 within 15 days, which continued to grow on half
strength MS medium without any growth regulators.

2.4 Production of Secondary Metabolites in Ri-Transformed
Plants

While extensive study have been done on secondary metabolite production in hairy
root cultures obtained through transformation with A. rhizogenes, only a few
reports are available regarding analysis of secondary metabolites in roots and
shoots of Ri-transformed plants (Table 2.2). Secondary metabolite productions in
Ri-transformed plants are at levels, comparable to or even greater than that in non-
transformed plant in many cases, whereas in some plants reduction of specific
secondary metabolite is also reported. In A4 transformed shoots of 7. indica,
tylophorine content was 20—60 % higher than that in the control (Chaudhuri et al.
2006). Similarly, in A4 transformed plants of B. monnieri, the content of four
bacopa saponins (bacopasaponin D, bacopasaponin F, bacopaside II, and baco-
paside V) were up to five times higher than non-transformed plants of same age
(Majumdar et al. 2011). Ri-transformed plants of P. indica are also reported to
have an increased plumbagin content compared to non-transformed plants
(Gangopadhyay et al. 2010). On the contrary, Ri-transformed plants of Hyoscyamus
muticus showed reduced alkaloid production (Sevén et al. 1997) and same was in
case of transgenic plants of D. myoporoides x D. leichhardtii for scopolamine and
hyoscyamine (Celma et al. 2001).

2.5 Large-Scale Production of Secondary Metabolites
by A. rhizogenes Mediated Transformed Roots
in Bioreactors

Hairy roots appear to be potential systems for culture in bioreactors in large scale
because of their organized nature, fast growth rate, and stability in metabolite
production. As hairy roots grow continuously (Jeong et al. 2002) bioreactors used
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for the cultivation of hairy roots are complex and quite different from the
conventional ones utilized for the culture of plant cell suspensions (Mishra and
Ranjan 2008). Reactors with unique configurations are required due to the orga-
nized and entangled nature of these roots. The structured as well as delicate hairy
roots distribute unevenly throughout the bioreactor (Jeong et al. 2002) and form
continuous root clumps composed of interconnected primary and lateral roots
which hinder the percolation of oxygen into the roots (Kino-Oka et al. 1999;
Bordonaro and Curtis 2000). Root hairs also limit fluid flow and the availability of
oxygen (Bordonaro and Curtis 2000). Limitations of nutrient and oxygen mass
transfer, which increase with increase in root biomass, are the main drawbacks
associated with culture of hairy roots in bioreactors, leading to cell death and
necrosis at the core of the biomass (Jeong et al. 2002; Suresh et al. 2005). This in
turn causes reduction in growth and metabolite production (Suresh et al. 2005).
Transfer of oxygen from the air bubbles to the hairy roots via the medium and from
one cell to another within the hairy roots is complicated (Neelwarne and
Thimmaraju 2009). Mass transfer can be enhanced by vigorous mixing, but this
might lead to reduction in root viability due to increase in hydrodynamic shear stress
(Hitaka et al. 1997). Large-scale culture of hairy roots is difficult as nutrients need to
be provided simultaneously from the gas and liquid phases (Jeong et al. 2002).
Several factors such as growth characteristics, morphological changes of hairy roots
during proliferation, nutrient requirements, availability and utilization rates, medium
composition, mass transfer, mechanical properties, methods for providing a support
matrix, protection from shear damage, inoculum density and even distribution of the
inoculum, and chances of flow restriction caused by the highly tangled root masses
should be considered while designing a bioreactor for hairy roots (Taya et al. 1989;
Yu and Doran 1994; Mishra and Ranjan 2008). Because of continuous proliferation
and repeated branching, the rheological properties of the hairy roots change con-
tinuously (Neelwarne and Thimmaraju 2009). Thus, it is generally difficult to select a
single type of bioreactor for the cultivation of hairy roots as the rheological properties
of the roots vary not only from species to species but also within clones of a single
species (Mishra and Ranjan 2008). Productivity in bioreactors also depends on
certain other parameters like temperature, pH, composition of gases, selection of
hairy root clone, reactor operation, removal of toxic byproducts, etc. (Kim et al.
2002a; Mishra and Ranjan 2008). To a large extent, bioreactor design also depends
on the location of the product which may be either intracellular or extracellular
(Mishra and Ranjan 2008).

2.5.1 Types of Bioreactors Used for the Cultivation
of Hairy Roots

Reactors used for the cultivation of hairy roots can be of different types based on
the continuous phase viz. liquid phase, gas phase, or the hybrid ones which are a
combination of both.
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2.5.1.1 Liquid Phase Bioreactors

In liquid phase reactors, also known as submerged reactors, roots remain
submerged in the medium and air is bubbled through the culture medium to supply
oxygen (Kim et al. 2002a, b). Stirred tank, bubble column, air lift, liquid impelled
loop, and submerged connective flow reactors (Wilson et al. 1987; Taya et al.
1989; Buitelaar et al. 1991; Tescione et al. 1997; Carvalho and Curtis 1998) are
examples of liquid phase reactors.

Stirred Tank Bioreactors

Among the liquid phase reactors, stirred tank reactor is mechanically agitated
(Mishra and Ranjan 2008); aeration and medium currency are regulated by mortar-
derived impeller or turbine blades (Choi et al. 2006). Compressed air is sparged
into the reactor in the form of bubbles to supply oxygen for the aerobic processes
(Mishra and Ranjan 2008). The impeller region has an aeration device which
produces a well dispersed gas phase in the continuous liquid phase (Mishra and
Ranjan 2008). However, the impeller rotation damaged the roots by shearing,
which resulted in callus formation and poor biomass production (Hilton et al.
1988; Wilson 1997). The problem was alleviated by isolating roots from the
impeller by using a steel cage or nylon mesh to fix the roots (Kondo et al. 1989;
Hilton and Rhodes 1990) or by developing modified stirred tank reactors having
flat blade turbines (Mishra and Ranjan 2008). Cardillo et al. (2010) used a 1.5 1
modified stirred tank reactor equipped with a plastic mesh to culture hairy roots of
Brugmansia candida. These cultures produced an increased biomass (49.33 g FW,
GI of 3.93), corresponding to a 36 % higher yield than that obtained in Erlenmeyer
flasks; alkaloid yields in the reactor were 2.6- to 3-folds higher than the cultures in
Erlenmeyer flasks with a fivefold increase in scopolamine yield. The specific
productivities for both the systems were similar except a 31 % increase in
anisodamine production in the bioreactor. 2.8—4 times higher volumetric
productivities were obtained for the processes carried out in the bioreactor when
compared with the Erlenmeyer processes. Choi et al. (2006) reported that
compared to other types of reactors, temperature, pH, amount of dissolved oxygen,
and nutrient concentration can be controlled in a better way within a stirred tank
bioreactor. Growth and hyoscyamine production in transformed root cultures of D.
stramonium was studied in a modified 14 1 stirred tank reactor (Hilton and Rhodes
1990). The effects of batch and continuous modes of operation, three different
temperatures and half and full strength Gamborg’s B5 salts were studied. When
cultured at half strength B5 medium, the dry matter content and hyoscyamine
levels of the roots were higher than those grown on full strength B5 salts. The
amounts of hyoscyamine were similar at both 25 and 30 °C but about 40 % lower
at 35 °C. However, highest production rate of 8.2 mg/l/day hyoscyamine was
obtained when the roots were grown at 30 °C. Hyoscyamine released into the
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culture medium was low in continuous fermentation at 25 °C but up to sevenfolds
higher when the fermentors were operated at 30 or 35 °C.

Reduced productivities, often recorded during scale-up cultures, might also
result from handling problems during inoculation and uneven distribution of the
roots in the bioreactor (Hilton and Rhodes 1990; Kwok and Doran 1995; Woo
et al. 1996). Lee et al. (1999) cultivated randomly cut hairy roots of A. belladonna
in 31 and 301 modified stirred reactors. For a good distribution, roots were
inoculated and immobilized on a stainless steel mesh in the reactors that separated
the roots from the stirrer. After a period of 1 month 1490 mg tropane alkaloids
were produced by the roots cultured in the 30 1 reactor; 5.4 mg/gDW atropine
could be detected in the roots which was equivalent to the amount found in plants
grown in the field for 12 months and contained considerable amounts of other
alkaloids like 1.6 mg/gDW 6-f-hydroxyhyoscyamine, 0.9 mg/gDW scopolamine,
and 2.0 mg/gDW littorine. The study demonstrated that the use of this type of
modified stirred bioreactor would provide sufficient supply of oxygen and nutrition
for the growth of roots and alkaloid production. In another study, A. belladonna
hairy roots were cultured in a bioreactor using porous polypropylene membrane
tubing as a supplementary aeration device and an emulsion of Fluorinert™ FC-43
perfluorocarbon was added to the medium (Kanokwaree and Doran 1998). The
treatments were applied to improve oxygen supply to the roots. Combination of air
sparging and membrane tubing aeration in a gas driven bioreactor supported
32-65 % higher biomass levels than sparging only of oxygen-enriched air at the
same total gas flow rate. However, growth was not improved by the addition of
perfluorocarbon to the medium in the sparged stirred tank reactor. The study
demonstrated the need for site directed aeration of hairy root cultures for supplying
oxygen into the zones of highest root biomass. Large-scale culture of Ophiorrhiza
pumila in a 3 1 modified stirred tank reactor fitted with a stainless steel net
(to minimize physiological stress of the hairy roots by agitation) decreased the
biomass yield compared to shake flasks; while a biomass of 162 £+ 20 gFW/1 was
achieved in a 100 ml shake flask, only 87.2 £+ 12.4 gFW/l was achieved in the
aerated 31 reactor (Hiroshi et al. 2002). Camptothecin yields in the reactor
(8.7 £ 1.3 mg/l) were, however, almost equivalent to that of the roots cultured in
shake flasks (8.9 + 1.4 mg/l).

Nuutila et al. (1994) demonstrated that growth and alkaloid content in hairy
roots of C. roseus was affected by different shear levels. For culturing the roots a
stirred tank reactor with a metal mesh used to isolate the roots from the impeller
system was used. Although the impeller was used to avoid shear stress, root
growth was severely inhibited. Best growth and alkaloid production was obtained
in an air sprayed bioreactor with no other mixing.

Mehrotra et al. (2008) cultured a fast growing hairy root clone G6 of
Glycyrrhiza glabra in a 51 bench top air sparged and mechanically agitated
bioreactor, provided with a nylon mesh septum containing 4 1 modified NB (Nitsch
and Nitsch 1969) medium. After 30 days of incubation, the root biomass harvested
(310 g) represented 20 times increase over initial inoculum (16 g).
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Bubble Column Bioreactors

In bubble column reactors roots are submerged in the medium and an air dis-
tributor situated at the bottom of the column generates an upflow of air bubbles
leading to liquid mixing (Mishra and Ranjan 2008). Compared to other stirred
types of reactors this reactor is advantageous for the culture of organized structures
like hairy roots as the bubbles create less shearing stress. Kwok and Doran (1995)
improved supply of oxygen to the roots in a 2.5 1 bubble column reactor by
introducing gas at multiple points of the reactor, divided into three segments with
wire mesh, each segment containing a sparger. After 43 days of culture 9.9 gDW/1
of A. belladonna hairy roots were harvested. However, bulk mixing was very
poor in the reactor. McKelvey et al. (1993) reported that in hairy root cultures of
H. muticus, the yields of tissue mass in submerged air sparged reactors was 31 %
of that accumulated in shake flask controls. The authors suggested that liquid
phase channeling and stagnation leading to impaired oxygen transfer were the
probable causes resulting in poor growth of the roots. When Lobelia inflata hairy
roots were cultivated in a cylindrical 10 1 bubble column bioreactor, a 3.5 times
increase in biomass was noted at the end of the culture period (Balvdnyos et al.
2004). High levels of polyacetylene (36.5 mg/g lobetyolin and 15.9 mg/g lobe-
tyolinin) were detected by HPLC.

Jeong et al. (2002) used two types of bioreactors viz. an air bubble four stage
column bioreactor and a modified stirred bioreactor, both fitted with stainless steel
meshes, for the culture of P. ginseng hairy roots. After 32 days of culture in the
four stage bubble column reactor, each stage of the column was closely packed
with hairy roots and a 36.3-fold increase in biomass was noted. The crude saponin
content was 20 % on dry weight basis, which was similar to flask cultures.
A 52-fold increase from the initial inoculum was observed in the modified stirred
bioreactor after 42 days. In both the types of reactors growth was about three times
as high as in flask cultures.

A prototype basket bubble bioreactor was used for the coculture of hairy roots
and shoots of Genista tinctoria (Shinde et al. 2008). Large amounts of isoliquir-
itigenin were produced by the hairy roots.

Connective Flow Bioreactor

Carvalho and Curtis (1998) developed a connective flow reactor which consisted
of a 14 1 stirred tank, equipped with agitation and temperature control, a peristaltic
pump and a tubular reactor. Sparging and agitation in the fermentor transferred
oxygen into the medium and a peristaltic pump recirculated the medium between
the stirred tank and the tubular reactor. 556 £+ 4 gFW/1 of H. muticus hairy roots,
were produced after a period of 30 days whereas a bubble column reactor
produced only 328 £+ 5 gFW/I hairy roots. Although better than a bubble column
reactor, it was suggested that a connective flow reactor may not be suitable from a
realistic point of view as a pressure is required to circulate the culture medium at a
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high velocity to overcome the flow resistance of the root bed (Carvalho and Curtis
1998). However, reactors similar to connective flow reactors have been proved to
be effective as research tools. Williams and Doran (1999) minimized the liquid
solid hydrodynamic boundary layer at the root surface and determined the critical
oxygen level of hairy roots of A. belladonna by using a packed bed recirculation
reactor.

Air Lift Bioreactors

Air lift reactors are basically bubble column reactors containing a draught tube
(Mishra and Ranjan 2008). In these reactors air is supplied through a sparger ring
into the bottom of a central draught tube that controls the circulation of air and the
medium (Mishra and Ranjan 2008). The draught tube also prevents bubble
coalescence by causing the bubbles to move in one direction and the shear stress is
distributed equally throughout the reactor. Thus cells can grow in a more stable
physical environment. Shear stress generated in air lift reactors is lower than that
generated in bubble column reactors, giving the air lift reactors an advantage over
the bubble column reactors (Al-Masry 1999). Although reports indicate the use of
conventional air lift reactors for the scale-up culture of hairy roots (Buitelaar et al.
1991; Oka et al. 1992; Uozumi et al. 1995), optimum biomass could not be yielded
mainly because of two factors—uneven distribution of roots at certain regions of
the reactor and excessive channelling of gas phase, blocking liquid flow due to
clumping of roots (Kim and Yoo 1993). However, immobilization of roots has
been reported to increase biomass of hairy roots in air lift reactors (Taya et al.
1989). In another study, after 39 days of culture in a 5 1 airlift bioreactor, growth
of hairy roots of P. ginseng was about 55-fold of the initial inoculum whereas a
38-fold increase in biomass was noted after 40 days of culture in a 19 1 airlift
bioreactor (Jeong et al. 2003). When cultured in a 301 airlift bioreactor for
20 days, the dry weight of hairy roots (11.5 g/l dry weight) and astragaloside IV
yields (1.4 mg/g) from hairy root cultures of Astragalus membranaceus were
higher than a 10 | bioreactor (dry weight 9.4 g/l and astragaloside IV 0.9 mg/g)
(Du et al. 2003). Yields from the 30 1 bioreactor were almost similar to cultures
from 250 ml and 1 1 flasks. Growth of hairy roots and the production of scopol-
amine in hairy root cultures of Datura metel were improved following treatment
with permeabilizing agent Tween 20 in a 4 1 airlift bioreactor with root anchorage
(Cusido et al. 1999). After 4 weeks of culture, biomass yield was 2.3 and 0.84 mg/
1/day scopolamine was produced. 30 g FW of Duboisia leichhardtii hairy root
clone DL47-1 was inoculated into 3 1 airlift bioreactor packed with Amberlite
XAD-2 (Muranaka et al. 1993b). Biomass of the roots increased eightfolds during
the culture period and 0.5 g/l scopolamine was obtained after 11 weeks. When a
polyurethane foam was used in the vessel, the root tissue spread uniformly and
grew well, showing a 14-fold increase in biomass after 12 weeks, with a 0.8 g/l
yield of scopolamine. In the same study, a two-stage culture system, the first stage
for the growth of hairy roots, and the second one for scopolamine release was
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carried out in a 1 1 turbine blade reactor fitted with a stainless steel mesh as a
support for the uniform growth of the roots and also packed with Amberlite XAD-
2 column. The root biomass increased 12-folds during 4 weeks of culture in the
growth medium; after culturing in the medium for scopolamine release for
11 weeks 1.3 g/l scopolamine was recovered.

Tikhomiroff et al. (2002) reported the use of a two-liquid phase bioreactor for
the extraction of indole alkaloids from C. roseus hairy roots with silicon oil. The
roots were inoculated and immobilized in a stainless steel screen mesh box placed
1 cm from the bottom of the reactor in the aqueous phase. The second phase was
DC200 silicon oil. Although growth of the hairy roots was not affected by silicon
oil, the specific yields of tabersonine and l6chnericine were improved by 100—400
and 14-200 %, respectively. When jasmonic acid was used as an elicitor, 10-55 %
tabersonine and 20—65 % lochnericine were produced. The alkaloids accumulated
in the silicon oil phase and were never detected in the culture medium.

Liu et al. (1998) investigated the effect of four different culture systems—250 ml
Erlenmeyer flasks, bubble column reactor, modified bubble column reactor, and
modified inner loop air lift reactor, for the production of artemisinin. The modified
inner loop air lift bioreactor was designed to improve the transfer of nutrient
medium and supply of oxygen and to increase growth homogeneity. When com-
pared it was found that growth rate and artemisinin content (26.8 g/l and 536 mg/I,
respectively) in the hairy roots cultivated in the modified air lift reactor was higher
than the other types of reactors. The hairy roots grew more homogenously in the
modified inner loop air lift reactor, proving that optimization of design of air lift
reactor can promote growth and artemisinin production. In another study, Pueraria
phaseoloides hairy roots were cultured in 2.5 1 airlift bioreactors for 3 weeks
(Kintzios et al. 2004). 5,570 png/gDW puerarin, corresponding to 200 times as much
as in 250 ml flask cultures was produced after incubation for 3 weeks. Puerarin was
also released into the culture medium at concentrations higher than that found in the
hairy roots themselves. Sharp and Doran (1990) cultured root tips of A. belladonna
in hormone-free MS medium containing 3 % sucrose in two 2.5 1 airlift bioreactors.
A 33-fold increase in biomass yield was noted over a 26 day culture period and
concentration of atropine in the dried roots was 0.37 %. In another study, Caspeta
et al. (2005a) studied the growth of Solanum chrysotrichum hairy roots in shake
flasks, a glass-draught internal-loop 2-1 basic design air lift reactor (BDR) and a
novel modified mesh-draught with wire-helix 2 1 reactor (MR). Growth patterns
were different in each of them with specific growth rates being 0.08, 0.067, and
0.112 per day for shake flasks, BDR, and MR, respectively. After 42 days of
culture, tissue density in the MR was almost the same as that found in the shake
flasks and twice as that obtained in the BDR. Cultures were scaled-up into 10 1 MR
level. Results indicated the overall tissue density reduced slightly compared to that
of 2 1reactor. S. chrysotrichum hairy roots were also cultivated in 250 ml flasks and
2 1 modified draught-tube internal-loop airlift reactors for the production of five
antifungal saponins (SC-2 to SC-6) (Caspeta et al. 2005b). In the 2 1 reactor, yield
of SC-2 was 0.7 % on dry weight basis, which were sixfolds greater than that found
in plant leaves. SC-4 was recovered both from the flasks and the reactor while SC-5
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and SC-6 were only detected from the culture medium of roots grown in the 2 1
reactor.

2.5.1.2 Gas Phase Bioreactors

Trickle bed, droplet phase, liquid dispersed, and nutrient mist reactors are examples
of gas phase reactors (Taya et al. 1989; Flores and Curtis 1992; Wilson 1997,
Williams and Doran 2000; Woo et al. 1996; Liu et al. 1999). Hairy roots are inter-
mittently exposed to air or other gaseous mixtures and the nutrient liquid in these
reactors. Liquid nutrients are either sprayed onto the roots or the roots get nutrient
media as droplets, the size of which varies considerably (Kim et al. 2002a, b). The
droplets are 0.5-30 pm in mist reactors using ultrasonic transducers (Weathers et al.
1999) whereas they are of much larger sizes for trickle bed or other gas phase reactors
using spray nozzles (Wilson 1997). Any oxygen deficiency in the dense root clumps
can be eliminated using these reactors; stress caused by shearing is also minimized
(Kim et al. 2002b). However, excessive delivery of the medium can cause liquid
phase channeling and medium retention. Oxygen can be completely depleted in the
submerged regions of the root clumps and nutrient concentrations can be different
from that in the bulk medium (Singh and Curtis 1994; Williams and Doran 2000).
Since gas is the continuous phase in these reactors, roots need to be immobilized.
Horizontal sheets of mesh, vertical structures, packing rings made of nylon mesh, or
intalox metal process packing have been used variously for the purpose of immo-
bilization (Woo et al. 1996; Liu et al. 1999; Chatterjee et al. 1997; Williams and
Doran 2000).

Nutrient Mist Bioreactors

In nutrient mist reactors roots are dispersed in an air phase by immobilization on a
mesh support and a mist phase, consisting of liquid medium is introduced into the
reactor (Mishra and Ranjan 2008). The hairy roots are continuously bathed in
nutrient mist, thereby replenishing the nutrients rapidly, and removing toxic
byproducts (Dilorio et al. 1992). Compared to other reactors, these reactors have
certain advantages viz. these are easy to operate and scale up, gas composition can
be closely controlled, and oxygen is not a limiting factor and provides an envi-
ronment of low shearing forces and pressure drops (Weathers et al. 1999; Mishra
and Ranjan 2008). As the nutrient mist can be dispersed homogenously within the
culture chamber, mechanical agitation is not required, and this reduces root
damage caused by shearing (Dilorio et al. 1992). Certain parameters need to be
taken into account while designing a nutrient mist reactor. These are composition
of the mist, availability of the nutrients, recycling of medium, feeding schedules,
and a feed rate sufficient for the growth of the roots (Dilorio et al. 1992).
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Whitney (1992) used various types of bioreactors like nutrient mist reactor,
trickle bed reactor, stirred tank reactor, and an air lift reactor for the culture of
hairy roots of Nicotiana tabacum and D. stramonium and found that cultivation in
nutrient mist reactors resulted in a higher growth rate and yield of tobacco com-
pared to the other reactors used. Kim et al. (2001) found that the amount of
artemisinin was significantly higher (2.64 ng/g dry weight) when Artemisia annua
hairy root clone YUT16 was cultured in a nutrient mist bioreactor, compared to a
bubble column reactor (0.98 pg/g dry weight). On the contrary, overall biomass
concentration was higher in a bubble column reactor (15.3 gDW/1) than in a
nutrient mist reactor (14.4 gDW/I) (Kim et al. 2002b). Also, the average growth
rate was higher in the bubble column reactor than in the nutrient mist reactor.
A. annua hairy roots have also been cultivated in three different types of nutrient
mist bioreactors, each of 2.3 1 working volume, fitted with three stainless steel
meshes, namely, a nutrient mist bioreactor, an inner-loop nutrient mist bioreactor
and a modified inner-loop nutrient mist bioreactor (Liu et al. 1999). After a culture
period of 25 days, growth indices in the three types of bioreactors were 42, 61, and
68, respectively. 13.6 gDW/I medium biomass yield was achieved in the modified
inner-loop nutrient mist bioreactor. The development and growth kinetics of single
hairy roots of A. annua were characterized in nutrient mist reactor and shake flasks
(Wyslouzil et al. 2000). The effects of mist duty cycle, medium formulation, gas
composition on growth kinetics, and morphology of the roots were also studied.
Dilorio et al. (1992) reconfigured a nutrient mist bioreactor for batch operation to
homogenously deliver nutrient mist to the hairy root cultures of Carthamus
tinctorius. Misting cycle, inoculum size, batch or continuous operation, and
sucrose concentration were varied to obtain maximum growth over a period of
1 week. Williams and Doran (2000) scaled-up A. belladonna hairy roots in a liquid
dispersed bioreactor, where the liquid medium was sprayed onto the roots growing
on a stainless steel support.

Bioreactors of various configurations viz. bubble column reactor, nutrient
sprinkle reactor, and an acoustic mist bioreactor have been used to study the
growth of C. intybus hairy roots (Bais et al. 2002b). Among all the types of
bioreactors used, roots grown in acoustic mist bioreactor had greater final biomass
(295 gFWI/1, 29.8 gDW/); this reactor also showed better specific growth rate of
0.075/day that was very close to that of shake flasks (0.086/day). Also, accumu-
lation of esculin was maximum in the acoustic mist bioreactor (18.5 g/l) which
was 1.4 times greater than nutrient sprinkle and bubble column reactors.

In an interesting study, Souret et al. (2003) examined the effect of three
different culture systems like shake flasks, a mist reactor and a bubble column
reactor on the expression levels of four key terpenoid biosynthetic genes,
3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), 1-deoxy-p-xylulose-
5-phosphate synthase (DXS), 1-deoxy-D-xylulose-5-phosphate reductoisomerase
(DXR), and farnesyl diphosphate synthase (FPS) in hairy root cultures of A. annua.
All the genes showed temporal regulations when the roots were cultured in shake
flasks and the production of artemisinin could only be correlated with the
expression of FPS. The expression of the genes in the reactors was equivalent to
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or greater than that of the hairy roots grown in the shake flasks. However, the
expression level within the six different zones of each reactor could not be
correlated with their respective oxygen levels, light and root packing density.
The authors also observed that the genes were expressed unusually; the position of
the roots in the reactors affected the transcriptional regulation of all the genes
under study. It was thus concluded that to characterize gene activity in a whole
reactor, analysis of a single reactor sample could be misleading. Also it was found
that the terpenoid gene expression in hairy roots of A. annua cultured in a bubble
column reactor was different when compared with a mist bioreactor.

In another study, Flores and Curtis (1992) showed that when grown in a trickle
bed reactor, production of solavetivone by hairy root cultures of H. muticus was
3.5 times higher when compared with roots grown in a submerged reactor.

2.5.1.3 Hybrid Bioreactors

Hybrid reactors represent the third type of reactor used for the cultivation of hairy
roots. In these reactors, roots are grown in a gas phase after being exposed to liquid
phase (Mishra and Ranjan 2008). A major drawback of gas phase reactors is that
manual loading is required to uniformly distribute roots in the growth chamber
(Kim et al. 2002a; Mishra and Ranjan 2008). Ramakrishnan et al. (1994) used a
hybrid reactor to solve the problem by initially running the reactor as a bubble
column to suspend, distribute, and attach the roots to the packing rings in the
reactor. After 2 weeks the reactor was switched to a trickle bed operation, thus
exposing the dense root clumps to a gas environment. Roots were also pumped as
slurry into the reactor after being chopped in a blender, thereby eliminating the
manual labor of cutting and inoculation. Using these processes a 14 1 reactor was
run for 4 weeks and at harvest 20 gDW/1 packing density of H. muticus was
obtained (Ramakrishnan et al. 1994).

Datura stramonium hairy roots were cultured in a 500 1 hybrid reactor that used
a droplet phase for 40 days after an initial submerged culture for 21 days (Wilson
1997). At the end, 39.8 kgFW biomass was harvested, yielding a packing density
of 79.6 gFW/1. D. stramonium hairy roots have also been cultivated in 8.2 I root
tube bioreactor; good growth and productivities have been recorded (Greens and
Thomas 1996).

2.5.1.4 Rotating Drum and Ebb-and-Flow Bioreactors

Cycles of liquid and gas phases are alternated in rotating drum reactors and
ebb-and-flow reactors (Kim et al. 2002a). Rotating drum reactors are also
mechanically agitated (Mishra and Ranjan 2008). Kondo et al. (1989) reported that
as the roots rotated during drum rotation they did not attach well to the vessel wall;
the roots were lifted above the medium and then dropped back. As a result of these
repeated drops, cells were damaged resulting in low biomass yield. This effect was
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overcome by laying polyurethane foam on the inner wall of the drum, which acted
as a support for the hairy roots. The authors also demonstrated that hairy roots of
Daucus carota grew well in turbine blade reactors (0.63 g/l/day) yielding 10 g/l
dry mass after 30 days whereas only 4 gDW/I biomass was obtained when the
roots were cultured in shake flasks. They concluded that a stirred tank reactor fitted
with a turbine blade or an immobilized rotating drum reactor with a high volu-
metric mass transfer coefficient is more conducive for the culture of hairy roots.
Repeated ebbing and flowing or periodic rising and falling of the liquid medium is
the main characteristic feature of an ebb-and-flow bioreactor. H. muticus hairy
roots were also cultivated in a 2.5 1 bench top ebb-and-flow reactor for a period of
18 days (Cuello et al. 2003). A productivity of 0.481 gDW/l/day was noted
demonstrating a 50-fold scale up compared to cultures in 50 ml shake flasks.

2.5.1.5 Wave Bioreactors

Wave bioreactors are another type of novel reactors. Stress levels are significantly
reduced as these reactors are based on wave-induced agitation (Mishra and Ranjan
2008). Palazon et al. (2003) showed that both the accumulation of biomass and
production of ginsenosides by P. ginseng were higher in a 2 1 wave bioreactor than
in shake flasks.

2.6 Use of Ri-Transformed Roots in Research
and Practical Application

Apart from the production of secondary metabolites, Ri-transformed root cultures
have also been used in other research and practical applications like phytoreme-
diation, biotransformation, and plant environment interactions.

Phytoremediation refers to the ability of plants to uptake chemicals from
polluted soil, water or air, and thus clean up environmental pollution. Ri-trans-
formed root cultures are excellent tools for phytoremediation. The roots provide a
large surface area of contact between the contaminant and the tissue as they grow
fast and are highly branched. As mentioned earlier, the roots can be scaled up in
bioreactors and the biomass can be used for clean up of the environment. Also,
hairy root exudates contain enzymes and metal chelating compounds which can be
used to detoxify or sequester harmful complexes (Gujarathi and Linden 2005;
Doty 2008), thereby recycling roots for future use. These roots are also potential
tools to better understand the enzymatic machinery involved in the bioconversion
of toxic pollutants to non-toxic metabolites (Macek et al. 2000) and the mechanism
involved in metal tolerance and hyperaccumulation. As shoots are absent, these
root cultures help in assessing the mechanisms present only in the roots for
remediation of contaminants without the effects of translocation. Also, foreign
genes introduced in the hairy roots can be expressed for a long period of time and
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the resultant functional proteins can be used to metabolise environmental
contaminants (Banerjee et al. 2002). There are several reports indicating the use of
Ri-transformed root cultures in the uptake and degradation of various environ-
mental pollutants like phenols, chlorophenols, polychlorinated biphenyls, heavy
metals, etc. (Mackova et al. 1997; Agostini et al. 2003; Coniglio et al. 2008;
Vinterhalter et al. 2008).

Biotransformation is the process whereby a substance is changed from one
chemical to another (transformed) by a chemical reaction within the body of a
living organism. Plant cell cultures have the ability to specifically convert exog-
enously administered organic compounds into useful analogues. The main problem
with use of cell suspension culture is the phenomenon of somaclonal variation,
which might lead to unstable biochemical behavior. This problem can be over-
come with the use of plant root and shoot cultures. The reactions involved in
biotransformation include oxidation, reduction, esterification, methylation, isom-
erization, hydroxylation, and glycosylation. Glycosylation only takes place readily
in plant cells but laboriously in microorganisms. Ri-transformed root cultures of
many plants are reported to be useful in biotransformation. For example, the hairy
roots of Coleus forskohlii biotransformed methanol to f-p-glucopyranosides,
ethanol to f-p-ribo-hex-3-ulopyranosides, and 2-propanol to its ff-pD-glucopyran-
oside (Li et al. 2003). B. candida hairy roots bioconverted hydroquinone into
arbutin (Casas et al. 1998). Yan et al. (2007) reported use of Ri-transformed root
cultures of Polygonum multiflorum for the biotransformation of 4-hydroxybenzen
derivatives (1,4-benzenediol, 4-hydroxybenzaldehyde, 4-hydroxybenzyl alcohol,
and 4-hydroxybenzoic acid) to their corresponding glucosides. The conversion of
4-hydroxybenzoic acid into its o-D-glucopyranoside was for the first time reported
in a plant biotransformation system. In addition, these hairy root cultures were able
to reduce the 4-hydroxybenzaldehyde to its corresponding alcohol. Thus,
biotransformation using Ri-transformed root cultures has got a good prospective to
generate novel products or to produce known products more efficiently.

Ri-transformed root cultures have also been used to study plant environment
interactions. Isoflavone reductase (IFR) and (+) 6a-hydroxymaackiain 3-O-meth-
yltransferase (HMM) are enzymes apparently involved in the synthesis of pisatin, an
isoflavonoid phytoalexin synthesized by Pisum sativum. Wu and VanEtten (2004)
produced transgenic pea hairy root cultures using sense and antisense-oriented
cDNAss of Ifr and Hmm fused to the 35 s CaMV promoter and A. rhizogenes R1000.
The virulence of Nectria haematococca (a pea pathogenic fungus) on the transgenic
roots that produced the minimum amount of pisatin was studied in order to assess the
effectiveness of pisatin in disease resistance. It was found that control hairy roots
were less susceptible to isolates of N. haematococca that are either virulent or
nonvirulent on wild-type pea plants than hairy roots expressing antisense Hmm.
It was demonstrated for the first time that transgenic plant tissue with reduced ability
to produce phytoalexin can be generated and such tissues are more susceptible to
fungal infection. Interactions between roots and rhizobia (Quandt et al. 1993),
mycorrhizal fungi (Mugnier 1997) and nematodes (Narayanan et al. 1999) have also
been elucidated using hairy roots.
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2.7 Conclusion

Since the first reports of establishment of Ri-transformed hairy root cultures, researchers
have attempted to utilize these systems for the production of stable transgenic plants,
analysis of genes, production of secondary metabolites and engineering of the
biosynthetic pathways, production of therapeutically recombinant proteins, trapping of
biomolecules released into the culture medium, for elucidating molecular aspects of
biological processes, etc. Compared to plant cell suspension cultures, hairy root cultures
appear to be potential systems for continuous production of valuable secondary
metabolites because of their fast growth rates, ease of maintenance, genetic and
biosynthetic stability, and ability to synthesize a vast array of compounds. Till date hairy
root cultures have been established from several plant species, many of which are
endangered and pharmaceutically important. Although these cultures have shown
tremendous potential for the production of several important phytochemicals, their
culture in large scale is still very challenging. As the culture environments in bioreactors
and shake flasks are totally different, the results obtained from the studies on
improvement in yields from shake flasks may not be directly applicable to bioreactors.
Development of more effective and economic scale-up culture systems is required so
that bioreactors can be used successfully for the large-scale production of secondary
metabolites. Plants regenerated from hairy roots following transformation with A.
rhizogenes have got a lot of use in different fields. Higher levels of some target
metabolite production in transformed plants are very important as a tool for improve-
ment of secondary metabolite production in medicinal plants. Apart from pharma-
ceutical use, other importance of hairy root regenerants include, use of transgenic plants
in micropropagation of plants that are difficult to multiply for example in A. majus
(Hoshino and Mii 1998), in Mexican lime (Pérez-Molphe-Balch and Ochoa-Alejo
1998), in cherry (Gutierrez-Pesce et al. 1998), etc. Morphological characters such as
adventitious shoot formation, reduced apical dominance, altered leaf and flower mor-
phology have ornamental value in some plants while proved effective in plant breeding
programmes in some others (Giovanni et al. 1997; Pellegrineschi et al. 1994; Handa
et al. 1995). The promising developments and applications of hairy root cultures
indicate that in the near future these cultures will provide researchers with powerful
tools for further biotechnological research.
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