
Chapter 14
Nilpotent Sections

The next difficult characteristic quotient of a profinite group beyond the maximal
abelian quotient might be the maximal pro-nilpotent quotient or its truncated
versions of bounded nilpotency. These quotients have been studied in the realm
of the section conjecture by Ellenberg around 2000, unpublished, and later by
Wickelgren in her thesis [Wg09], and in [Wg10, Wg12a, Wg12b] with special
emphasis on the interesting case P

1 � f0; 1;1g.
The (relative) pro-algebraic version has played an important role in at least two

strands of mathematics: (1) on the Hodge theoretic side in the study conducted
by Hain of the Teichmüller group and the section conjecture for the generic curve
[Ha11b], and (2) on the arithmetic side in the non-abelian Chabauty method of Kim
[Ki05] for Diophantine finiteness problems.

We will examine in detail the Lie algebra associated to the maximal pro-`
quotient of the geometric fundamental group, see Sect. 14.3, and in particular prove
Proposition 207 about the sub Lie algebra of invariants under a finite abelian
group action. This will be crucial for counting pro-` sections over a finite field in
Sect. 15.3.

The nilpotent section conjecture is known to fail by work of Hoshi [Ho10]. We
try to explain that examples for this failure should be seen as accidents due to an
accidental coincidence of very special properties. In Sect. 14.7, we extend the range
of examples, show that in most of these examples the spaces of pro-p sections are
in fact uncountable, and suggest a way of reviving the pro-p version of the section
conjecture by asking a virtually pro-p section conjecture.

14.1 Primary Decomposition

LetX=k be a geometrically connected variety. We may push the extension �1.X=k/
by the maximal pro-nilpotent quotient �1.X/ � �nilp

1
.X/ to obtain the maximal

nilpotent extension �nilp
1
.X=k/. As any finite nilpotent group is canonically the
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176 14 Nilpotent Sections

direct product of its unique p-Sylow groups we obtain in the limit a canonical
isomorphism

�nilp
1
.X/ D

Y

p

�pro-p
1

.X/ (14.1)

and also a primary decomposition

�nilp
1
.X=k/ D

Y

p

�pro-p
1

.X=k/ (14.2)

that has to be read as a fibre product over Galk . For the corresponding section spaces
and Kummer maps this leads to

�nilp D .�p/p W X.k/ ! S
�

nilp
1 .X=k/

D
Y

p

S�
pro-p
1 .X=k/: (14.3)

IfX=k moreover is abelian injective, then because�ab.X=k/ is a quotient extension
of �nilp

1
.X=k/ we have

X.k/ D �nilp.X.k// �
Y

p

�p.X.k//:

Let for the moment k be an algebraic number field and X=k a smooth hyperbolic
curve. Then, by Theorem 76, we haveX.k/ D �p.X.k//, and the section conjecture
raises the question whether only diagonal tuples of pro-p sections lift to actual
sections along

S�1 .X=k/
! S

�
nilp
1 .X=k/

;

or better: the section conjecture could be modified to ask for a definition of diagonal
tuples as the image and find a Diophantine description of this set. For the section
conjecture to hold in its original form it would be desirable if the diagonal tuples
would feature a certain independence of p.

14.2 Obstructions from the Descending Central Series

The obstructions against lifting of an abelian section sab to a nilpotent section form a
hierarchy of obstruction classes ın.sab/ with ın only being defined if all the previous
obstructions ıi vanish for i < n and also depending on the chosen partial lifts. This
study was initiated by Ellenberg and in the thesis of Wickelgren [Wg09].

Definition 194. The descending central filtration C�� on a profinite group � is
defined inductively by

C�1� D � and C�.nC1/� D Œ�; C�n� �

for n � 2 where ŒA;B� is the profinite subgroup generated by the corresponding
commutators Œa; b� with a 2 A and b 2 B .
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The strange numbering takes into account the weight of the associated graded
when � D �1.X/, at least when X is smooth and projective.

Definition 195. Let X=k be a geometrically connected variety and let ` 6D char.k/
be a prime number. For every n 2 N we have

(1) The geometrically n-step nilpotent quotient extension of �1.X=k/

C��n
�
�1.X=k/

�

as the pushout by the characteristic quotient

�1.X/ � �1.X/=C�.nC1/�1.X/:

(2) The geometrically n-step pro-` nilpotent quotient extension of �1.X=k/

C��n
�
�pro-`
1

.X=k/
�

as the pushout by the characteristic quotient

�pro-`
1

.X/ � �pro-`
1

.X/=C�.nC1/�pro-`
1

.X/:

Definition 196. The following commutative diagram defines truncated nilpotent
Kummer maps

�ab; �nilp; �n; �`; and �`;n;

the abelian, nilpotent, n-step nilpotent, pro-`, n-step nilpotent pro-` Kummer map
respectively. The diagram moreover shows how these Kummer maps factorize each
other:

X.k/

� �nilp �ab

�`;n

�n

�`

Pic1X .k/

�
Pic1X

S�1 .X=k/
S
�

nilp
1 .X=k/

pr

: : : S
C��n

�
�1 .X=k/

�

pr

: : : S�ab
1
.X=k/

pr

S
�

pro-`
1 .X=k/

: : : S
C��n

�
�

pro-`
1 .X=k/

� : : : S
�

ab;`
1 .X=k/

:

Dévissage for truncated nilpotent sections. We abbreviate � D �1.X/ and for
the maximal pro-` quotient �` D �pro-`

1
.X/. The central extension

1 ! grC�n � ! �=C�.nC1/�
pr�! �=C�n� ! 1 (14.4)
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yields as an application of Sect. 1.3 the following exact sequence of sets in the sense
of Proposition 31:

1 H0
�
k; grC

�n �
�

H0
�
k; �=C�.nC1/�

�
H0
�
k; �=C�n�

�

H1
�
k; grC

�n �
�

SC��n�1 .X=k/

pr�

SC��.n�1/�1 .X=k/

H2
�
k; grC

�n �
�
:

Because the extension (14.4) is central, twisting has no effect on its coefficients and
so all fibres of pr� are homogeneous H1

�
k; grC�n �

�
-sets.

Proposition 197. Let X=k be a smooth geometrically connected curve over a
finitely generated field. Then we have an exact sequence

1 ! H1
�
k; grC�n �

� ! SC��n�1 .X=k/

pr���! SC��.n�1/�1 .X=k/

ın�! H2
�
k; grC�n �

�
:

The obstruction to lifting a section sn�1 of C��.n�1/�1.X=k/ to C��n�1.X=k/ is
given by the class ın.sn�1/.

Proof. In the arithmetic case of a finitely generated field k the theory of weights
applies saying that �ab;`

1
.X/ D grC�1 � has weights in the interval Œ�2;�1� because

X is smooth. Consequently grC�n � has weights in the interval Œ�2n;�n� for n � 1,
and this implies that

H0
�
k; grC�n �

� D 0;

because for a curve grC�n� is torsion free. By dévissage we also have
H0
�
k; �=C�.nC1/�

� D 0. ut
Remark 198. As usual, the obstruction to lift along central extensions can be
related to Massey products which are higher order versions of the cup-product. The
obstructions ın are related to Massey products in [Wg09] and partially computed for

X D P
1 � f0; 1;1g

in [Wg12a], [Wg12b].

Dévissage for truncated pro-` sections We project to the `-Sylow part. Let X=k
be a smooth projective curve with good reduction X ! B for some irreducible
regular scheme of finite type B with function field k and such that ` is invertible
on B . The diagram

1 �pro-`
1

�1 .X/= ker
�
�1.X/ ! �pro-`

1
.X/

�
Galk

j�

1

1 �pro-`
1

�1 .X /= ker
�
�1.X/ ! �pro-`

1
.X/

�
�1.B/ 1
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describes a pullback of extensions, see [Sx05] Proposition 2.6. By Proposition 91
any section s of �pro-`

1
.X=k/ is unramified at points b 2 B of codimension 1, and

thus by Zariski–Nagata purity, see [SGA1] X Theorem 3.1, every pro-` section is
unramified on B and descends uniquely to a section

sB W �1.B/ ! �1.X /= ker
�
�1.X/ ! �pro-`

1
.X/

�
:

The map s 7! sB yields an inverse to the pullback map

j � W S
�

pro-`
1 .X =B/

��! S
�

pro-`
1 .X=k/

:

The central extension

1 ! grC�n �` ! �`=C�.nC1/�`
pr�! �`=C�n�` ! 1 (14.5)

yields as an application of Sect. 1.3 the following pro-` version.

Proposition 199. Let X=k have good reduction over the base B with function
field k. Then we have an exact sequence

1 ! H1.Bét; grC
�n �

`/ ! S
C��n�

pro-`
1 .X=k/

pr��! S
C��.n�1/�

pro-`
1 .X=k/

ın�! H2.Bét; grC
�n �

`/:

In particular, the obstruction to lifting a section sn�1 of C��.n�1/�pro-`
1

.X=k/ to a
section of C��n�pro-`

1
.X=k/ is given by the class ın.sn�1/.

Proof. Étale cohomology of Bét and group cohomology of �1.B/ compare as
follows. We have

H1.�1.B/; grC�n �`/ D H1.Bét; grC�n �`/

and an inclusion

H2.�1.B/; grC�n �`/ � H2.Bét; grC�n �`/:

Now the proof is essentially the same as for Proposition 197. ut
Remark 200. Hain considers in [Ha11a] a fully pro-algebraic analogue of non-
abelian cohomology as discussed in Sect. 14.2. He replaces the base group Galk
by an `-adic representation

� W Galk ! R.Q`/

in a reductive algebraic group R and considers the relative algebraic unipotent
completion

Q� W �1.X/ ! G.Q`/

of �1.X/ relative � that takes values in the universal (in some sense) unipotent
extensionG ofR. This makes non-abelian cohomology somewhat computable since



180 14 Nilpotent Sections

we can now work with Lie algebras, more precisely Lie algebras in the Tannaka
category ofR-modules. Hain’s result on the section conjecture for the generic curve
in [Ha11b] builds on this pro-algebraic version of non-abelian cohomology.

14.3 The Lie Algebra

Following Magnus and Lazard, see [La94], we associate to the descending central
series C�� of a pro-` group � the graded Z`-Lie-algebra

Lie.� / D
M

n�1
Lien.� / D

M

n�1
grC�n

�
C�n� =C�.nC1/�

�
(14.6)

with the Lie bracket being induced by the commutator in the group � .
Form now on let X=k be a smooth, projective curve of genus at least 2. For a

prime number ` different form the characteristic of k, the group �` D �1.X/
pro-`

is a Poincaré duality group and coincides with the pro-` completion of the surface
group

˘ D ˘g D hx1; : : : ; x2g jŒx1; x2� : : : Œx2g�1; x2g�i:
In this case we set

p D Lie.�`/: (14.7)

The graded piece pn D Lien.�
`/ in degree �n is a free Z`-module of finite rank,

see [La66] Proposition 1. We set

pK D p ˝Z`
K (14.8)

for the change of coefficients to a field extension K=Q`. The conjugation action by
�1.X/ descends to a Galk action on the graded Lie algebra pK overK .

The Poincaré series. We are interested to compute the Poincaré series of p as a
power series

Œp� D
X

n�1
Œpn�T

n (14.9)

with coefficients in the Grothendieck ring of Z`ŒGalk�-modules which are free of
finite rank as Z`-modules. For the free Lie algebra this was achieved in characteristic
0 by Brandt [Br44] Theorem III, and rediscovered more conceptually by many,
e.g. [By03] Theorem 5.4. We follow the same path, especially we argue in strong
analogy with the computation of the generating function

X

n�1
dimK pK;nT

n

by Labute [La67] Theorem 2.
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Let LH be the free Z`-Lie algebra generated by the Z`ŒGalk�-module

H D �ab;` D grC�1 �` D
2gM

iD1
Z`xi :

There is a natural short exact sequence of graded Z`-Lie algebras

0 ! r ! LH ! p ! 0:

Let � 2 r2 be the image of the relation Œx1; x2� : : : Œx2g�1; x2g�. We have the
following special case of Labute’s results on one-relator groups.

Theorem 201 (Labute [La67]).

(1) As a module under the universal enveloping algebra U.p/ the module r=Œr; r�
is free of rank 1 and generated by � in degree 2.

(2) We have a short exact sequence

0 ! r=Œr; r� ! U.p/2g ! U.p/ ! Z` ! 0

which is a free resolution of Z` with trivial action by free U.p/-modules of
finite rank. ut

By Theorem 201 and Poincaré–Birkhoff–Witt we have the following identifica-
tions of graded Galk-modules.

r=Œr; r� Š U.p/˝ Z`.�1/ (14.10)

U.r/ Š Assr=Œr;r� (14.11)

U.r/˝ U.p/ Š U.LH/ Š AssH (14.12)

Here AssV is the free associative algebra on the Z`-module V , and we have made
use of the fact, that r as a subalgebra of a free Lie algebra is again free on r=Œr; r�
after [La67] Proposition 2.

The Poincaré series of p will be computed through the Poincaré series of U.p/
which is as follows.

1

1 � ŒH � � T D ŒAssH � D ŒU.LH /� D ŒU.r/� � ŒU.p/� D ŒAssr=Œr;r�� � ŒU.p/�

D 1

1 � �
r=Œr; r�

� � ŒU.p/� D ŒU.p/�

1 � ŒU.p/� � ŒZ`.�1/� � T 2

This solves for ŒU.p/� as

ŒU.p/� D 1

1 � ŒH � � T C ŒZ`.�1/� � T 2 (14.13)
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Adams operations. The formula for Œpn� which can be extracted from (14.13)
requires Adams operations�d on the corresponding Grothendieck ring of Z`ŒGalk�-
modules which are free of finite rank as Z`-modules, see [Be84,Se77]. In particular,
for any V in the Grothendieck ring which we put in degree d we have

ŒSym�.V /� D exp

0

@
X

m�1
�m.ŒV �/

T dm

m

1

A

and

T
d log

dT
ŒSym�.V /� D

X

m�1
�m.d ŒV �/ � T dm

The Poincaré–Birkhoff–Witt Theorem shows

ŒU.p/� D
Y

d

ŒSym� pd �

and thus for the logarithmic derivative

X

n�1

X

d jn
�n=d .d Œpd �/ � T n D ŒH � � T � 2ŒZ`.�1/� � T 2

1 � ŒH � � T C ŒZ`.�1/� � T 2 DW
X

n�1
SnT

n:

Working with formal roots of the denominator

1 � ŒH � � T C ŒZ`.�1/� � T 2 D .1 � ˛T /.1 � ˇT /

we easily deduce a linear recursion formula for the Sn D ˛n C ˇn as follows:

SnC2 D ŒH � � SnC1 � ŒZ`� � Sn
and S1 D ŒH � while S0 D 2Œ1� is twice the trivial 1-dimensional representation.

The Möbius inversion formula in this case reads

X

d jn
�.d/�d.Sn=d / D

X

d jn
�.d/�d

�X

ej n
d

�n=ed .e � Œpe�/
�

D
X

ed jn
�.d/�n=e.e � Œpe�/

(14.14)

D
X

ejn
�n=e.e � Œpe�/

X

d j ne
�.d/ D nŒpn�: (14.15)

The analogue of [La70] Theorem (1), requires an explicit formula for the Sn which
can be proven by induction via an informed Ansatz mimicking the formula [La70]
Theorem (1). We obtain

Sm D
bm=2cX

iD0
.�1/i m

m � i

 
m � i
i

!
ŒH �2m�i � ŒZ`.�i/�
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and thus

Œpn� D 1

n

X

d jn
�.n=d/�n=d

� bd=2cX

iD0
.�1/i d

d � i

 
d � i
i

!
ŒH �2d�i � ŒZ`.�i/�

�
:

(14.16)

Remark 202. (1) It is unclear to me whether this description of Œpn� is of any use. For
example, it seems impossible to decide by means of (14.16) whether H0.G; p/ 6D 0

if G is a finite cyclic group acting on p via graded Lie algebra automorphisms.
(2) A slight generalization of (14.16) and the use of Adams operations occurs in

	2.3 and in particular formula (2.3.3) of [AN95].

14.4 Finite Dimensional Subalgebras and Invariants

The key property of pK that forces dimK H0.G; pK/ to be infinite for a finite group
G acting on pK is the following bound on cohomological dimension.

Lemma 203. Let K=Q` be a field. The cohomological dimension of a sub-Lie
algebra g � pK is at most 2.

Proof. By the Poincaré–Birkhoff–Witt TheoremU.pK/ is a freeU.g/-module. Thus
the resolution

0 ! r=Œr; r�˝K ! U.pK/
2g ! U.pK/ ! K ! 0

derived from Theorem 201 (2) shows that K with trivial g-action has projective
dimension at most 2. Hence Hq.g;M / D ExtqU.g/.K;M/ vanishes for q � 3. ut
Lemma 204. Let g D L

n�1 gn be a graded Lie algebra over the field K of
dimension 4 � dimK g < 1. Then there is a graded abelian Lie algebra a � g
with dimK a � 3, i.e., we have Œa; a� D 0.

Proof. Let N be maximal with gN 6D 0. It follows that the piece gN is central in g
and we are done if dimK gN � 2. So we assume now dimK gN D 1.

Let m be maximal with m < N and gm 6D 0. We set g<m D L
i<m gi and note

that
Œ; � W g<m ˝ gm ! g

describes a bilinear pairing with values in gN . If g<m 6D 0, then because by
assumption either dimK g<m � 2 or dimK gm � 2 we find homogeneous lines
a<m � g<m, and am � gm with Œa<m; am� D 0. Hence

a D a<m ˚ am ˚ gN

is abelian of dimension 3.
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It remains to discuss the case g<m D 0. We then argue with the alternating pairing

Œ; � W gm ˝ gm ! gN :

As by assumption dimK gm � 3 we can find an isotropic subspace am � gm of
dimension 2. Then a D am ˚ gN is abelian of dimension 3. This settles the claim in
all cases. ut
Proposition 205. Let g � pK be a graded sub-Lie algebra of finite K-dimension.
Then dimK g � 3 and dimK gn � 2 for all n � 1.

Proof. We argue by contradiction. If dimK g � 4, then by Lemma 204 we find an
abelian Lie algebra a � g � p with dimK a D 3. But as H3.a; K/ D K does not
vanish, this contradicts Lemma 203.

The assertion dimK gn � 2 follows because the only potential exception would
be a graded sub-Lie algebra g � pK with g D gn of dimension 3 for some n. But
such a g were abelian and thus leads to the same contradiction. ut
Corollary 206. The Lie algebra g generated by a subspace gn � pK;n with
dimension dimK gn � 3 is infinite dimensional and gdn 6D 0 for all d � 1. ut
The Lie algebra of invariants. Instead of Galk we now discuss the case of a finite
abelian group G acting on p by graded Lie algebra automorphisms.

Proposition 207. Let G be a finite abelian group of order invertible in K which
acts on pK by graded Lie algebra automorphisms. Then theG-invariants H0.G; pK/
form a graded sub-Lie algebra of infiniteK-dimension.

Proof. It is clear that H0.G; pK/ forms a graded sub-Lie algebra. Let N be the
exponent of G. In order to determine the dimension of H0.G; pK/ we can assume
that K contains all N th roots of unity.

Let V
 be the 
-isotypical component of a G-representation V with respect to
the character 
. If for some n and some character 
 we have dimK pn;
 � 3, then by
Corollary 206 the Lie algebra hpn;
i � pK generated by pn;
 is infinite dimensional
and nontrivial in every degree which is a multiple of n. But G acts on hpn;
idn by

d so that for every r 2 N we have

0 6D hpn;
irNn � H0.G; pK/:

That there is a character 
 and n 2 N with dimK pn;
 � 3 follows from the pigeon
hole principle and the estimate for dimK pn in the following lemma. ut
Lemma 208. We have the following estimate

ˇ̌
ˇ̌rkZ` pn � ˛n

n

ˇ̌
ˇ̌ � ˛

n.˛ � 1/
˛n=p C 1
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where p is the smallest prime factor of n and ˛ D gCpg2 � 1 � 2g. In particular,
we have rkZ` pn ! 1 for n ! 1.

Proof. We remind that we are working under the hypothesis that g � 2. We define
ˇ D g�pg2 � 1 so that .1�˛T /.1�ˇT / D 1�2gTCT 2 and rkZ` Sn D ˛nCˇn.
It follows from (14.15) that

rkZ` pn D 1

n
�
X

d jn
�.d/

�
˛n=d C ˇn=d

�
:

By the triangle inequality and because jˇj < 1 we have

ˇ̌
ˇ̌rkZ` pn � ˛n

n

ˇ̌
ˇ̌ � 1

n
�
0

@
X

d jn;d<n
˛d C

X

d jn
ˇd

1

A

<
1

n

0

@
n=pX

iD1
˛i C

nX

iD1
1

1

A < ˛

n.˛ � 1/˛
n=p C 1: ut

For an application of Proposition 207 see Theorem 226 in Sect. 15.3. This
application was the main stimulus behind our discussion of the Lie algebra p in
Sect. 14.3.

14.5 Nilpotent Sections in the Arithmetic Case

In the remaining sections of this chapter we examine the space of nilpotent sections
for a smooth projective curve X=k over an algebraic number field k, or over a
finite extension k=Qp. The behaviour is fundamentally different for the maximal
geometrically pro-` quotient for ` 6D p and for the maximal geometrically pro-p
quotient.

The maximal pro-` quotient with good reduction. Let k=Qp be a finite extension
with ring of integers ok and residue field F. Let X=k be a smooth, projective curve
with good reduction X = Spec.ok/ and special fibre Y D XF over F.

For ` 6D p, every section of �pro-`
1

.X=k/ is unramified over ok by a pro-` version
of Proposition 91. For sections associated to rational points this was noted in
[KiTa08] Theorem 0.1, see Sect. 8.5. Moreover, the specialisation map

S
�

pro-`
1 .X=k/

! S
�

pro-`
1 .Y=F/

is bijective. The pro-` Kummer map sits in a diagram
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X.k/
�`

S
�

pro-`
1 .X=k/

Y.F/
�`

S
�

pro-`
1 .Y=F/

and thus factors over the finite set. On the other hand, by Theorem 226 below, we
know that S

�
pro-`
1 .Y=F/

is uncountable. We conclude that the pro-` section conjecture

fails badly for proper smooth p-adic curves of good reduction with ` 6D p.

Remark 209. It has been observed1 by Tamagawa, see [Ho09] Remark 10 (i), that
the pro-` Kummer map

�` W Y.Fq/ ! S
�

pro-`
1 .Y=Fq/

may fail to be injective for hyperbolic curves Y over a finite field Fq .

14.6 Pro-p Counter-Examples After Hoshi

We are going to explain the counter-examples to a pro-p version of the section
conjecture over algebraic number fields found by Hoshi, see [Ho10].

Theorem 210 (Hoshi, [Ho10] Theorem A). Let p � 3 be a regular prime and
let k=Q.�p/ be a Galois extension unramified outside p with Galois group a finite
p-group.

Let ˇ W X ! P
1
k be a finite map of connected proper smooth curves such that

(i) the genus of X is � 2,
(ii) X.k/ is nonempty,

(iii) ˇ W X ! P
1Nk is Galois of p-power degree and unramified outside 0, 1, and 1,

(iv) and the hyperbolic curve X n ˇ�1.f0; 1;1g/ has good reduction outside p.

Then there exists a finite extension k0=k unramified outside p with pro-p Galois
hull, such that the pro-p Kummer map

�p W X.k0/ ! S�
pro-p
1 .X=k/.k

0/

is not surjective, i.e., there are non-Diophantine pro-p sections after a finite pro-p
extension unramified outside p. Moreover, if vjp is a place of k0 with completion k0

v,
then also the local pro-p Kummer map

1I thank Yuichiro Hoshi for bringing Tamagawa’s observation to my attention.
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�p W X.k0
v/ ! S�

pro-p
1 .X=k/.k

0
v/

is not surjective.

Remark 211. Hoshi also constructs an explicit series of examples. Let p � 11 be a
regular prime and let k=Q.�p/ be as in Theorem 210. LetXFermat;p=k be the Fermat
curve

fAp CBp D Cpg � P
2
k:

Then as a consequence of [Ho10] Theorem B, we obtain even that S�
pro-p
1 .XFermat;p=k/

is at least countable infinite.

We develop, complement and generalize the ideas of [Ho10] in the sequel.

Lemma 212. Let k be an algebraic number field, and let S � Spec.okŒ 1p �/ be a
dense open arithmetic curve with a geometric point Ns 2 S .

Let X=k be a smooth, projective geometrically connected curve of genus � 2

with

(i) good reduction over S ,
(ii) and Galk acts on �ab

1
.X; Nx/˝ Fp D H1.X;Fp/ through a p-group.

Then the pro-p outer Galois action

�X=k W Galk ! Out
�
�pro-p
1

.X/
�

factors over �pro-p
1

.S; Ns/.
Proof. That �X=k is unramified above S , i.e., factors over �1.S; Ns/ follows from
[Sx05] Propositions 2.6 and 2.7. By a profinite version of a theorem of Hall, see
[Ha59] Theorem 12.2.2., the kernel of

Out
�
�pro-p
1

.X/
� ! Aut

�
H1.X;Fp/

�

is a pro-p group. Hence (ii) implies that the image of �X=k is a pro-p group. ut
In the situation of Lemma 212 the extension �pro-p

1
.X=k/ is the pullback of the

extension

1 ! �pro-p
1

.X/ ! Aut
�
�pro-p
1

.X/
�	

Out
�
�

pro-p
1 .X/

��pro-p
1

.S; Ns/ ! �pro-p
1

.S; Ns/ ! 1:

(14.17)

Let S denote the �pro-p
1

.X/-conjugacy classes of sections of (14.17). As in the
context of base change, we obtain a natural map

S ! S�
pro-p
1 .X=k/:

Lemma 213. With X=k as in Lemma 212, the map S ! S�
pro-p
1 .X=k/ is bijective.
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Proof. Since p is invertible in S , it follows that all ramification at places v 2 S is at
most tame. We conclude by Proposition 91 that every pro-p section of �pro-p

1
.X=k/

is unramified above S . As (14.17) is a sequence of pro-p groups, every section
further descends to S . ut

Lemma 214. Let p be an odd prime number, and let S � Spec.okŒ 1p �/ be a dense
open arithmetic curve with function field k=Q.�p/ and geometric point Ns 2 S . Then
�pro-p
1

.S; Ns/ is a free pro-p group if and only if the following conditions all hold:

(i) S D Spec.okŒ 1p �/,
(ii) p is inert in k=Q,

(iii) Pic.ok/˝ Zp is generated by the only prime pjp.

Proof. This is well known. We give a proof for the convenience of the reader. The
group �pro-p

1
.S; Ns/ is free pro-p if and only if

H2.�pro-p
1

.S; Ns/;Z=pZ/ D H2.S;Z=pZ/ Š H2.S; �p/

vanishes. From the Kummer sequence we obtain an exact sequence

0 ! Pic.S/˝ Fp ! H2.S; �p/ ! Br.S/Œp� ! 0:

As Br.S/Œp� is isomorphic to the elements in
L

v 62S Q=Z of sum 0 where v ranges
over all finite places of k outside S , the Brauer term vanishes if and only if (i) and
(ii) hold. Clearly then (iii) is equivalent to the vanishing of the Picard term. ut
Theorem 215. Let p be an odd prime number, and let k=Q.�p/ be an algebraic
number field, such that

(i) p is inert in k=Q,
(ii) Pic.ok/˝ Zp is generated by the only prime pjp.

LetX=k be a smooth, projective geometrically connected curve of genus � 2with

(iii) good reduction over S D Spec.okŒ 1p �/,

(iv) Galk acts on �ab
1
.X; Nx/˝ Fp D H1.X;Fp/ through a p-group,

(v) and positive Mordell-Weil rank, i.e., Pic0X .k/ is infinite.

Then the set S�
pro-p
1 .X=k/ is uncountably infinite and the pro-p Kummer map

�p W X.k/ ! S�
pro-p
1 .X=k/

is not surjective, i.e., there are non-Diophantine pro-p sections.

Proof. The extension (14.17) can be pushed to the geometrically maximal abelian
quotient and gives an extension

1!�ab;pro-p
1

.X/!
Aut

�
�pro-p
1

.X/
� 	

Out
�
�

pro-p
1 .X/

� �pro-p
1

.S; Ns/
ker

�
�

pro-p
1 .X/ � �

ab;pro-p
1 .X/

� ! �pro-p
1

.S; Ns/ ! 1

(14.18)
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the �ab;pro-p
1

.X/-conjugacy classes of which we denote by S ab. The analogue of
Lemma 213 holds and yields a natural bijective map

S ab ! S
�

ab;pro-p
1 .X=k/

D S�
pro-p
1 .Pic1X =k/

:

The Albanese torsor map ˛ W X ,! Pic1X provides a commutative diagram

X.k/

˛

�X;p

S�
pro-p
1 .X=k/

˛�

S
�

˛�

Pic1X .k/ S�
pro-p
1 .Pic1X =k/

S ab
�

(14.19)

With (i) and (ii) we deduce form Lemma 214 that �pro-p
1

.S; Ns/ is a free pro-p group,
hence the map

˛� W S � S ab

is surjective and a forteriori, by Lemma 213 and its abelianized analogue, the map

˛� W S�
pro-p
1 .X=k/ � S�

pro-p
1 .Pic1X =k/

is surjective. Moreover, the spaces of sections in (14.19) are in fact non-empty. The
cohomological description in the abelian case now shows a bijection

S�
pro-p
1 .Pic1X =k/

Š H1
�
k; �ab;pro-p

1
.X/

� D H1
�
k;Tp.Pic0X/

�

which via the Kummer sequence contains Pic0X .k/˝Zp and thus by assumption (v)
is uncountably infinite. Consequently, also the space of pro-p sections S�

pro-p
1 .X=k/

is uncountably infinite, which shows in particular the presence of non-Diophantine
pro-p sections. ut

In [Ho10] Hoshi finds an ingenious anabelian way to ensure property (iv) of
Theorem 215 that we are going to explain now.

Proposition 216 (Hoshi, [Ho10] Lemma 2.1). Let ˇ W X ! Y be a finite map
of geometrically connected proper smooth curves over an algebraic number field k
such that

(i) there is a hyperbolic dense open V � Y such that ˇjU W U D ˇ�1.V / ! V is
finite étale,

(ii) Galk acts on H1.V ;Fp/ through a p-group,
(iii) and, geometrically, the map ˇ W U ! V is Galois of p-power degree.

Then Galk acts on H1.X;Fp/ via a finite p-group.
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Proof. Since H1.X;Fp/ is a quotient module of H1.U ;Fp/ it suffices to show that
the action of Galk on the latter is via a p-group. As above, this is equivalent to the
outer pro-p Galois action

�U=k W Galk ! Out
�
�pro-p
1

.U /
�

factoring over a pro-p group.
By (i) and (iii) there is a finite p-group G and the following diagram with exact

rows and column.

1

G

1 �pro-p
1

.V / �.pro-p/
1

.V / Galk 1

1 �pro-p
1

.U / �.pro-p/
1

.U /

ˇ�

Galk 1

1

(14.20)
LetZU (resp.ZV ) be the centraliser of �pro-p

1
.U / in �.pro-p/

1
.U / (resp. of �pro-p

1
.V /

in �.pro-p/
1

.V /). Since U and V are hyperbolic, �pro-p
1

.U / and �pro-p
1

.V / have trivial
center, ZU and ZV inject as normal closed subgroups in Galk , and we have

im.�U=k/ D Galk =ZU and im.�V=k/ D Galk =ZV :

To the exact column of (14.20) belongs an outer action

� W G ! Out
�
�pro-p
1

.U /
�

and a natural isomorphism

�pro-p
1

.V / D Aut
�
�pro-p
1

.U /
� 	

Out
�
�

pro-p
1 .U /

�
;�
G:

It follows that an automorphism of �pro-p
1

.U / extends in at most one way to an
automorphism of �pro-p

1
.V /, see [Sx02] Lemma 4.2.9 for another case of this

argument. Consequently, we have an inclusion ZU � ZV and an exact sequence
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1 ! ZV =ZU ! im.�U=k/ ! im.�V=k/ ! 1:

By assumption (ii) and the profinite version of [Ha59] Theorem 12.2.2, the image
im.�V=k/ is pro-p, so that it suffices to analyse ZV =ZU . We define a map

 W ZV ! G

which sends a 2 ZV of the form a D �u with � 2 �pro-p
1

.V / and u 2 �.pro-p/
1

.U / to

 .a/ D � � �pro-p
1

.U /:

The map  is well defined, as with another decomposition a D � 0u0 we have

��1� 0 D u.u0/�1 2 �pro-p
1

.V /\ �.pro-p/
1

.U / D �pro-p
1

.U /

and so

� � �pro-p
1

.U / D � 0 � �pro-p
1

.U /:

If b 2 ZV is another element with decomposition b D ıv with ı 2 �pro-p
1

.V / and
v 2 �.pro-p/

1
.U /, then

ab D a.ıv/ D ıav D ı.�u/v D .ı�/.uv/;

so that

 .ab/ D  .b/ .a/:

Hence, the map  is a homomorphism ZV ! Gopp to G with the opposite group
law, which is still a p-group by assumption (iii). Since

ker. / D ZV \ �
�.pro-p/
1

.U /
� D ZU ;

the quotientZV =ZU is a finite p-group. ut
Remark 217. (1) Theorem 210 now is deduced as follows. The assumptions on k
implies that

�pro-p
1

.Spec.okŒ
1

p
�// � �pro-p

1
.Spec.ZŒ�p;

1

p
�//

is an open subgroup, which is a free pro-p group due to p � 3 being a regular
prime, see Lemma 214. This guarantees properties (i) and (ii) of Theorem 215, while
property (iii) is also assumed from the start in Theorem 210. In order to assure (iv)
we apply Proposition 216 with

V D P
1
k � f0; 1;1g � Y D P

1
k;
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and the map ˇ W X ! P
1
k of Theorem 210. This allows to conclude as in the proof

of Theorem 215 that for the Albanese torsor map ˛ W X ,! Pic1X the induced
abelianization map on sections

˛� W S�
pro-p
1 .X=k/ � S�

pro-p
1 .Pic1X =k/

is surjective with both sets non-empty. Here Hoshi resorts to another argument to
ensure that there are non-Diophantine sections in case property (v) of Theorem 215,
the positive Mordell–Weil rank, fails. It is this step that requires to replace k by a
finite pro-p extension k0=k which is unramified outside p. For details on the latter
argument see [Ho10] 	4.

(2) For a regular prime p � 11 and k D Q.�p/, the pth Fermat curve

XFermat;p D fAp C Bp D Cpg � P
2
k

actually satisfies all assumptions of Theorem 215, with (v) following by [GrRo78]
and with Belyi map given by

.A;B; C / 7! .Ap; Bp; C p/ 2 f.u; v;w/ I u C v D wg Š P
1
k:

Hence we have also explained part of [Ho10] Theorem B.
(3) We cannot help but think that the above counter-examples to the pro-p version

of the section conjecture come to life due to a coincidence of a number of accidents.
For example, the freeness of the pro-p fundamental group of the arithmetic base
curve S � Spec.okŒ 1p �/ forces S to be almost all of Spec.ok/. On the other
hand, having good reduction almost everywhere is a rare commodity among smooth
projective curves. We could artificially force the Galois action on H1.X;Fp/ to be
unipotent, or even trivial, but only at the expense of enlarging k in an uncontrolled
manner with respect to the pro-p freeness condition.

Nevertheless, the hope to prove the section conjecture immediately via a
pro-p approach is destroyed. In light of the above described accidents, we might
ask, whether still pro-p methods can prove the section conjecture, if we do not
apply them directly to a given curve X=k but to an auxiliary finite, maybe even
cyclic, étale coverX 0 ! X such that we leave the realm of the accidental failure of
the pro-p section conjecture.

14.7 Variations on Pro-p Counter-Examples After Hoshi

We aim at a generalization of Hoshi’s approach to counter-examples for the pro-p
section conjecture which makes use of more precise knowledge of pro-p arithmetic
fundamental groups.
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Theorem 218. Let p be a prime number, and let k be an algebraic number field.
Let B be a dense open in Spec.ok/ with complement S , such that p is invertible
on B . We moreover assume that there is a subset S0 � S of the places of k above p
with

(i)
P

v2S0
1�#�p.kv/

1�p D 1�#�p.k/
1�p ,

(ii) and the map H1.B; �p/ ! Q
v2S0 H1.kv; �p/ is injective.

LetX=k be a smooth, projective geometrically connected curve of genus � 2with

(iii) good reduction over B ,
(iv) and Galk acts on �ab

1
.X; Nx/˝ Fp D H1.X;Fp/ through a p-group.

Let us furthermore assume that

(v) X.kv/ 6D ; for all v 2 S n S0,
(vi) and S0 misses at least one place pjp of k or the auxiliary set T below in the

proof is bigger than S .

Then the set S�
pro-p
1 .X=k/ is uncountably infinite and the pro-p Kummer map

�p W X.k/ ! S�
pro-p
1 .X=k/

is not surjective, i.e., there are non-Diophantine pro-p sections.

Proof. According to [NSW08] Theorem 10.9.1, properties (i) and (ii) are the precise
criterion to put us in the degenerate case as defined in [NSW08] Definition 10.9.3,
which means that there is a finite set of places T containing S and a natural
isomorphism 


v2SnS0
Galpro-p

kv

 

T nS

Zp
��! �pro-p

1
.B/; (14.21)

which sends Galpro-p
kv

(resp. 1 2 Zp) for v 2 S n S0 (resp. for v 2 T n S ) to the
decomposition group in �pro-p

1
.B/ (resp. to the Frobenius) of a place above v.

Properties (iii) and (iv) imply by Lemma 212 that the outer pro-p Galois
representation

�X=k W Galk ! Out
�
�pro-p
1

.X/
�

factors through �pro-p
1

.B/. We denote again by S the �pro-p
1

.X/-conjugacy classes
of sections of the extension

1 ! �pro-p
1

.X/ ! Aut
�
�pro-p
1

.X/
� 	

Out
�
�

pro-p
1 .X/

� �pro-p
1

.B/ ! �pro-p
1

.B/ ! 1

(14.22)
which again pulls back to the extension �pro-p

1
.X=k/ to yield a base change map

S ! S�
pro-p
1 .X=k/

whose bijectivity is assured by property (iii) and Lemma 213.
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The same conclusion holds for the following local analogues. First, for a place
v of k, the local outer pro-p Galois representation of X ˝ kv=kv still has a pro-p
group as its image, so that the extension �pro-p

1
.X ˝ kv=kv/ is the pullback of the

extension

1 ! �pro-p
1

.X/ ! Aut
�
�pro-p
1

.X/
� 	

Out
�
�

pro-p
1 .X/

� Galpro-p
kv

! Galpro-p
kv

! 1:

(14.23)
Let Sv denote the �pro-p

1
.X/-conjugacy classes of sections of (14.23). Then there is

again a base change map
Sv ! S�

pro-p
1 .X=k/.kv/

which is clearly bijective. Secondly, for a place v 2 B where X has good reduction
and v − p, the local outer pro-p Galois representation is even unramified and thus
factors over

Galpro-p;nr
kv

D Zp:

The extension �pro-p
1

.X ˝ kv=kv/ then is even a pullback of the extension

1 ! �pro-p
1

.X/ ! Aut
�
�pro-p
1

.X/
� 	

Out
�
�

pro-p
1 .X/

� Zp ! Zp ! 1 (14.24)

describing the situation for the special fibre of the good reduction at v. Let S nr
v

denote the �pro-p
1

.X/-conjugacy classes of sections of (14.24). There is again a base
change map

S nr
v ! S�

pro-p
1 .X=k/.kv/

which is bijective by Proposition 91. We obtain the following commutative diagram

X.k/

�X;p

S�
pro-p
1 .X=k/ S

�

Y

v2T nS0

X.kv/

�X˝kv ;p Y

v2TnS0

S�
pro-p
1 .X=k/.kv/

Y

v2SnS0

Sv � Y

v2T nS

S nr
v

�

where by the degenerate structure (14.21) of �pro-p
1

.B/ the localisation map

S �
Y

v2SnS0
Sv 	

Y

v2T nS
S nr

v

is surjective. Property (v) prevents
Q

v2SnS0 Sv from being empty, while

Y

v2T nS
S nr

v
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is always nonempty. If there is a place pjp in S n S0, then by Theorem 76 the map

�p W X.kp/ ,! S�
pro-p
1 .X=k/.kp/

is injective, and a consequently Sp is uncountable. If on the other hand we have
v 2 T n S , then S nr

v is uncountable by Theorem 226. By property (vi) at least
one of these places exists and in any case S is uncountable. We deduce that again
S�

pro-p
1 .X=k/ is uncountable, so that there must be in particular non-Diophantine pro-

p sections for X=k. ut
Remark 219. (1) If k in Theorem 218 contains �p , then by [NSW08] Theorem
10.9.1 we have necessarily S0 D fpg with pjp.

(2) In Theorem 210, the conditions imposed on the number field k imply by
Lemma 214 that there is a unique place p of k with pjp and that for

B D Spec.okŒ
1

p
�/

property (i) and (ii) of Theorem 218 holds with respect to S0 D fpg D S . The
auxiliary set T contains S properly. Hence also property (vi) holds. Theorem 210 is
in fact a special case of Theorem 218.

Nevertheless, although Theorem 218 provides more flexibility in the construction
of counter-examples with regard to the number field and the locus of good reduction,
however, I see no other method than Hoshi’s to establish the key property (iv), see
Proposition 216.

Example 220. Here is a concrete example for the failure of the pro-3 section
conjecture that lies beyond Theorem 210. In the notation of Theorem 218, we set
k D Q.�3/ and

B D Spec.ZŒ�3;
1

6
�/

with S0 D f3g and S D f2; 3;1g. Then (i) holds and (ii) is equivalent to the
restriction

res3 W O�.B/=.O�.B//3 ! Q3.�3/
�=
�
Q3.�3/

��3

being injective. Since 2 is inert in Q.�3/=Q and

3 D ��23 � .1 � �3/
2

we find that the classes of �3; 2; 3 form a basis of the left hand side. If we look at the
filtration of the right hand side given by the subspaces

ker
�
N W Z3Œ�3��=

�
Z3Œ�3�

��3 ! Z
�
3 =.Z

�
3 /
3
� � Z3Œ�3�

�=
�
Z3Œ�3�

��3

then res3 becomes upper triangular with �3; 2; 3 being nontrivial in the respective
filtration quotients. It follows as in the proof of Theorem 218 from [NSW08]
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Theorem 10.9.1 that we are in the degenerate case. Moreover we have #.T nS/ D 1,
and formula (14.21) in this particular case reads

�
Z3.1/ Ì4 Z3

� 
 Z3 D Galpro-3
Q2.�3/


 Z3
��! �pro-3

1

�
Spec.ZŒ�3;

1

6
�/
�
:

Here Z3.1/ Ì4 Z3 is the semidirect product, where the generator of Z3 acts via the
3-adic automorphism of multiplication by 4 D 1C 3 on Z3.1/ D Z3.

The example is now provided by the smooth projective curve C D C0 	Q Q.�3/

of genus 3 given by

C0 D fY 3Z D X.X �Z/.X � 3Z/.X � 9Z/g � P
2
Q
:

Indeed, the curve C0 has a Q-rational point, namely Œ0 W 1 W 0�, and good reduction
outside 2 � 3 as can be seen easily from the jacobian criterion applied to the integral
curve C0 � P

2
Z

given by the same equation. The example at this point relies on the
accident that the only primes which divide differences of the numbers 0; 1; 3; 9 are
2 and 3. Moreover, the curve C0 is a �3 torsor over P1

Q
described by taking a cube

root of
T .T � 1/.T � 3/.T � 9/

hence finite étale over U D P
1
Q

� f0; 1; 3; 9g with geometric monodromy a 3-group.
Because the ramification points are rational, we find

H1

�
U ;F3

� D Z=3Z.1/˚ Z=3Z.1/˚ Z=3Z.1/:

In particular, Galk acts through a 3-group and property (iv) of Theorem 218 holds.
We may conclude that the pro-3 Kummer map

�3 W C.Q.�3// ! S
�

pro-3
1 .C=Q.�3//

is injective with finite image in an uncountable space of pro-3 sections.

We end this chapter by posing a question which might revitalize work on the
pro-p analogue of the section conjecture.

Question 221. Does every smooth projective geometrically connected curve X=k
over an algebraic number field k admit a finite étale cover h W X 0 ! X with X 0=k
geometrically connected, such that the pro-p Kummer map

�p W X 0.k/ ! S�
pro-p
1 .X 0=k/

is bijective for X 0=k?
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