Chapter 14
Nilpotent Sections

The next difficult characteristic quotient of a profinite group beyond the maximal
abelian quotient might be the maximal pro-nilpotent quotient or its truncated
versions of bounded nilpotency. These quotients have been studied in the realm
of the section conjecture by Ellenberg around 2000, unpublished, and later by
Wickelgren in her thesis [Wg09], and in [Wgl0, Wgl2a, Wg12b] with special
emphasis on the interesting case P! — {0, 1, oo}.

The (relative) pro-algebraic version has played an important role in at least two
strands of mathematics: (1) on the Hodge theoretic side in the study conducted
by Hain of the Teichmiiller group and the section conjecture for the generic curve
[Hallb], and (2) on the arithmetic side in the non-abelian Chabauty method of Kim
[Ki05] for Diophantine finiteness problems.

We will examine in detail the Lie algebra associated to the maximal pro-£
quotient of the geometric fundamental group, see Sect. 14.3, and in particular prove
Proposition 207 about the sub Lie algebra of invariants under a finite abelian
group action. This will be crucial for counting pro-£ sections over a finite field in
Sect. 15.3.

The nilpotent section conjecture is known to fail by work of Hoshi [Ho10]. We
try to explain that examples for this failure should be seen as accidents due to an
accidental coincidence of very special properties. In Sect. 14.7, we extend the range
of examples, show that in most of these examples the spaces of pro-p sections are
in fact uncountable, and suggest a way of reviving the pro- p version of the section
conjecture by asking a virtually pro- p section conjecture.

14.1 Primary Decomposition

Let X/ k be a geometrically connected variety. We may push the extension 7, (X/ k)
by the maximal pro-nilpotent quotient 7, (X) —> nfﬂp (X) to obtain the maximal
nilpotent extension nf‘ilP(X /k). As any finite nilpotent group is canonically the
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176 14 Nilpotent Sections

direct product of its unique p-Sylow groups we obtain in the limit a canonical
isomorphism
P (X) = [ ="r (X) (14.1)
P

and also a primary decomposition

Jl’lnilp(X/ k) = 1_[ anYO'P(X/k) (14.2)

p

that has to be read as a fibre product over Gal.. For the corresponding section spaces
and Kummer maps this leads to

aitp = (kp)p 2 X(K) = T im0 = [T Zerr - (14.3)
p

If X / k moreover is abelian injective, then because 7%°(X / k) is a quotient extension
of Jrf‘ﬂp(X/k) we have

X(k) = g (X (k) C [ [rep (X ().
P

Let for the moment k be an algebraic number field and X /k a smooth hyperbolic
curve. Then, by Theorem 76, we have X (k) = «,(X(k)), and the section conjecture
raises the question whether only diagonal tuples of pro-p sections lift to actual
sections along

n (X/k) —> ynf“p(X/k)’

or better: the section conjecture could be modified to ask for a definition of diagonal
tuples as the image and find a Diophantine description of this set. For the section
conjecture to hold in its original form it would be desirable if the diagonal tuples
would feature a certain independence of p.

14.2 Obstructions from the Descending Central Series

The obstructions against lifting of an abelian section s* to a nilpotent section form a
hierarchy of obstruction classes §, (s?*) with §, only being defined if all the previous
obstructions §; vanish for i < n and also depending on the chosen partial lifts. This
study was initiated by Ellenberg and in the thesis of Wickelgren [Wg09].

Definition 194. The descending central filtration CoI" on a profinite group I is
defined inductively by

C_1F =T and C_(,,_H)F = [F, C_nF]

for n > 2 where [A, B] is the profinite subgroup generated by the corresponding
commutators [a, b] witha € A and b € B.
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The strange numbering takes into account the weight of the associated graded
when I" = 7, (X), at least when X is smooth and projective.

Definition 195. Let X /k be a geometrically connected variety and let £ # char(k)
be a prime number. For every n € N we have

(1) The geometrically n-step nilpotent quotient extension of (X /k)
Con(m, (X /K))
as the pushout by the characteristic quotient
7, (X) = 71,(X)/ C— i1y, (X).
(2) The geometrically n-step pro-{ nilpotent quotient extension of 7w, (X / k)
Com (7P (X /)
as the pushout by the characteristic quotient
2l (X) = 7l X)) oy (X).

Definition 196. The following commutative diagram defines truncated nilpotent
Kummer maps

Kab,  Knilps  Kn, ke, and Kgp,
the abelian, nilpotent, n-step nilpotent, pro-£, n-step nilpotent pro-{ Kummer map

respectively. The diagram moreover shows how these Kummer maps factorize each
other:

X(k) Picy (k)

K \L \Kub\ \L “pick,
S, (X]k) yn?ilp(x/k) . ycz_,,(m()r/k)) S 1091
ln
" S "
ynfm,f(x/k) —_ ... — ycz_,,(nf”'f()(/k)) — ... — yni.b.t(x/k).

Dévissage for truncated nilpotent sections. We abbreviate 7 = 7, (X) and for
the maximal pro-£ quotient 7t = Jrlp“"Z (X). The central extension

1= @S, T > 7/ CopuiT = 7/ CyT — 1 (14.4)
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yields as an application of Sect. 1.3 the following exact sequence of sets in the sense
of Proposition 31:

1 — H (k’ grg/l ﬁ) — H’ (k’ T/ C—(n-‘rl)ﬁ) — H (kv T/ C—nﬁ) >

Prx
; H' (k, g, %) — Seoomumy —= Feompoym &7k >
<—> H (k, g€, ).

Because the extension (14.4) is central, twisting has no effect on its coefficients and
so all fibres of pr, are homogeneous H' (k, gr€, 7)-sets.

Proposition 197. Let X/k be a smooth geometrically connected curve over a
finitely generated field. Then we have an exact sequence

— Pl Sn —

1 — Hl (k, grf,, 71’) — ycz_n,rl (X/k) —> yczi(nil)nl (X/k) — I{2 (k, grf,, .7t).
The obstruction to lifting a section s,—1 of C>_u—ny,(X/k) to Cs_,m,(X/k) is
given by the class 8,(s,—1).

Proof. In the arithmetic case of a finitely generated field k the theory of weights
applies saying that nl“b’( (X) = glrfl 7 has weights in the interval [-2, —1] because
X is smooth. Consequently gr€, 7 has weights in the interval [-2n, —n] forn > 1,

and this implies that

H (k, g€, @) =0,
because for a curve gr€ 7 is torsion free. By dévissage we also have
H (k.7/C—u41y7) = 0. u]

Remark 198. As usual, the obstruction to lift along central extensions can be
related to Massey products which are higher order versions of the cup-product. The
obstructions g, are related to Massey products in [Wg09] and partially computed for

X =P'—{0,1,00}
in [Wgl2a], [Wgl2b].

Dévissage for truncated pro-£ sections We project to the £-Sylow part. Let X/ k
be a smooth projective curve with good reduction 2~ — B for some irreducible
regular scheme of finite type B with function field k and such that £ is invertible
on B. The diagram

1 —— Pt —— 7 (X)/ker (7,(X) = nP*4(X)) — Galp, — 1

H ! -

1 —— Mt —— 7(2)/ker (7, (X) = 2P (X)) — m,(B) — 1
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describes a pullback of extensions, see [Sx05] Proposition 2.6. By Proposition 91
any section s of rrlpro"f (X/k) is unramified at points » € B of codimension 1, and
thus by Zariski—Nagata purity, see [SGA1] X Theorem 3.1, every pro-£ section is
unramified on B and descends uniquely to a section

sp 1 (B) = 7, (2)/ ker (m,(X) = 7™ (X)).

The map s — sp yields an inverse to the pullback map

cko, ~
] .yn{)ro—l(%/B) _)yn{)ro—l(X/k).
The central extension
1> g€ 7 > 7/ B> 7,7t —>1 (14.5)

yields as an application of Sect. 1.3 the following pro-£ version.

Proposition 199. Let X/k have good reduction over the base B with function
field k. Then we have an exact sequence

Prx
pro-€

8,
— " 2(R. C =t
o R — H*(Ba, gr—, 7).

—n

1 c =t
1 — H (Bg.gr-, @) —> YCZ_M,IMH

(X/k)

In particular, the obstruction to lifting a section s,— of CZ_(,,_l)nlp“"Z (X/k) toa
section of C>_, Jrlpm’[ (X/k) is given by the class 8,(sy—1).

Proof. Etale cohomology of Bs and group cohomology of 7, (B) compare as
follows. We have

H'(z,(B), &, 7°) = H'(B&, 21, )

—n
and an inclusion

H%(7,(B), &€, @) € H* (B, g1€, 7).

—n

Now the proof is essentially the same as for Proposition 197. O

Remark 200. Hain considers in [Halla] a fully pro-algebraic analogue of non-
abelian cohomology as discussed in Sect. 14.2. He replaces the base group Galy
by an {£-adic representation

p : Galy — R(Qy)

in a reductive algebraic group R and considers the relative algebraic unipotent
completion

pim(X) = G(Q)

of 7, (X) relative p that takes values in the universal (in some sense) unipotent
extension G of R. This makes non-abelian cohomology somewhat computable since
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we can now work with Lie algebras, more precisely Lie algebras in the Tannaka
category of R-modules. Hain’s result on the section conjecture for the generic curve
in [Hal 1b] builds on this pro-algebraic version of non-abelian cohomology.

14.3 The Lie Algebra

Following Magnus and Lazard, see [La94], we associate to the descending central
series CoI" of a pro-£ group I" the graded Z,-Lie-algebra

Lie(I") = @ Lie,(I') = P &€, (C- T/ C—iu41)T) (14.6)

n>1 n>1

with the Lie bracket being induced by the commutator in the group I".

Form now on let X/k be a smooth, projective curve of genus at least 2. For a
prime number ¢ different form the characteristic of k, the group 7* = 7, (X )pro-t
is a Poincaré duality group and coincides with the pro-£ completion of the surface

group
1 = Hg = (xl,...,x2g|[x1,x2]... [)ng_l,)ng]).

In this case we set
p = Lie(7"). (14.7)

The graded piece p, = Lie, (@) in degree —n is a free Zy-module of finite rank,
see [La66] Proposition 1. We set

Pk =pQz, K (14.8)

for the change of coefficients to a field extension K/Q,. The conjugation action by
7, (X) descends to a Galy action on the graded Lie algebra pg over K.

The Poincaré series. We are interested to compute the Poincaré series of p as a
power series

o] = > [palT" (14.9)

n>1

with coefficients in the Grothendieck ring of Z,[Gal,]-modules which are free of
finite rank as Z¢-modules. For the free Lie algebra this was achieved in characteristic
0 by Brandt [Br44] Theorem III, and rediscovered more conceptually by many,
e.g. [By03] Theorem 5.4. We follow the same path, especially we argue in strong
analogy with the computation of the generating function

> dimg paT"

n>1

by Labute [La67] Theorem 2.



14.3  The Lie Algebra 181

Let Ly be the free Z,-Lie algebra generated by the Z,[Gali]-module
2g
H=7"" =g 7 = @ngi.
i=1

There is a natural short exact sequence of graded Z,-Lie algebras
0—>tv—Lyg—>p—0.

Let p € 1t be the image of the relation [xi,x2]...[x24—1,X2¢]. We have the
following special case of Labute’s results on one-relator groups.
Theorem 201 (Labute [La67]).

(1) As a module under the universal enveloping algebra U(p) the module t/[v, t]
is free of rank 1 and generated by p in degree 2.
(2) We have a short exact sequence

0—t/[t,t] > Up)* - Up) - Zi — 0

which is a free resolution of Z; with trivial action by free U(p)-modules of
finite rank. O

By Theorem 201 and Poincaré-Birkhoff—Witt we have the following identifica-
tions of graded Gal,-modules.

t/[e.v] = Up) ® Ze(—1) (14.10)
UCt) = ASSt/[t,t] (14.11)
Uk) ® U(p) = U(Ly) = Assy (14.12)

Here Assy is the free associative algebra on the Z,-module V', and we have made
use of the fact, that v as a subalgebra of a free Lie algebra is again free on t/[t, t]
after [La67] Proposition 2.

The Poincaré series of p will be computed through the Poincaré series of U(p)
which is as follows.

1
=T - [Assu] = [U(Ln)] = [U@] - [Up)] = [Asse/fe.q] - [U(p)]
R D [U(p)]
S = [v/[e] Wol= 1 [U)] - [Ze(=1)]- T?
This solves for [U(p)] as
1

[Up)] =

1—[H]-T + [Z(—1)] - T? (14.13)
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Adams operations. The formula for [p,] which can be extracted from (14.13)
requires Adams operations ¥ on the corresponding Grothendieck ring of Z; [Galy]-
modules which are free of finite rank as Z,;-modules, see [Be84,Se77]. In particular,
for any V in the Grothendieck ring which we put in degree d we have

dm
Sym* (V)] = exp | S W @vh—

m>1

and

d
T2 symt (V)] = YW dV]) - T

m>1

The Poincaré—Birkhoff—Witt Theorem shows

(U] =] [ISym® pd]

d

and thus for the logarithmic derivative

n/d L _ [H]T—Z[Z[(—l)]TZ . n
ZI;W @) 7" = T T e T —.;s,,r.

Working with formal roots of the denominator
I=[H] T +[Z(=D]-T* = (1 —aT)(1 = BT)
we easily deduce a linear recursion formula for the S, = " + " as follows:
Sn+2 = [H] - Spp1 — [Ze] - Sy

and S| = [H] while Sy = 2[1] is twice the trivial 1-dimensional representation.
The Mobius inversion formula in this case reads

> @ (Sya) = Y @ (Yo e o)) = D0 pd)# (e - [pe])

dln dln el ed|n
(14.14)
=Y v e Y n(d) = nlpal. (14.15)
eln d|%

The analogue of [La70] Theorem (1), requires an explicit formula for the .S, which
can be proven by induction via an informed Ansatz mimicking the formula [La70]
Theorem (1). We obtain

Lm/2] .
.m m—1 -
Sm = (=D)'—— ( . )[H]Z'"_' NZe(—1)]
; m—1 1 ¢
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and thus
1 (& A (A0,
[Pn]zzdzlnj#(”/d)‘l’ (g(‘”ﬁ< ; )[H] [Ze(=D)).

(14.16)

Remark 202. (1) Itis unclear to me whether this description of [p,] is of any use. For
example, it seems impossible to decide by means of (14.16) whether H’(G,p) # 0
if G is a finite cyclic group acting on p via graded Lie algebra automorphisms.

(2) A slight generalization of (14.16) and the use of Adams operations occurs in
§2.3 and in particular formula (2.3.3) of [AN95].

14.4 Finite Dimensional Subalgebras and Invariants

The key property of px that forces dimx H’(G, px) to be infinite for a finite group
G acting on pg is the following bound on cohomological dimension.

Lemma 203. Let K/Qq be a field. The cohomological dimension of a sub-Lie
algebra g C pg is at most 2.

Proof. By the Poincaré-Birkhoff-Witt Theorem U (p k) is a free U(g)-module. Thus
the resolution

0—t/[t,t] ® K— U(px)* — U(pxg) - K — 0

derived from Theorem 201 (2) shows that K with trivial g-action has projective

dimension at most 2. Hence H (g, M) = Ext‘(]](g) (K, M) vanishes for g > 3. O

Lemma 204. Let g = (D, 9, be a graded Lie algebra over the field K of
dimension 4 < dimg g < oo. Then there is a graded abelian Lie algebra a C g
with dimg a > 3, i.e., we have [a,a] = 0.

Proof. Let N be maximal with gy # 0. It follows that the piece gy is central in g
and we are done if dimg gy > 2. So we assume now dimg gy = 1.

Let m be maximal with m < N and g,, # 0. We set g, = €D, _,, 9; and note
that

L1:0<n @ gm — 9

describes a bilinear pairing with values in gy. If g<,, # 0, then because by
assumption either dimg g-,, > 2 or dimg g, > 2 we find homogeneous lines
O<m € gam, and a,, C g,, with [a_,,, a,,] = 0. Hence

a=dc, ®a, Doy

is abelian of dimension 3.
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It remains to discuss the case g, = 0. We then argue with the alternating pairing

L1:gm ®gm — on.

As by assumption dimg g, > 3 we can find an isotropic subspace a,, C g, of
dimension 2. Then a = a,, @ gy is abelian of dimension 3. This settles the claim in
all cases. O

Proposition 205. Let g C px be a graded sub-Lie algebra of finite K-dimension.
Then dimg g < 3 anddimg g, <2 foralln > 1.

Proof. We argue by contradiction. If dimg g > 4, then by Lemma 204 we find an
abelian Lie algebra a C g C p with dimg a = 3. But as H*(a, K) = K does not
vanish, this contradicts Lemma 203.

The assertion dimg g, < 2 follows because the only potential exception would
be a graded sub-Lie algebra g € px with g = g, of dimension 3 for some n. But
such a g were abelian and thus leads to the same contradiction. O

Corollary 206. The Lie algebra g generated by a subspace g, < Pk, with
dimension dimg g, > 3 is infinite dimensional and g4, # 0 for all d > 1. O

The Lie algebra of invariants. Instead of Gal, we now discuss the case of a finite
abelian group G acting on p by graded Lie algebra automorphisms.

Proposition 207. Let G be a finite abelian group of order invertible in K which
acts on pg by graded Lie algebra automorphisms. Then the G-invariants H* (G, px)
form a graded sub-Lie algebra of infinite K -dimension.

Proof. Tt is clear that H*(G,px) forms a graded sub-Lie algebra. Let N be the
exponent of G. In order to determine the dimension of H(G, px) we can assume
that K contains all N th roots of unity.

Let V, be the y-isotypical component of a G-representation V' with respect to
the character y. If for some n and some character y we have dimg p, ; > 3, then by
Corollary 206 the Lie algebra (p, ,) € px generated by p, , is infinite dimensional
and nontrivial in every degree which is a multiple of n. But G acts on (p, ,)an by
x¢ so that for every r € N we have

0 7é (pn,)(>an C HO(Gv pK)-
That there is a character y and n € N with dimg p, , > 3 follows from the pigeon
hole principle and the estimate for dimg p,, in the following lemma. O

Lemma 208. We have the following estimate

n

rkZ( pn — 7

a"P 41

= n(a—1)
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where p is the smallest prime factor of n and @ = g+ +/g> — 1 ~ 2g. In particular,
we have tkyz, p, — 00 forn — oo.

Proof. We remind that we are working under the hypothesis that g > 2. We define
B=g—+/g>—lsothat(1—aT)(1—BT) = 1-2gT +T?andrkz, S, = o" +B".
It follows from (14.15) that

1
tkz, pn = o Zu(d)(a”/d + ﬂ"/d).

dn

By the triangle inequality and because |8| < 1 we have

1 § : d § : d
I'kZ/i pn_7 < ; o + ,3
dln.d<n dln
n/p n
1 ; o
— 1 — P 4. O
<n Za +Z <n(oc—1)a +

i=1 i=1

For an application of Proposition 207 see Theorem 226 in Sect. 15.3. This
application was the main stimulus behind our discussion of the Lie algebra p in
Sect. 14.3.

14.5 Nilpotent Sections in the Arithmetic Case

In the remaining sections of this chapter we examine the space of nilpotent sections
for a smooth projective curve X/k over an algebraic number field k, or over a
finite extension k/Q,. The behaviour is fundamentally different for the maximal
geometrically pro-£ quotient for £ # p and for the maximal geometrically pro-p
quotient.

The maximal pro-{ quotient with good reduction. Letk/(Q, be a finite extension
with ring of integers o, and residue field F. Let X /k be a smooth, projective curve
with good reduction 2"/ Spec(ox) and special fibre Y = 2 over F.

For £ # p, every section of rrlpro"f (X/k) is unramified over oy by a pro-£ version
of Proposition 91. For sections associated to rational points this was noted in
[KiTa08] Theorem 0.1, see Sect. 8.5. Moreover, the specialisation map

yﬂ{)m—é

— y pro-€
1

(X/k) (Y/F)

is bijective. The pro-£ Kummer map sits in a diagram
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Ke

X (k ) — 7 npm-é
1

l |

Ke

Y(]F) I y pro-{
1

(X/k)

(Y/F)

and thus factors over the finite set. On the other hand, by Theorem 226 below, we
know that anm,z ¥/F) is uncountable. We conclude that the pro-£ section conjecture
1

fails badly for proper smooth p-adic curves of good reduction with £ # p.

Remark 209. Tt has been observed’ by Tamagawa, see [Ho09] Remark 10 (i), that

the pro-£ Kummer map
Ky © Y(Fq) — yﬂfm-é(Y/]Fq)

may fail to be injective for hyperbolic curves Y over a finite field F,,.

14.6 Pro-p Counter-Examples After Hoshi

We are going to explain the counter-examples to a pro-p version of the section
conjecture over algebraic number fields found by Hoshi, see [Ho10].

Theorem 210 (Hoshi, [Ho10] Theorem A). Let p > 3 be a regular prime and
let k/Q(&,) be a Galois extension unramified outside p with Galois group a finite
p-group.

LetB: X — IP’}( be a finite map of connected proper smooth curves such that

(i) the genus of X is > 2,

(ii) X (k) is nonempty,
(iii) B: X — IP’}; is Galois of p-power degree and unramified outside 0, 1, and oo,
(iv) and the hyperbolic curve X \ B~ ({0, 1, o00}) has good reduction outside p.

Then there exists a finite extension k'/k unramified outside p with pro-p Galois
hull, such that the pro- p Kummer map

. ’ /
Kp . X(k)—)fﬂ”{mfp(x/k)(k)
is not surjective, i.e., there are non-Diophantine pro-p sections after a finite pro-p

extension unramified outside p. Moreover, if v|p is a place of k" with completion k|,
then also the local pro- p Kummer map

'T thank Yuichiro Hoshi for bringing Tamagawa’s observation to my attention.
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kp @ X(k) — Ynfm—p(x/k)(k;)
is not surjective.

Remark 211. Hoshi also constructs an explicit series of examples. Let p > 11 be a
regular prime and let k / Q () be as in Theorem 210. Let Xpermat, /K be the Fermat
curve

{A” + B = C"} C P,
Then as a consequence of [Ho10] Theorem B, we obtain even that Yﬂfm-p( Xrematp/ k)
is at least countable infinite.
We develop, complement and generalize the ideas of [Ho10] in the sequel.

Lemma 212. Let k be an algebraic number field, and let S C Spec(ok[%]) be a
dense open arithmetic curve with a geometric point s € S.

Let X/k be a smooth, projective geometrically connected curve of genus > 2
with

(i) good reduction over S,_ o
(ii) and Galy acts on ﬂl“b(X, X)®F, = Hi(X,F,) through a p-group.

Then the pro-p outer Galois action

px/k : Galy — Out (7?7 (X))

Jactors over PP (S, 5).

Proof. That pyx/i is unramified above S, i.e., factors over =, (S, 5) follows from
[Sx05] Propositions 2.6 and 2.7. By a profinite version of a theorem of Hall, see
[Ha59] Theorem 12.2.2., the kernel of

Out (77 (X)) — Aut (H,(X,F,))

is a pro-p group. Hence (ii) implies that the image of px/« is a pro-p group. O

In the situation of Lemma 212 the extension 77 (X /k) is the pullback of the
extension

1= 277 (X) — Aut (27" (X)) x POP(S,5) > 7P (S.5) o 1.
(14.17)

Let . denote the mP™7 (X)-conjugacy classes of sections of (14.17). As in the
context of base change, we obtain a natural map

Out (=" (X))

S — ynfm"p(X/k)'

Lemma 213. With X/k as in Lemma 212, the map . — ynf“"”(X/k) is bijective.
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Proof. Since p is invertible in S, it follows that all ramification at places v € S is at
most tame. We conclude by Proposition 91 that every pro-p section of 7P 7 (X / k)
is unramified above S. As (14.17) is a sequence of pro-p groups, every section
further descends to .. O

Lemma 214. Let p be an odd prime number, and let S C Spec(ok[%]) be a dense
open arithmetic curve with function field k /Q(¢,) and geometric point s € S. Then
PP (S, 5) is a free pro-p group if and only if the following conditions all hold:

(i) S = Spec(o[3]),
(ii) pisinertink/Q,
(iii) Pic(ox) @ Z, is generated by the only prime p|p.

Proof. This is well known. We give a proof for the convenience of the reader. The
group "7 (S, 5) is free pro-p if and only if

H> ("7 (S.5), Z/ pZ) = H*(S, Z/ pZ) = H*(S, jt,))
vanishes. From the Kummer sequence we obtain an exact sequence

0 — Pic(S) ® F, — H*(S, ) — Br(S)[p] — 0.

As Br(S)[p] is isomorphic to the elements in @V¢S Q/Z of sum 0 where v ranges
over all finite places of k outside S, the Brauer term vanishes if and only if (i) and
(i1) hold. Clearly then (iii) is equivalent to the vanishing of the Picard term. O

Theorem 215. Let p be an odd prime number, and let k/Q({,) be an algebraic
number field, such that

(i) pisinertink/Q,
(ii) Pic(or) ® Z, is generated by the only prime p|p.

Let X / k be a smooth, projective geometrically connected curve of genus > 2 with

(iii) good reduction over S = Spec(ok[%]),
(iv) Galy acts on ﬂl“b(Y, )QF, = H (X, IF,) through a p-group,
(v) and positive Mordell-Weil rank, i.e., Picg( (k) is infinite.

Then the set Ynfro—p( X/k) I8 uncountably infinite and the pro- p Kummer map
Kp . X(k) - ynfrofp(x/k)

is not surjective, i.e., there are non-Diophantine pro-p sections.

Proof. The extension (14.17) can be pushed to the geometrically maximal abelian
quotient and gives an extension

Aut (nlpm'P(Y)) X5 1(

u n{)m’p X)

) 7S 5)

17 () D) > APOP(S.5) > 1
ker (/"7 (X) — 77" (X))

(14.18)



14.6  Pro-p Counter-Examples After Hoshi 189

the nl“b’P“"” (X)-conjugacy classes of which we denote by .#**. The analogue of
Lemma 213 holds and yields a natural bijective map

ab _ o
i ynf‘b‘p“’”’(X/k) = Lo pick, /1)-
The Albanese torsor map « : X < Pic ﬁ( provides a commutative diagram

KX.p ~

Ty ~—— (14.19)

X (k)

Picy(k) —— Frorgel jpy <——

With (i) and (ii) we deduce form Lemma 214 that 7’7 (S, 5) is a free pro-p group,
hence the map
Uy 1 S — P

is surjective and a forteriori, by Lemma 213 and its abelianized analogue, the map
W 1 TP (1) > L pick, /by

is surjective. Moreover, the spaces of sections in (14.19) are in fact non-empty. The
cohomological description in the abelian case now shows a bijection

Farormiek p = H (k,7°PO7 (X)) = H' (k, T, (Pick))

which via the Kummer sequence contains Pic())( (k) ® Z, and thus by assumption (v)
is uncountably infinite. Consequently, also the space of pro-p sections Yﬂ{m—p X/k)
is uncountably infinite, which shows in particular the presence of non-Diophantine
pro- p sections. O

In [Hol0] Hoshi finds an ingenious anabelian way to ensure property (iv) of
Theorem 215 that we are going to explain now.

Proposition 216 (Hoshi, [Ho10] Lemma 2.1). Let 8 : X — Y be a finite map
of geometrically connected proper smooth curves over an algebraic number field k
such that

(i) there is a hyperbolic dense open V- C Y such that Bly : U = B~ (V) — Vis
finite étale,
(ii) Galy acts on H(V, IF,) through a p-group,
(iii) and, geometrically, the map E : U — V is Galois of p-power degree.

Then Galy, acts on H; (X, IF,) via a finite p-group.
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Proof. Since H;(X,F ») is a quotient module of H; U.F ) it suffices to show that
the action of Galy on the latter is via a p-group. As above, this is equivalent to the
outer pro-p Galois action

pusk = Galy — Out (Jr}”m"’ 0))
factoring over a pro-p group.

By (i) and (iii) there is a finite p-group G and the following diagram with exact
rows and column.

Q —= =~

L e () e D) s Gal |

} b B H

I —— 2’ 0) ——= 7P*PU) —— Galp —— 1

i
1

(14.20)
Let Zy (resp. Zy) be the centraliser of 7P*7(U) in nl(P“’”’)(U) (resp. of PP (V)
in Jrl(P“"”) (V). Since U and V' are hyperbolic, 7P"” (U) and aPep (V) have trivial
center, Zy and Zy inject as normal closed subgroups in Gali, and we have

im(py/x) = Galy /Zy  and  im(py/x) = Galg /Zy.
To the exact column of (14.20) belongs an outer action
p: G — Out(xP*7(U))
and a natural isomorphism
PP (V) = Aut (711"“”1’ (U)) X

Out (nfm-p (U)),p G.

It follows that an automorphism of P (U) extends in at most one way to an

automorphism of 7P*®? (V), see [Sx02] Lemma 4.2.9 for another case of this
argument. Consequently, we have an inclusion Zy C Zy and an exact sequence
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1 —> ZV/ZU — im(,oU/k) e im(,oy/k) — 1.

By assumption (ii) and the profinite version of [Ha59] Theorem 12.2.2, the image
im(py,«) is pro-p, so that it suffices to analyse Zy /Zy. We define a map

I//ZZV—>G

which sends a € Zy of the forma = yu with y € 7P (V) and u € 7 PP (U) to

y(a) =y 2P ().
The map v is well defined, as with another decomposition a = y’u’ we have
—1 —1 r0-p ({7 rO- r0-p [ TT
y 'y =u@) e aPP V) NaPOP(U) = 7P (U)
and so
y 7P (@) =y 7 ().

If b € Zy is another element with decomposition b = §v with § € 7P7 (V) and
ve rrl(PrO'P)(U), then

ab = a(6v) = dav = §(yu)v = (8y)(uv),

so that
V(ab) = y(b)y(a).

Hence, the map ¥ is a homomorphism Zy — G°P to G with the opposite group
law, which is still a p-group by assumption (iii). Since

ker(y) = Zy N (x®P(U)) = Zy,

the quotient Zy / Zy is a finite p-group. O

Remark 217. (1) Theorem 210 now is deduced as follows. The assumptions on k
implies that
. 1 . 1
mPr (SPeC(Uk[;])) C 77" P (Spec(Z[L,. ;]))

is an open subgroup, which is a free pro-p group due to p > 3 being a regular
prime, see Lemma 214. This guarantees properties (i) and (ii) of Theorem 215, while
property (iii) is also assumed from the start in Theorem 210. In order to assure (iv)
we apply Proposition 216 with

V=P, —{0,1,00} CY =P,
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and themap 8 : X — ]P’}( of Theorem 210. This allows to conclude as in the proof
of Theorem 215 that for the Albanese torsor map @ : X <> Picy the induced
abelianization map on sections

O yn{’“’”’(X/k) —> yn{’“’”’(mc}( /k)

is surjective with both sets non-empty. Here Hoshi resorts to another argument to
ensure that there are non-Diophantine sections in case property (v) of Theorem 215,
the positive Mordell-Weil rank, fails. It is this step that requires to replace k by a
finite pro-p extension k’/k which is unramified outside p. For details on the latter
argument see [Ho10] §4.

(2) For aregular prime p > 11 and k = Q(¢,), the pth Fermat curve

XFermat,p = {Ap + B? = Cp} C Pi

actually satisfies all assumptions of Theorem 215, with (v) following by [GrRo78]
and with Belyi map given by

(A,B,C) > (A", B?,C?) € {(u,v,w); u+v=w} =P

Hence we have also explained part of [Ho10] Theorem B.

(3) We cannot help but think that the above counter-examples to the pro- p version
of the section conjecture come to life due to a coincidence of a number of accidents.
For example, the freeness of the pro-p fundamental group of the arithmetic base
curve S C Spec(ok[%]) forces S to be almost all of Spec(ox). On the other
hand, having good reduction almost everywhere is a rare commodity among smooth
projective curves. We could artificially force the Galois action on H; (X, ) to be
unipotent, or even trivial, but only at the expense of enlarging k in an uncontrolled
manner with respect to the pro- p freeness condition.

Nevertheless, the hope to prove the section conjecture immediately via a
pro-p approach is destroyed. In light of the above described accidents, we might
ask, whether still pro-p methods can prove the section conjecture, if we do not
apply them directly to a given curve X/k but to an auxiliary finite, maybe even
cyclic, étale cover X’ — X such that we leave the realm of the accidental failure of
the pro- p section conjecture.

14.7 Variations on Pro-p Counter-Examples After Hoshi

We aim at a generalization of Hoshi’s approach to counter-examples for the pro-p
section conjecture which makes use of more precise knowledge of pro- p arithmetic
fundamental groups.
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Theorem 218. Let p be a prime number, and let k be an algebraic number field.
Let B be a dense open in Spec(oy) with complement S, such that p is invertible
on B. We moreover assume that there is a subset Sy € S of the places of k above p
with

. 1ty _ 1y (k)
(l) ZVGSO 1—p - 1-p 7

(ii) and the map HI(B,,up) -1

H' (k,, jt,) is injective.

vES)

Let X/ k be a smooth, projective geometrically connected curve of genus > 2 with

(iii) good reduction over B,_ o
(iv) and Galy acts on Jrl"‘b(X, X)®F, =H((X,IF,) through a p-group.

Let us furthermore assume that

(v) X(k,) # @forallve S\ S,
(vi) and Sy misses at least one place p|p of k or the auxiliary set T below in the
proofis bigger than S.

Then the set yn{’m"’(X/k) is uncountably infinite and the pro-p Kummer map
Kp o X(k) = Sy

is not surjective, i.e., there are non-Diophantine pro- p sections.

Proof. According to [NSWO08] Theorem 10.9.1, properties (i) and (ii) are the precise
criterion to put us in the degenerate case as defined in [NSWO08] Definition 10.9.3,
which means that there is a finite set of places 7 containing S and a natural
isomorphism

X Gal""x Xk Z, 5 PP (B), (14.21)
lES\S() T\S

which sends Galpro P (resp. 1 € Z,) forv € S\ Sp (resp. forv € T \ S) to the
decomposition group in 7P*°7(B) (resp. to the Frobenius) of a place above v.
Properties (iii) and (1V) imply by Lemma 212 that the outer pro-p Galois

representation B
px/k = Galy — Out (7P°7 (X))

factors through 77 (B). We denote again by . the 77 (X)-conjugacy classes
of sections of the extension

1 — 7P°?(X) > Aut (7P (X)) x ) PP (B) — 7P (B) — 1

(14.22)
which again pulls back to the extension 7”7 (X / k) to yield a base change map

out (=7 (X)

S — yﬂfmfp(x/k)

whose bijectivity is assured by property (iii) and Lemma 213.
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The same conclusion holds for the following local analogues. First, for a place
v of k, the local outer pro-p Galois representation of X ® k,/k, still has a pro-p
group as its image, so that the extension 7P*?(X ® k,/k,) is the pullback of the
extension

1 — 7P°7(X) > Aut (7P (X)) x Galp " — Galp " — 1.

(14.23)

Let ., denote the 77 (X)-conjugacy classes of sections of (14.23). Then there is
again a base change map

Out (nfm-p (Y))

S = yﬂ{’“”l’(x/k)(kv)

which is clearly bijective. Secondly, for a place v € B where X has good reduction
and v } p, the local outer pro-p Galois representation is even unramified and thus
factors over
TO- p,nr
Galgv Pt =17,.

The extension 777 (X ® k,/k,) then is even a pullback of the extension

1 — 7P (X) — Aut (777 (X)) x Z,—>T,—>1 (1424

Out (nfm-p (Y))

describing the situation for the special fibre of the good reduction at v. Let 7"
denote the "7 (X')-conjugacy classes of sections of (14.24). There is again a base
change map

S = Taror (x i (k)

which is bijective by Proposition 91. We obtain the following commutative diagram

KX.p ~
X(k) = Sy s
KX @ky.p ~
[T x®) [T aer i (k) [T #x [T
vET\Soy veT\ Sy veS\So vET\S

where by the degenerate structure (14.21) of 77 (B) the localisation map

7 1_[ Z, x Hﬁﬂfr

veS\Soy veT\S

is surjective. Property (v) prevents [ [, S\So ., from being empty, while

l_[ yvnr

veT\S
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is always nonempty. If there is a place p|p in S \ Sy, then by Theorem 76 the map
kp o X(ky) — ynfm-p(x/k)(kp)

is injective, and a consequently .#, is uncountable. If on the other hand we have
v € T\ S, then .)" is uncountable by Theorem 226. By property (vi) at least
one of these places exists and in any case .¥ is uncountable. We deduce that again
Ynfm—p (x/k) 18 uncountable, so that there must be in particular non-Diophantine pro-
p sections for X/ k. O

Remark 219. (1) If k in Theorem 218 contains ¢,, then by [NSWO08] Theorem
10.9.1 we have necessarily Sy = {p} with p|p.

(2) In Theorem 210, the conditions imposed on the number field k imply by
Lemma 214 that there is a unique place p of k with p|p and that for

B = Spec(or[~])
)4

property (i) and (ii) of Theorem 218 holds with respect to So = {p} = S. The
auxiliary set 7' contains S properly. Hence also property (vi) holds. Theorem 210 is
in fact a special case of Theorem 218.

Nevertheless, although Theorem 218 provides more flexibility in the construction
of counter-examples with regard to the number field and the locus of good reduction,
however, I see no other method than Hoshi’s to establish the key property (iv), see
Proposition 216.

Example 220. Here is a concrete example for the failure of the pro-3 section
conjecture that lies beyond Theorem 210. In the notation of Theorem 218, we set

k = Q(&s) and X
B = Spec(Z[és. £])

with Sp = {3} and S = {2,3,00}. Then (i) holds and (ii) is equivalent to the
restriction ,

res; 1 O%(B)/(O*(B))’ = Qs()"/(Q3(5)*)
being injective. Since 2 is inert in Q(¢3)/Q and

3=-4-(1-85)

we find that the classes of {3, 2, 3 form a basis of the left hand side. If we look at the
filtration of the right hand side given by the subspaces

ker (N @ Zs[6]*/ (Zs[&a]*) — Z3/(Z3)) © Zalal*/(Zs[6]")’

then res; becomes upper triangular with (3,2, 3 being nontrivial in the respective
filtration quotients. It follows as in the proof of Theorem 218 from [NSWO08]
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Theorem 10.9.1 that we are in the degenerate case. Moreover we have #(7'\ S) = 1,
and formula (14.21) in this particular case reads

~ 1
-3 ro-
(Za(1) %4 Z3) % Zy = Galpy ;) * Zy — 7P (Spec(Z[¢3, g])).
Here Z3(1) x4 Zj is the semidirect product, where the generator of Zj acts via the
3-adic automorphism of multiplication by 4 = 1 + 3 on Z3(1) = Zs.

The example is now provided by the smooth projective curve C = Cy xg Q({3)
of genus 3 given by

Co={Y’Z=X(X—-2Z)(X-3Z)(X -9Z)} C P},

Indeed, the curve Cy has a Q-rational point, namely [0 : 1 : 0], and good reduction
outside 2 - 3 as can be seen easily from the jacobian criterion applied to the integral
curve 6y C ]P)% given by the same equation. The example at this point relies on the
accident that the only primes which divide differences of the numbers 0, 1, 3, 9 are
2 and 3. Moreover, the curve Cj is a j3 torsor over ]P’(l@ described by taking a cube
root of

T(T —1)(T -3)(T-9)

hence finite étale over U = IP’}@ —{0, 1, 3, 9} with geometric monodromy a 3-group.
Because the ramification points are rational, we find

H; (U.F3) = Z/3Z(1) & Z/3Z(1) & Z/3Z(1).

In particular, Galy, acts through a 3-group and property (iv) of Theorem 218 holds.
We may conclude that the pro-3 Kummer map

K3 1 CQE)) = 73 iy

is injective with finite image in an uncountable space of pro-3 sections.

We end this chapter by posing a question which might revitalize work on the
pro- p analogue of the section conjecture.

Question 221. Does every smooth projective geometrically connected curve X /k
over an algebraic number field k admit a finite étale cover & : X’ — X with X'/k
geometrically connected, such that the pro- p Kummer map

Kp . X/(k) —> yy‘[{)m’p(X’/k)

is bijective for X'/ k?
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