
Chapter 2
Algorithmic Operators

In Chap. 5 we will present several methods for solving convex optimization
problems. We will focus our study on iterative methods (we also call them iterative
procedures or algorithms) which are given in the form of the following recurrence

xkC1 D Tkxk (2.1)

defined on a closed convex subset X � H, where Tk W X ! X is a sequence of
operators. We suppose that the starting point x0 is an element of a starting subset
X0 � X . Usually, one supposes that X0 D X . A sequence fxkg1

kD0 generated by
the iterative method (2.1) is called an approximating sequence. If Tk D T for all
k � 0, then this sequence is called an orbit of T . Any iterative method for solving
a convex optimization problem is constructed in such a way that the approximating
sequences fxkg1

kD0 generated by this method converge (at least weakly) to a solution
of the optimization problem. As we will see, the solution is a fixed point of an
operator S W X ! H, which is usually a nonexpansive one. The form of this
operator depends on the considered optimization problem. A sequence of operators
Tk which defines the iterative method is usually constructed in such a way that
Fix S � T1

kD0 Fix Tk .
In this chapter we deal with general properties of operators which define

algorithms for solving convex optimization problems. In one iteration of the
algorithm an appropriate operator T W X ! X defines an actualization, also
called an update xC of the current approximation x of a solution of the convex
optimization problem. Usually, this actualization has the form xC D T x. We call T

an algorithmic operator. One can also consider algorithms, where the actualization
has the form xC 2 T x for a mapping (multifunction) T W X � X . In this case, T

is called an algorithmic mapping.
Operators defining iterations of an algorithm usually depend on some parameters

which are constant or vary during the iteration process. The properties of approx-
imating sequences depend on the properties of algorithmic operators defining the
iterative method as well as on the choice of parameters defining these operators.
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40 2 Algorithmic Operators

2.1 Basic Definitions and Properties

Let H be a Hilbert space. In what follows, we consider operators which are defined
on a nonempty closed convex subset X � H.

Remark 2.1.1. Let Ui W X ! X , i 2 I WD f1; 2; : : : ; mg. If (i) U D P
i2I !i Ui ,

where w D .!1; !2; : : : ; !m/ 2 �m, or (ii) U D UmUm�1 : : : U1, then the following
obvious inclusion holds \

i2I

Fix Ui � Fix U

The converse inclusion needs not to be true even if all Ui , i 2 I , have a common
fixed point (see Example 2.1.27).

Definition 2.1.2. Let T W X ! H and � 2 Œ0; 2�. The operator T� W X ! H
defined by

T� WD .1 � �/ Id C�T

is called a �-relaxation or, shortly, relaxation of the operator T . Obviously, T� D
Id C�.T � Id/. We call � a relaxation parameter. If � 2 .0; 1/, then T� is called an
under-relaxation of T . If � 2 .1; 2/, then T� is called an over-relaxation of T and
if � D 2, then T� is called the reflection of T . If � 2 .0; 2/, then T� is called a strict
relaxation of T .

A relaxation T� of an operator T can be defined for any � 2 R. However, if we
do not extend explicitly the range of �, we assume that � 2 Œ0; 2�.

Remark 2.1.3. Note that the equality .T�/� D T�� holds for all �; � 2 R, con-
sequently .T�/��1 D T for � ¤ 0.

Remark 2.1.4. It is clear that Fix T D Fix T� whenever � ¤ 0.

Let Ui W X ! X , i 2 I WD f1; 2; : : : ; mg, U WD UmUm�1 : : : U1 and Qi WD
UiUi�1 : : : U1Um : : : UiC1, i D 1; 2; : : : ; m. Denote Q0 WD Qm D U and U0 WD
Um. There exists a relationship among the subsets of fixed points of operators Qi ,
which is expressed by the following theorem.

Theorem 2.1.5. For i D 1; 2; : : : ; m there holds

Fix Qi D Ui.Fix Qi�1/. (2.2)

Proof. Let i 2 I . First we prove the inclusion

Fix Qi � Ui .Fix Qi�1/. (2.3)

Let zi�1 2 Fix Qi�1 and zi D Ui zi�1. Then we have

zi D Ui z
i�1 D UiQi�1zi�1 D Ui Ui�1 : : : U1Um : : : UiC1Ui z

i�1

D Ui Ui�1 : : : U1Um : : : UiC1zi D Qi z
i ,
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which proves that (2.3) holds for any i 2 I . Consequently,

Fix Qi � Ui .Fix Qi�1/ � UiUi�1.Fix Qi�2/

� : : : � Ui Ui�1 : : : U1.Fix Q0/ D UiUi�1 : : : U1.Fix Qm/

� Ui Ui�1 : : : U1Um.Fix Qm�1/

� : : : � Ui Ui�1 : : : U1UmUm�1 : : : UiC1.Fix Qi/

D Qi.Fix Qi/ D .Fix Qi/,

i 2 I , and all inclusions are, actually, equations. In particular, Fix Qi D
Ui.Fix Qi�1/, i.e., (2.2) is satisfied for all i 2 I . ut

2.1.1 Nonexpansive Operators

Definition 2.1.6. We say that an operator T W X ! H is:

(i) Nonexpansive (NE), if

kT x � Tyk � kx � yk

for all x; y 2 X ,
(ii) Strictly nonexpansive if

kT x � Tyk < kx � yk or x � y D T x � Ty

for all x; y 2 X ,
(iii) An ˛-contraction, where ˛ 2 .0; 1/ or, shortly, a contraction if

kT x � Tyk � ˛ kx � yk

for all x; y 2 X .

The theorem below, called the Banach fixed point theorem or the Banach theorem
on contractions, is widely applied in various areas of mathematics. The theorem
holds for any complete metric space, and hence, in particular, for every closed subset
of a Hilbert space.

Theorem 2.1.7 (Banach, 1922). Let X be a complete metric space and T W X !
X be a contraction. Then T has exactly one fixed point x� 2 X . Furthermore,
for any x 2 X , the orbit fT kxg1

kD0 converges to x� with a rate of geometric
progression.

Proof. See, e.g., original paper of Banach [15], [185, Theorem 1.1], [267, Theorem
24.2], [184, Theorem 2.1], [183, Theorem 2.1] or [36, Theorem 2.1]. ut
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The Banach fixed point theorem is a widely applied tool for an iterative approxi-
mation of fixed points. Unfortunately, its application is restricted to contractions. We
will need, however, appropriate tools for an iterative approximation of fixed points
of nonexpansive operators T with Fix T ¤ ;.

Below, we present several classical fixed points theorems.

Theorem 2.1.8 (Brouwer, 1912). Let X � R
n be nonempty compact and convex

and T W X ! X be continuous. Then T has a fixed point.

Proof. See, e.g., original paper of Brouwer [43] or [191, Chap. II, �5, Theorem 7.2]
or [183, Theorem 7.6]. ut

The Brouwer fixed point theorem was generalized by Juliusz Schauder.

Theorem 2.1.9 (Schauder, 1930). Let X be a nonempty compact and convex
subset of a Banach space and T W X ! X be continuous. Then T has a fixed point.

Proof. See, e.g., original paper of Schauder [302] or [191, Chap. II, �6, Theorem
3.2] or [183, Theorem 8.1]. ut
For nonexpansive operators in a Hilbert space H the compactness of X � H in the
Schauder theorem can be replaced by the boundedness of X . The following theorem
was proved independently by Browder [45, Theorem 1], Göhde [188] and by Kirk
[227]. The proof can also be found, e.g., in [185, Theorem 5.1], [191, Chap. I, �4,
Theorem 1.3], [183, Theorem 4.1] or [36, Theorem 3.1].

Theorem 2.1.10 (Browder–Göhde–Kirk, 1965). Let X be a nonempty closed,
convex and bounded subset of a uniformly convex Banach space (e.g., of a Hilbert
space H) and U W X ! X be nonexpansive. Then U has a fixed point.

Contrary to the Banach fixed point theorem, the theorems of Brouwer, Schauder
and of Browder–Göhde–Kirk are only of existential nature. In Chap. 3 we present
theorems which can be applied to iterative methods for determining fixed points of
nonexpansive operators.

Below, we present some properties of the subset of fixed points of a nonexpansive
operator. The following result can be found in [185, Proposition 5.3].

Proposition 2.1.11. The subset of fixed points of a nonexpansive operator T W
X ! H is closed and convex.

Proof. (cf. [185, Proposition 5.3]) Let xk 2 Fix T and xk ! x. We have x 2 X

because X is closed. By the continuity of T ,

x D lim xk D lim
k

T xk D T x,

i.e., Fix T is a closed subset. Now we show the convexity of Fix T . Let x; y 2 Fix T ,
x ¤ y and z D .1 � �/x C �y for � 2 .0; 1/. By the nonexpansivity of T and by
the positive homogeneity of the norm we have

kx � T zk D kT x � T zk � kx � zk D � kx � yk (2.4)
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and
kT z � yk D kT z � Tyk � kz � yk D .1 � �/ kx � yk . (2.5)

Now, the triangle inequality yields

kx � yk � kx � T zk C kT z � yk
� � kx � yk C .1 � �/ kx � yk
D kx � yk .

Consequently,
kx � yk D kx � T zk C kT z � yk .

By the strict convexity of the norm, the vectors x � T z and T z � y are positive
linearly dependent. Therefore, ˛.x � T z/ C ˇ.y � T z/ D 0 for some ˛; ˇ � 0.
Since x ¤ y, it follows that ˛ C ˇ > 0, and hence, T z D ˛

˛Cˇ
x C ˇ

˛Cˇ
y. Now, the

nonexpansivity of T and inequalities (2.4) and (2.5) yield

ˇ

˛ C ˇ
kx � yk D kx � T zk D kT x � T zk � kx � zk D � kx � yk (2.6)

and

˛

˛ C ˇ
kx � yk D kT z � yk D kT z � Tyk � kz � yk D .1 � �/ kx � yk . (2.7)

If at least one inequality in (2.6) and (2.7) is strict, then by summing up (2.6)
and (2.7) we would obtain a contradiction. Therefore, ˇ

˛Cˇ
D � and ˛

˛Cˇ
D .1��/,

consequently T z D .1 � �/x C �y D z. ut
The closedness and convexity of the subset of fixed points of a nonexpansive
operator follows also from a property presented in Sect. 2.2 (see Corollary 2.2.48).

Lemma 2.1.12. Let Si W X ! X , i 2 I WD f1; 2; : : : ; mg, be nonexpansive.
Then:

(i) A convex combination S WD P
i2I !i Si , where w D .!1; : : : ; !m/ 2 �m, is

nonexpansive. If, furthermore, at least one operator Si is a contraction and the
corresponding weight !i > 0, then S is a contraction;

(ii) A composition S WD SmSm�1 : : : S1 is nonexpansive. If, furthermore, at least
one operator Si is a contraction, then S is a contraction.

Proof. Let x; y 2 X and Si be nonexpansive, i.e., kSi x � Si yk � ˛i kx � yk,
where ˛i 2 .0; 1�, i 2 I .

(i) Let w 2 �m, S WD P
i2I !i Si and ˛ D P

j 2I !j ˛j . It is clear that ˛ 2 .0; 1�.
By the convexity of the norm and the nonexpansivity of Si , i 2 I , we have
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kSx � Syk D
�
�
�
�
�

X

i2I

!i .Six � Siy/

�
�
�
�
�

�
X

i2I

!i kSix � Siyk

�
X

i2I

!i ˛i kx � yk

D
X

i2I

!i ˛i
P

j 2I !j ˛j

˛ kx � yk

D ˛ kx � yk ,

i.e., S is a nonexpansive operator. Now suppose that Si0 is a contraction, i.e.,
˛i0 < 1 and that !i0 > 0, for some i0 2 I . Then ˛ 2 .0; 1/, i.e., S is a
contraction.

(ii) We have

kSx � Syk D kSmSm�1 : : : S1x � SmSm�1 : : : S1yk � ˛ kx � yk ,

where ˛ D ˛m˛m�1 : : : ˛1 2 .0; 1�. If Si0 is a contraction for some i0 2 I , i.e.,
˛i0 2 .0; 1/, then, of course, ˛ 2 .0; 1/ and S is a contraction. ut

Theorem 2.1.13. Let Ui W X ! X be nonexpansive for all i 2 I WD f1; 2; : : : ; mg,
and U WD UmUm�1 : : : U1. If Uj .X/ is bounded for at least one j 2 I , then
Fix U ¤ ;.

Proof. Let Uj .X/ be bounded for some j 2 I . Since Ui are nonexpansive, i 2 I;

the boundedness of Uj .X/ yields the boundedness of U.X/. Therefore, Y WD
cl conv U.X/ is closed, convex and bounded. Since U.X/ � X and X is closed
and convex, we have Y � X . The operator U jY maps a closed, convex and
bounded subset Y into itself. By the Browder–Göhde–Kirk Fixed Point Theorem,
the operator U jY has a fixed point z 2 Y . Of course, U z D U jY .z/ D z. ut
Theorem 2.1.14. Let Ui W X ! H, i 2 I WD f1; 2; : : : ; mg, be nonexpansive
operators with a common fixed point and U WD P

i2I !i Ui with w 2 ri �m. Then

Fix U D
\

i2I

Fix Ui .

Proof. The inclusion
T

i2I Fix Ui � Fix U is always true (see Remark 2.1.1). Now
we show that the converse inclusion also holds. Let z 2 Fix U and u 2 Ti2I Fix Ui .
If z D u, then, of course, z 2 T

i2I Fix Ui . Otherwise, for z ¤ u, by the convexity
of the norm and by the nonexpansivity of Ui , i 2 I , we have
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kz � uk D kU z � uk

D
�
�
�
�
�

X

i2I

!i Ui z � u

�
�
�
�
�

D
�
�
�
�
�

X

i2I

!i .Uiz � u/

�
�
�
�
�

�
X

i2I

!i kUiz � uk D
X

i2I

!i kUiz � Uiuk

�
X

i2I

!i kz � uk D kz � uk .

Consequently,

�
�
�
�
�

X

i2I

!i .Uiz � u/

�
�
�
�
�

D
X

i2I

!i kUiz � uk D
X

i2I

!i kz � uk . (2.8)

Since !i > 0 for all i 2 I , the first equality in (2.8) yields a positive linear
dependence of all pairs of vectors Ui z � u and Uj z � u, i; j 2 I , i ¤ j , i.e.,

kUi z � uk .Uj z � u/ D �
�Uj z � u

�
� .Ui z � u/. (2.9)

The second equality in (2.8), together with the inequality kUiz � uk � kz � uk,
i 2 I , and the assumption !i > 0, i 2 I , yield

kUiz � uk D kz � uk (2.10)

for all i 2 I . Since z ¤ u, we have Uiz ¤ u, i 2 I . Now, it follows from (2.9)
and (2.10) that Ui z D v for all i 2 I and for some v 2 H. Consequently,

z D U z D
X

j 2I

!j Uj z D
X

j 2I

!j v D v D Ui z,

for all i 2 I , i.e., z 2 Ti2I Fix Ui . ut

2.1.2 Quasi-nonexpansive Operators

Definition 2.1.15. We say that an operator T W X ! H is:

(i) Fejér monotone (FM) with respect to a nonempty subset C � X if

kT x � zk � kx � zk

for all x 2 X and z 2 C ,
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x

y

z

x+ y

2

Fig. 2.1 Equivalence (2.11)

(ii) Strictly Fejér monotone with respect to a nonempty subset C � X if

kT x � zk < kx � zk
for all x … C and z 2 C .

Remark 2.1.16. Because of the following obvious equivalence

kz � yk � kz � xk ”
�

z � y C x

2
; y � x

�

� 0 (2.11)

for arbitrary x; y; z 2 H (see Fig. 2.1), an operator T W X ! H is Fejér monotone
with respect to C if and only if

�

z � T x � x

2
; T x � x

�

� 0. (2.12)

Furthermore, T is strictly Fejér monotone if and only if inequality (2.12) is strict
for all x … C . We have not supposed that C is closed convex in Definition 2.1.15.
Inequality (2.12) yields, however, that if T is (strictly) Fejér monotone with respect
to C , then T is (strictly) Fejér monotone with respect to conv C . Furthermore, the
continuity of the norm yields that if T is Fejér monotone with respect to C , then T

is Fejér monotone with respect to cl C . Therefore, we can suppose, without loss of
generality, that C is closed convex in Definition 2.1.15 (i) and that C is convex in
Definition 2.1.15 (ii).

There exists the largest subset, with respect to which an operator T is Fejér
monotone. This subset is closed and convex, as follows from the following lemma.

Lemma 2.1.17. Let T W X ! H. If the subset

Fej T WD
\

x2X

�

z 2 X W
�

z � T x C x

2
; T x � x

�

� 0

�

(2.13)

is nonempty, then Fej T is the largest subset, with respect to which T is Fejér
monotone.
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Proof. The assertion follows directly from the equivalence (2.11). ut
Remark 2.1.18. Because of frequent use we state some obvious properties of Fejér
monotone operators:

(i) If T is (strictly) Fejér monotone with respect to a nonempty subset C � H,
then for an arbitrary � 2 .0; 1/ its relaxation T� is also (strictly) Fejér
monotone with respect to C .

(ii) If T is (strictly) Fejér monotone with respect to a nonempty subset C � H,
then T is (strictly) Fejér monotone with respect to any nonempty subset
D � C .

(iii) Every composition and every convex combination of operators which are Fejér
monotone with respect to a nonempty subset C � H is Fejér monotone with
respect C .

Definition 2.1.19. We say that an operator T W X ! H having a fixed point is:

(i) Quasi-nonexpansive (QNE) if T is Fejér monotone with respect to Fix T , i.e.,

kT x � zk � kx � zk

for all x 2 X and z 2 Fix T ,
(ii) Strictly quasi-nonexpansive (sQNE) if T is strictly Fejér monotone with

respect to Fix T , i.e.,
kT x � zk < kx � zk

for all x … Fix T and z 2 Fix T ,
(iii) C -strictly quasi-nonexpansive (C -sQNE), where C ¤ ; and C � Fix T , if T

is quasi-nonexpansive and

kT x � zk < kx � zk

for all x … Fix T and z 2 C .

For an operator T having a fixed point the following relation is clear:

T is sQNE H) T is C -sQNE

where C � Fix T . Furthermore, by definition,

T is Fix T -sQNE H) T is sQNE.

The metric projection onto a closed convex subset is a typical example of a strictly
quasi-nonexpansive operator.

A nonexpansive and strictly Fejér monotone operator is also called attracting
(see [22, Definition 2.1]). Yamada and Ogura use the name an attracting quasi-
nonexpansive operator for a strictly quasi-nonexpansive one (see [346, page
623]). Vasin and Ageev call these operators strongly Q-quasi-nonexpansive
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(see [333, Definition 2.2]). Reich and Zaslavski define a more general operator
than the strictly quasi-nonexpansive one and call it an F -attracting mapping,
where F D Fix T (see [297, Sect. 1]). A continuous strictly quasi-nonexpansive
operator is also called a paracontraction (see, [164, Definition 1]). The class of
quasi-nonexpansive operators is denoted in [126, page 161] by F0. Properties
of quasi-nonexpansive operators in metric spaces have been intensively studied
since 1969 (see, e.g., [145, 148, 283], [50, Sect. 1], [113]), but the name quasi-
nonexpansive was introduced by Dotson [147].

Lemma 2.1.20. A nonexpansive operator U W X ! H with a fixed point is quasi-
nonexpansive.

Proof. Let U be nonexpansive and z 2 Fix U . Then

kUx � zk D kUx � U zk � kx � zk ,

i.e., U is quasi-nonexpansive. ut
It is clear that the class of nonexpansive operators having a fixed point is an essential
subclass of quasi-nonexpansive operators, because a quasi-nonexpansive operator
needs not to be continuous. Moreover, a quasi-nonexpansive operator needs not to
be nonexpansive even if it is continuous (see Exercise 2.5.2). In this section we
present properties of the family of quasi-nonexpansive operators. In further parts of
the book we show that these operators play an important role in iterative methods
for fixed point problems.

The following lemma gives a relation between the subset Fej T and the subset
Fix T for an operator T W X ! H (cf. [24, Proposition 2.6 (ii)]).

Lemma 2.1.21. For any operator T W X ! H the inclusion Fej T � Fix T holds.
If Fix T ¤ ; and T is quasi-nonexpansive, then the converse inclusion also holds.
Consequently, the subset of fixed points of a quasi-nonexpansive operator is closed
and convex.

Proof. If Fej T D ;, then the first part of the assertion is obvious. Now let
Fej T ¤ ; and w 2 Fej T . Then, for z D x D w in (2.13), we obtain

0 � hw � T w C w

2
; T w � wi

D �1

2
kT w � wk2 � 0,

i.e., T w D w. Therefore, Fej T � Fix T . Now suppose that Fix T ¤ ; and that
T is quasi-nonexpansive, i.e., T is Fejér monotone with respect to Fix T . Then,
Lemma 2.1.17 yields the inclusion Fix T � Fej T , which together with the first
part of the lemma gives Fix T D Fej T . The convexity and the closedness of Fix T

follows now from Lemma 2.1.17 and from the fact that the intersection of closed
half-spaces is closed and convex. ut
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Fig. 2.2 Nonconvex Fix T

for a Fejér monotone
operator T

Remark 2.1.22. It follows from Remark 2.1.18 (ii), Lemmas 2.1.17 and 2.1.21 that
a quasi-nonexpansive operator T W X ! X is Fejér monotone with respect to any
nonempty subset of Fix T . Therefore, we will restrict our further consideration of
Fejér monotone operators to quasi-nonexpansive ones. Note, however, that without
the quasi nonexpansivity of T the equality Fix T D Fej T needs not to be true. In
this case, Fix T needs not to be convex, even if T is Fejér monotone.

Example 2.1.23. Let H D R
2, X WD Œa; b� � R for �1 � a � b � C1

and h W X ! RC be a function with infx2Œa;b� h.x/ D 0. Define the operator T W
X ! R

2 by

T x WD
�

x if j�2j � h.�1/

.�1; 0/ if j�2j > h.�1/,

where x D .�1; �2/ (see Fig. 2.2).
The reader may check that Fej T D Œa; b� � f0g and that Fix T D fx 2 X W j�2j �
h.�1/g. If h is positive in at least one point, then Fej T ¤ Fix T . If, moreover, h is
not concave, then Fix T is not convex.

Let Ui W X ! X , i 2 I WD f1; 2; : : : ; mg, and:

(i) U WD P
i2I !i Ui , where w D .!1; !2; : : : ; !m/ 2 �m or

(ii) U WD UmUm�1 : : : U1.

As we observed before, the following inclusion holds

\

i2I

Fix Ui � Fix U (2.14)

(see Remark 2.1.1) and the converse inclusion holds in case (i) when all Ui ,
i 2 I , are nonexpansive operators with a common fixed point and w 2 ri �m (see
Theorem 2.1.14). It turns out that, in both cases (i) and (ii), the inclusion converse
to (2.14)) is true for strictly quasi-nonexpansive operators (see [22, Proposition
2.12], where the property was formulated for attracting operators). In case (i) this
property is also true for a more general form of the operator U D P

i2I !i U , where
the weights !i , i 2 I , may depend on x.
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Definition 2.1.24. A function w W X ! �m, with w.x/ D .!1.x/; : : : ; !m.x// is
called a weight function.

Definition 2.1.25. Let Ui W X ! H, i 2 I . We say that the weight function w W
X ! �m is appropriate with respect to the family fUigi2I or, shortly, appropriate,
if for any x … Ti2I Fix Ui there exists an index j 2 I such that

!j .x/ k Uj x � x k ¤ 0. (2.15)

Denote
I.x/ WD fi 2 I W x … Fix Ui g (2.16)

for a family of operators Ui W X ! H, i 2 I . The subset I.x/ is called a subset of
violated constraints. Note that w is appropriate if and only if

wj .x/ > 0 for some j 2 I.x/ (2.17)

and for any x … Ti2I Fix Ui (or, equivalently, for any x 2 H such that I.x/ ¤ ;).
A weight function w W X ! ri �m is appropriate with respect to any family of

operators fUi gi2I if:

(i) w 2 ri �m is a vector of constant weights (this case was considered in [22,
Proposition 2.12]), or if

(ii) wi .x/ > 0 for all x … Fix Ui and for all i 2 I .

It is clear that property (2.15) is weaker than conditions (i) and (ii) above.
The following theorem extends important results of [22, Proposition 2.12],

where C D T
i2I Fix Ui and only constant weights are considered (see also [25,

Proposition 2.5] for a related result). These extended results will be applied in
further parts of the book.

Theorem 2.1.26. Let the operators Ui W X ! X , i 2 I , with
T

i2I Fix Ui ¤ ;,
be C -strictly quasi-nonexpansive, where C � T

i2I Fix Ui , C ¤ ;. If U has one of
the following forms:

(i) U WD P
i2I !i Ui and the weight function w W X ! �m is appropriate,

(ii) U WD UmUm�1 : : : U1,

then
Fix U D

\

i2I

Fix Ui (2.18)

and U is C -strictly quasi-nonexpansive.

Proof. The inclusion
T

i2I Fix Ui � Fix U is obvious. Now we show that Fix U �T
i2I Fix Ui . This inclusion is clear if

T
i2I Fix Ui D X . Now suppose that x …T

i2I Fix Ui . Let z 2 T
i2I Fix Ui . If z 2 C , then the C -strict quasi nonexpansivity

of Ui , i 2 I , yields

kUix � zk < kx � zk for any i 2 I.x/: (2.19)
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(i) Let Ux D P
i2I !i .x/Ui x, where the weight function w W X ! �m is

appropriate. Then the convexity of the norm, (2.19) and (2.15) yield

kUx � zk D
�
�
�
�
�

X

i2I

!i .x/.Ui x � z/

�
�
�
�
�

�
X

i2I

!i .x/ kUix � zk �
X

i2I

!i .x/ kx � zk D kx � zk ,

where the second inequality is strict if z 2 C .
(ii) Let j WD minfi 2 I W x … Fix Uig. Then we have Uj Uj �1 : : : U1x D Uj x

and (2.19) yields

kUx � zk D kUm : : : U1x � zk
D �
�Um : : : Uj x � z

�
�

� �
�Um�1 : : : Uj x � z

�
�

� : : : � �
�Uj x � z

�
� � kx � zk ,

where the latter inequality is strict if z 2 C .

Now it is clear that x … Fix U because, otherwise, for z 2 C , in both cases (i)
and (ii) we would obtain

kx � zk D kUx � zk < kx � zk ,

a contradiction. We have proved that Fix U � T
i2I Fix Ui . Hence, (2.18) holds

and, in both cases (i) and (ii), U is C -strictly quasi-nonexpansive. ut
Note that equality (2.18) needs not to be true for nonexpansive operators, even if
they have a common fixed point.

Example 2.1.27. (cf. [22, Remark 2.11]) Let X � H be a subspace with dim X > 0.
Let Ui W X ! X , Ui WD � Id, i D 1; 2. We have U2U1 D Id, consequently,
Fix.U2U1/ D X , but Fix U1 \ Fix U2 D f0g.

The assumption on the C -strict quasi nonexpansivity in Theorem 2.1.26 (i) can
be weakened. In this case it suffices to suppose that all Ui are quasi-nonexpansive,
i 2 I , and at least one of them is C -strictly quasi-nonexpansive. The assumption
that the weight function w is appropriate should be replaced in this case by a stronger
one, namely: wj .x/ > 0 for all x such that I.x/ ¤ ; and for all j 2 I.x/. We leave
the proof of this fact to the reader.

A stronger version of the first part of Theorem 2.1.26 (ii) for two operators is
stated below (cf. [346, Proposition 1(d) (i)]).
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Theorem 2.1.28. Let S W X ! X be quasi-nonexpansive, T W X ! X be
strictly quasi-nonexpansive and Fix S \ Fix T ¤ ;. Then Fix ST D Fix TS D
Fix S \ Fix T . Furthermore, ST is quasi-nonexpansive and TS is strictly quasi-
nonexpansive.

Proof. The inclusions Fix S \ Fix T � Fix ST and Fix S \ Fix T � Fix TS are
clear.

(i) We prove that Fix ST � Fix S \Fix T . The inclusion is obvious if Fix ST D ;.
Suppose that Fix ST ¤ ; and let x 2 Fix ST be such that x … Fix S \ Fix T .
We consider two cases:

(a) x 2 Fix T . Then x D ST x D Sx, i.e., x 2 Fix S . Therefore, x 2 Fix S \
Fix T .

(b) x … Fix T . Let z 2 Fix S \ Fix T . By the quasi nonexpansivity of S and by
the strict quasi nonexpansivity of T , we have

kx � zk D kST x � zk � kT x � zk < kx � zk .

In both cases we obtain a contradiction, which proves that Fix ST �
Fix S \ Fix T .

(ii) We prove that Fix TS � Fix T \Fix S . The inclusion is obvious if Fix TS D ;.
Suppose that Fix TS ¤ ; and let x 2 Fix TS be such that x … Fix T \ Fix S .
Consider two cases:

(a) Sx 2 Fix T . Then x D TSx D Sx, consequently, x 2 Fix S . Now we
have x D Sx 2 Fix T , i.e., x 2 Fix T \ Fix S .

(b) Sx … Fix T . Let z 2 Fix T \ Fix S . By the strict quasi nonexpansivity of
T and by the quasi nonexpansivity of S , we have

kx � zk D kTSx � zk < kSx � zk � kx � zk .

In both cases we obtain a contradiction, which proves that Fix TS �
Fix T \ Fix S .

Let now z 2 Fix TS D Fix T \ Fix S and x 2 X . We have

kST x � zk � kT x � zk � kx � zk ,

i.e., ST is quasi-nonexpansive. Furthermore,

kTSx � zk � kSx � zk � kx � zk ,

where the second inequality is strict if x … Fix S and the first one is strict if x 2
Fix S and x … Fix T . Hence, TS is strictly quasi-nonexpansive. ut
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cl conv C
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Fig. 2.3 Pcl conv C is a
separator of C

Corollary 2.1.29. Let U WD UmUm�1 : : : U1, where U1; U2; : : : ; Um�1 W X ! X

are quasi-nonexpansive, Um W X ! X is strictly quasi-nonexpansive andT
i2I Fix Ui ¤ ;. Then Fix U D T

i2I Fix Ui and U is strictly quasi-nonexpansive.

Proof. The corollary follows from Theorem 2.1.28. We leave to the reader an easy
proof by induction with respect to m. ut
The assumption of Theorem 2.1.28 that T is strictly quasi-nonexpansive is essen-
tial. Note that the composition of quasi-nonexpansive operators needs not to
be quasi-nonexpansive (see Example 2.1.52). Furthermore, the assumptions of
Theorem 2.1.28 do not yield the strict quasi nonexpansivity of the operator ST

(see Example 2.1.54).

2.1.3 Cutters and Strongly Quasi-nonexpansive Operators

Definition 2.1.30. Let x 2 H. We say that y 2 H separates a subset C � H from
x if

hx � y; z � yi � 0

for all z 2 C . We say that an operator T W X ! H is a separator of a subset C � X

or T separates a subset C , if y WD T x separates C from x for all x 2 H. We say
that T is an ˛-relaxed separator of C , where ˛ 2 Œ0; 2�, if T is an ˛-relaxation of a
separator of C . Let T have a fixed point. We say that T is a cutter if T is a separator
of Fix T , i.e.,

hx � T x; z � T xi � 0 (2.20)

for all x 2 X and all z 2 Fix T . We say that T is an ˛-relaxed cutter, where
˛ 2 Œ0; 2�, if T is an ˛-relaxed separator of Fix T .

For any nonempty C � H the projection Pcl conv C is a separator of C (see
Fig. 2.3). In general, a separator of C is not uniquely determined.

The name cutter expresses the fact that, for any x … Fix T , the hyperplane H.x�
T x; hT x; x � T xi/ cuts the space into two half-spaces, one of which contains the
point x while the other one contains the subset Fix T (see Fig. 2.4). In the literature
one can find different names for cutters. Bauschke and Combettes call the class of
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cutters a T -class (see [24, Definition 2.2] and [121, Definition 2.1]). Yamada and
Ogura (see [346, Sect. B]) and Măruşter (see [254]) call the operators firmly quasi-
nonexpansive. Zaknoon, Segal and Censor denoted cutters as directed operators (see
[104–106, 307, 356]). In [69] these operators were called separating operators. The
name cutter was proposed by Cegielski and Censor in [70].

Note that a separator and, in particular, a cutter need not to be continuous
operators.

Remark 2.1.31. Let T W X ! H have a fixed point. Then, by Lemma 1.2.5, the
operator T is a cutter if and only if

hT x � x; z � xi � kT x � xk2 (2.21)

holds for all x 2 X and for all z 2 Fix T (cf. [121, Proposition 2.3 (ii)]), and T is
an ˛-relaxed cutter, where ˛ 2 Œ0; 2�, if and only if

˛hT x � x; z � xi � kT x � xk2 (2.22)

holds for all x 2 X and for all z 2 Fix T . Furthermore, if T is a cutter, then
T jFix T D Id. Therefore, T is a cutter (respectively, an ˛-relaxed cutter) if and only
if inequality (2.21) (respectively, (2.22)) is satisfied for all x … Fix T and for all
z 2 Fix T . Relaxed cutters were also studied in [253, 255, 346] and in [249], where
they were called averaged quasi-nonexpansive mappings.

Remark 2.1.32. Let T W X ! H be a separator of a subset C � X . Then the
following obvious properties of T hold:

(i) T is a separator of the closed convex hull of C .
(ii) T is a separator of any subset D � C .

(iii) For an arbitrary � 2 Œ0; 1�, the relaxation T� of T is a separator of C .
(iv) C � Fix T .

Corollary 2.1.33. Let U W X ! H, T WD 1
2
.U C Id/ and C � X . Then:

(i) U is Fejér monotone with respect to C if and only if T is a separator of C .
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(ii) If Fix U ¤ ;, then U is quasi-nonexpansive if and only if T is a cutter.

Proof. The corollary follows easily from equivalence (2.11) (see [24, Proposition
2.3 (v),(vi)] for a different proof). ut
Corollary 2.1.34. Let T W X ! H and C � X . If T is Fejér monotone with
respect to C , then T is Fejér monotone with respect to the closed convex hull of C .

Proof. The corollary follows directly from Corollary 2.1.33 (i) and from Remark
2.1.32 (i). ut
By Remark 2.1.32 (iii), the right hand side of the equivalence in Corollary 2.1.33 (i)
can be written in the form: U� is a separator of C for all � 2 Œ0; 1

2
�. Similarly, the

right hand side of the equivalence in Corollary 2.1.33 (ii) can be written in the form:
U� is a cutter for all � 2 Œ0; 1

2
�. Corollary 2.1.33 (ii) can also be written equivalently

as follows:
U is quasi-nonexpansive if and only if there is a cutter S W X ! H and � 2 Œ0; 2�

such that U D S�.
A subset C � X for which the operator T W X ! H is a separator needs not to

be convex. However there exists the largest subset for which T is a separator, which
is closed and convex. This fact follows from the following lemma.

Lemma 2.1.35. Let T W X ! H. If the subset

Sep T WD
\

x2X

fz 2 X W hz � T x; x � T xi � 0g

is nonempty, then Sep T is the largest subset for which T is a separator. Further-
more, Sep T is a closed convex subset.

Proof. The first part of the lemma follows directly from Definition 2.1.30. The
second part follows from the fact that an intersection of closed convex subsets is
closed and convex. ut
If T is nonexpansive, then Fix T is a closed convex subset (see Proposition 2.1.11).
It turns out that cutters have the same property. The second part of the following
lemma was proved in [24, Proposition 2.6 (i)–(ii)].

Lemma 2.1.36. Let T W X ! H. The following inclusion holds

Sep T � Fix T . (2.23)

If T is a cutter, then a converse inclusion is also true. Hence, the subset of fixed
points of a cutter is closed and convex.

Proof. Let y 2 Sep T , i.e., hx � T x; y � T xi � 0 for all x 2 X . If we take x D y,
we get ky � Tyk � 0, and hence, Ty D y, i.e., y 2 Fix T . Now suppose that T is a
cutter and that y 2 Fix T . Then for any x 2 X we have hy �T x; x �T xi � 0g, i.e.,
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y 2 Sep T . Therefore, we have Sep T D Fix T . The subset Fix T is closed convex
as an intersection of closed convex subsets. ut
It follows from Remark 2.1.32 (ii) and from Lemmas 2.1.35 and 2.1.36 that a cutter
T W X ! X is a separator of any nonempty subset of Fix T . Therefore, we will
restrict our further considerations of separators to cutters. Note, however, that the
converse inclusion of (2.23) is not true in general (see Example 2.2.7). Hence, there
is a separator with a fixed point which is not a cutter.

It is an immediate consequence of the characterization of the metric projection
(see Theorem 1.2.4) that an operator T W H ! H is a metric projection onto a closed
convex subset if and only if T 2 D T and T is a cutter (a more general fact will be
presented in Theorem 2.2.5). In this case, we have T D PFix T . Even if a cutter
T is not idempotent, T is closely related to the metric projection. The following
corollary was proved in [121, Proposition 2.3 (iii)].

Corollary 2.1.37. Let T W X ! H be a cutter. Then, for any x 2 X , it holds

kT x � xk � kPFix T x � xk . (2.24)

Proof. If x 2 Fix T , then inequality (2.24) is obvious. Now let x … Fix T . Then it
follows from inequality (2.21) for z WD PFix T x together with the Cauchy–Schwarz
inequality that

kT x � xk � hT x � x; PFix T x � xi
kT x � xk � kPFix T x � xk

which completes the proof. ut
Definition 2.1.38. Let ˛ � 0 and assume that T W X ! H has a fixed point. We
say that T is ˛-strongly quasi-nonexpansive (˛-SQNE), if

kT x � zk2 � kx � zk2 � ˛ kT x � xk2 (2.25)

for all x 2 X and z 2 Fix T . If T satisfies (2.25) with ˛ > 0, then T is called
strongly quasi-nonexpansive (SQNE).

A property which is more general than the strong nonexpansivity was introduced
by Halperin [198, Sect. 2] and was called '-property, where ' W Œ0; 1/ ! Œ0; 1/ is
a nondecreasing function. If '.t/ D t2 for all t 2 Œ0; 1/, then '-property is equiva-
lent to the strong quasi-nonexpansivity. The notion strong quasi nonexpansivity was
introduced by Bruck [50, Sect. 1] for operators defined on a metric space. Strongly
quasi-nonexpansive operators are widely studied in the literature. Bauschke and
Borwein use the name strongly attracting operators for operators which are NE
and SQNE (see [22, Definition 2.1]). Reich and Zaslavski define a more general
operator and call it a uniformly F -attracting mapping, where F D Fix T (see
[297, Sect. 1]). Vasin and Ageev call the ˛-SQNE operators, where ˛ 2 .0; 1/,
Q-pseudocontractive operators (see [333, Definition 2.3]). Yamada and Ogura
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use the notation ˛-attracting quasi-nonexpansive for the ˛-SQNE operators [346].
Crombez denotes the class of ˛-SQNE operators by F˛ (see [126, pages 160–161])
and gives several equivalent conditions for T 2 F˛ (see [126, Theorem 2.1]).

It follows easily from the equivalence (a),(c) of Lemma 1.2.5 that an operator
T which has a fixed point is a cutter if and only if it is 1-strongly quasi-
nonexpansive. The following theorem extends this property to relaxations of T (cf.
[121, Proposition 2.3 (ii)]).

Theorem 2.1.39. Assume that T W X ! H has a fixed point and let � 2 .0; 2�.
Then T is a cutter if and only if its relaxation T� is 2��

�
-strongly quasi-nonexpansive,

i.e.,

kT�x � zk2 � kx � zk2 � 2 � �

�
kT�x � xk2 (2.26)

for all x 2 X and for all z 2 Fix T .

Proof. Since
T�x � x D �.T x � x/,

the properties of the inner product yield

kT�x � zk2 � kx � zk2 C 2 � �

�
kT�x � xk2

D kx � z C �.T x � x/k2 � kx � zk2 C �.2 � �/ kT x � xk2

D 2�.kT x � xk2 � hz � x; T x � xi/
D 2�hz � T x; x � T xi

for all x 2 X and for all z 2 C . The assertion follows directly from the equalities
above. ut
The following corollary is an equivalent formulation of Theorem 2.1.39.

Corollary 2.1.40. Assume that U W X ! H has a fixed point and let ˛ 2 .0; 2�.
Then U is an ˛-relaxed cutter if and only if U is 2�˛

˛
-strongly quasi-nonexpansive.

In general, a relaxation T� of a cutter T with � � 2 needs not to be strongly
quasi-nonexpansive. Nevertheless, the following proposition holds.

Proposition 2.1.41. Let T W X ! H be a cutter with int Fix T ¤ ; and � > 0.
Then for any z 2 int Fix T and x … Fix T it holds

kT�x � zk2 � kx � zk2 � �.2 C 2ı

kT x � xk � �/ kT x � xk2 , (2.27)

where ı > 0 is such that B.z; ı/ � Fix T . If X is bounded, then T� is int Fix T -
strictly quasi-nonexpansive for any � 2 .0; 2�.
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Proof. Let z 2 int Fix T and x … Fix T . Then w WD z � ı T x�x
kT x�xk 2 Fix T � X and

inequality (2.21) yields

kT�x � zk2 D kx C �.T x � x/ � zk2

D kx � zk2 C �2 kT x � xk2 � 2�hz � x; T x � xi
D kx � zk2 C �2 kT x � xk2

�2�hz � w; T x � xi � 2�hw � x; T x � xi
� kx � zk2 C �2 kT x � xk2

�2�ı kT x � xk � 2� kT x � xk2

D kx � zk2 � �.2 C 2ı

kT x � xk � �/ kT x � xk2 .

Let X be bounded and d > 0 be such that kT u � uk � d for any u 2 X . The
existence of such d follows from Corollary 2.1.37. Denote " WD 2ı

d
. Then (2.27)

yields
kT�x � zk2 � kx � zk2 � �.2 C " � �/ kT x � xk2 .

Consequently, T� is int Fix T -strictly quasi-nonexpansive for any � 2 .0; 2�. ut
The corollary below follows immediately from Proposition 2.1.41 and from
Theorem 2.1.26.

Corollary 2.1.42. Let Ui W X ! H, i 2 I be quasi-nonexpansive with C WDT
i2I Fix Ui ¤ ; and let U WD UmUm�1 : : : U1. If int C ¤ ;, then Fix U DT
i2I Fix Ui and U is int C -strictly quasi-nonexpansive.

An equivalent formulation of the following result appeared in [127, Theorem 3.2
(iii)].

Corollary 2.1.43. Assume that U W X ! H has a fixed point and let ˇ � 0. Then
U is ˇ-strongly quasi-nonexpansive if and only if U is a 2

ˇC1
-relaxed cutter.

Proof. It suffices to take ˛ D 2
ˇC1

in Corollary 2.1.40. ut
Remark 2.1.44. Assume that T W X ! H has a fixed point and is ˛-strongly
quasi-nonexpansive, where ˛ � 0.

(i) If ˛ D 0, then T is quasi-nonexpansive.
(ii) T is � -strongly quasi-nonexpansive for all � 2 Œ0; ˛�.

(iii) If ˛ > 0, then T is strictly quasi-nonexpansive. Therefore, all properties
of strictly quasi-nonexpansive operators are also valid for strongly quasi-
nonexpansive operators and for cutters.
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Fig. 2.5 Solution of (2.28) as
a function of �; � 2 .0; 2/

Cutters and strongly quasi-nonexpansive operators play an important role in
methods presented in further parts of the book. Therefore, we focus our attention
on the properties of these operators which enable us to construct new cutters or
strongly quasi-nonexpansive operators. Below, we show that a family of relaxed
cutters is closed under composition and under convex combination of operators
having a common fixed point. The first property of relaxed cutters follows from
the lemma below whose proof is left to the reader.

Lemma 2.1.45. Let �; � 2 .0; 2/. The unique solution � of the equation

 
1 � 2

�

2

!2

D .
1

�
� 1

�
/.

1

�
� 1

�
/ (2.28)

is

� D 2

. �
2��

C �

2��
/�1 C 1

D 4.� C � � ��/

4 � ��
. (2.29)

Moreover,

0 < minf�; �g <
4 minf�; �g

minf�; �g C 2
� � � 4 maxf�; �g

maxf�; �g C 2
< 2.

A solution of (2.28) is illustrated in Fig. 2.5.

Theorem 2.1.46. Let T W X ! X be a �-relaxed cutter, U W X ! X be a �-
relaxed cutter, where �; � 2 .0; 2�, and let Fix T \ Fix U ¤ ;. If �; � 2 .0; 2/,
then U T is a � -relaxed cutter, where � is given by (2.29). If � D 2 and � < 2 or
� D 2 and � < 2, then U T is a quasi-nonexpansive operator or, equivalently, U T

is a 2-relaxed cutter.
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Proof. Suppose that T is a �-relaxed cutter and that U is a �-relaxed cutter. Take
a WD T x � x and b WD U T x � T x. Then it follows from inequality (2.22) that
hz � x; ai � 1

�
kak2 and hz � T x; bi � 1

�
kbk2 for any z 2 Fix U \ Fix T .

Let �; � 2 .0; 2/ and � be defined by (2.29). Then Lemma 2.1.45 yields

hz � x; UTx � xi � 1

�
kU T x � xk2

D hz � x; a C bi � 1

�
ka C bk2

D hz � x; ai C hz � x; bi � 1

�
ka C bk2

D hz � x; ai C hz � T x; bi C ha; bi � 1

�
ka C bk2

� 1

�
kak2 C 1

�
kbk2 C ha; bi � 1

�
ka C bk2

D .
1

�
� 1

�
/ kak2 C .

1

�
� 1

�
/ kbk2 C .1 � 2

�
/ha; bi

D
�
�
�
�
�

s
1

�
� 1

�
a �

s
1

�
� 1

�
b

�
�
�
�
�

2

� 0.

Applying inequality (2.22) we obtain that U T is a � -relaxed cutter. If � D 2 and
� < 2 or � D 2 and � < 2, then U T is quasi-nonexpansive by Theorem 2.1.28. ut
The following result is due to Yamada and Ogura (see [346, Proposition 1(d)]).

Corollary 2.1.47. Let T; U W X ! X have a common fixed point and 	; 
 > 0. If
T is 	-SQNE and U is 
-SQNE, then U T is ı-SQNE, where

ı D 1
1
	

C 1



. (2.30)

Proof. Suppose that T is 	-SQNE and U is 
-SQNE. It follows from Corol-
lary 2.1.43 that T is a �-relaxed cutter and that U is a �-relaxed cutter, where
� D 2

1C	
and � D 2

1C

. By Theorem 2.1.46 the operator U T is a � -relaxed cutter,

where

� D 2

. �
2��

C �

2��
/�1 C 1

D 2

. 1
	

C 1



/�1 C 1
.

Corollary 2.1.40 yields now that U T is ı-SQNE, where ı is given by (2.30). ut
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Theorem 2.1.48. Let Ti W X ! X be an ˛i -relaxed cutter, where ˛i 2 .0; 2/, i 2
I WD f1; 2; : : : ; mg, or, equivalently, Ti be ˇi -strongly quasi-nonexpansive, where
ˇi D 2�˛i

˛i
2 .0; C1/, i 2 I . Let

T
i2I Fix Ti ¤ ; and Um WD TmTm�1 : : : T1.

Then:

(i) The operator Um is a �m-relaxed cutter, with

�m D 2

. ˛1

2�˛1
C ˛2

2�˛2
C : : : C ˛m

2�˛m
/�1 C 1

. (2.31)

(ii) The operator Um is ım-strongly quasi-nonexpansive, with

ım D 1
1
ˇ1

C 1
ˇ2

C : : : C 1
ˇm

. (2.32)

Moreover,

0 < min
i2I

˛i <
2m mini2I ˛i

.m � 1/ mini2I ˛i C 2
� �m � 2m maxi2I ˛i

.m � 1/ maxi2I ˛i C 2
< 2

(2.33)

and

0 <
mini2I ˇi

m
� ım � maxi2I ˇi

m
. (2.34)

Proof. The assertion is obvious for m D 1. Note that �m D 2
ımC1

and that
Corollary 2.1.43 yields the equivalence of conditions (i) and (ii). We prove by
induction with respect to m that these conditions hold for any m � 2.

10 If m D 2, then conditions (i) and (ii) follow directly from Theorem 2.1.46 and
from Corollary 2.1.47.

20 Suppose that (ii) is true for some m D k. Consequently, Uk is ık-SQNE. It
follows now from Corollary 2.1.47 that the operator UkC1 D TkC1Uk is ı-SQNE,
where

ı D 1
1
ık

C 1
ˇkC1

D 1
1
ˇ1

C 1
ˇ2

C : : : C 1
ˇk

C 1
ˇkC1

D ıkC1.

Now, for m D k C1, equality (2.31) follows from the above mentioned equivalence
of (i) and (ii).

Hence, we have proved that conditions (i) and (ii) hold for all m � 1. Both
inequalities in (2.34) follow immediately from equality (2.32). Now we have

�m D 2

ım C 1
� 2

mini2I ˇi

m
C 1

D 2

mini2I
2�˛i

˛i

m
C 1

D 2m maxi2I ˛i

.m � 1/ maxi2I ˛i C 2
< 2.
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In a similar way one can prove that

�m � 2m mini2I ˛i

.m � 1/ mini2I ˛i C 2
> min

i2I
˛i > 0

which completes the proof. ut
Bauschke and Borwein proved that a composition of ˇi -SQNE operators with a
common fixed point is ˇ-SQNE for ˇ WD mini2I ˇi

2m�1 (see [22, Theorem 2.10 (ii)]). It is

clear that this result is weaker than Theorem 2.1.48 (ii), because ˇ � mini2I ˇi

m
� ım.

Note that the first inequality is strict for m > 2 and that the other one is strict if
ˇi ¤ ˇj for at least one pair i; j 2 I .

Corollary 2.1.49. Let Ui W X ! H be cutters with a common fixed point, i 2
I WD f1; 2; : : : ; mg, and w W X ! �m be an appropriate weight function. Then the
operator U WD P

i2I !i Ui is a cutter.

Proof. Let U WD P
i2I !i Ui . It is clear that a cutter is strictly quasi-nonexpansive

(see Remark 2.1.44 (iii)). Therefore, it follows from Theorem 2.1.26 (i) that
Fix U D T

i2I Fix Ui . By Remark 2.1.31 and by the convexity of the function k�k2,
we have

hUx � x; z � xi D
X

i2I

!i .x/hUix � x; z � xi

�
X

i2I

!i .x/ kUi x � xk2

�
�
�
�
�
�

X

i2I

!i .x/Ui x � x

�
�
�
�
�

2

D kUx � xk2

for all x 2 X and all z 2 Fix U . Again, by Remark 2.1.31, U is a cutter. ut
Theorem 2.1.50. Let Ti W X ! H be an ˛i -relaxed cutter, where ˛i 2 .0; 2/,
i 2 I WD f1; 2; : : : ; mg, or, equivalently, Ti be ˇi -strongly quasi-nonexpansive,
where ˇi D 2�˛i

˛i
2 .0; C1/, i 2 I . Let

T
i2I Fix Ti ¤ ; and w 2 �m. Then the

operator T WD P
i2I !i Ti is an ˛-relaxed cutter with

˛ WD
X

i2I

!i ˛i . (2.35)

Consequently, T is ˇ-SQNE, with

ˇ WD .
X

i2I

!i

ˇi C 1
/�1 � 1. (2.36)
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Moreover,

0 < min
i2I

˛i � ˛ � max
i2I

˛i < 2 (2.37)

and

0 < min
i2I

ˇi � ˇ � max
i2I

ˇi . (2.38)

Proof. Without loss of generality we suppose that w 2 ri �m. Let Ui WD .Ti /˛�1
i

,
i.e.,

Ui D Id C 1

˛i

.Ti � Id/.

It is clear that Ui are cutters, i 2 I . Let ˛ be defined by (2.35) and �i WD !i ˛i

˛
,

i 2 I . Note that v D .�1; �2; : : : ; �m/ 2 ri �m, consequently, v is appropriate.
Define U WD P

i2I �i Ui . By Corollary 2.1.49, the operator U is a cutter. We have

U D
X

i2I

�iUi D Id C
X

i2I

�i

˛i

.Ti � Id/ D Id C 1

˛

X

i2I

!i .Ti � Id/ D Id C 1

˛
.T � Id/,

i.e., T D Id C˛.U �Id/ and T is an ˛-relaxed cutter. The second part of the theorem
follows now immediately from Corollaries 2.1.40 and 2.1.43. Inequalities in (2.37)
are obvious and inequalities in (2.38) follow easily from (2.36). ut
Bauschke and Borwein proved that a convex combination of ˇi -SQNE operators,
i 2 I , with a common fixed point is ˇ-SQNE, where ˇ WD mini2I ˇi (see [22,
Proposition 2.12]). By inequality (2.38) this result is weaker than Theorem 2.1.50.
Note that this inequality is strict if ˇi ¤ ˇj for at least one pair i; j 2 I for which
!i and !j are nonzero. The second part of Theorem 2.1.50 for m D 2 was proved
by Yamada and Ogura (see [346, Proposition 1(c)]).

The following important result extends Theorem 2.1.39.

Theorem 2.1.51. Let S W H ! X be nonexpansive, T W X ! H be a cutter and
� 2 .0; 2/. If Fix S \ Fix T ¤ ;, then, for any x 2 Fix S and z 2 Fix S \ Fix T , the
following estimations hold

kST�x � zk2 � kx � zk2 � �.2 � �/ kT x � xk2 (2.39)

and

kST�x � zk2 � kx � zk2 � 2 � �

�
kST�x � xk2 . (2.40)

Consequently, the operator ST� jFix S is 2��
�

-strongly quasi-nonexpansive.

Proof. Let x 2 Fix S and z 2 Fix S \ Fix T . Then the assumptions that S is
nonexpansive and T is a cutter yield
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Ux = U2U1x
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Fig. 2.6 Composition of
cutters needs not to be a cutter

kST�x � zk2 D kST�x � Szk2 � kT�x � zk2

D kx � zk2 C �2 kT x � xk2 � 2�hz � x; T x � xi
� kx � zk2 � �.2 � �/ kT x � xk2

D kx � zk2 � 2 � �

�
kT�x � xk2

� kx � zk2 � 2 � �

�
kST�x � Sxk2

D kx � zk2 � 2 � �

�
kST�x � xk2

which completes the proof. ut
Below we give several examples which show that a composition of quasi-
nonexpansive operators does not need to be quasi-nonexpansive, that a composition
of a strictly quasi-nonexpansive operator and a quasi-nonexpansive one does not
need to be strictly quasi-nonexpansive and that a composition of cutters does
not need to be a cutter, even if they have a common fixed point.

Example 2.1.52. Let X WD Œ�1; 1� � R, S; T W X ! X , S WD � Id and

T x WD
� �x if x D 1

1
2
x otherwise.

One can easily check that S; T are quasi-nonexpansive, Fix S D Fix T D f0g and
Fix ST D f0; 1g. The operator ST is not quasi-nonexpansive, because a subset of
fixed points of a quasi-nonexpansive operator is convex (see Lemma 2.1.21).

Example 2.1.53. Let X D H WD R
2, A WD fx 2 R

2 W he; xi � 1g, B WD fx 2 R
2 W

�2 � 0g, U1 WD PB , U2 WD PA and U WD U2U1. Then U1 and U2 are cutters and it
follows from Theorem 2.1.26 that Fix U D Fix U1 \ Fix U2 D A \ B ¤ ;. For x D
.0; �1/ and z D .1; 0/ 2 A \ B , we have Ux D . 1

2
; 1

2
/ and hx � Ux; z � Uxi D 1

2

(see Fig. 2.6). Therefore, U is not a cutter.
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Example 2.1.54. Let A; B � H be nonempty closed convex subsets and A   B .
Define S WD 2PA � Id and T WD PB . We have Fix S \ Fix T D A. It follows easily
from the characterization of the metric projection that PA and PB are cutters. By
Theorem 2.1.39, T is strictly quasi-nonexpansive and S is quasi-nonexpansive.
By Theorem 2.1.28, the operator ST is quasi-nonexpansive. Unfortunately, ST is
not strictly quasi-nonexpansive, because for any x 2 BnA and for z WD PAx it holds

kST x � zk D kSx � zk D kx � zk .

2.2 Firmly Nonexpansive Operators

Definition 2.2.1. We say that an operator T W X ! H is firmly nonexpansive
(FNE), if

hT x � Ty; x � yi � kT x � Tyk2 (2.41)

for all x; y 2 X . Let � 2 Œ0; 2�. We say that T W X ! H is �-relaxed firmly
nonexpansive (�-RFNE) or, shortly, relaxed firmly nonexpansive (RFNE) if T is a
�-relaxation of a firmly nonexpansive operator U , i.e., T D U� D .1 � �/ Id C�U .
If, furthermore, � 2 .0; 2/, then we say that T is strictly relaxed firmly nonexpan-
sive.

The definition of a firmly nonexpansive operator in a Hilbert space is due to
Browder (see [46]), who called it a firmly contractive operator. Bruck introduced the
name firmly nonexpansive for operators in a Banach space (see [49, Definition 6]).
In Hilbert spaces both definitions coincide, as we will show in Theorem 2.2.10.
Condition (vi) of this theorem is, actually, the definition of a firmly nonexpansive
operator proposed by Bruck.

The following lemma is obvious.

Lemma 2.2.2. Let T W X ! H and x; y 2 X . The following inequalities are
equivalent:

(i) hT x � Ty; x � yi � kT x � Tyk2,
(ii) hT x � Ty; .x � T x/ � .y � Ty/i � 0,

(iii) hTy � T x; x � T xi C hT x � Ty; y � Tyi � 0,
(iv) hTy � x; T x � xi C hT x � y; Ty � yi � kT x � xk2 C kTy � yk2.

It follows from Lemma 2.2.2 that inequality (2.41) defining a firmly nonexpan-
sive operator can be replaced by any inequality in (i)–(iv).

Corollary 2.2.3. Let � > 0. An operator S W X ! H is �-RFNE if and only if

hy � x; Sx � xi C hx � y; Sy � yi � 1

�
k.Sx � x/ � .Sy � y/k2 . (2.42)
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operator which is not FNE

Proof. Let S WD T� D Id C�.T � Id/ for a firmly nonexpansive operator T W
X ! H. Let x; y 2 X . It follows from the equivalence (i),(iv) in Lemma 2.2.2
and from the equality T D S��1 (see Remark 2.1.3) that S is �-RFNE if and only if

hTy � x; Sx � xi C hT x � y; Sy � yi � 1

�
.kSx � xk2 C kSy � yk2/.

Since Ty � x D y � x C 1
�
.Sy � y/ and T x � y D x � y C 1

�
.Sx � x/, the last

inequality is equivalent to

hy�x; Sx�xiChx�y; Sy�yiC 2

�
hSx�x; Sy�yi � 1

�
.kSx � xk2CkSy � yk2/.

The latter inequality is equivalent to (2.42). ut

2.2.1 Basic Properties of Firmly Nonexpansive Operators

Theorem 2.2.4. A firmly nonexpansive operator T W X ! H is monotone and
nonexpansive.

Proof. Let T be firmly nonexpansive. By the Cauchy–Schwarz inequality, we have

kT x � Tyk � kx � yk � hT x � Ty; x � yi � kT x � Tyk2 � 0,

for all x; y 2 X , which yields the monotonicity and the nonexpansivity of T . ut
The converse of Theorem 2.2.4 is not true, e.g., the operator T W R2 ! R

2,

T x WD .�1 cos ' � �2 sin '; �1 sin ' C �2 cos '/

is nonexpansive and monotone for ' 2 .0; �=2/, but T is not firmly nonexpansive
(see Fig. 2.7).
Now we prove a property of firmly nonexpansive operators, which also appears
in Theorem 1.2.4. In particular, the characterization of the metric projection is,
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actually, a corollary of the following theorem which is due to Goebel and Reich
(see [185, pp. 43–44]).

Theorem 2.2.5. Let T W X ! H be an operator with a fixed point.

(i) If T is firmly nonexpansive, then T is a cutter, i.e.,

hz � T x; x � T xi � 0 (2.43)

for all x 2 X and z 2 Fix T .
(ii) If T is a projection, i.e., T .X/ D Fix T , then the implication converse to .i/ is

also true. In this case, T D PFix T .

Proof. (i) Let T be firmly nonexpansive, x 2 X and z 2 Fix T . By the equivalence
(i),(iii) in Lemma 2.2.2, we have

hTy � T x; x � T xi C hT x � Ty; y � Tyi � 0,

and for y D z 2 Fix T we obtain (2.43).
(ii) Suppose that T is a projection and that inequality (2.43) holds for all x 2 X

and z 2 Fix T . Let u; v 2 X . Taking x D u and z D T v in (2.43) we get

hT v � T u; u � T ui � 0, (2.44)

and, taking x D v and z D T u in (2.43), we get

hT u � T v; v � T vi � 0. (2.45)

Note that, in both cases, z 2 Fix T because T .X/ D Fix T . Therefore, the
characterization of the metric projection yields that T D PFix T . Summing up
inequalities (2.44) and (2.45) we get

hT u � T v; .T u � T v/ � .u � v/i � 0;

i.e., T is firmly nonexpansive (see equivalence (i),(ii) in Lemma 2.2.2). ut
Suppose that Fix T ¤ ;. It follows from the equivalence of (i) and (iii) in
Lemma 2.2.2 that inequality (2.41) for y D z 2 Fix T gives (2.43). Therefore,
for T being a cutter, inequality (2.41) is required for all x 2 X and all y 2 Fix T ,
while for T being firmly nonexpansive this inequality should hold for all x; y 2 X .

Remark 2.2.6. Neither a projection nor a separator of a nonempty subset C � H
need to be nonexpansive (note that a separator can even be discontinuous).
Furthermore, a nonexpansive separator and even a nonexpansive cutter need not
to be firmly nonexpansive (see Examples 2.2.7 and 2.2.8 below).
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Example 2.2.7. (cf. [204] and [78, Sect. 4.10]) Let a 2 H, kak D 1 and ˛ > 0.
Furthermore, let A WD fx 2 H W ha; xi D 0g, B1 WD fx 2 H W ha; xi D ˛g,
B2 WD fx 2 H W ha; xi D �˛g and B WD fx 2 H W jha; xij � ˛g. The subset
B is a band with a width of 2˛ and is bounded by two hyperplanes B1 and B2.
The hyperplane A cuts the band B into two bands bounded by A and B1 and by A

and B2. Define the operator T W H ! H as follows

T x D

8
ˆ̂
<

ˆ̂
:

PAx if jha; xij � 2˛

2PB1x � x if ˛ < ha; xi < 2˛

2PB2x � x if � 2˛ < ha; xi < �˛

x if jha; xij � ˛

(2.46)

Note that T projects onto A all points with the distance to A equal at least 2˛, T

reflects (with respect to the closest hyperplane B1 or B2) the points which do not
belong to the band B with the distance to A less than 2˛ and T does not move
the elements of the band B (see Fig. 2.8). The reader can easily check that T is
nonexpansive and that T is a separator of A but T is not firmly nonexpansive. Note
that Fix T D B and that T is not a cutter, i.e., it does not separate Fix T , but T

separates A (see Fig. 2.8).

Example 2.2.8. Let A WD R � f0g and B WD f0g � R be two subspaces of R2 and
T W R2 ! R

2 be defined by

T x WD Œ1 � �.x/�PAx C �.x/PBx,

where �.x/ D �2
1

�2
1 C�2

2

for x D .�1; �2/ 2 R
2 (see Fig. 2.9). We have PAx D .�1; 0/,

PBx D .0; �2/. Consequently,

T x D .
�1�

2
2

�2
1 C �2

2

;
�2

1 �2

�2
1 C �2

2

/

for x ¤ .0; 0/. Note that z WD .0; 0/ is the unique fixed point of T .
The operator T is a cutter, because

hz � T x; x � T xi D � �2
1 �2

2

�2
1 C �2

2

� 0
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for all x ¤ z. (Since the weight function w W R2 ! �2, w.x/ WD .1 � �.x/; �.x//

is appropriate, this fact follows also from Corollary 2.1.49). Let x; y ¤ .0; 0/.
A straightforward calculation shows that

kT x � Tyk2

kx � yk2
D �2

2 
2
2.�1 � 
1/2 C �2

1 
2
1.�2 � 
2/

2

.�2
1 C �2

2 /.
2
1 C 
2

2/Œ.�1 � 
1/2 C .�2 � 
2/2�

holds for all x D .�1; �2/ 2 R
2 and for all y D .
1; 
2/ 2 R

2, x ¤ y. If �1
1 D
�2
2 D 0, then, of course T x D Ty D .0; 0/. Suppose that 0 < �2

1 
2
1 � �2

2 
2
2. Then

we have

kT x � Tyk2

kx � yk2
D

.�1 � 
1/2 C �2
1 
2

1

�2
2 
2

2

.�2 � 
2/
2

.1 C �2
1

�2
2

/.1 C 
2
1


2
2

/Œ.�1 � 
1/2 C .�2 � 
2/2�
� 1.

If 0 < �2
2 
2

2 � �2
1 
2

1, then we have

kT x � Tyk2

kx � yk2
D

�2
2 
2

2

�2
1 
2

1

.�1 � 
1/2 C .�2 � 
2/
2

.1 C �2
2

�2
1

/.1 C 
2
2


2
1

/Œ.�1 � 
1/2 C .�2 � 
2/2�
� 1.

Therefore, T is nonexpansive. If we take x D . 1
2
; 1/ and y D .1; 1

2
/, then T x D

. 2
5
; 1

5
/, Ty D . 1

5
; 2

5
/ and

hT x � Ty; x � yi D �1

5
<

2

25
D kT x � Tyk2 .

Therefore, T is not firmly nonexpansive.

The following property of firmly nonexpansive operators (cf. [22, Lemma 2.4
(iv)]) is often used in applications.
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Corollary 2.2.9. Let T W X ! H be an operator with a fixed point and � 2
.0; 2�. If T is firmly nonexpansive, then its relaxation T� is 2��

�
-strongly quasi-

nonexpansive, i.e.,

kT�x � zk2 � kx � zk2 � 2 � �

�
kT�x � xk2 (2.47)

for all x 2 X and z 2 Fix T .

Proof. It follows from the first part of Theorem 2.2.5 that a firmly nonexpansive
operator having a fixed point is a cutter. Therefore, T� is 2��

�
-strongly quasi-

nonexpansive (see Theorem 2.1.39). ut

2.2.2 Relationships Between Firmly Nonexpansive
and Nonexpansive Operators

One can find in the literature several equivalent definitions of firmly nonexpansive
operators. The properties of these operators were studied by Zarantonello [357,
Sect. 1], Bruck [49, Sects. 2 and 3], Rockafellar [299], Bruck and Reich [51, Sect. 1],
Goebel and Reich [185, Chap. 1, Sect. 11], Reich and Shafrir [296], Goebel and Kirk
[184, Chap. 12], Bauschke and Borwein [22, Sects. 2 and 3], Byrne [56, Sect. 2], and
by Crombez [127, Sect. 2].

The class of firmly nonexpansive operators is included in the class of nonexpan-
sive ones (see Theorem 2.2.4). Further important relationships between these two
classes are also useful for the investigation of firmly nonexpansive operators. These
relationships are given in the following theorem.

Theorem 2.2.10. Let T W X ! H. Then the following conditions are equivalent:

(i) T is firmly nonexpansive.
(ii) T� is nonexpansive for any � 2 Œ0; 2�.

(iii) T has the form T D 1
2
.S C Id/; where S W X ! H is a nonexpansive operator.

(iv) Id �T is firmly nonexpansive.
(v) For all x; y 2 X it holds

kT x � Tyk2 � kx � yk2 � k.x � T x/ � .y � Ty/k2 . (2.48)

(vi) For all x; y 2 X and for any ˛ � 0 it holds

kT x � Tyk � k˛.x � y/ C .1 � ˛/.T x � Ty/k .

Proof. The equivalence (i),(iv) in Theorem 2.2.10 is obvious, because both
conditions can be written in the form hT x � Ty; .x � T x/ � .y � Ty/i � 0 for all
x; y 2 X . Nevertheless, we prove the following relations among (i)-(vi):

(i) ) (ii) ) (iii) ) (iv) ) (v) ) (i) , (vi).
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(i))(ii) Let T be firmly nonexpansive and x; y 2 X . By the definition of a firmly
nonexpansive operator, the Cauchy–Schwarz inequality and the nonexpansivity of
T (see Theorem 2.2.4), we have

kT�x � T�yk2 D k�T x C .1 � �/x � �Ty � .1 � �/yk2

D k�.T x � Ty/ C .1 � �/.x � y/k2

D �2.kT x � Tyk2 � hT x � Ty; x � yi/
C.2� � �2/hT x � Ty; x � yi C .1 � �/2 kx � yk2

� .2� � �2/hT x � Ty; x � yi C .1 � �/2 kx � yk2

� .2� � �2/ kT x � Tyk kx � yk C .1 � �/2 kx � yk2

� .2� � �2/ kx � yk2 C .1 � �/2 kx � yk2

D kx � yk2 ,

i.e., T� is nonexpansive.
(ii))(iii) This implication is obvious. It suffices to take S D T� for � D 2.
(iii))(iv) Let S be nonexpansive, T WD 1

2
.S C Id/ and G WD Id �T . Then we

have G D 1
2
.Id �S/ and

kGx � Gyk2 D hGx � Gy; x � yi C hGx � Gy; .Gx � Gy/ � .x � y/i
D hGx � Gy; x � yi

C1

4
h.Sx � Sy/ � .x � y/; .Sx � Sy/ C .x � y/i

D hGx � Gy; x � yi C 1

4
.kSx � Syk2 � kx � yk2/

� hGx � Gy; x � yi,

for all x; y 2 X .
(iv))(v) Let G WD Id �T be firmly nonexpansive. Then, for all x; y 2 X we

have

kT x � Tyk2 C k.Id �T /x � .Id �T /yk2

� kT x � Tyk2 C h.Id �T /x � .Id �T /y; x � yi
D kT x � Tyk2 � hT x � Ty; x � yi C kx � yk2

D �hT x � Ty; .x � T x/ � .y � Ty/i C kx � yk2

� kx � yk2 ,

i.e., (2.48) holds.
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(v))(i) Let x; y 2 X . If (2.48) holds, then, by the properties of the inner product,
we have

kT x � Tyk2 � kx � yk2 � k.x � y/ � .T x � Ty/k2

D � kT x � Tyk2 C 2hT x � Ty; x � yi,

i.e., T is firmly nonexpansive.
(i),(vi) Let x; y 2 X . The function h W RC ! RC defined by

h.˛/ D 1

2
k˛.x � y/ C .1 � ˛/.T x � Ty/k2

is convex as a composition of the convex function f .�/ D 1
2

k�k2 and an affine
function A W R ! H, A.˛/ D ˛.x � y/ C .1 � ˛/.T x � Ty/. Note that h.0/ D
1
2

kT x � Tyk2, h is differentiable and

h0.0/ D hT x � Ty; .x � y/ � .T x � Ty/i.

Since h is convex, we have

h.0/ � h.˛/ ” h0.0/ � 0

for all ˛ � 0, i.e.,

kT x � Tyk2 � k˛.x � y/ C .1 � ˛/.T x � Ty/k2

” hT x � Ty; x � yi � kT x � Tyk2

which completes the proof. ut
The same kind of correspondences between firmly nonexpansive operators and

nonexpansive ones (the equivalence (i),(iii) in Theorem 2.2.10) and between
cutters and quasi-nonexpansive operators (Corollary 2.1.33 (ii)) explain the name
firmly quasi-nonexpansive operators for cutters (see [346, page 624]).

Condition (ii) in Theorem 2.2.10 can be formulated equivalently as follows: (ii’)
T2 WD 2T � Id is nonexpansive.

The nonexpansivity of T2 and Lemma 2.1.12 (i) yield the nonexpansivity of T�

for all � 2 Œ0; 2�, because T� D .1 � �
2
/ Id C�

2
T2. Moreover, the assumption that T2

is nonexpansive is sufficient in the implication (ii))(iii) as follows from the proof.
Now we present a series of corollaries of Theorem 2.2.10.

Corollary 2.2.11. Let T W X ! H. The operator T is firmly nonexpansive if and
only if its relaxation T� is firmly nonexpansive for all � 2 Œ0; 1�.

Proof. Let T be firmly nonexpansive and � 2 Œ0; 1�. By the implication (i))(iii) in
Theorem 2.2.10 we obtain
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T� D .1 � �/ Id C�

2
.Id CS/ D 1

2
ŒId C.1 � �/ Id C�S�

for a nonexpansive operator S . Note that .1��/ Id C�S is nonexpansive as a convex
combination of nonexpansive operators (see Lemma 2.1.12 (ii)). Therefore, T� is
firmly nonexpansive by the implication (iii))(i) in Theorem 2.2.10. The sufficiency
of the condition is obvious. ut
Corollary 2.2.12. Let U W X ! H and � 2 Œ0; 2�. Then U is �-RFNE if and only
if U is �-RFNE for all � 2 Œ�; 2�.

Proof. Let U WD T� D Id C�.T � Id/, where T W X ! H is a firmly nonexpansive
operator, and � 2 Œ�; 2�. It is easy to see that

U D Id C�.T�=� � Id/:

The corollary follows now from the fact that T�=� is firmly nonexpansive (see
Corollary 2.2.11). ut
Corollary 2.2.13. Let X � H be a closed convex subset and S W X ! H. The
following conditions are equivalent:

(i) S is nonexpansive,
(ii) S D 2T � Id, where T W X ! H is a firmly nonexpansive operator.

Proof. (ii))(i) Let S WD 2T � Id for a firmly nonexpansive operator T . It follows
from the implication (i))(ii) in Theorem 2.2.10 that S is nonexpansive.

(i))(ii) Let S be nonexpansive and T WD 1
2
.S C Id/. By the implication

(iii))(i) in Theorem 2.2.10 the operator F is firmly nonexpansive. Furthermore,
S D 2T � Id. ut
Definition 2.2.14. (cf. [127, Definition 2.1]) We say that an operator U W X ! H
is �-firmly nonexpansive (�-FNE), where � > 0, if

kUx � Uyk2 � kx � yk2 � � k.x � Ux/ � .y � Uy/k2 .

Vasin and Ageev call a �-firmly nonexpansive operator for � 2 .0; 1/, a pseudo-
contractive operator (see [333, Definition 2.5]). In [127, Theorem 2.3] several
equivalent conditions for U to be �-FNE are presented.

By the equivalence (i),(v) of Theorem 2.2.10, an operator is firmly nonex-
pansive if and only if it is 1-firmly nonexpansive. Note, however, that there is a
difference between a �-RFNE operator and a �-FNE operator. Below, we present
the relationship between these two notions.

Corollary 2.2.15. Let � 2 .0; 2/. An operator U W X ! H is �-relaxed firmly
nonexpansive if and only if U is 2��

�
-firmly nonexpansive, i.e.,
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kUx � Uyk2 � kx � yk2 � 2 � �

�
k.x � Ux/ � .y � Uy/k2

for all x; y 2 X . If, furthermore, Fix U ¤ ;, then

kUx � zk2 � kx � zk2 � 2 � �

�
kUx � xk2

for all x 2 X and z 2 Fix U , i.e., U is 2��
�

-strongly quasi-nonexpansive.

Proof. Let U WD T� for a firmly nonexpansive operator T and x; y 2 X . Applying
the properties of the inner product we get for G WD Id �T

kUx � Uyk2 D k.1 � �/x C �T x � .1 � �/y � �Tyk2

D kx � y � �.Gx � Gy/k2

D kx � yk2 � 2�hx � y; Gx � Gyi C �2 kGx � Gyk2 .

Since x � Ux D x � T�x D �Gx, the equalities above yield

kUx � Uyk2 � kx � yk2 C 2 � �

�
k.x � Ux/ � .y � Uy/k2

D kUx � Uyk2 � kx � yk2 C �.2 � �/ kGx � Gyk2

D �2�.hx � y; Gx � Gyi � kGx � Gyk2/.

The first part of the corollary follows now from the equivalence (i),(iv) in
Theorem 2.2.10, and now the other part follows directly from the definition of an
˛-strongly quasi-nonexpansive operator. ut
Definition 2.2.16. Let ˛ 2 .0; 1/. We say that an operator T W X ! H is
˛-averaged or, shortly, averaged (AV) if

T D .1 � ˛/ Id C ˛S

holds for a nonexpansive operator S W X ! H.

Averaged operators were studied, e.g., by Mann [252], Krasnosel’skiı̆ [238],
Baillon et al. [14, Sect. 2]. In [56, Sect. 2], Byrne gives relationships between
averaged operators and inverse strongly monotone operators, i.e., operators G W
X ! H such that

hGx � Gy; x � yi � � kGx � Gyk2

for all x; y 2 X and for some constant � > 0.
Definition 2.2.16 states that an operator is averaged if and only if it is an under-

relaxation of a nonexpansive operator.
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Corollary 2.2.17. Let � 2 .0; 2/ and ˛ D �=2. An operator U W X ! H is
�-relaxed firmly nonexpansive if and only if U is ˛-averaged.

Proof. ()) Let T W X ! H be firmly nonexpansive and U WD T� D .1 � �/

Id C�T . By the implication (i))(iii) in Theorem 2.2.10 we have T D 1
2
.S C Id/

for a nonexpansive operator S W X ! H. Hence, U D .1 � ˛/ Id C ˛S , i.e., U is
˛-averaged.

(() Let U be ˛-averaged, i.e., U D .1�˛/ Id C ˛S for a nonexpansive operator
S and for ˛ D �=2 2 .0; 1/. By Corollary 2.2.13 we have

U D .1 � ˛/ Id C ˛.2T � Id/

D .1 � 2˛/ Id C2˛T

for a firmly nonexpansive operator T . Hence, U is the �-relaxation of T W X ! H
with � D 2˛ 2 .0; 2/. ut
Corollary 2.2.18. Let G W X ! H. Then G is firmly nonexpansive if and only if
Id ��G is averaged for any � 2 .0; 2/.

Proof. Necessity. Let G be firmly nonexpansive. We have

Id ��G D .1 � �=2/ Id C.�=2/Œ2.Id �G/ � Id�.

By the implications (i))(iv) and (i))(ii) in Theorem 2.2.10 the operator
2.Id �G/ � Id is nonexpansive. Consequently, the operator Id ��G is averaged.

Sufficiency. Let Id ��G be averaged for any � 2 .0; 2/. Then Id ��G is nonex-
pansive for any � 2 .0; 2/ and Id �2G is nonexpansive as a limit of nonexpansive
operators. Now, it follows from the implication (ii))(i) in Theorem 2.2.10 that G

is firmly nonexpansive. ut
Corollary 2.2.19. Let U W X ! H and � 2 .0; 2�. The operator U is �-relaxed
firmly nonexpansive if and only if its relaxation U� is firmly nonexpansive for � 2
Œ0; 1

�
�.

Proof. Take U WD T� for a firmly nonexpansive operator T W X ! H. Then the
claim follows from the equality U��1 D T (see Remark 2.1.3) and Corollary 2.2.11.
The converse implication is obvious. ut
The following corollary shows that the family of firmly nonexpansive operators is
closed under convex combination.

Corollary 2.2.20. Let Ti W X ! H, i 2 I WD f1; 2; : : : ; mg, be firmly nonexpan-
sive and w D .!1; !2; : : : ; !m/ 2 �m. Then the operator T WD P

i2I !i Ti is firmly
nonexpansive.

Proof. Let T WD P
i2I !i Ti . By the implication (i))(iii) in Theorem 2.2.10,

we have Ti D 1
2
.Si C Id/ for a nonexpansive operator Si , i 2 I . Observe
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that T D 1
2
.S C Id/ for S WD P

i2I !i Si . By Lemma 2.1.12 (i), the operator
S is nonexpansive. The corollary follows now from the implication (iii))(i) in
Theorem 2.2.10. ut
In Fig. 2.10 we shortly present important relationships among the FNE operators,
cutters, QNE operators SQNE operators and AV operators, which are proved in
Sects. 2.1.3, 2.2.1 and 2.2.2. In Fig. 2.10, T W X ! H and U WD I� D Id
C�.T � Id/ is its �-relaxation, where � 2 .0; 2/. We will extend this figure in
Sect. 3.9.

2.2.3 Further Properties of the Metric Projection

The basic facts concerning firmly nonexpansive operators presented in the previous
section yield further properties of the metric projection.

Theorem 2.2.21. Let C � H be a nonempty closed convex subset and PC W H ! H
be the metric projection onto C . Then the operator PC is:

(i) Idempotent, consequently Fix PC D C ,
(ii) A cutter,

(iii) Firmly nonexpansive,
(iv) Monotone and nonexpansive,
(v) Averaged.

Proof. (i) The property follows directly from the definition of the metric projec-
tion.

(ii) It follows from (i) and from the characterization of the metric projection (see
Theorem 1.2.4) that hz � PC x; x � PC xi � 0 for all x 2 H and for all z 2
C D Fix PC , which means that PC is a cutter.

(iii) The property follows directly from (i), (ii) and from Theorem 2.2.5 (ii).
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(iv) By Theorem 2.2.4, any firmly nonexpansive operator is monotone and nonex-
pansive. Therefore, the property follows from (iii).

(v) By the firm nonexpansivity of PC and by the implication (i))(iii) in The-
orem 2.2.10, we can write PC D 1

2
.S C Id/ for a nonexpansive operator

S W X ! H. Hence, PC is averaged.
ut

Definition 2.2.22. Let C � H be a nonempty closed convex subset. We call a
relaxation of the metric projection PC W H ! C a relaxed metric projection onto
the subset C and we denote it by PC;� or, shortly, by P�. If � < 1, then P� is called
an under-projection. If � > 1, then P� is called an over-projection. If � D 2, then
P� is called the reflection.

We have
PC;� D P� D Id C�.PC � Id/.

Corollary 2.2.23. Let C � H be a nonempty closed convex subset, � � 0 and
P� W H ! H be a relaxed metric projection. Then

(i) P� is a nonexpansive operator for all � 2 Œ0; 2�,
(ii) Fix P� D C for all � > 0,

(iii) For all x 2 H, z 2 C and � 2 .0; 2� the following inequality holds

kP�x � zk2 � kx � zk2 � 2 � �

�
kP�x � xk2 . (2.49)

Consequently, P� is 2��
�

-strongly quasi-nonexpansive for all � 2 .0; 2�.

Proof. Part (i) follows from the equivalence (i),(ii) in Theorem 2.2.10, because
PC is firmly nonexpansive (see Theorem 2.2.21 (iii)). Part (ii) is obvious, because
Fix PC D C . Part (iii) follows now from Corollary 2.2.9. ut
Corollary 2.2.24. Let C � H be a nonempty closed convex subset and x; y 2 H.
Then

kPC x � PC yk2 � kx � yk2 � k.PC x � x/ � .PC y � y/k2 (2.50)

� kx � yk2 � .kPC x � xk � kPC y � yk/2. (2.51)

In particular,
kPC x � zk2 � kx � zk2 � kPC x � xk2 (2.52)

for all x 2 H and z 2 C . Consequently, the metric projection PC W H ! C is
strongly quasi-nonexpansive.

Proof. By Theorem 2.2.21 (iii), the metric projection is firmly nonexpansive.
Therefore, inequalities (2.50) and (2.51) follow directly from the implication
(i))(v) in Theorem 2.2.10 and from the Cauchy–Schwarz inequality. The second
part follows directly from Theorem 2.2.21 (i). ut
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Corollary 2.2.25. Let T W X ! H and � 2 .0; 2/. If T is a cutter, then for any
x 2 X and z 2 Fix T the following estimations hold

kPX T�x � zk2 � kx � zk2 � �.2 � �/ kT x � xk2

and

kPX T�x � zk2 � kx � zk2 � 2 � �

�
kPX T�x � xk2 : (2.53)

Consequently, the operator PXT� W X ! X is 2��
�

-strongly quasi-nonexpansive.

Proof. Note that PX is a nonexpansive operator and that

Fix PX \ Fix T D X \ Fix T D Fix T ¤ ;.

Therefore, the corollary follows from Theorem 2.1.51. ut
The following corollary will be useful in further parts of the book (see also [327,
Lemma 2] and [172, Lemma 1] for related results).

Corollary 2.2.26. Let x 2 X; u 2 H and 0 � ˛1 < ˛2. Then the following
inequality holds

kPX .x C ˛2u/ � xk2

� kPX .x C ˛1u/ � xk2 C kPX .x C ˛2u/ � PX .x C ˛1u/k2 . (2.54)

Consequently, the function f W RC ! RC, f .˛/ WD kPX .x C ˛u/ � xk is non-
decreasing.

Corollary 2.2.26 is illustrated in Fig. 2.11.

Proof. Inequality (2.54) is obvious for ˛1 D 0. Let now ˛1 > 0. Take y WD xC ˛2u,
z WD x C ˛1u and � D ˛1

˛2
. Then we have � 2 .0; 1/ and .x � z/ D � �

1��
.y � z/.

Now inequality (2.54) can be written in the form

kPX y � xk2 � kPX z � xk2 C kPX y � PX zk2 . (2.55)
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The characterization of the metric projection (see Theorem 1.2.4) and its mono-
tonicity (see Theorem 2.2.21 (iv)) yield

hx � PX z; PX y � PX zi D hx � z; PX y � PX zi C hz � PX z; PX y � PX zi

� � �

1 � �
hy � z; PX y � PX zi � 0,

i.e., hx �PX z; PX y �PX zi � 0, which is equivalent to (2.55), by Lemma 1.2.5. ut
Let C � H be convex. Define the distance function d.�; C / W H ! R by d.x; C / D
infy2C kx � yk. It follows from the continuity of the norm and from the definition
of the metric projection that

d.x; C / D d.x; cl C / D kx � Pcl C xk .

Therefore, we suppose without loss of generality that C is closed. It turns out that
the functions d.�; C / and d 2.�; C / are convex and differentiable.

Lemma 2.2.27. Let C � H be a closed convex subset. Then the function
f W H ! R, f .x/ WD 1

2
d 2.x; C / is differentiable and Df .x/ D x � PC x for

all x 2 H.

Proof. (cf. [167, Proposition 2.2] and [209, Chap. IV, Example 4.1.6]) Let x; h 2 H.
It follows from the definition of the metric projection and from the properties of the
inner product that

f .x C h/ � f .x/ � hx � PC x; hi

D 1

2
kx C h � PC .x C h/k2 � 1

2
kx � PC xk2 � hx � PC x; hi

� 1

2
kx C h � PC xk2 � 1

2
kx � PC xk2 � hx � PC x; hi

D 1

2
khk2 .

Similarly, by the definition of the metric projection, the Cauchy–Schwarz inequality
and the nonexpansivity of the metric projection, we obtain

f .x C h/ � f .x/ � hx � PC x; hi

D 1

2
kx C h � PC .x C h/k2 � 1

2
kx � PC xk2 � hx � PC x; hi

� 1

2
kx C h � PC .x C h/k2 � 1

2
kx � PC .x C h/k2 � hx � PC x; hi

D 1

2
khk2 C hPC x � PC .x C h/; hi
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� 1

2
khk2 � kPC x � PC .x C h/k � khk

� 1

2
khk2 � khk2 D �1

2
khk2 .

Now we see that

�1

2
khk2 � .f .x C h/ � f .x/ � hx � PC x; hi/ � 1

2
khk2 .

Consequently,

f .x C h/ D f .x/ C hx � PC x; hi C o.khk/.

Therefore, f is differentiable and Df .x/ D x � PC x. ut
Lemma 2.2.28. Let C � H be a closed convex subset. The function h W H ! R,
h.x/ WD d.x; C / is convex and differentiable for all x … C and

Dh.x/ D x � PC x

kx � PC xk . (2.56)

Proof. Since h.x/ D infy2C kx � yk, the convexity of h follows from the fact that
the function p W H � H ! H, p.x; y/ WD kx � yk is convex (as a composition
of a linear function .x; y/ ! x � y and a convex function z ! kzk) and from
the fact that for a convex function p, the function infy2C p.�; y/ is convex. Since
h D p

d 2.�; C /, the differentiability of h as well as equality (2.56) for x … C

follow from Lemma 2.2.27 and from the formula D.kzk/ D z
kzk for z ¤ 0. ut

Corollary 2.2.29. Let C � H be a closed convex subset. Then the function f W
H ! R, f .x/ WD 1

2
d 2.x; C / is convex.

Proof. The function f is convex as a composition f D g ı h of a convex function
h WD d.�; C / and of a convex and increasing function g W RC ! R, g.t/ WD 1

2
t2.

ut

2.2.4 Metric Projection onto a Closed Subspace

Let V � H be a closed linear subspace. Since V is convex, the metric projection
PV is well defined. The theorem below states some properties of PV . In particular,
the first part of the theorem states that the metric projection onto V is equal to the
orthogonal projection onto V .

Theorem 2.2.30. Let V � H be a closed subspace and x 2 H, y 2 V . Then

(i) y D PV x if and only if hx � y; zi D 0 for all z 2 V ,
(ii) PV is a bounded linear operator and kPV k D 1,
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(iii) PV is self-adjoint,
(iv) Id D PV C PV ?

.

Proof. (i) Necessity. Let y WD PV x. By the characterization of the metric
projection (see Theorem 1.2.4), hx � y; z � yi � 0 for all z 2 V . Suppose
that hx �y; w�yi < 0 for some w 2 V . Let u WD 2y �w. Then u 2 V because
V is a linear subspace and we have

hx � y; u � yi D hx � y; y � wi > 0.

This contradiction shows that hx � y; z � yi D 0 for all z 2 V . If we take z WD
0 2 V in the latter equality, we obtain hx � y; yi D 0. Hence, hx � y; zi D 0

for all z 2 V .
Sufficiency. Let hx � y; zi D 0 for all z 2 V . Taking z WD y 2 V we obtain
in particular hx � y; yi D 0. Hence, hx � y; z � yi D 0 for all z 2 V .
By the characterization of the metric projection (see Theorem 1.2.4), we have
y D PV x.

(ii) Let x1; x2 2 H, ˛1; ˛2 2 R, y1 WD PV x1, y2 WD PV x2 and x WD ˛1x1 C ˛2x2,
y WD ˛1y1 C ˛2y2. We show that y D PV x. By (i) we have

hx � y; zi D h˛1.x1 � y1/ C ˛2.x2 � y2/; zi
D ˛1hx1 � y1; zi C ˛2hx2 � y2; zi
D 0,

for all z 2 V , i.e., y D PV x. Since PV is nonexpansive, it is bounded.
Furthermore,

kPV xk D kPV x � PV 0k � kx � 0k D kxk

for all x 2 H and kPV xk D kxk for x 2 V . Hence, kPV k D 1.
(iii) Let x; u 2 H. It follows from (i) that

hx; PV ui D hPV x; PV ui

and
hu; PV xi D hPV u; PV xi.

By the symmetry of the inner product

hPV x; ui D hx; PV ui;

i.e., PV is self-adjoint.
(iv) Let x 2 H. By (i), we have x � PV x 2 V ? and x � PV x D PV ?

x. Since
x D PV x C .x � PV x/, it holds x D PV x C PV ?

x. ut
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Corollary 2.2.31. Let V � H be a closed subspace and x 2 H. Then

hPV x; xi D kPV xk2 .

Proof. Since PV is self-adjoint (see Theorem 2.2.30 (iii)), we have hPV x; ui D
hx; PV ui for all u 2 H. If we take u WD PV x we obtain the desired property. ut
Corollary 2.2.32. A bounded linear operator is an orthogonal projection if and
only if it is idempotent and self-adjoint.

Proof. The necessity follows from Theorems 2.2.21 (i) and 2.2.30 (iii). Let now
T W H ! H be idempotent and self-adjoint. Let V WD T .H/. It is clear that
V D Fix T and that V is a closed subspace. Now we show that T D PV . Let x 2 H
and z 2 V . Then

hT x; zi D hx; T zi D hx; zi,

i.e., hT x � x; zi D 0. Theorem 2.2.30 (i) implies now that T D PV . ut

2.2.5 Metric Projection onto a Closed Affine Subspace

Let A � H be a closed affine subspace and a 2 A. Then A � a is a closed linear
subspace. In order to show some properties of the metric projection PA we apply
Theorem 2.2.30 together with

PAx D PA�a.x � a/ C a (2.57)

(see Lemma 1.2.6).

Theorem 2.2.33. Let A � H be a closed affine subspace and x; u; v; w 2 H,
a; y 2 A. Then

(i) y D PAx if and only if hx � y; z � yi D 0 for all z 2 A,
(ii) PAu � PAv D PA�a.u � v/ D PA.u � v/ � PA0,

(iii) hPAu � PAv; wi D hu � v; PA�awi D hu � v; PAw � PA0i,
(iv) hPAu � PAv; u � vi D kPAu � PAvk2,
(v) ku � vk2 D kPAu � PAvk2 C k.PAu � u/ � .PAv � v/k2,

(vi) PA is an affine operator.

Proof. (i) Since A � a is a linear subspace, v 2 A � a if and only if v D z � y,
for some z 2 A: By (2.57) and Theorem 2.2.30 (i), we have

y D PAx , y � a D PA�a.x � a/ , hy � a � .x � a/; z � yi D 0

for any z 2 A.
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(ii) By (2.57) and the linearity of PA�a, we have

PAu � PAv D PA�a.u � a/ C a � .PA�a.v � a/ C a/

D PA�a.u � v/

D PA�a.u � v � a/ � PA�a.�a/

D PA.u � v/ � PA0.

(iii) Since PA�a is self-adjoint, (2.57) and (ii) yield

hPAu � PAv; wi D hPA�a.u � a/ � .PA�a.v � a/; wi
D hu � v; PA�awi
D hu � v; PA�a.w � a/ � PA�a.�a/i
D hu � v; PAw � PA0i.

(iv) Property (i) yields

hPAu � u; PAu � PAvi D 0 and hPAv � v; PAu � PAvi D 0

Therefore,
h.PAu � u/ � .PAv � v/; PAu � PAvi D 0,

i.e.,
hPAu � PAv; u � vi D kPAu � PAvk2 .

(v) It follows from the properties of the inner product and from property (iv) that

k.PAu � u/ � .PAv � v/k2

D kPAu � PAvk2 C ku � vk2 � 2hPAu � PAv; u � vi
D ku � vk2 � kPAu � PAvk2 .

(vi) Let � 2 R. Since A � a is a closed subspace, (2.57) and Theorem 2.2.30 yield

PA..1 � �/u C �y/ D PA�a..1 � �/.u � a/ C �.y � a// C a

D .1 � �/.PA�a.u � a/ C a/ C �.PA�a.y � a/ C a/

D .1 � �/PAu C �PAy

which completes the proof.
ut
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2.2.6 Properties of Relaxed Firmly Nonexpansive Operators

In this section we present relationships among families of relaxed firmly nonexpan-
sive operators, contractions, averaged operators and strongly quasi-nonexpansive
operators. Furthermore, we give properties of relaxed firmly nonexpansive operators
which are used in many constructions of algorithmic operators.

Theorem 2.2.34. An ˛-contraction is .1 C ˛/-relaxed firmly nonexpansive.

Proof. Let T W X ! H be an ˛-contraction, i.e., kT x � Tyk � ˛ kx � yk for all
x; y 2 X , where ˛ 2 .0; 1/. Let U WD 2

1C ˛
T � 1�˛

1C ˛
Id, or, equivalently,

T D 1 C ˛

2
U C 1 � ˛

2
Id ,

i.e.. T is 1C ˛
2

-averaged. By the convexity of the norm and the nonexpansivity of T ,

kUx � Uyk D
�
�
�
�

2

1 C ˛
.T x � Ty/ � 1 � ˛

1 C ˛
.x � y/

�
�
�
�

� 2

1 C ˛
kT x � Tyk C 1 � ˛

1 C ˛
kx � yk

� 2˛

1 C ˛
kx � yk C 1 � ˛

1 C ˛
kx � yk

D kx � yk ,

i.e., U is nonexpansive. Therefore, T is .1 C ˛/-relaxed firmly nonexpansive as a
. 1C ˛

2
/-averaged operator (see Corollary 2.2.17). ut

The next results show that a family of relaxed firmly nonexpansive operators is
closed under convex combination and under composition.

Theorem 2.2.35. Let �i 2 Œ0; 2� and Ui W X ! H be �i -relaxed firmly nonexpan-
sive, i 2 I WD f1; 2; : : : ; mg, U WD Pm

iD1 !i Ui for w D .!1; : : : ; !m/ 2 �m.
Then the operator U is �-relaxed firmly nonexpansive, where � D Pm

j D1 !j �j .
Consequently, U is strictly relaxed firmly nonexpansive if �i 2 .0; 2/ for some i 2 I

and the corresponding weight !i > 0.

Proof. Let Ui WD Id C�i .Ti � Id/, where Ti W X ! H are firmly nonexpansive,
�i 2 Œ0; 2�, i 2 I , and w D .!1; : : : ; !m/ 2 �m. It is clear that � WD Pm

j D1 !j �j 2
Œ0; 2�. For � D 0 the claim is obvious, because U D Id in this case. Let now
� 2 .0; 2�. Since

mX

iD1

!i �i
Pm

j D1 !j �j

D 1,
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the operator

T WD
mX

iD1

!i �i
Pm

j D1 !j �j

Ti

is firmly nonexpansive as a convex combination of firmly nonexpansive operators
Ti (see Corollary 2.2.20). Let U WD Pm

iD1 !i Ui . Then we have

U D
mX

iD1

!i ŒId C�i .Ti � Id/�

D Id C
mX

iD1

!i �i .Ti � Id/

D Id C
0

@
mX

j D1

!j �j

1

A

 
mX

iD1

!i �i
Pm

j D1 !j �j

Ti �
mX

iD1

!i �i
Pm

j D1 !j �j

Id

!

D Id C�.T � Id/

and, consequently, U is �-relaxed firmly nonexpansive. The second part of the
theorem is obvious. ut
Corollary 2.2.36. A convex combination of averaged operators is an averaged
operator.

Proof. It suffices to apply Corollary 2.2.17 to Theorem 2.2.35. ut
Theorem 2.2.37. Let T; U W X ! X and �; � 2 Œ0; 2�. If T is �-RFNE and U is
�-RFNE, then the composition V WD U T is � -RFNE, with

� D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

0 if � D 0 and � D 0

2 if .2 � �/.2 � �/ D 0

4.� C � � ��/

4 � ��
D 2

.
�

2 � �
C �

2 � �
/�1 C 1

otherwise.

(2.58)

Proof. If � D 0 or � D 0, then T D Id or U D Id, respectively, and the claim is
obvious, because the operator Id is 0-RFNE. If � D 2 or � D 2, then T and U are
nonexpansive (see Theorem 2.2.10 (ii)) and U T is nonexpansive as a composition of
nonexpansive operators. Therefore, U T is 2-RFNE (see Corollary 2.2.13). Let now
�; � 2 .0; 2/ and x; y 2 H. Denote a1 WD T x �x, a2 WD Ty �y, b1 WD U T x �T x

and b2 WD U Ty � Ty. It is clear that

y � x D Ty � T x C a1 � a2. (2.59)
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By Corollary 2.2.3, we have

hy � x; a1i C hx � y; a2i � 1

�
ka1 � a2k2

and

hTy � T x; b1i C hT x � Ty; b2i � 1

�
kb1 � b2k2 .

Therefore, the properties of the inner product, equality (2.59) and Lemma 2.1.45
yield

hy � x; U T x � xi C hx � y; U Ty � yi � 1

�
.k.U T x � x/ � .U Ty � y/k2/

D hy � x; a1 C b1i C hx � y; a2 C b2i � 1

�
.k.a1 C b1/ � .a2 C b2/k2/

D hy � x; a1i C hx � y; a2i C hTy � T x; b1i C hT x � Ty; b2i

Cha1 � a2; b1 � b2i � 1

�
.k.a1 C b1/ � .a2 C b2/k2/

� 1

�
ka1 � a2k2 C 1

�
kb1 � b2k2 C ha1 � a2; b1 � b2i

� 1

�
.k.a1 C b1/ � .a2 C b2/k2

D
�

1

�
� 1

�

�

ka1 � a2k2 C
�

1

�
� 1

�

�

kb1 � b2k2 C
�

1 � 2

�

�

ha1 � a2; b1 � b2i

D
�
�
�
�
�

s
1

�
� 1

�
.a1 � a2/ �

s
1

�
� 1

�
.b1 � b2/

�
�
�
�
�

2

� 0.

Now it follows from Corollary 2.2.3 that U T is � -RFNE. ut
Remark 2.2.38. Because of Corollary 2.2.17, Theorem 2.2.37 can be stated
equivalently in terms of averaged operators:
if T is ˛-averaged and U is ˇ-averaged, where ˛; ˇ 2 .0; 1/, then U T is
ı-averaged, with

ı WD ˛ C ˇ � 2˛ˇ

1 � ˛ˇ
. (2.60)

This result is due to Ogura and Yamada (see [273, Theorem 3 (b)]). The fact that a
composition of averaged operators T WD .1�˛/ Id C ˛R and U WD .1�ˇ/ Id CˇS

is averaged follows also from the following identity (cf. [56, Lemma 2.2 and
Proposition 2.1])

U T D .1 � ˛/.1 � ˇ/ Id C.˛ C ˇ � ˛ˇ/Œ
.1 � ˇ/˛

˛ C ˇ � ˛ˇ
R C ˇ

˛ C ˇ � ˛ˇ
ST �,
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and from the fact that the family of nonexpansive operators is closed under
compositions and convex combinations (see Lemma 2.1.12). Note, however, that
[273, Theorem 3 (b)] is stronger than the result mentioned above, because

ı < ˛ C ˇ � ˛ˇ

for ˛; ˇ 2 .0; 1/ and ı given by (2.60). It follows from Corollary 2.2.17 that the
result of Ogura and Yamada is equivalent to Theorem 2.2.37 with �; � 2 .0; 2/.
Moreover, the proof of this theorem differs from the proof of [273, Theorem 3 (b)].
Note that the property of composition of relaxed cutters with a common fixed point,
expressed in Theorem 2.1.46 and the property of compositions of relaxed firmly
nonexpansive operators presented in Theorem 2.2.37 are similar. Therefore, it is
quite natural that the proofs of both theorems are similar. But Theorem 2.1.46 is no
special case of Theorem 2.2.37 because a cutter needs not to be firmly nonexpansive,
even if it is nonexpansive (see Example 2.2.8).

An equivalent formulation of the following result can be found in [349,
Lemma 1].

Corollary 2.2.39. Let T; U W H ! H be firmly nonexpansive. Then the com-
position V WD U T is 4

3
-relaxed firmly nonexpansive. Consequently, V� is firmly

nonexpansive for all � 2 Œ0; 3
4
� and nonexpansive for all � 2 Œ0; 3

2
�. If, furthermore,

V has a fixed point, then V� is strongly quasi-nonexpansive for all � 2 .0; 3
2
/.

Proof. If we take � D � D 1 in Theorem 2.2.37, we obtain that V is 4
3
-relaxed

firmly nonexpansive. Recall that .V�/� D V�� (see Remark 2.1.3). Corollary 2.2.19
yields the firm nonexpansivity of V� for all � 2 Œ0; 3

4
�. By the implication (i))(ii)

in Theorem 2.2.10, V� is nonexpansive for all � 2 Œ0; 3
2
�. Now let Fix V ¤ ; and

� 2 .0; 3
2
/. Then V� is strongly quasi-nonexpansive, by Corollary 2.2.9. ut

Yamada et al. also proved that, for any � > 3
2
, there exist firmly nonexpansive

operators T; U such that V� is not nonexpansive, where V WD U T (see [349,
Remark 1 (b)]). This means that the constant 3

2
is optimal in Corollary 2.2.39.

Remark 2.2.40. Let T; U W H ! H be firmly nonexpansive having a common fixed
point. Then it follows from Corollaries 2.2.39 and 2.2.15 that U T is 1

2
-strongly quasi

nonexpansive. A special case of this property was proved in [152, Proposition 1] for
T; U being orthogonal projections onto subspaces of H.

Corollary 2.2.41. Let T W H ! H be firmly nonexpansive and � 2 Œ0; 2�. If V is a
closed affine subspace, then the operator U WD .1 � �/PV C �PV T is 4

4��
-relaxed

firmly nonexpansive.

Proof. Let V be a closed affine subspace. By Theorem 2.2.33 (vi), the operator PV

is affine, consequently,

.1 � �/PV C �PV T D PV T�.

Now it follows from Theorem 2.2.37 that U is 4
4��

-relaxed firmly nonexpansive,
because the metric projection is firmly nonexpansive. ut
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A weaker formulation of Corollary 2.2.41 can be found in [349, Lemma 2], where
T WD PC for a closed convex subset C .

Theorem 2.2.42. Let Ti W X ! X be �i -relaxed firmly nonexpansive, where
˛i 2 Œ0; 2�, i 2 I . Then the composition Sm WD TmTm�1 : : : T1 is �m-relaxed firmly
nonexpansive, where �m D 0 if �i D 0 for all i 2 I , �m D 2 if �i D 2 for at least
one i 2 I and

�m D 2
	

�1

2��1
C �2

2��2
C : : : C �m

2��m


�1 C 1

, (2.61)

otherwise. Moreover,

2m mini2I �i

.m � 1/ mini2I �i C 2
� �m � 2m maxi2I �i

.m � 1/ maxi2I �i C 2
, (2.62)

consequently, �m < 2 if �i < 2 for all i 2 I .

Proof. Let �i D 0 for all i 2 I . In this case, Sm D Id, i.e., Sm is 0-relaxed
firmly nonexpansive. Let �i D 2 for some i 2 I . Then Sm is nonexpansive as a
composition of nonexpansive operators, i.e., Sm is 2-RFNE (see Corollary 2.2.13).

Let now �i 2 Œ0; 2/ for all i 2 I and �j > 0 for at least one j 2 I . We prove by
induction with respect to m that Sm is �m-RFNE, where �m is given by (2.61). Note
that (2.61) is equivalent to

�m

2 � �m

D �1

2 � �1

C �2

2 � �2

C : : : C �m

2 � �m

. (2.63)

10 For m D 2 the above fact follows directly from Theorem 2.2.37.
20 Suppose that, for some m D k, the operator Sm is �m-RFNE. We prove that

SkC1 is �kC1-RFNE. If �kC1 D 0, then TkC1 D Id, SkC1 is a composition of k

operators which are relaxed firmly nonexpansive and the claim follows from the
induction assumption. Let now �kC1 2 .0; 2/, then we have SkC1 D TkC1Sk , where
TkC1 is �kC1-RFNE and Sk is �k-RFNE. It follows from Theorem 2.2.37 that SkC1

is � -RFNE, where

� D 2
	

�k

2��k
C �kC1

2��kC1


�1 C 1

,

and, together with (2.63), this gives for m D k

�

2 � �
D �k

2 � �k

C �kC1

2 � �kC1

D �1

2 � �1

C �2

2 � �2

C : : : C �k

2 � �k

C �kC1

2 � �kC1

,
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consequently, � D �kC1. We have proved that, for any m 2 N, the operator Sm is
�m-RFNE, where �m is given by (2.61).

Now we prove (2.62). By (2.63), we have

m
mini2I �i

2 � mini2I �i

� �m

2 � �m

� m
maxi2I �i

2 � maxi2I �i

,

which is equivalent to (2.62). ut
A part of the results presented in Theorem 2.2.42 can be found in [122, Lemma
2.2 (iii)], where it was proved that a composition of �i -RFNE operators Ti , where
�i 2 Œ0; 2�, i 2 I , is 2m maxi2I �i

.m�1/ maxi2I �i C2
-SQNE.

Corollary 2.2.43. Let Ti W X ! X , i 2 I , be firmly nonexpansive. Then the oper-
ator Sm D Tm : : : T1 is �m-relaxed firmly nonexpansive with �m D 2m

mC1
. Conse-

quently, Sm is 1
m

-strongly quasi-nonexpansive.

Proof. It suffices to take �i D 1; i 2 I , in (2.61). The second part of the corollary
follows from Corollary 2.2.9. ut
Dye and Reich obtained a result which is a special case of the second part of
Corollary 2.2.43 with Ti , i 2 I , being orthogonal projections onto one-dimensional
subspace of a Hilbert space (see [152, Theorem on page 109]).

Corollary 2.2.44. Let Ti W X ! X be firmly nonexpansive, Si WD Ti : : : T1, i 2 I ,
and w D .!1; : : : ; !m/ 2 �m. Then the operator S WD Pm

iD1 !i Si is �-relaxed
firmly nonexpansive, where

� D
mX

iD1

!i

2i

i C 1
. (2.64)

Proof. By Corollary 2.2.43, the operators Si are �i -relaxed firmly nonexpansive
with �i D 2i

iC1
. By Theorem 2.2.35, S is �-relaxed firmly nonexpansive, where �

is given by (2.64). ut
The composition of firmly nonexpansive operators needs not to be firmly nonexpan-
sive (see Exercise 2.5.10).

Definition 2.2.45. Let T W X ! H, � 2 Œ0; 2�. The operator R� W X ! H,
R� WD PX T� is called a projected relaxation of T .

The theorem below gives important properties of the projected relaxation of a
firmly nonexpansive operator.

Theorem 2.2.46. Let T W X ! H be firmly nonexpansive, R� WD PX T�, be the
projected relaxation of T , where � 2 .0; 2/. Then:

(i) R� is 4
4��

-relaxed firmly nonexpansive.
(ii) Fix R� D Fix.PX T /.
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(iii) If Fix.PX T / ¤ ;, then the operator R� is 2��
2

-SQNE, i.e.,

kR�x � zk2 � kx � zk2 � 2 � �

2
kR�x � xk2 (2.65)

for all x 2 X and for all z 2 Fix.PX T /.
(iv) If Fix T ¤ ;, then the operator R� is 2��

�
-SQNE.

Proof. (i) Since the metric projection PX is firmly nonexpansive, it is 1-relaxed
firmly nonexpansive. By Theorem 2.2.37, the operator R� is 4

4��
-RFNE.

(ii) This property follows from Corollary 1.2.10.
(iii) Since R� is �-RFNE, where � D 4

4��
(see (i)), Corollary 2.2.9 yields

kR�x � zk2 � kx � zk2 � 2 � �

�
kR�x � xk2

D kx � zk2 � 2 � �

2
kR�x � xk2 .

(iv) The claim follows from Corollary 2.2.25.
ut

If X D H, then R� D T�, nevertheless, estimation (2.65) is weaker than
estimation (2.47). Furthermore, estimation (2.65) is weaker than estimation (2.53).
Note, however, that we have supposed in Corollary 2.2.25 that the operator T W
X ! H is a cutter, consequently Fix T ¤ ;, while in Theorem 2.2.46 (iii) we have
supposed that Fix.PX T / ¤ ;, which is weaker than the assumption Fix T ¤ ;.

2.2.7 Fixed Points of Firmly Nonexpansive Operators

A firmly nonexpansive operator is nonexpansive (see Theorem 2.2.4), therefore, the
subset of its fixed points is closed and convex (see Proposition 2.1.11). In this section
we show that the subsets Fix T for FNE- and for NE-operators are intersections of
half-spaces, which also yields the closedness and convexity of Fix T . Equivalent
formulations to the results below can be found in [185, Equalities (11.3) and (11.4)].

Theorem 2.2.47. Let X � H be closed convex and T W X ! H be firmly
nonexpansive. Then

Fix T D
\

x2X

fz 2 X W hT x � x; T x � zi � 0g.

Consequently, Fix T is a closed convex subset.
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Proof. Since a firmly nonexpansive operator with a fixed point is a cutter (see
Theorem 2.2.5), the theorem follows from Lemmas 2.1.36 and 2.1.35. ut
Corollary 2.2.48. Let X � H be closed and convex. The subset of fixed points of a
nonexpansive operator S W X ! H has the form

Fix S D
\

x2X

fz 2 X W 2hz � x; Sx � xi � kSx � xk2g, (2.66)

consequently, Fix S is a closed convex subset.

Proof. Let S W X ! H be nonexpansive. By Corollary 2.2.13, we have S D 2T �Id
for a firmly nonexpansive operator T . It is clear that Fix S D Fix T . Theorem 2.2.47
yields now

Fix S D
\

x2X

fz 2 X W h1

2
.Sx C x/ � x;

1

2
.Sx C x/ � zi � 0g

which is equivalent to (2.66). ut

2.3 Strongly Nonexpansive Operators

Definition 2.3.1. An operator T W X ! H is called strongly nonexpansive (SNE),
if T is nonexpansive and for all sequences fxkg1

kD0; fykg1
kD0 � X the following

implication is true

.xk � yk/ is bounded and�
�xk � yk

�
� � �

�T xk � Tyk
�
� ! 0

�

H) .xk � yk/ � .T xk � Tyk/ ! 0,

The notion of strongly nonexpansive operators in Banach spaces was proposed
by Bruck and Reich in [51, Sect. 1], where also properties of these operators are
proved (see also [23, Sect. 4.3]).

Remark 2.3.2. It is clear that a contraction is a strongly nonexpansive operator.
Indeed, let T be a contraction, i.e., kT x � Tyk � ˛ kx � yk for all x; y 2 X and
for a constant ˛ 2 .0; 1/, and .xk � yk/ be bounded and such that

�
�xk � yk

�
� ��

�T xk � Tyk
�
� ! 0. Then we have

�
�xk � yk

�
�� �

�T xk � Tyk
�
� � .1 � ˛/

�
�xk � yk

�
� ! 0.

Consequently, xk � yk ! 0 and T xk � Tyk ! 0, i.e., T is strongly nonexpansive.
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Remark 2.3.3. (S. Reich, A private communication (2009)) Let X � H be com-
pact. Then a strictly nonexpansive operator defined on X is strongly nonexpansive.
Indeed, let T W X ! H be strictly nonexpansive, i.e.,

kT x � Tyk < kx � yk or x � y D T x � Ty

for all x; y 2 X , and X be compact. We show that T is strongly nonexpansive.
Suppose that sequences fxkg1

kD0 and fykg1
kD0 are given such that

�
�xk � yk

�
� ��

�T xk � Tyk
�
� ! 0 and that there exist subsequences fxnk g1

kD0 � fxkg1
kD0 and

fynk g1
kD0 � fykg1

kD0 and a constant " > 0 such that

k.xnk � ynk / � .T xnk � Tynk /k � ".

Since X is compact, we can suppose without loss of generality that xnk ! x and
ynk ! y. Since T is continuous as a nonexpansive operator, we have T xnk ! T x

and Tynk ! Ty. Hence, we obtain in the limit kx � yk D kT x � Tyk, which
yields, due to strict nonexpansivity of T , that x � y D T x � Ty. On the other hand,
we have

k.x � y/ � .T x � Ty/k D lim
k

k.xnk � ynk / � .T xnk � Tynk /k � ",

a contradiction, which shows that T is strongly nonexpansive.

Theorem 2.3.4. Let T W X ! H be firmly nonexpansive and � 2 .0; 2/. Then the
relaxation T� of T is strongly nonexpansive.

Proof. Let fxkg1
kD0; fykg1

kD0 � X be such that
�
�xk � yk

�
� is bounded and

�
�xk � yk

�
� � �

�T�xk � T�yk
�
� ! 0:

The firm nonexpansivity of T yields the nonexpansivity of T� (see Theorem 2.2.10
(ii)), consequently, the sequence

˚�
�xk � yk

�
�C �

�T�xk � T�yk
�
�
�1

kD0
is bounded.

Therefore, by the obvious equality T�x � x D �.T x � x/ and by Corollary 2.2.15,
we have

�
�.xk � yk/ � .T�xk � T�yk/

�
�2

D �
�.T�xk � xk/ � .T�yk � yk/

�
�2

� �

2 � �

	�
�xk � yk

�
�2 � �

�T�xk � T�yk
�
�2



D �

2 � �

��
�xk � yk

�
�� �

�T�xk � T�yk
�
�

 ��
�xk � yk

�
�C �

�T�xk � T�yk
�
�

 ! 0,

i.e.,
�
�.xk � yk/ � .T�xk � T�yk/

�
� ! 0 and T� is strongly nonexpansive. ut
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In the previous sections we have proved that the following classes of operators are
closed under composition and under convex combination:

(a) The class of strictly relaxed cutters with a common fixed point (see Theo-
rems 2.1.46 and 2.1.50),

(b) The class of strongly quasi-nonexpansive operators with a common fixed point
(see Corollary 2.1.47 and Theorem 2.1.50),

(c) The class of strictly relaxed firmly nonexpansive operators (see Theo-
rems 2.2.37 and 2.2.35)

(d) The class of averaged operators (see Remark 2.2.38 and Corollary 2.2.36).

It turns out that the class of strongly nonexpansive operators has the same properties.
The first part of the theorem below was proved by Bruck and Reich in [51,
Proposition 1.1] and the other one by Reich in [295, Lemma 1.3].

Theorem 2.3.5. Let T1; T2 W X ! X be strongly nonexpansive and T have one of
the following forms:

(i) T WD T2T1,
(ii) T WD .1 � �/T1 C �T2, where � 2 Œ0; 1�.

Then T is strongly nonexpansive.

Proof. By Lemma 2.1.12, the operator T is nonexpansive. Let the sequences
fxkg1

kD0; fykg1
kD0 � X be such that .xk � yk/ is bounded and

�
�xk � yk

�
� ��

�T xk � Tyk
�
� ! 0.

(i) By the nonexpansivity of T1 and T2, we have

�
�T xk � Tyk

�
� D �

�T2.T1x
k/ � T2.T1y

k/
�
� � �

�T1x
k � T1y

k
�
� � �

�xk � yk
�
� ,

k � 0, consequently,

�
�xk � yk

�
� � �

�T1x
k � T1y

k
�
� ! 0

and

�
�T1x

k � T1y
k
�
� � �

�T2.T1x
k/ � T2.T1y

k/
�
� ! 0.

Since T1 and T2 are strongly nonexpansive, we have

.xk � yk/ � .T xk � Tyk/ D

.xk � yk/� .T1x
k � T1y

k/ C .T1x
k � T1y

k/ � .T2.T1x
k/ � T2.T1y

k// !0;

i.e., T is strongly nonexpansive.
(ii) The assertion is clear when � D 0 or � D 1. Let � 2 .0; 1/. By the convexity

of the norm and the nonexpansivity of T1 and T2, we have
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Tx
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Fig. 2.12 SNE operator
which is not AV

�
�T xk � Tyk

�
� D �

�.1 � �/T1x
k C �T2x

k � .1 � �/T1y
k � �T2y

k
�
�

� .1 � �/
�
�T1x

k � T1y
k
�
�C �

�
�T2x

k � T2y
k
�
�

� .1 � �/
�
�xk � yk

�
�C �

�
�xk � yk

�
� D �

�xk � yk
�
� ,

consequently,

�
�xk � yk

�
�� �

�T xk � Tyk
�
�

� .1 � �/.
�
�xk � yk

�
� � �

�T1x
k � T1y

k
�
�/ C �.

�
�xk � yk

�
� � �

�T2x
k � T2y

k
�
�/.

Therefore, �
�xk � yk

�
� � �

�T1x
k � T1y

k
�
� ! 0

and �
�xk � yk

�
� � �

�T2x
k � T2y

k
�
� ! 0.

By the strong nonexpansivity of T1 and T2, we have now

.xk � yk/ � .T xk � Tyk/

D .1 � �/..xk � yk/ � .T1xk � T1yk// C �..xk � yk/ � .T2xk � T2yk// ! 0,

i.e., T is strongly nonexpansive.
ut

The following example shows that the class of averaged operators or, equivalently,
the class of strictly relaxed firmly nonexpansive operators is a proper subclass of the
class of strongly nonexpansive operators.

Example 2.3.6. Let X WD B.0; 1/ � H be a unit ball, U W H ! H be a unitary
operator such that hUx; xi D 0 for all x 2 H (e.g., U W R2 ! R

2 is defined by
Ux WD .��2; �1/ for x D .�1; �2/ 2 R

2 with the standard inner product) and the
operator T W X ! X be defined by

T x WD ˛.x/Ux.

with ˛.x/ WD 1 � 1
2

kxk (see Fig. 2.12).
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It is clear that ˛.x/Ux D U.˛.x/x/, consequently,

kT x � Tyk D k˛.x/Ux � ˛.y/Uyk
D kU.˛.x/x/ � U.˛.y/y/k
D k˛.x/x � ˛.y/yk .

A straightforward calculation shows that

kx � yk2 � kT x � Tyk2

D kx � yk2 � k˛.x/x � ˛.y/yk2

D �1

4
kxk4 � 1

4
kyk4 C kxk3 C kyk3

�hx; yi.kxk C kyk � 1

2
kxk � kyk/

D .kxk � kyk/2.kxk C kyk/.1 � 1

4
.kxk C kyk//

C.kxk � kyk � hx; yi/.kxk C kyk � 1

2
kxk � kyk/.

We have kxkCkyk � kxk�kyk, since kxk ; kyk 2 Œ0; 1�. This fact and the Cauchy–
Schwarz inequality yield

kxk C kyk � 1

2
kxk � kyk � 1

2
kxk � kyk � 1

4
kxk � kyk � 1

4
hx; yi,

consequently,

kx � yk2 � kT x � Tyk2

� .kxk � kyk/2.kxk C kyk/.1 � 1

4
.kxk C kyk// C 1

4
.kxk � kyk � hx; yi/2

and T is nonexpansive. We apply the above inequalities to x D xk and y D yk .
Suppose that xk; yk 2 X and that

�
�xk � yk

�
����T xk � Tyk

�
� ! 0. Then, of course,

�
�xk � yk

�
�2 � �

�T xk � Tyk
�
�2 ! 0;

because
�
�xk � yk

�
�C �

�T xk � Tyk
�
� is bounded. Therefore,

�
�xk

�
� � �

�yk
�
� ! 0
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(note that 1 � 1
4
.
�
�xk

�
�C �

�yk
�
�/ � 1

2
) and

�
�xk

�
� � ��yk

�
� � hxk; yki ! 0.

Now we have

�
�xk � yk

�
�2 D ��

�xk
�
� � �

�yk
�
�

2 C 2

��
�xk

�
� � ��yk

�
� � hxk; yki
 ! 0,

i.e., .xk � yk/ ! 0. Furthermore, .T xk � Tyk/ ! 0, by the nonexpansivity of T ,
consequently,

.xk � yk/ � .T xk � Tyk/ ! 0,

i.e., T is strongly nonexpansive. Note that z D 0 is the unique fixed point
of T . Suppose that T is ˛-averaged, for a constant ˛ 2 .0; 1/. By Corol-
lary 2.2.17, the operator T is .2˛/-relaxed firmly nonexpansive. Consequently,
the operator V D T�, where � D .2˛/�1 2 . 1

2
; C1/ is firmly nonexpansive (see

Corollary 2.2.19) and V is a cutter (see Theorem 2.2.5), i.e.,

��hx; x � T xi C �2 kx � T xk2

D ��hx C �.T x � x/; x � T xi
D h�T�x; x � T�xi
D h0 � Vx; x � Vxi � 0.

Dividing the inequalities above by � > 0, we obtain, for all x ¤ z,

1

2
< � � hx; x � T xi

kx � T xk2
D kxk2

kxk2 C ˛2.x/ kxk2
D 1

1 C .1 � 1
2

kxk/2
.

Applying the inequalities above to a sequence fxkg1
kD0 with limk xk D 0, we obtain

1

2
< � � lim

k

1

1 C .1 � 1
2

�
�xk

�
�/2

D 1

2
,

a contradiction, which proves that T is not averaged.

2.4 Generalized Relaxations of Algorithmic Operators

In the definition of a relaxation T� of an operator T W X ! H we have supposed
that the relaxation parameter � 2 Œ0; 2� (see Definition 2.1.2). Furthermore, the
assumption � 2 .0; 2/ is necessary for the strong quasi nonexpansivity of the
�-relaxation of a firmly nonexpansive operator T with Fix ¤ ; (see proof of
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Theorem 2.1.39). However, in some applications, relaxations of operators (e.g., of
firmly nonexpansive ones) with the relaxation parameter which are greater than 2

are successfully used. In general, the convergence of sequences generated by such
operators is not guaranteed. It turns out that, if we allow to vary the relaxation
parameter in dependence on the current point, in such a way that the relaxed operator
is a cutter, then we can apply the usual convergence analysis for sequences generated
by such an operator. Below we define a generalization of a relaxation of an operator,
which permits us to extend the convergence results to sequences generated by the
generalized relaxation.

Definition 2.4.1. Let T W X ! H, � 2 Œ0; 2� and 
 W X ! .0; C1/. The operator
T
;� W X ! H,

T
;�x WD x C �
.x/.T x � x/ (2.67)

is called the generalized relaxation of T , the value � is called the relaxation
parameter and 
 is called the step size function. If 
.x/ � 1 for all x 2 X , then the
operator T
;� is called an extrapolation of T�.

Some special cases of generalized relaxations of some classes of nonexpansive
operators, presented in various forms and applied in most cases to the convex
feasibility problems, were studied by Gurin et al. [196, Sect. 3], Pierra [284,
Sect. 1], Cegielski [62, Sect. 4.3], Kiwiel [229, Sect. 3], Bauschke [17, Sects. 7.3 and
8.3], Combettes [118, Sects. 5.4–5.8], [120, Sect. IV], Bauschke et al. [30, Sect. 3]
Bauschke et al. [25] and by Cegielski and Suchocka in [76].

In this section we present properties of generalized relaxations of cutters and
give conditions for a generalized relaxation to be strongly quasi-nonexpansive.
These properties will be applied in one of the next chapters in order to prove the
convergence of sequences generated by such operators.

Denote T
 D T
;1.

Remark 2.4.2. Let T W X ! H, � 2 Œ0; 2� and 
 W X ! .0; C1/.

(a) If 
.x/ D 1 for all x 2 X , then T
;� D T�, i.e., the generalized relaxation of T

is reduced to the classical relaxation of T .
(b) The values of the step size function 
 for x 2 Fix T have no influence on the

form of an operator T
;� because T
;� jFix T D Id for any step size function 
 and
for any � 2 .0; 2�. Therefore, we can suppose without loss of generality that

.x/ D 1 for all x 2 Fix T .

(c) For any x 2 X the following equalities hold

T
;�x � x D �
.x/.T x � x/ D �.T
x � x/, (2.68)

i.e., T
;� is a �-relaxation of an operator T
 .
(d) For any � ¤ 0 it holds Fix T
;� D Fix T (cf. Remark 2.1.4).

The corollary below is a version of Theorem 2.1.39.
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Corollary 2.4.3. Let T W X ! H have a fixed point, 
 W X ! .0; C1/ be a step
size function and � 2 .0; 2/. Then T
 is a cutter if and only if T
;� is 2��

�
-strongly

quasi-nonexpansive. In both cases

kT
;�x � zk2 � kx � zk2 � �.2 � �/
2.x/ kT x � xk2 (2.69)

for all x 2 X and z 2 Fix T .

Proof. By Remark 2.4.2 (c), T
;� is the �-relaxation of T
 . The first part of the
theorem follows now from Theorem 2.1.39. The 2��

�
-strong quasi nonexpansivity

of T
;� means

kT
;�x � zk2 � kx � zk2 � 2 � �

�
kT
;�x � xk2 .

Applying now (2.68) to the inequality above we obtain (2.69). ut
Let T W X ! H be an operator with a fixed point. Our aim is to give sufficient
conditions for the step size function 
 W X ! .0; C1/, at which T
 is a cutter. The
following definition was proposed in [70, Definition 9.17].

Definition 2.4.4. We say that an operator T W X ! H with a fixed point is oriented
if for all x … Fix T

ı.x/ WD inf
z2Fix T

hz � x; T x � xi
kT x � xk2

> 0. (2.70)

If ı.x/ � ı > 0 for all x … Fix T , then we say that T is strongly oriented.

It follows from Remark 2.1.31 that T W X ! H is strongly oriented if and only
if T is an ˛-relaxed cutter for some ˛ > 0.

Corollary 2.4.5. Let T W X ! H be an oriented operator with Fix T ¤ ;. If a
step size function 
 W X ! .0; C1/ satisfies the inequality


.x/ � hz � x; T x � xi
kT x � xk2

(2.71)

for all x … Fix T and z 2 Fix T , then T
 is a cutter. Consequently, for any � 2 .0; 2/,
the generalized relaxation T
;� of T is 2��

�
-strongly quasi-nonexpansive.

Proof. Let x … Fix T , z 2 Fix T and 
 W X ! .0; C1/ be a step size function
satisfying (2.71). The existence of 
 follows from the assumption that T is oriented.
Then (2.68) and inequality (2.71) yield

hz � x; T
 x � xi D hz � x; 
.x/.T x � x/i
� k
.x/.T x � x/k2

D kT
 x � xk2 .
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By the equivalence (a),(b) in Lemma 1.2.5, we have

hz � T
x; x � T
xi � 0,

i.e., T
 is a cutter. The 2��
�

-strong quasi nonexpansivity of T
;� follows now from
Corollary 2.4.3. ut
The convergence of sequences generated by generalized relaxations of an algorith-
mic operator U , which we present in the next chapter, requires a stronger condition
than (2.71). As we will see, the convergence holds if we additionally suppose that
U is strongly oriented, or, equivalently, that the step size 
.x/ � ˛ for all x 2 X

and for a constant ˛ > 0. This leads to ˛-relaxed cutters (see Remark 2.1.31).
It is clear that if an operator T W X ! H with a fixed point is an ˛-relaxed cutter
for some ˛ > 0, then there exists a step size function 
 W X ! .0; C1/ satisfying
inequality (2.71), e.g., 
.x/ D ˛�1 for all x 2 X (cf. (2.22)). In practice, however, it
is important to determine a step size 
.x/ for which the difference between the right-
and the left-hand side of inequality (2.71) is as small as possible for all z 2 Fix T .
Theoretically, the best possibility would be 
.x/ D ı.x/ for x … Fix U , where
ı.x/ is defined by (2.70), but the computation of ı.x/ is, in most cases, impossible,
because we usually do not know Fix T explicitly.

Having an ˛-relaxed cutter T we can construct its generalized relaxation T
;�

with the range of the step size function 
 contained in Œ˛; C1/ and satisfying
assumptions of Corollary 2.4.5. The corollary below gives a collection of operators
which are ˛-relaxed cutters.

Corollary 2.4.6. Let U W X ! H have a fixed point. Then U is an ˛-relaxed cutter
with:

(a) ˛ D 1 if U is firmly nonexpansive,
(b) ˛ D � if U is �-relaxed firmly nonexpansive, where � 2 .0; 2�,
(c) ˛ D 2 if U is nonexpansive,
(d) ˛ D 2� if U is �-averaged, where � 2 .0; 1/,
(e) ˛ D 2

1Cˇ
if U is ˇ-strongly quasi-nonexpansive, where ˇ > 0.

Proof. (a) Let U be firmly nonexpansive. Then it follows from the first part of
Theorem 2.2.5 that T is a cutter, i.e., T is a 1-relaxed cutter.

(b) Let � 2 .0; 2� and U WD Id C�.T � Id/ for a firmly nonexpansive operator T .
Then, by (a), we have

hz � x; Ux � xi D �hz � x; T x � xi

� � kT x � xk2 D 1

�
kUx � xk2 .

(c) Let U be nonexpansive. Then U D 2T � Id for a firmly nonexpansive operator
T (see Corollary 2.2.13) and this case is covered by (b) for � D 2.

(d) Let � 2 .0; 1/ and U WD .1 � �/ Id C�S for a nonexpansive operator S . Then
U is 2�-relaxed firmly nonexpansive (see Corollary 2.2.17). The claim follows
now from (b) with � D 2�.
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(e) Let ˇ > 0 and U be ˇ-strongly quasi-nonexpansive. It follows from Corol-
lary 2.1.43 that U is a 2

1Cˇ
-relaxed cutter.

ut
In the lemma below we state some obvious properties of the generalized relaxation.

Lemma 2.4.7. Let T W X ! H be an operator with a fixed point, and f
j gj 2J W
X ! .0; C1/ be a family of step size functions.

(i) If T
j , j 2 J , are cutters, then Tsupj 2J 
j is a cutter.
(ii) If 
i � 
j for some i; j 2 J and T
j is a cutter, then T
i is a cutter.

If T is a cutter, then there exists a step size function 
 with 
.x/ � 1 for
all x … Fix T , for which T
 is a cutter, e.g., a step size function 
 defined by

.x/ D ı.x/, where ı.x/ is given by (2.70) for x … Fix T . Consequently, the
generalized relaxation T
;� is strongly quasi-nonexpansive for any � 2 .0; 2/ (see
Theorem 2.4.5). Note that 
.x/ � 1, by Remark 2.1.31. The following example
shows, however, that there is a cutter T such that the generalized relaxation T
;�

is strongly quasi-nonexpansive for all � 2 .0; 2/ if and only if 
.x/ � 1 for all
x … Fix T .

Example 2.4.8. Let T
;� be a generalized relaxation of the metric projection PC W
H ! H, where C � H is a nonempty closed convex subset, i.e., T
;�.x/ D
x C �
.x/.PC x � x/ for a relaxation parameter � 2 .0; 2/ and for some step
size function 
 W H ! .0; C1/. For any x 2 H we have

kT
;�x � PC xk2 D kx C �
.x/.PC x � x/ � PC xk2

D kx � PC xk2 C �2
2.x/ kPC x � xk2 � 2�
.x/ kPC x � xk2

D kx � PC xk2 � �
.x/.2 � �
.x// kPC x � xk2 ,

consequently,

kT
;�x � PC xk2 D kx � PC xk2 � 2 � �
.x/

�
.x/
kT
;�x � xk2 . (2.72)

Let � 2 .0; 2/. Suppose that T
;� is strongly quasi-nonexpansive, i.e.,

kT
;�x � zk2 � kx � zk2 � ˛ kT
;�.x/ � xk2 (2.73)

for some ˛ > 0, for all x 2 H and z 2 C WD Fix PC . Note that ˛ can depend on �.
Let x … C and z D PC x. Then (2.72) and (2.73) yield

0 < ˛ � 2 � �
.x/

�
.x/
.

There exists a constant ˛ satisfying the above inequalities for all � 2 .0; 2/ if and
only if 
.x/ � 1.
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Fig. 2.13 Operators T and
T
 from Example 2.4.9

If T W X ! H is firmly nonexpansive with a fixed point, then T is oriented
and for the function ı defined by (2.70) it holds ı.x/ � 1 for all x … Fix T .
Therefore, Corollary 2.4.5 applied to a firmly nonexpansive operator T with the
step size 
.x/ WD ı.x/ for x … Fix T is an extension of Theorem 2.2.5 (i) for
generalized relaxations. Unfortunately, Theorem 2.2.5 (ii) cannot be analogously
extended. The fact that T W X ! H is a projection and T
 is a cutter for some
step size function 
 W X ! .0; C1/ does not yield the firm nonexpansivity of T .
Even if we additionally suppose that T is nonexpansive, T needs not to be firmly
nonexpansive (see Example 2.2.7). Moreover, a projection T for which T
 is a cutter
needs not to be continuous.

Example 2.4.9. Let H D R
2, C WD B.0; 1/, D WD bd B.0;

p
2/; a D .1; 0/.

Define the operator T W R2 ! R
2 by

T x WD
8
<

:

PC x for kxk � 2

�a for kxk > 2, �1 � 0

a for kxk > 2, �1 < 0.

It is clear that T is a projection with Fix T D C . For kxk > 2, let Ux be the
unique common point of the segment Œx; T x� and the circle D. Define the function

 W R2 ! R by


.x/ WD
(

1 if kxk � 2
kUx�xk
kT x�xk if kxk > 2.

Observe that for kxk > 2 it holds T
 x D Ux. It follows from geometrical
considerations (note that the square circumscribed on the circle bd B.0; 1/ is
inscribed in the circle bd B.0;

p
2/) that for all x 2 R

2 and z 2 C D Fix T it
holds

hx � T
 .x/; z � T
 .x/i � 0

(see Fig. 2.13). Therefore, T
 is a cutter. Note that T is not continuous, therefore,
T cannot be firmly nonexpansive.
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FNE operators

cutters with
a common fixed point

RFNE operators

SQNE operators with
a common fixed point

SNE operators

The family of

is closed under
convex combination

is closed under
composition

relaxed cutters with
a common fixed point

strictly RFNE
operators

Fig. 2.14 Closedness of families of algorithmic operators

SUMMARY

In Fig. 2.14 we recall in a short form the properties of algorithmic operators
which were presented in this chapter. These properties are useful in construction
of projection methods. We will describe these constructions in Chaps. 4 and 5.

2.5 Exercises

Exercise 2.5.1. Show that .T�/� D T�� for all �; � 2 R.

Exercise 2.5.2. Let T W R ! R,

T x D
�

x2 if jxj � 3
4

jxj � 3
16

if jxj > 3
4
.

Show that T is quasi-nonexpansive and continuous, but T is not a nonexpansive
operator.

Exercise 2.5.3. Let fUigi2I be a finite family of operators, Ui W X ! H, i 2 I .
Let w W X ! �m be a weight function satisfying !i .x/ > 0 for some i.x/ D
argmaxi2I kUi x � xk for all x 2 X . Prove that w is appropriate with respect to the
family fUigi2I .
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Exercise 2.5.4. Prove that the assumption on the C -strict quasi nonexpansivity
in Theorem 2.1.26 (i) can be weakened. In this case it suffices to suppose that all
Ui are quasi-nonexpansive, i 2 I , and at least one of them is C -strictly quasi-
nonexpansive. The assumption that the weight function w is appropriate should be
replaced in this case by a stronger one, namely: wj .x/ > 0 for all x such that
I.x/ ¤ ; and for all j 2 I.x/.

Exercise 2.5.5. Prove Corollary 2.1.29.

Exercise 2.5.6. Prove Lemma 2.1.45.

Exercise 2.5.7. Show that the operator T W R2 ! R
2,

T x WD .�1 cos ' � �2 sin '; �1 sin ' C �2 cos '/

is nonexpansive and monotone for ' 2 .0; �=2/, but T is not firmly nonexpansive.

Exercise 2.5.8. Prove Lemma 2.2.2.

Exercise 2.5.9. Show that the operator T presented in Example 2.2.7 is nonexpan-
sive and that T is a separator of A, but T is not firmly nonexpansive.

Exercise 2.5.10. Let H D R
2, A WD fx 2 R

2 W �2 D 0g and B WD fx 2 R
2 W

�1 D �2g. By Theorem 2.2.21 (iii) PA and PB are firmly nonexpansive. Check that
T WD PBPA is not firmly nonexpansive.
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