Chapter 2
Algorithmic Operators

In Chap.5 we will present several methods for solving convex optimization
problems. We will focus our study on iterative methods (we also call them iterative
procedures or algorithms) which are given in the form of the following recurrence

XK = Txk 2.1

defined on a closed convex subset X € H, where 7 : X — X is a sequence of
operators. We suppose that the starting point x° is an element of a starting subset
Xo C X. Usually, one supposes that X, = X. A sequence {x* 1o, generated by
the iterative method (2.1) is called an approximating sequence. If T, = T for all
k > 0, then this sequence is called an orbit of T. Any iterative method for solving
a convex optimization problem is constructed in such a way that the approximating
sequences {x¥ 172, generated by this method converge (at least weakly) to a solution
of the optimization problem. As we will see, the solution is a fixed point of an
operator S : X — 'H, which is usually a nonexpansive one. The form of this
operator depends on the considered optimization problem. A sequence of operators
Ti which defines the iterative method is usually constructed in such a way that
Fix S € (M=, Fix Tk.

In this chapter we deal with general properties of operators which define
algorithms for solving convex optimization problems. In one iteration of the
algorithm an appropriate operator 7 : X — X defines an actualization, also
called an update x™ of the current approximation x of a solution of the convex
optimization problem. Usually, this actualization has the form x* = Tx. We call T
an algorithmic operator. One can also consider algorithms, where the actualization
has the form x* € T'x for a mapping (multifunction) 7 : X = X. In this case, T
is called an algorithmic mapping.

Operators defining iterations of an algorithm usually depend on some parameters
which are constant or vary during the iteration process. The properties of approx-
imating sequences depend on the properties of algorithmic operators defining the
iterative method as well as on the choice of parameters defining these operators.
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40 2 Algorithmic Operators
2.1 Basic Definitions and Properties

Let H be a Hilbert space. In what follows, we consider operators which are defined
on a nonempty closed convex subset X C H.
Remark2.1.1. LetU; : X — X,i e [ :={1,2,...m}. DU =, ., 0 U,
where w = (w1, @2, . ..,wp) € Ay, or (i) U = U,,Uy,—; ... Uy, then the following
obvious inclusion holds

(\Fix U; € FixU

iel
The converse inclusion needs not to be true even if all U;, i € I, have a common
fixed point (see Example 2.1.27).

Definition 2.1.2. Let 7 : X — H and A € [0,2]. The operator 7) : X — H
defined by
T, :=(1—A)Id+AT

is called a A-relaxation or, shortly, relaxation of the operator T'. Obviously, 7, =
Id +A(T —1d). We call A a relaxation parameter. If A € (0, 1), then T}, is called an
under-relaxation of T. If A € (1,2), then T} is called an over-relaxation of T and
if A = 2, then T is called the reflection of T. If A € (0, 2), then T), is called a strict
relaxation of T'.

A relaxation T} of an operator T’ can be defined for any A € R. However, if we
do not extend explicitly the range of A, we assume that A € [0, 2].

Remark 2.1.3. Note that the equality (73), = T, holds for all A, u € R, con-
sequently (73),—1 = T for A # 0.

Remark 2.1.4. Ttis clear that Fix T = Fix T) whenever A # 0.

LetU; : X - X,i el ={1,2,....m},U :=U,U,—...U; and Q; :=
UUi—,.. U U,...U4,i =1,2,...,m. Denote Q() = Qm = U and U, =
U,,. There exists a relationship among the subsets of fixed points of operators Q;,
which is expressed by the following theorem.

Theorem 2.1.5. Fori = 1,2,...,m there holds

Fix Q; = U;(Fix Q;—1). (2.2)
Proof. Leti € I.First we prove the inclusion

Fix Q; 2 U;(Fix Q;—). (2.3)
Letz ! € Fix Q;_; and 7 = U;7'~'. Then we have

Zi = UiZi_l = U,‘Qi_1Zi_l = U,' Ui—l e UlUm e U,'_|_1U,‘Zi_l
= U,'U,'_l A UlUm . Ui+1Zi = QiZi,
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which proves that (2.3) holds for any i € I. Consequently,

Fix Q; 2 U;(Fix Q;—1) 2 U;U;— (Fix Q;—2)

D UUiy...U(Fix Qo) = UiUr_, ... Uy(Fix O,)
UU_ ... UU,Fix Q1)

DU Ui ...UiUpUpn ... U+ (Fix 0;)

Qi(Fix Q;) = (Fix Q;),

U 1 v

i €l, and all inclusions are, actually, equations. In particular, Fix Q; =
U;(Fix Q;_)), i.e., (2.2) is satisfied for all i € I. O

2.1.1 Nonexpansive Operators

Definition 2.1.6. We say that an operator 7 : X — H is:
(i) Nonexpansive (NE), if

ITx =Ty| < llx =yl

forall x,y € X,
(i) Strictly nonexpansive if

ITx =Tyl <llx =yl orx =y =Tx—Ty

forall x,y € X,
(iii) An a-contraction, where o € (0, 1) or, shortly, a contraction if

[Tx =Ty| =afx—yl

forall x,y € X.

The theorem below, called the Banach fixed point theorem or the Banach theorem
on contractions, is widely applied in various areas of mathematics. The theorem
holds for any complete metric space, and hence, in particular, for every closed subset
of a Hilbert space.

Theorem 2.1.7 (Banach, 1922). Let X be a complete metric space and T : X —
X be a contraction. Then T has exactly one fixed point x* € X. Furthermore,
for any x € X, the orbit {Tkx}]‘z‘;0 converges to x* with a rate of geometric
progression.

Proof. See, e.g., original paper of Banach [15], [185, Theorem 1.1], [267, Theorem
24.2], 184, Theorem 2.1], [183, Theorem 2.1] or [36, Theorem 2.1]. O
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The Banach fixed point theorem is a widely applied tool for an iterative approxi-
mation of fixed points. Unfortunately, its application is restricted to contractions. We
will need, however, appropriate tools for an iterative approximation of fixed points
of nonexpansive operators 7" with Fix T # @.

Below, we present several classical fixed points theorems.

Theorem 2.1.8 (Brouwer, 1912). Let X C R”" be nonempty compact and convex
and T : X — X be continuous. Then T' has a fixed point.

Proof. See, e.g., original paper of Brouwer [43] or [191, Chap. 11, §5, Theorem 7.2]
or [183, Theorem 7.6]. O

The Brouwer fixed point theorem was generalized by Juliusz Schauder.

Theorem 2.1.9 (Schauder, 1930). Let X be a nonempty compact and convex
subset of a Banach space and T : X — X be continuous. Then T has a fixed point.

Proof. See, e.g., original paper of Schauder [302] or [191, Chap.II, §6, Theorem
3.2] or [183, Theorem 8.1]. O

For nonexpansive operators in a Hilbert space H the compactness of X C H in the
Schauder theorem can be replaced by the boundedness of X . The following theorem
was proved independently by Browder [45, Theorem 1], Gohde [188] and by Kirk
[227]. The proof can also be found, e.g., in [185, Theorem 5.1], [191, Chap. 1, §4,
Theorem 1.3], [183, Theorem 4.1] or [36, Theorem 3.1].

Theorem 2.1.10 (Browder-Gohde-Kirk, 1965). Let X be a nonempty closed,
convex and bounded subset of a uniformly convex Banach space (e.g., of a Hilbert
space H) and U : X — X be nonexpansive. Then U has a fixed point.

Contrary to the Banach fixed point theorem, the theorems of Brouwer, Schauder
and of Browder—Gohde—Kirk are only of existential nature. In Chap. 3 we present
theorems which can be applied to iterative methods for determining fixed points of
nonexpansive operators.

Below, we present some properties of the subset of fixed points of a nonexpansive
operator. The following result can be found in [185, Proposition 5.3].

Proposition 2.1.11. The subset of fixed points of a nonexpansive operator T :
X — 'H is closed and convex.

Proof. (cf. [185, Proposition 5.3]) Let xk € Fix T and x** — x. We have x € X
because X is closed. By the continuity of T,

x = limx¥ = lim7Tx* = Tx,
k

i.e., Fix T is a closed subset. Now we show the convexity of Fix 7. Let x, y € Fix T,
x #yandz = (1 — A)x + Ay for A € (0, 1). By the nonexpansivity of 7 and by
the positive homogeneity of the norm we have

lx =Tzl = Tx =Tzl < [lx —zll = A flx — »l| 24



2.1 Basic Definitions and Properties 43

and
ITz=yll =1Tz=Ty| <llz=yl=A=2)lx = yl. (2.5)

Now, the triangle inequality yields

[x =yl = llx =Tz + [Tz =yl
S Al =yl + @ =2 [lx =yl
=[x =yl
Consequently,
x =yl = llx =Tzl +Tz=yll.

By the strict convexity of the norm, the vectors x — 7'z and Tz — y are positive
linearly dependent. Therefore, o(x — T'z) + B(y — Tz) = 0 for some o, B > 0.
Since x # y, it follows that « + B > 0, and hence, Tz = ﬁx + ﬁy. Now, the
nonexpansivity of T and inequalities (2.4) and (2.5) yield

B
—— lx =yl =llx=Tzl| = |[Tx =Tzl < |x =zl =Allx =yl (2.6
a+ B

and

+ﬁ lx =yl =1Tz=yll =1Tz=Tyl < llz=yl = A=A x =yl. @27

If at least one inequality in (2.6) and (2.7) is strict, then by summing up (2.6)
and (2.7) we would obtain a contradiction. Therefore, ﬁ = Aand =% m + PR (1-2),

consequently 7z = (1 —A)x + Ay =z O

The closedness and convexity of the subset of fixed points of a nonexpansive
operator follows also from a property presented in Sect. 2.2 (see Corollary 2.2.48).

Lemma 2.1.12. Let S; : X — X,i € I := {1,2,...,m}, be nonexpansive.
Then:

(i) A convex combination S := ) ,.; w;Si, where w = (®1,...,0p) € Ay, is
nonexpansive. If, furthermore, at least one operator S; is a contraction and the
corresponding weight w; > 0, then S is a contraction;

(ii) A composition S := S,;Sm—1...S| is nonexpansive. If, furthermore, at least
one operator S; is a contraction, then S is a contraction.

Proof. Let x,y € X and §; be nonexpansive, i.e., ||S;ix — Siy|| < a; |[|x —y|,
wherea; € (0,1],i € 1.

(i) Letwe Ay, S =3 i c;oiSianda = ), w;a;. Itis clear that @ € (0, 1].
By the convexity of the norm and the nonexpansivity of S;,7 € I, we have
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1Sx =Syl = | > wi(Six — Siy)
i€l
< sz‘ [Six = Siyll
iel
<Y wax—y|
iel

w;;
=Y =——afx—y

il D jer @i

=afx—=yl,

i.e., S is a nonexpansive operator. Now suppose that S;, is a contraction, i.e.,
@, < 1 and that w;, > O, for some iy € I. Then ¢ € (0,1),1ie, S is a
contraction.

(ii) We have

1Sx = Syl = [[SmSmei ... 81X — SpSm—i ... Syl < o lx — |,

where ¢ = o, 0,—1 ... 1 € (0, 1]. If S;; is a contraction for some iy € 1, i.e.,
a;, € (0,1), then, of course, @ € (0, 1) and S is a contraction. O

Theorem 2.1.13. Let U; : X — X be nonexpansive foralli € I := {1,2,...,m},
and U = UynUy—y...Up. If U;(X) is bounded for at least one j € I, then
FixU # 0.

Proof. Let U;(X) be bounded for some j € /. Since U; are nonexpansive, i € I,
the boundedness of U;(X) yields the boundedness of U(X). Therefore, ¥ :=
clconv U(X) is closed, convex and bounded. Since U(X) € X and X is closed
and convex, we have ¥ C X. The operator U |y maps a closed, convex and
bounded subset Y into itself. By the Browder—Gohde—Kirk Fixed Point Theorem,
the operator U |y has a fixed pointz € Y. Of course, Uz = U |y (2) = z. O

Theorem 2.1.14. Let U; : X — H,i € I = {1,2,...,m}, be nonexpansive
operators with a common fixed point and U =Y, o, w;U; withw € 1i A,,. Then

Fix U = ﬂFix U,.

i€l

Proof. The inclusion ();¢; Fix U; C Fix U is always true (see Remark 2.1.1). Now
we show that the converse inclusion also holds. Let z € Fix U and u € (), ; Fix U;.
If z = u, then, of course, z € ﬂie ; Fix U;. Otherwise, for z # u, by the convexity
of the norm and by the nonexpansivity of U;, i € I, we have
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lz—ull = Uz —ull
= j{:(DiLGZ-— uj| = j{:zui(lhz —-u)
iel iel
<Y o |Uz—ul =) o |Uiz = Ul
iel iel
<Y oillz—ul = lz—ul.
iel

Consequently,

Za)i(UiZ— u)

i€l

= oilUz—ul =) oilz=ul. 28

iel iel

Since w; > 0 for all i € I, the first equality in (2.8) yields a positive linear
dependence of all pairs of vectors Uiz —uand Ujz —u, i, j € I,i # j,ie.,

Uiz —ull Uiz —u) = |Ujz—u| (Uiz — u). (2.9)

The second equality in (2.8), together with the inequality ||U;z — ul|| < ||z — ul,
i € I, and the assumption w; > 0,7 € I, yield

Uiz —ull = llz — ull (2.10)

forall i € I. Since z # u, we have U;z # u, i € I. Now, it follows from (2.9)
and (2.10) that U;z = v for all i € I and for some v € H. Consequently,

z=Uz= ijsz = ijv =v="Uz,
jel jel

foralli € I,i.e., z € ()¢ FixU;. O

2.1.2 Quasi-nonexpansive Operators

Definition 2.1.15. We say that an operator 7' : X — H is:

(1) Fejér monotone (FM) with respect to a nonempty subset C € X if
ITx —z| < |lx =z

forallx € X andz € C,
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Fig. 2.1 Equivalence (2.11) /

(i1) Strictly Fejér monotone with respect to a nonempty subset C € X if
ITx =zl <llx—z]

forallx ¢ C andz € C.

Remark 2.1.16. Because of the following obvious equivalence

+x
o= 31 = Ja=xl <= {e= 255y —x) 20 .1
for arbitrary x, y,z € H (see Fig.2.1), an operator T : X — H is Fejér monotone
with respect to C if and only if

T _
<z— xz x,Tx—x>20. (2.12)

Furthermore, T is strictly Fejér monotone if and only if inequality (2.12) is strict
for all x ¢ C. We have not supposed that C is closed convex in Definition 2.1.15.
Inequality (2.12) yields, however, that if T is (strictly) Fejér monotone with respect
to C, then T is (strictly) Fejér monotone with respect to conv C. Furthermore, the
continuity of the norm yields that if 7" is Fejér monotone with respect to C, then T’
is Fejér monotone with respect to cl C. Therefore, we can suppose, without loss of
generality, that C is closed convex in Definition 2.1.15 (i) and that C is convex in
Definition 2.1.15 (ii).

There exists the largest subset, with respect to which an operator T is Fejér
monotone. This subset is closed and convex, as follows from the following lemma.

Lemma 2.1.17. Let T : X — H. If the subset
Tx + x
FejT = zeX  (z——— Tx—x)>0 (2.13
A e S B

is nonempty, then Fej T is the largest subset, with respect to which T is Fejér
monotone.
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Proof. The assertion follows directly from the equivalence (2.11). O

Remark 2.1.18. Because of frequent use we state some obvious properties of Fejér
monotone operators:

(1) If T is (strictly) Fejér monotone with respect to a nonempty subset C € H,
then for an arbitrary A € (0,1) its relaxation 7, is also (strictly) Fejér
monotone with respect to C.

(i) If T is (strictly) Fejér monotone with respect to a nonempty subset C C H,
then T is (strictly) Fejér monotone with respect to any nonempty subset
D cC.

(iii) Every composition and every convex combination of operators which are Fejér
monotone with respect to a nonempty subset C € H is Fejér monotone with
respect C.

Definition 2.1.19. We say that an operator 7 : X — H having a fixed point is:

(i) Quasi-nonexpansive (QNE) if T is Fejér monotone with respect to Fix T, i.e.,
ITx —z| < [lx —z

forall x € X andz € Fix T,
(i) Strictly quasi-nonexpansive (SQNE) if T is strictly Fejér monotone with
respect to Fix T', i.e.,
ITx —z] < [lx —zll

forall x ¢ FixT and z € Fix T,
(iii) C-strictly quasi-nonexpansive (C-sQNE), where C # @and C C Fix T, if T
is quasi-nonexpansive and

ITx —z| < lx =z

forall x ¢ FixT and z € C.

For an operator 7" having a fixed point the following relation is clear:
T is SQNE = T is C-sQNE
where C C Fix T'. Furthermore, by definition,
T is Fix T-sQNE = T is sQNE.

The metric projection onto a closed convex subset is a typical example of a strictly
quasi-nonexpansive operator.

A nonexpansive and strictly Fejér monotone operator is also called attracting
(see [22, Definition 2.1]). Yamada and Ogura use the name an attracting quasi-
nonexpansive operator for a strictly quasi-nonexpansive one (see [346, page
623]). Vasin and Ageev call these operators strongly Q-quasi-nonexpansive
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(see [333, Definition 2.2]). Reich and Zaslavski define a more general operator
than the strictly quasi-nonexpansive one and call it an F-attracting mapping,
where F' = Fix T (see [297, Sect. 1]). A continuous strictly quasi-nonexpansive
operator is also called a paracontraction (see, [164, Definition 1]). The class of
quasi-nonexpansive operators is denoted in [126, page 161] by F°. Properties
of quasi-nonexpansive operators in metric spaces have been intensively studied
since 1969 (see, e.g., [145, 148, 283], [50, Sect. 1], [113]), but the name quasi-
nonexpansive was introduced by Dotson [147].

Lemma 2.1.20. A nonexpansive operator U : X — H with a fixed point is quasi-
nonexpansive.

Proof. Let U be nonexpansive and z € Fix U. Then
[Ux —z|| = [[Ux = Uz| < [lx =z,

i.e., U is quasi-nonexpansive. O

It is clear that the class of nonexpansive operators having a fixed point is an essential
subclass of quasi-nonexpansive operators, because a quasi-nonexpansive operator
needs not to be continuous. Moreover, a quasi-nonexpansive operator needs not to
be nonexpansive even if it is continuous (see Exercise 2.5.2). In this section we
present properties of the family of quasi-nonexpansive operators. In further parts of
the book we show that these operators play an important role in iterative methods
for fixed point problems.

The following lemma gives a relation between the subset Fej T and the subset
Fix T for an operator T : X — 'H (cf. [24, Proposition 2.6 (ii)]).

Lemma 2.1.21. For any operator T : X — 'H the inclusion Fej T C Fix T holds.
IfFixT # @ and T is quasi-nonexpansive, then the converse inclusion also holds.
Consequently, the subset of fixed points of a quasi-nonexpansive operator is closed
and convex.

Proof. If FejT = @, then the first part of the assertion is obvious. Now let
FejT # @ andw € Fej T. Then, for z = x = win (2.13), we obtain

Tw+w

0 <
(w 7

,Tw—w)
1 2
=—Z|Tw—w|” <0,
2

i.e., Tw = w. Therefore, Fej T € Fix T'. Now suppose that Fix 7 # @ and that
T is quasi-nonexpansive, i.e., T is Fejér monotone with respect to Fix 7. Then,
Lemma 2.1.17 yields the inclusion Fix T € Fej T, which together with the first
part of the lemma gives Fix T = Fej T'. The convexity and the closedness of Fix T’
follows now from Lemma 2.1.17 and from the fact that the intersection of closed
half-spaces is closed and convex. O
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Fig. 2.2 Nonconvex Fix T’
for a Fejér monotone
operator 7'

“1

Remark 2.1.22. Tt follows from Remark 2.1.18 (ii), Lemmas 2.1.17 and 2.1.21 that
a quasi-nonexpansive operator 7' : X — X is Fejér monotone with respect to any
nonempty subset of Fix 7'. Therefore, we will restrict our further consideration of
Fejér monotone operators to quasi-nonexpansive ones. Note, however, that without
the quasi nonexpansivity of 7' the equality Fix T = Fej T needs not to be true. In
this case, Fix 7' needs not to be convex, even if 7" is Fejér monotone.

Example 2.1.23. Let H = R%, X = [a,b] x Rfor —co < a < b < 400
and 2 : X — Ry be a function with infye[4 5 2(x) = 0. Define the operator 7" :
X — R?by
Tx=1% ift [&] < h(&1)
(£1,0) if |&| > h(§1),

where x = (&1, &) (see Fig.2.2).

The reader may check that Fej T = [a, b] x {0} and that FixT = {x € X : |[&] <
h(&))}. If h is positive in at least one point, then Fej T # Fix T'. If, moreover, & is
not concave, then Fix T is not convex.

LetU; : X - X,i el :={1,2,...,m}, and:

(i) U =) ,c; wiU;, wherew = (w1, ws, ..., 0y) € Ay or
(i) U :=UpUp_; ...U,.

As we observed before, the following inclusion holds

ﬂ Fix U; C FixU (2.14)

i€l

(see Remark 2.1.1) and the converse inclusion holds in case (i) when all U;,
i € I, are nonexpansive operators with a common fixed point and w € ri 4,, (see
Theorem 2.1.14). It turns out that, in both cases (i) and (ii), the inclusion converse
to (2.14)) is true for strictly quasi-nonexpansive operators (see [22, Proposition
2.12], where the property was formulated for attracting operators). In case (i) this
property is also true for a more general form of the operator U = ), .; w; U, where
the weights w;, i € I, may depend on x.
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Definition 2.1.24. A functionw : X — A,,, with w(x) = (w1(x),...,®n(x)) is
called a weight function.

Definition 2.1.25. Let U; : X — H,i € I. We say that the weight function w :
X — A, is appropriate with respect to the family {U;};c; or, shortly, appropriate,
if for any x ¢ ();¢; Fix U; there exists an index j € I such that

wj(x) || Ujx —x || # 0. (2.15)

Denote
I(x):={i el :x¢FixU;} (2.16)

for a family of operators U; : X — H, i € I. The subset /(x) is called a subset of
violated constraints. Note that w is appropriate if and only if

w;(x) > 0 for some j € I(x) 2.17)

and for any x ¢ ();¢; Fix U; (or, equivalently, for any x € H such that I(x) # @).
A weight function w : X — ri 4, is appropriate with respect to any family of
operators {U; }; ¢y if:

(i) w € ri A, is a vector of constant weights (this case was considered in [22,
Proposition 2.12]), or if
(i) w;(x) > O forall x ¢ FixU; and foralli € I.

It is clear that property (2.15) is weaker than conditions (i) and (ii) above.

The following theorem extends important results of [22, Proposition 2.12],
where C = (1);¢; FixU; and only constant weights are considered (see also [25,
Proposition 2.5] for a related result). These extended results will be applied in
further parts of the book.

Theorem 2.1.26. Let the operators U; : X — X, i € I, with (\;¢; FixU; # @,
be C-strictly quasi-nonexpansive, where C C (\;c; FixU;, C # @. If U has one of
the following forms:

(i) U =Y ,c; wiU; and the weight functionw : X — A,, is appropriate,
(ii) U .= UmUm_l e Ul,

then
FixU = ﬂ Fix U; (2.18)
iel
and U is C-strictly quasi-nonexpansive.

Proof. The inclusion ();¢; Fix U; € Fix U is obvious. Now we show that Fix U €
(;e; Fix U;. This inclusion is clear if ();c; FixU; = X. Now suppose that x ¢
(ie; FixU;. Let z € ();¢; Fix U;. If z € C, then the C-strict quasi nonexpansivity
of U;,i € 1, yields

|Uix —z|| < ||x —z|| foranyi € I(x). (2.19)
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(i) Let Ux = Y ,c; wi(x)Uix, where the weight function w : X — A, is
appropriate. Then the convexity of the norm, (2.19) and (2.15) yield

1Ux =2l = |3 @i () (Uix —2)
iel
<Y o) [Uix —z] = Y o) lx =zl = llx =z,
iel iel

where the second inequality is strictif z € C.
(ii) Let j := min{i € [ : x ¢ FixU;}. Then we have U;U;_;...Uix = Ujx
and (2.19) yields
IUx =zl = |Un ... Urx — 2|
= |Un...Ujx — 2

A
5
L
S
=
|
Al

IA

S| Ujx —2| < lx =l

where the latter inequality is strict if z € C.

Now it is clear that x ¢ Fix U because, otherwise, for z € C, in both cases (i)
and (ii) we would obtain

v =zl = IUx =zl < [x =z,

a contradiction. We have proved that FixU C ﬂi <; FixU;. Hence, (2.18) holds
and, in both cases (i) and (ii), U is C-strictly quasi-nonexpansive. O

Note that equality (2.18) needs not to be true for nonexpansive operators, even if
they have a common fixed point.

Example 2.1.27. (cf.[22,Remark 2.11]) Let X C H be a subspace with dim X > 0.
LetU; : X — X,U; := —1d,i = 1,2. We have U,U; = Id, consequently,
Fix(U,U,) = X, but Fix U; N Fix U, = {0}.

The assumption on the C-strict quasi nonexpansivity in Theorem 2.1.26 (i) can
be weakened. In this case it suffices to suppose that all U; are quasi-nonexpansive,
i € I, and at least one of them is C-strictly quasi-nonexpansive. The assumption
that the weight function w is appropriate should be replaced in this case by a stronger
one, namely: w; (x) > O for all x such that /(x) # @ and forall j € /(x). We leave
the proof of this fact to the reader.

A stronger version of the first part of Theorem 2.1.26 (ii) for two operators is
stated below (cf. [346, Proposition 1(d) (1)]).
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Theorem 2.1.28. Let S : X — X be quasi-nonexpansive, T : X — X be
strictly quasi-nonexpansive and Fix S N FixT # @. Then FixST = FixTS =
Fix S N Fix T. Furthermore, ST is quasi-nonexpansive and TS is strictly quasi-
nonexpansive.

Proof. The inclusions Fix § N FixT C Fix ST and Fix S N FixT C Fix TS are
clear.

(1) We prove that Fix ST C Fix SNFix T'. The inclusion is obvious if Fix ST = 0.
Suppose that Fix ST # @ and let x € Fix ST be such that x ¢ Fix S NFix T.
‘We consider two cases:

(a) x e FixT.Thenx = STx = Sx,i.e., x € Fix §. Therefore, x € Fix S N
Fix T.

(b) x ¢ Fix T. Let z € Fix S NFix T. By the quasi nonexpansivity of S and by
the strict quasi nonexpansivity of 7', we have

[x =zl = STx —z|| = |Tx —z[| < [lx — 2]
In both cases we obtain a contradiction, which proves that Fix ST C

Fix S NFixT.

(ii) We prove that Fix 7'S' € Fix T'NFix S. The inclusion is obvious if Fix T'S = @.
Suppose that Fix T'S # @ and let x € Fix T'S be such that x ¢ Fix T N Fix S.
Consider two cases:

(@) Sx € FixT. Then x = TSx = Sx, consequently, x € FixS. Now we
have x = Sx € FixT,ie.,x € FixT NFix §S.
(b) Sx ¢ FixT. Letz € Fix T N Fix S. By the strict quasi nonexpansivity of
T and by the quasi nonexpansivity of S, we have
lx =zl = ITSx =z < ISx —zll = [lx —z].

In both cases we obtain a contradiction, which proves that Fix 7S C
FixT NFix S.

Letnow z € Fix 7S = Fix T N Fix S and x € X. We have
ISTx =z < ITx —z| < [lx =z,
i.e., ST is quasi-nonexpansive. Furthermore,
ITSx =zl < 1Sx —z] = llx =z,

where the second inequality is strict if x ¢ Fix S and the first one is strict if x €
Fix S and x ¢ Fix T'. Hence, T'S is strictly quasi-nonexpansive. O
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Fig. 2.3 Pconve isa
separator of C

Y= Peiconv C(:b)

Corollary 2.1.29. Let U = U,U,—,...U;, where U;,U,,...,Uy—_1 : X - X
are quasi-nonexpansive, U, : X — X is strictly quasi-nonexpansive and
(Nie; FixU; # @. Then Fix U = (", ¢; Fix U; and U is strictly quasi-nonexpansive.

Proof. The corollary follows from Theorem 2.1.28. We leave to the reader an easy
proof by induction with respect to m. O

The assumption of Theorem 2.1.28 that T is strictly quasi-nonexpansive is essen-
tial. Note that the composition of quasi-nonexpansive operators needs not to
be quasi-nonexpansive (see Example 2.1.52). Furthermore, the assumptions of
Theorem 2.1.28 do not yield the strict quasi nonexpansivity of the operator ST
(see Example 2.1.54).

2.1.3 Cutters and Strongly Quasi-nonexpansive Operators

Definition 2.1.30. Letx € H. We say that y € H separates a subset C C H from
x if
(x=y.z2=y) =<0

forall z € C. We say that an operator T : X — 'H is a separator of a subset C € X
or T separates a subset C, if y := Tx separates C from x for all x € H. We say
that 7' is an a-relaxed separator of C, where a € [0, 2], if T is an a-relaxation of a
separator of C. Let 7" have a fixed point. We say that 7 is a cutter if T is a separator
of Fix T, i.e.,

(x—Tx,z—Tx) <0 (2.20)

for all x € X and all z € FixT. We say that T is an «-relaxed cutter, where
a € [0,2],if T is an a-relaxed separator of Fix T'.

For any nonempty C < H the projection Pgjconyc iS a separator of C (see
Fig.2.3). In general, a separator of C is not uniquely determined.

The name cutter expresses the fact that, for any x ¢ Fix T, the hyperplane H (x —
Tx,(Tx,x — Tx)) cuts the space into two half-spaces, one of which contains the
point x while the other one contains the subset Fix 7" (see Fig. 2.4). In the literature
one can find different names for cutters. Bauschke and Combettes call the class of
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Fig. 2.4 A cutter and an
a-relaxed cutter

cutters a 7 -class (see [24, Definition 2.2] and [121, Definition 2.1]). Yamada and
Ogura (see [346, Sect. B]) and Mdruster (see [254]) call the operators firmly quasi-
nonexpansive. Zaknoon, Segal and Censor denoted cutters as directed operators (see
[104-106,307,356]). In [69] these operators were called separating operators. The
name cutter was proposed by Cegielski and Censor in [70].

Note that a separator and, in particular, a cutter need not to be continuous
operators.

Remark 2.1.31. Let T : X — 'H have a fixed point. Then, by Lemma 1.2.5, the
operator T is a cutter if and only if

(Tx —x,z—x) > ||Tx — x|? (2.21)

holds for all x € X and for all z € Fix T (cf. [121, Proposition 2.3 (ii)]), and T is
an a-relaxed cutter, where o € [0, 2], if and only if

a(Tx —x,z—x) > |Tx —x|? (2.22)

holds for all x € X and for all z € FixT. Furthermore, if T is a cutter, then
T |pixr= Id. Therefore, T is a cutter (respectively, an a-relaxed cutter) if and only
if inequality (2.21) (respectively, (2.22)) is satisfied for all x ¢ Fix 7" and for all
z € Fix T'. Relaxed cutters were also studied in [253,255,346] and in [249], where
they were called averaged quasi-nonexpansive mappings.

Remark 2.1.32. Let T : X — 'H be a separator of a subset C € X. Then the
following obvious properties of 7" hold:

(i) T is a separator of the closed convex hull of C.

(i) T is a separator of any subset D C C.
(iii) For an arbitrary A € [0, 1], the relaxation T) of T is a separator of C.
@iv) C CFixT.

Corollary 2.1.33. LetU : X - H, T := %(U +1d) and C C X. Then:

(i) U is Fejér monotone with respect to C if and only if T is a separator of C.
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(ii) IfFixU # @, then U is quasi-nonexpansive if and only if T is a cutter.

Proof. The corollary follows easily from equivalence (2.11) (see [24, Proposition
2.3 (v)<&(vi)] for a different proof). O

Corollary 2.1.34. Let T : X — Hand C C X. If T is Fejér monotone with
respect to C, then T is Fejér monotone with respect to the closed convex hull of C.

Proof. The corollary follows directly from Corollary 2.1.33 (i) and from Remark
2.1.32 (i). O

By Remark 2.1.32 (iii), the right hand side of the equivalence in Corollary 2.1.33 (i)
can be written in the form: U, is a separator of C for all A € [0, %]. Similarly, the
right hand side of the equivalence in Corollary 2.1.33 (ii) can be written in the form:
U, is a cutter for all A € |0, %]. Corollary 2.1.33 (ii) can also be written equivalently
as follows:

U is quasi-nonexpansiveif and only if there is a cutter S : X — H and u € [0, 2]
such thatU = §,,.

A subset C C X for which the operator 7 : X — H is a separator needs not to
be convex. However there exists the largest subset for which 7' is a separator, which
is closed and convex. This fact follows from the following lemma.

Lemma 2.1.35. Let T : X — H. If the subset

SepT := ﬂ{zeX (z—Tx,x—Tx) <0}

xX€X

is nonempty, then Sep T is the largest subset for which T is a separator. Further-
more, Sep T is a closed convex subset.

Proof. The first part of the lemma follows directly from Definition 2.1.30. The
second part follows from the fact that an intersection of closed convex subsets is
closed and convex. O

If T is nonexpansive, then Fix T is a closed convex subset (see Proposition 2.1.11).
It turns out that cutters have the same property. The second part of the following
lemma was proved in [24, Proposition 2.6 (i)—(ii)].

Lemma 2.1.36. Let T : X — H. The following inclusion holds
SepT C FixT. (2.23)
If T is a cutter, then a converse inclusion is also true. Hence, the subset of fixed

points of a cutter is closed and convex.

Proof. Lety € SepT,ie., (x —Tx,y—Tx) <0forall x € X.If we take x = y,
weget ||y — Ty|| <0,and hence, Ty = y,i.e., y € Fix T. Now suppose that 7" is a
cutter and that y € Fix T'. Then for any x € X we have (y—Tx,x—Tx) < 0},1i.e.,
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y € Sep T. Therefore, we have Sep T = Fix T'. The subset Fix T is closed convex
as an intersection of closed convex subsets. O

It follows from Remark 2.1.32 (ii) and from Lemmas 2.1.35 and 2.1.36 that a cutter
T : X — X is a separator of any nonempty subset of Fix 7. Therefore, we will
restrict our further considerations of separators to cutters. Note, however, that the
converse inclusion of (2.23) is not true in general (see Example 2.2.7). Hence, there
is a separator with a fixed point which is not a cutter.

It is an immediate consequence of the characterization of the metric projection
(see Theorem 1.2.4) that an operator T : 'H — 'H is a metric projection onto a closed
convex subset if and only if 72 = T and T is a cutter (a more general fact will be
presented in Theorem 2.2.5). In this case, we have T = Pgixr. Even if a cutter
T is not idempotent, T is closely related to the metric projection. The following
corollary was proved in [121, Proposition 2.3 (iii)].

Corollary 2.1.37. Let T : X — 'H be a cutter. Then, for any x € X, it holds
ITx — x|l < || Prixrx — x||. (2.24)

Proof. If x € Fix T, then inequality (2.24) is obvious. Now let x ¢ Fix T'. Then it
follows from inequality (2.21) for z := Prixrx together with the Cauchy—Schwarz
inequality that

(Tx — x, Prix7X — X)
[Tx — x| < ||7:x _lxx” < [[Prixrx — x|l

which completes the proof. O

Definition 2.1.38. Let o > 0 and assume that 7 : X — H has a fixed point. We
say that T is a-strongly quasi-nonexpansive (a-SQNE), if

ITx =zl < llx —z)* — | Tx — x| (2.25)

forall x € X and z € FixT. If T satisfies (2.25) with « > 0, then T is called
strongly quasi-nonexpansive (SONE).

A property which is more general than the strong nonexpansivity was introduced
by Halperin [198, Sect. 2] and was called ¢-property, where ¢ : [0, c0) — [0, 00) is
a nondecreasing function. If ¢(¢) = ¢> for all ¢ € [0, o), then g-property is equiva-
lent to the strong quasi-nonexpansivity. The notion strong quasi nonexpansivity was
introduced by Bruck [50, Sect. 1] for operators defined on a metric space. Strongly
quasi-nonexpansive operators are widely studied in the literature. Bauschke and
Borwein use the name strongly attracting operators for operators which are NE
and SQNE (see [22, Definition 2.1]). Reich and Zaslavski define a more general
operator and call it a uniformly F-attracting mapping, where FF = Fix T (see
[297, Sect. 1]). Vasin and Ageev call the «-SQNE operators, where & € (0, 1),
Q-pseudocontractive operators (see [333, Definition 2.3]). Yamada and Ogura
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use the notation «-attracting quasi-nonexpansive for the «-SQNE operators [346].
Crombez denotes the class of «-SQNE operators by F¢ (see [126, pages 160-161])
and gives several equivalent conditions for 7 € F“ (see [126, Theorem 2.1]).

It follows easily from the equivalence (a)<>(c) of Lemma 1.2.5 that an operator
T which has a fixed point is a cutter if and only if it is 1-strongly quasi-
nonexpansive. The following theorem extends this property to relaxations of 7" (cf.
[121, Proposition 2.3 (ii)]).

Theorem 2.1.39. Assume that T : X — H has a fixed point and let A € (0, 2].
Then T is a cutter if and only if its relaxation T), is #-strongly quasi-nonexpansive,
ie.,

72—
ITax —2ll” < flx —2l)” = == | Thx — x| (226)
forall x € X and forall 7z € FixT.

Proof. Since
Thx —x = MTx — x),

the properties of the inner product yield

2-2
ITox = 2l” = Il = 2l* + —— | Tox = x|

= x —z+ATx =)’ = lIx = 2> + 22 = 1) | Tx — x|

=2A(|Tx — x||* = (z— x, Tx — x))

=2Mz—Tx,x —Tx)
for all x € X and for all z € C. The assertion follows directly from the equalities
above. O
The following corollary is an equivalent formulation of Theorem 2.1.39.

Corollary 2.1.40. Assume that U : X — H has a fixed point and let a € (0,2].
Then U is an o-relaxed cutter if and only if U is %-strongly quasi-nonexpansive.

In general, a relaxation 7) of a cutter 7 with A > 2 needs not to be strongly
quasi-nonexpansive. Nevertheless, the following proposition holds.

Proposition 2.1.41. Let T : X — H be a cutter with intFixT # @ and A > 0.
Then for any z € intFix T and x ¢ Fix T it holds

25
IThx =2l < llx =zl =A@+ —— = M ITx —x|”, @27
ITx — x|

where § > 0 is such that B(z,8) C Fix T. If X is bounded, then T, is intFix T -
strictly quasi-nonexpansive for any A € (0, 2].
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Proof. Letz € intFix T and x ¢ FixT. Thenw :=z—§ ”;")’:i” € FixT € X and
inequality (2.21) yields

ITox —z|* = |lx + A(Tx —x) — 2|
=lx—z|* + A% || Tx —x|* = 2A{z—x, Tx — x)
=|lx =z + A} ||Tx — x|
—2Mz—w, Tx —x) =22 (w—x,Tx — x)
< fx—z)* + A2 Tx — x|?

—2A8||Tx — x| —2A | Tx —x|?

26
=[x —z]* - 22+ TTx =70 — M) [ITx — x|*.

Let X be bounded and d > 0 be such that |Tu —u| < d for any u € X. The
existence of such d follows from Corollary 2.1.37. Denote ¢ := 2d—5. Then (2.27)
yields

ITax =2l < |lx =2 =22 + & = 1) | Tx — x]*.

Consequently, T; is int Fix T -strictly quasi-nonexpansive for any A € (0, 2]. O

The corollary below follows immediately from Proposition 2.1.41 and from
Theorem 2.1.26.

Corollary 2.1.42. Let U; : X — 'H, i € I be quasi-nonexpansive with C :=
Nie; FixU; # @ and let U := UyUpy—y...Uy. If intC # @, then FixU =
(ie; FixU; and U is int C-strictly quasi-nonexpansive.

An equivalent formulation of the following result appeared in [127, Theorem 3.2
(iii)].
Corollary 2.1.43. Assume that U : X — H has a fixed point and let § > 0. Then

U is B-strongly quasi-nonexpansive if and only if U is a ﬁ-relaxed cutter.

Proof. 1Tt suffices to take o = ﬁ in Corollary 2.1.40. O

Remark 2.1.44. Assume that 7 : X — H has a fixed point and is «-strongly
quasi-nonexpansive, where o > 0.

(i) If @ = 0, then T is quasi-nonexpansive.
(ii) T is y-strongly quasi-nonexpansive for all y € [0, «].
@ii) If « > 0, then T is strictly quasi-nonexpansive. Therefore, all properties
of strictly quasi-nonexpansive operators are also valid for strongly quasi-
nonexpansive operators and for cutters.
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Fig. 2.5 Solution of (2.28) as
a function of A, u € (0, 2)

Cutters and strongly quasi-nonexpansive operators play an important role in
methods presented in further parts of the book. Therefore, we focus our attention
on the properties of these operators which enable us to construct new cutters or
strongly quasi-nonexpansive operators. Below, we show that a family of relaxed
cutters is closed under composition and under convex combination of operators
having a common fixed point. The first property of relaxed cutters follows from
the lemma below whose proof is left to the reader.

Lemma 2.1.45. Let A, i € (0,2). The unique solution y of the equation

-2\ 1
Y
=(z—=)=—--) (2.28)
( 2 ) A oyiw oy
is
2 4A+pu—A
Y= = (4_“/1 2} (2.29)
(m‘f‘m) +1 12

Moreover,

4 min{A, u} - 4 max{A, u}

0 < min{2,
<min{A, pu} < min{A, pu} +2 ~ V= max{A, u} + 2

A solution of (2.28) is illustrated in Fig. 2.5.

Theorem 2.1.46. Let T : X — X be a A-relaxed cutter, U : X — X be a ju-
relaxed cutter, where A, € (0,2], and let Fix T N FixU # 0. If A, u € (0,2),
then UT is a y-relaxed cutter, where y is given by (2.29). If A = 2 and t < 2 or
w=2and A <2, then UT is a quasi-nonexpansive operator or, equivalently, UT
is a 2-relaxed cutter.
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Proof. Suppose that T is a A-relaxed cutter and that U is a p-relaxed cutter. Take

a:=Tx—xand b := UTx — Tx. Then it follows from inequality (2.22) that

(z—x,a) > 1 la||* and (z — Tx,b) > ﬁ |b||* for any z € Fix U N Fix T.

Let A, u € (0,2) and y be defined by (2.29). Then Lemma 2.1.45 yields
1 2
(z—x,UTx—x)—— |UTx — x||
14
1 2
={z—x,a+b)- " la + o]

={(z—x,a)+ (z—x,b) la + b|?

1
v
1
= (z—x,a) + (z—Tx,b) + (a.b) — » la + b
1 1 1
z o lal® + = IbI1* + (a.b) — = |la + b|>
m Y

11 11 2
= (5 = ) llal’ + (= =) [bI° + (1 = ~){a.b)
Y woy Y

|- -3

Applying inequality (2.22) we obtain that UT is a y-relaxed cutter. If A = 2 and
w<2orpu=2and A < 2,then UT is quasi-nonexpansive by Theorem 2.1.28. O

2
> 0.

The following result is due to Yamada and Ogura (see [346, Proposition 1(d)]).

Corollary 2.1.47. Let T,U : X — X have a common fixed point and p,o > 0. If
T is p-SONE and U is 6-SONE, then UT is §-SONE, where

(2.30)

Proof. Suppose that T is p-SQNE and U is o-SQNE. It follows from Corol-
lary 2.1.43 that T is a A-relaxed cutter and that U is a p-relaxed cutter, where
A= % and u = H% By Theorem 2.1.46 the operator UT is a y-relaxed cutter,
where

2 B 2
(Fr+E)7 T+ G+

y:

Corollary 2.1.40 yields now that U T is §-SQNE, where § is given by (2.30). O
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Theorem 2.1.48. Let T; : X — X be an «o;-relaxed cutter, where o; € (0,2), i €
I :={1,2,...,m}, o, equivalently, T; be B;-strongly quasi-nonexpansive, where
Bi = £% € (0,+00), i € I. Let (\;¢; FixT; # 0 and Uy, := T,y Ty ... Th.
Then:

(i) The operator U,, is a ym-relaxed cutter, with

2

Vi = = (2.31)
R
(ii) The operator Uy, is §,,-strongly quasi-nonexpansive, with
1
S = 7 : : (2.32)
B + B +...+ B
Moreover,
. 2m min; ey o; 2mmax;e; @
0 < ming; < - < Vm = <2
iel (m — 1) min;e; o; + 2 (m — 1) max;e; o; + 2
(2.33)
and
0 < Milies Bi <5, < Maiel .31" (2.34)
m m
Proof. The assertion is obvious for m = 1. Note that y, = ﬁ and that

Corollary 2.1.43 yields the equivalence of conditions (i) and (ii). We prove by
induction with respect to m that these conditions hold for any m > 2.

1°If m = 2, then conditions (i) and (ii) follow directly from Theorem 2.1.46 and
from Corollary 2.1.47.

2% Suppose that (ii) is true for some m = k. Consequently, Uy is 8;-SQNE. It
follows now from Corollary 2.1.47 that the operator Uyy; = Ti+ Uy is 5-SQNE,
where

1 1
§= 7 1~ 1 1 = Bt
teEn mTmET TR TEL

Now, for m = k + 1, equality (2.31) follows from the above mentioned equivalence
of (i) and (ii).

Hence, we have proved that conditions (i) and (ii) hold for all m > 1. Both
inequalities in (2.34) follow immediately from equality (2.32). Now we have

B 2 - 2 2 2m max; ey <2
ym_8m+1_miniT€1f’i+1 minje; 2 . +1 (m—l)maxi51ai+2 ’
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In a similar way one can prove that

2mmin; ey o;

Vin = - > mino; > 0
"= (m— D minje;a; +2 7 el

which completes the proof. O

Bauschke and Borwein proved that a composition of 8;-SQNE operators with a
common fixed pointis B-SQNE for 8 := ““2“’,"—511’3’ (see [22, Theorem 2.10 (ii)]). It is
clear that this result is weaker than Theorem 2.1.48 (ii), because § < %6“3’ <6m.
Note that the first inequality is strict for m > 2 and that the other one is strict if

Bi # B, for at least one pairi, j € I.

Corollary 2.1.49. Let U; : X — 'H be cutters with a common fixed point, i €
I:={1,2,....,m},andw : X — A, be an appropriate weight function. Then the
operator U := .., w;U; is a cutter.

Proof. Let U := )., w;U;. It is clear that a cutter is strictly quasi-nonexpansive
(see Remark 2.1.44 (iii)). Therefore, it follows from Theorem 2.1.26 (i) that
FixU = (";¢; Fix U;. By Remark 2.1.31 and by the convexity of the function [I-11%,
we have

(Ux —x,z—x) = Za),-(x)(U,-x—x,z—x)

iel
> Y wi(x) [Uix — x|
iel
2
> Za)i(x)U,-x—x
iel
= |Ux —x|?
forall x € X and all z € Fix U. Again, by Remark 2.1.31, U is a cutter. O

Theorem 2.1.50. Let T; : X — H be an «a;-relaxed cutter, where o; € (0,2),
i el :={1,2,...,m}, o, equivalently, T; be B;-strongly quasi-nonexpansive,
where B; = 2;—?“ € (0,400),i € I. Let (\;¢; FixT; # @ andw € A,,. Then the
operator T := Ziel w; T; is an a-relaxed cutter with

a= ) wa (2.35)
iel
Consequently, T is B-SQONE, with
w; —1
= —)  —L 2.36
Bi=0_ 51 (2.36)

iel
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Moreover,
0<ming; <o <maxqo; <2 (2.37)
iel i€l
and
0 <minf; < B < max f;. (2.38)
iel i€l

Proof. Without loss of generality we suppose that w € ri A,,. Let U; := (T;),-1,
i.e.,

1
Uy =1d +—(T; —Id).
o

It is clear that U; are cutters, i € I. Let o be defined by (2.35) and v; = “%,
i € I.Note that v = (vy,v2,...,Vvy,) € 1i4,, consequently, v is appropriate.
Define U := ), viU;. By Corollary 2.1.49, the operator U is a cutter. We have

,- 1 1
U=Y U= Id+Z§(T,-—Id) =1d+= Yoy (T; ~1d) = [+~ (T ~1d),

i€l iel ! i€l

ie., T =1d +a(U —Id) and T is an a-relaxed cutter. The second part of the theorem
follows now immediately from Corollaries 2.1.40 and 2.1.43. Inequalities in (2.37)
are obvious and inequalities in (2.38) follow easily from (2.36). O

Bauschke and Borwein proved that a convex combination of §;-SQNE operators,
i € I, with a common fixed point is B-SQNE, where f := min;¢; f; (see [22,
Proposition 2.12]). By inequality (2.38) this result is weaker than Theorem 2.1.50.
Note that this inequality is strict if 8; # 8, for at least one pair i, j € I for which
w; and w; are nonzero. The second part of Theorem 2.1.50 for m = 2 was proved
by Yamada and Ogura (see [346, Proposition 1(c)]).

The following important result extends Theorem 2.1.39.

Theorem 2.1.51. Let S : H — X be nonexpansive, T : X — 'H be a cutter and
A €(0,2). IfFix S NFix T # @, then, for any x € Fix S and z € Fix S NFix T, the
following estimations hold

ISTax —z” < x — 2> =22 = 2) | Tx — x|? (2.39)

and "l
ISTox — 2| < [lx — 2| — — IS Tox — x| (2.40)

Consequently, the operator ST) |pixs is 2;—l-strongly quasi-nonexpansive.

Proof. Let x € Fix S and z € Fix S N FixT. Then the assumptions that S is
nonexpansive and 7 is a cutter yield
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Fig. 2.6 Composition of
cutters needs not to be a cutter \%’?
= ¢ =Uplhz ANB
E 7/
17
Uz % 1
A
T e
2 2 2
[SThx —zlI” = [SThx — Sz||” < [ Toax —z||
=|x—z|P + A | Tx —x|* = 2A{z— x. Tx — x)
< x -zl =22- 1) |Tx - x|’
2 — 2
ey — —_—— T J—
I =2ll* = == 1 Tax = x|
2—A
< =2l = == ISTox = Sx’
2—A
= Il =2l = == 1S Tox — x|
which completes the proof. O

Below we give several examples which show that a composition of quasi-
nonexpansive operators does not need to be quasi-nonexpansive, that a composition
of a strictly quasi-nonexpansive operator and a quasi-nonexpansive one does not
need to be strictly quasi-nonexpansive and that a composition of cutters does
not need to be a cutter, even if they have a common fixed point.

Example 2.1.52. LetX :=[-1,1]CR, S, T:X - X, S :=—Idand

—x ifx =1
Tx:=4, .
5X otherwise.

One can easily check that S, T are quasi-nonexpansive, Fix § = Fix T = {0} and
Fix ST = {0, 1}. The operator ST is not quasi-nonexpansive, because a subset of
fixed points of a quasi-nonexpansive operator is convex (see Lemma 2.1.21).

Example 2.1.53. Let X = H:=R?>, A:={x € R?: (e,x) > 1}, B:={x € R?:
& >0}, U := P, U, := Pgand U := U,U,. Then U; and U, are cutters and it
follows from Theorem 2.1.26 that Fix U = FixU; NFixU, = AN B # @. For x =
(0,.—1)andz = (1,0) € AN B, we have Ux = (3,1) and (x - Ux,z— Ux) = 1
(see Fig. 2.6). Therefore, U is not a cutter.
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Example 2.1.54. Let A, B € 'H be nonempty closed convex subsets and A  B.
Define S :=2P4 —1Idand 7T := Pp. We have Fix S N Fix T = A. It follows easily
from the characterization of the metric projection that P4 and Pp are cutters. By
Theorem 2.1.39, T is strictly quasi-nonexpansive and S is quasi-nonexpansive.
By Theorem 2.1.28, the operator ST is quasi-nonexpansive. Unfortunately, S7 is
not strictly quasi-nonexpansive, because for any x € B\ A4 and for z := P4x it holds

ISTx =z = [ISx —z] = |lx —z].

2.2 Firmly Nonexpansive Operators

Definition 2.2.1. We say that an operator T : X — H is firmly nonexpansive
(FNE), if
(Tx =Ty.x—y) = |Tx~Ty|’ (2.41)

forall x,y € X.LetA € [0,2]. We say that T : X — H is A-relaxed firmly
nonexpansive (A-RFNE) or, shortly, relaxed firmly nonexpansive (RFNE) if T is a
A-relaxation of a firmly nonexpansive operator U, i.e., T = U, = (1 —A)Id+AU.
If, furthermore, A € (0, 2), then we say that T is strictly relaxed firmly nonexpan-
sive.

The definition of a firmly nonexpansive operator in a Hilbert space is due to
Browder (see [46]), who called it a firmly contractive operator. Bruck introduced the
name firmly nonexpansive for operators in a Banach space (see [49, Definition 6]).
In Hilbert spaces both definitions coincide, as we will show in Theorem 2.2.10.
Condition (vi) of this theorem is, actually, the definition of a firmly nonexpansive
operator proposed by Bruck.

The following lemma is obvious.

Lemma 2.2.2. Let T : X — H and x,y € X. The following inequalities are
equivalent:
(i) (Tx =Ty.x—y) = |Tx = Ty|?,
(ii) (Tx =Ty, (x =Tx) = (y=Ty)) =0,
(iii) (Ty —Tx,x —Tx)+(Tx =Ty, y —Ty) <0,
(iv) (Ty —x.Tx —x) +(Tx = y.Ty —y) = |Tx — x| + | Ty — y|*.
It follows from Lemma 2.2.2 that inequality (2.41) defining a firmly nonexpan-
sive operator can be replaced by any inequality in (i)—(iv).

Corollary 2.2.3. Let A > 0. An operator S : X — H is A-RFNE if and only if

1
(y=x,Sx—x) + (x =y, Sy =) 2 T [(Sx =) = (Sy=p)*. (242
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Fig. 2.7 NE and monotone
operator which is not FNE T

Proof. Let S := T, = Id+A(T — Id) for a firmly nonexpansive operator 7 :
X — H.Letx,y € X. It follows from the equivalence (i)<>(iv) in Lemma 2.2.2
and from the equality 7 = S;—1 (see Remark 2.1.3) that S is A-RFNE if and only if

1
(Ty —x, Sx —x) +(Tx =y, Sy = y) = 2 (| Sx = x[* + | Sy = y[").

Since Ty —x =y —x + %(Sy—y) andTx —y=x—y+ %(Sx—x),thelast
inequality is equivalent to

2 1
(y=x. Sx—x)+(x=y. Sy=y)+ 7 (Sx—x. Sy=y) = = (ISx — x| +]Sy - y[").

The latter inequality is equivalent to (2.42). O

2.2.1 Basic Properties of Firmly Nonexpansive Operators

Theorem 2.2.4. A firmly nonexpansive operator T : X — 'H is monotone and
nonexpansive.

Proof. Let T be firmly nonexpansive. By the Cauchy—Schwarz inequality, we have
ITx =Tyl -llx =yl = (Tx =Ty, x —y) = [Tx = Ty|> = 0,

for all x, y € X, which yields the monotonicity and the nonexpansivity of 7. O

The converse of Theorem 2.2.4 is not true, e.g., the operator T : R? — R2,

Tax = (§1cosp — & sing. & sing + & cos )

is nonexpansive and monotone for ¢ € (0, 7/2), but T is not firmly nonexpansive
(see Fig.2.7).

Now we prove a property of firmly nonexpansive operators, which also appears
in Theorem 1.2.4. In particular, the characterization of the metric projection is,
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actually, a corollary of the following theorem which is due to Goebel and Reich
(see [185, pp. 43-44]).

Theorem 2.2.5. Let T : X — H be an operator with a fixed point.

(i) If T is firmly nonexpansive, then T is a cutter, i.e.,
(z—Tx,x—Tx) <0 (2.43)

forall x € X and z € Fix T.
(ii) If T is a projection, i.e., T(X) = Fix T, then the implication converse to (i) is
also true. In this case, T = Pgix 7.

Proof. (i) LetT be firmly nonexpansive,x € X and z € Fix T'. By the equivalence
(1)< (iii) in Lemma 2.2.2, we have
(Ty —Tx,x—Tx)+(Tx—Ty,y—Ty) <0,

and for y = z € Fix T we obtain (2.43).
(i) Suppose that 7" is a projection and that inequality (2.43) holds for all x € X
and z € FixT. Letu,v € X. Taking x = v and z = Tv in (2.43) we get

(Tv—Tu,u—Tu) <0, (2.44)
and, taking x = vand z = Tu in (2.43), we get
(Tu—Tv,yv—Tv) <0. (2.45)

Note that, in both cases, z € Fix T because T(X) = Fix T'. Therefore, the
characterization of the metric projection yields that 7 = Pgix 7. Summing up
inequalities (2.44) and (2.45) we get

(Tu—Tv,(Tu—Tv)—(u—v)) <0,

i.e., T is firmly nonexpansive (see equivalence (i)<>(ii) in Lemma 2.2.2). 0O

Suppose that Fix 7T # @. It follows from the equivalence of (i) and (iii) in
Lemma 2.2.2 that inequality (2.41) for y = z € FixT gives (2.43). Therefore,
for 7' being a cutter, inequality (2.41) is required for all x € X and all y € Fix T,
while for 7" being firmly nonexpansive this inequality should hold for all x,y € X.

Remark 2.2.6. Neither a projection nor a separator of a nonempty subset C C H
need to be nonexpansive (note that a separator can even be discontinuous).
Furthermore, a nonexpansive separator and even a nonexpansive cutter need not
to be firmly nonexpansive (see Examples 2.2.7 and 2.2.8 below).
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Fig. 2.8 NE separator which x
is not FNE R ST
I B,
a4 Ty 4
B Tz _
T w =Tw B,

Example 2.2.7. (cf. [204] and [78, Sect.4.10]) Leta € H, |la|| = 1 and a > O.
Furthermore, let A := {x € H : {(a,x) = 0}, B; == {x € H : {(a,x) = «},
B, ={x e H:{a,x) = —a}and B := {x € H : |{(a,x)| < «a}. The subset
B is a band with a width of 2« and is bounded by two hyperplanes B, and B,.
The hyperplane A cuts the band B into two bands bounded by A and B and by A
and B,. Define the operator T : H — 'H as follows

Pax if [{a,x)| > 2«
2P x —x ifa < (a,x) <2
2Pp,x —x if =20 < {a,x) < —«
x if [{(a,x)] <«

Tx = (2.46)

Note that 7" projects onto A all points with the distance to A equal at least 2a, T’
reflects (with respect to the closest hyperplane By or B;) the points which do not
belong to the band B with the distance to A less than 2« and 7' does not move
the elements of the band B (see Fig.2.8). The reader can easily check that 7T is
nonexpansive and that 7 is a separator of A but T is not firmly nonexpansive. Note
that Fix T = B and that T is not a cutter, i.e., it does not separate Fix 7', but T’
separates A (see Fig.2.8).

Example 2.2.8. Let A := R x {0} and B := {0} x R be two subspaces of R? and
T : R?> — R? be defined by

Tx :=[1—-Ax)]Psax + A(x)Ppx,

where A(x) = SZE-EEZ for x = (£1,£) € R? (see Fig.2.9). We have P4x = (£1,0),
1 2
Ppx = (0, &). Consequently,

£1&7 g8,
E+E8 g+8

for x # (0, 0). Note that z := (0, 0) is the unique fixed point of 7'.
The operator 7 is a cutter, because

x = (

_ 88
g+8 7

(z—Tx,x—Tx) =
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Fig. 2.9 NE cutter which is

7
not FNE L e=4
, 7
7 B
Py . 7 x
7
7
7
7
7
7
— FixT Pjx

for all x # z. (Since the weight function w : R? — Ay, w(x) := (1 — A(x), A(x))
is appropriate, this fact follows also from Corollary 2.1.49). Let x,y # (0,0).
A straightforward calculation shows that

ITx=Ty|* _ 3B E = m) + & (& — m)’
e =yI7 G+ )0+ m)IE — 1) + (& — 1))

holds for all x = (£1,&) € R?and forall y = (n1,7,) € R%, x # y. If &y =
£, = 0, then, of course Tx = Ty = (0, 0). Suppose that 0 < £2n? < £2n3. Then
we have

> & — )2 + S (5 — )
ITx —Ty|?* 27 -
2 - 2 2 -
lx =yl 1+ 2—;2)(1 + IIE =) + (2 — )]
If 0 < £2n3 < &n3, then we have
> 99 (6, — 1) + (82 — )’
ITx —Ty|?* & -1

b=yl (14 %)(1 + ;—%msl S+ B —m)?

Therefore, T' is nonexpansive. If we take x = (3,1) and y = (1, ), then Tx =
2 1 _ 12
3 g)’ Ty - (E’ g) and
12 ,
Tx—Ty,x—y) = —= < — = |[Tx—Ty|>.
(Tx—Ty.x—y)=—z < =ITx-Ty]|

Therefore, T is not firmly nonexpansive.

The following property of firmly nonexpansive operators (cf. [22, Lemma 2.4
(iv)]) is often used in applications.
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Corollary 2.2.9. Let T : X — H be an operator with a fixed point and A €
(0,2]. If T is firmly nonexpansive, then its relaxation T) is %-strongly quasi-
nonexpansive, i.e.,

2-2
ITox —2l” < Il = 2l = === ITox — x|’ (247)

forall x € X and z € Fix T.

Proof. 1t follows from the first part of Theorem 2.2.5 that a firmly nonexpansive
operator having a fixed point is a cutter. Therefore, T) is #-strongly quasi-
nonexpansive (see Theorem 2.1.39). O

2.2.2 Relationships Between Firmly Nonexpansive
and Nonexpansive Operators

One can find in the literature several equivalent definitions of firmly nonexpansive
operators. The properties of these operators were studied by Zarantonello [357,
Sect. 1], Bruck [49, Sects. 2 and 3], Rockafellar [299], Bruck and Reich [51, Sect. 1],
Goebel and Reich [185, Chap. 1, Sect. 11], Reich and Shafrir [296], Goebel and Kirk
[184, Chap. 12], Bauschke and Borwein [22, Sects. 2 and 3], Byrne [56, Sect. 2], and
by Crombez [127, Sect. 2].

The class of firmly nonexpansive operators is included in the class of nonexpan-
sive ones (see Theorem 2.2.4). Further important relationships between these two
classes are also useful for the investigation of firmly nonexpansive operators. These
relationships are given in the following theorem.

Theorem 2.2.10. Let T : X — 'H. Then the following conditions are equivalent:

(i) T is firmly nonexpansive.

(ii) T, is nonexpansive for any A € [0, 2].
(iii) T hasthe formT = %(S +1d), where S : X — H is a nonexpansive operator.
(iv) 1d—T is firmly nonexpansive.

(v) Forall x,y € X it holds

ITx =Tyl < flx = yI* = lIx = Tx) = (v = Ty)|I*. (2.48)
(vi) Forallx,y € X and for any a > 0 it holds
ITx =Ty| < fla(x —y) + (A =a)(Tx =Ty)]|.
Proof. The equivalence (i)<>(iv) in Theorem 2.2.10 is obvious, because both
conditions can be written in the form (Tx — Ty, (x — Tx) — (y — T'y)) > 0 for all

x,y € X. Nevertheless, we prove the following relations among (i)-(vi):

(1) = (1) = (i) = ({v) = (v) = (1) & (vi).
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()= (ii) Let T be firmly nonexpansive and x, y € X. By the definition of a firmly
nonexpansive operator, the Cauchy—Schwarz inequality and the nonexpansivity of
T (see Theorem 2.2.4), we have

ITax = Tay|® = |ATx + (1 — M)x — ATy — (1 = )y |’
= A(Tx=Ty)+ (1= (x -y
= A(ITx = Ty|* = (Tx = Ty, x - y))
+QA = A)Tx =Ty, x —y) + (1= 1) |x - y|?
< QA=M)Tx =Ty, x—y)+ (1 -1 |x—y|?
< @A=2)Tx =Tyl |x =y + (1= [x—y|
< A=A x = yIP+ (1= x =y
=[x —yl*,
i.e., Ty is nonexpansive.
(i1)=>(iii) This implication is obvious. It suffices to take S = T) for A = 2.
(iii)=(@v) Let S be nonexpansive, T := %(S + Id) and G := Id—T. Then we
1
have G = 5(Id—S) and
IGx — Gy|* = (Gx — Gy, x — y) + (Gx — Gy.(Gx — Gy) — (x — y))
= (Gx—Gy’x_y>

1
+{(Sx = 8y) = (x = »), (Sx = Sy) + (x = )
1
= (Gx =Gy, x = y)+ L (1Sx = Sy’ = |x = yI")
< (Gx =Gy, x—y),

forall x,y € X.
(iv)=(v) Let G := Id—T be firmly nonexpansive. Then, for all x,y € X we
have
I7x = Ty|* + [1d=T)x — 1d-T)y|?
< |Tx—Ty|? +(1d-T)x — 1d=T)y,x — y)
= |Tx = Ty|> = (Tx = Ty.x —y) + |[x — y|’
= —(Tx—Ty,(x=Tx) = (y = Ty)) + [|x — y|

2
< llx=xI",

i.e., (2.48) holds.
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(v)=() Letx, y € X.If(2.48) holds, then, by the properties of the inner product,
we have

ITx =Tyl < |lx = yI* = (x —y) = (Tx = Ty)|?
=—|Tx=Ty|>+2(Tx —Ty,x —y),

i.e., T is firmly nonexpansive.
(1)< (vi) Let x, y € X. The function i : Ry — R defined by

1
h(@) = 3 flaCx = y) + (1= )(Tx = Ty)|?

is convex as a composition of the convex function f(-) = % ||-||2 and an affine
function 4 : R — H, A(e) = a(x — y) + (1 —a)(Tx — Ty). Note that h(0) =
% |Tx — Tyl|% h is differentiable and

h'(0) = (Tx =Ty, (x —y) = (Tx —Ty)).
Since 4 is convex, we have
h(0) < h(a) <= h'(0) >0
foralla > 0, i.e.,

ITx = TylP < Ja(x—y)+ A —a)(Tx-Ty)|’

& (Tx—Ty,x—y) > |Tx-Ty|’

which completes the proof. O

The same kind of correspondences between firmly nonexpansive operators and
nonexpansive ones (the equivalence (i)<>(iii) in Theorem 2.2.10) and between
cutters and quasi-nonexpansive operators (Corollary 2.1.33 (ii)) explain the name
firmly quasi-nonexpansive operators for cutters (see [346, page 624]).

Condition (ii) in Theorem 2.2.10 can be formulated equivalently as follows: (ii”)
T, := 2T — 1d is nonexpansive.

The nonexpansivity of 7, and Lemma 2.1.12 (i) yield the nonexpansivity of T}
forall A € [0,2], because T = (1 — %) Id +%T2. Moreover, the assumption that 7,
is nonexpansive is sufficient in the implication (ii)=>(iii) as follows from the proof.

Now we present a series of corollaries of Theorem 2.2.10.

Corollary 2.2.11. Let T : X — H. The operator T is firmly nonexpansive if and
only if its relaxation T), is firmly nonexpansive for all A € [0, 1].

Proof. Let T be firmly nonexpansive and A € [0, 1]. By the implication (i)=>(iii) in
Theorem 2.2.10 we obtain
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A 1
Ti=(1-)1d+7(1d+S) = S[ld+(1 1) 1d +2.5]

for a nonexpansive operator S. Note that (1—A) Id +A.S is nonexpansive as a convex
combination of nonexpansive operators (see Lemma 2.1.12 (ii)). Therefore, 7T} is
firmly nonexpansive by the implication (iii)=>(i) in Theorem 2.2.10. The sufficiency
of the condition is obvious. O

Corollary 2.2.12. Let U : X — H and A € [0,2]. Then U is A-RFNE if and only
if U is w-RENE for all i € [A,2].

Proof. LetU := Ty = Id+A(T —1d), where T : X — H is a firmly nonexpansive
operator, and p € [A,2]. It is easy to see that

U =1d+u(Ty, —1d).

The corollary follows now from the fact that T,,, is firmly nonexpansive (see
Corollary 2.2.11). O

Corollary 2.2.13. Let X C 'H be a closed convex subset and S : X — 'H. The
following conditions are equivalent:

(i) S is nonexpansive,
(ii) S =2T —1d, where T : X — H is a firmly nonexpansive operator.

Proof. (i1))=(i) Let S := 2T — Id for a firmly nonexpansive operator 7. It follows
from the implication (i)=>(ii) in Theorem 2.2.10 that S is nonexpansive.

(i)=(ii)) Let S be nonexpansive and T := %(S + 1d). By the implication
(iii))=>(i) in Theorem 2.2.10 the operator F' is firmly nonexpansive. Furthermore,
S =2T —1d. O

Definition 2.2.14. (cf. [127, Definition 2.1]) We say that an operator U : X — H
is v-firmly nonexpansive (v-FNE), where v > 0, if

|Ux = Uy|* < |lx = y|I> = v [[(x = Ux) — (y = Uy)|>.

Vasin and Ageev call a v-firmly nonexpansive operator for v € (0, 1), a pseudo-
contractive operator (see [333, Definition 2.5]). In [127, Theorem 2.3] several
equivalent conditions for U to be v-FNE are presented.

By the equivalence (i)<>(v) of Theorem 2.2.10, an operator is firmly nonex-
pansive if and only if it is 1-firmly nonexpansive. Note, however, that there is a
difference between a A-RFNE operator and a A-FNE operator. Below, we present
the relationship between these two notions.

Corollary 2.2.15. Let A € (0,2). An operator U : X — H is A-relaxed firmly
nonexpansive if and only if U is %-ﬁrmly nonexpansive, i.e.,
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2—A
1Ux = Uy|* < lx = y[I° = —=— I (x = Ux) = (v = Up) |
forall x,y € X.If, furthermore, Fix U # @, then

2-A
1Ux = 2l” < llx = 2" = =5~ 1Ux = x|

forallx € X andz € Fix U, i.e., U is %-strongly quasi-nonexpansive.

Proof. Let U := T, for a firmly nonexpansive operator 7" and x, y € X. Applying
the properties of the inner product we get for G := Id—T

|Ux = Uy|* = [|(1 = A)x + ATx — (1 = L)y — ATy |
= |x -y = A(Gx - Gy)|’
= x = y[> = 2A{x — . Gx — Gy) + A*|Gx — Gy|.

Since x — Ux = x — Thx = AGx, the equalities above yield

2—-A
|Ux = Uy|* = ||Ix — y|I” + =) - - uy)|*

|Ux = Uy|* = |x = y|> + A2 = 1) |Gx — Gy|
—2A((x — y,Gx — Gy) — |Gx — Gy|*).

The first part of the corollary follows now from the equivalence (i)<(iv) in
Theorem 2.2.10, and now the other part follows directly from the definition of an
a-strongly quasi-nonexpansive operator. O

Definition 2.2.16. Let « € (0,1). We say that an operator 7 : X — H is
a-averaged or, shortly, averaged (AV) if

T'=(101-a)ld+aS

holds for a nonexpansive operator S : X — H.

Averaged operators were studied, e.g., by Mann [252], Krasnosel’skil [238],
Baillon et al. [14, Sect.2]. In [56, Sect.2], Byrne gives relationships between
averaged operators and inverse strongly monotone operators, i.e., operators G :
X — 'H such that

(Gx =Gy, x—y) =2 v||Gx - Gy|

for all x, y € X and for some constant v > 0.
Definition 2.2.16 states that an operator is averaged if and only if it is an under-
relaxation of a nonexpansive operator.
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Corollary 2.2.17. Let A € (0,2) and « = A/2. An operator U : X — H is
A-relaxed firmly nonexpansive if and only if U is a-averaged.

Proof. (=) Let T : X — H be firmly nonexpansive and U = T) = (1 — A)
Id +AT. By the implication (i)=>(iii) in Theorem 2.2.10 we have T" = %(S + Id)
for a nonexpansive operator S : X — H. Hence, U = (1 —a)Id+«S,ie., U is
a-averaged.

(<) Let U be o-averaged, i.e., U = (1 —a)Id 4+ «S for a nonexpansive operator
S and fora = A/2 € (0, 1). By Corollary 2.2.13 we have

U=(1-a)ld+aT —1d)
=(1-20)ld+2aT

for a firmly nonexpansive operator 7. Hence, U is the A-relaxationof T : X — H
with A = 2a € (0,2). O

Corollary 2.2.18. Let G : X — H. Then G is firmly nonexpansive if and only if
Id —uG is averaged for any 1 € (0, 2).

Proof. Necessity. Let G be firmly nonexpansive. We have
Id—uG = (1 —p/2)1d+(n/2)[2(0d-G) — 1d].

By the implications (i)=(iv) and (i)=(ii) in Theorem 2.2.10 the operator
2(Id —G) — 1d is nonexpansive. Consequently, the operator Id —u.G is averaged.
Sufficiency. Let Id —uG be averaged for any p € (0,2). Then Id —uG is nonex-
pansive for any u € (0,2) and Id —2G is nonexpansive as a limit of nonexpansive
operators. Now, it follows from the implication (ii)=>(i) in Theorem 2.2.10 that G
is firmly nonexpansive. O

Corollary 2.2.19. Let U : X — H and A € (0,2]. The operator U is A-relaxed
Sfirmly nonexpansive if and only if its relaxation U, is firmly nonexpansive for 1 €
[0, ;1.

Proof. Take U := T, for a firmly nonexpansive operator 7 : X — H. Then the

claim follows from the equality Uy—1 = T (see Remark 2.1.3) and Corollary 2.2.11.
The converse implication is obvious. O

The following corollary shows that the family of firmly nonexpansive operators is
closed under convex combination.

Corollary 2.2.20. Let T; : X — H, i € [ :={1,2,...,m}, be firmly nonexpan-
siveand w = (w1, ws, ..., wy) € Ay. Then the operator T := Y, ., w; T; is firmly
nonexpansive.

Proof. Let T := ) .., w;T;. By the implication (i)=>(iii) in Theorem 2.2.10,

we have T; = %(S,- + 1Id) for a nonexpansive operator S;, i € [I. Observe
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Fig. 2.10 Basic relationships U— N2-AV
among algorithmic operators
T- FNE I
U - A-RFNE
FixT#® | | 73T FixU#£®
a =(2- /A

T - cutter M U- G'SQNE

|

U- QNE

that T = %(S + 1d) for § = ) ,c; »;S;. By Lemma 2.1.12 (i), the operator
S is nonexpansive. The corollary follows now from the implication (iii)=>(i) in
Theorem 2.2.10. O

In Fig.2.10 we shortly present important relationships among the FNE operators,
cutters, QNE operators SQNE operators and AV operators, which are proved in
Sects.2.1.3, 2.2.1 and 2.2.2. In Fig.2.10, T : X — Hand U = [, = 1d
+A(T — 1d) is its A-relaxation, where A € (0,2). We will extend this figure in
Sect.3.9.

2.2.3 Further Properties of the Metric Projection

The basic facts concerning firmly nonexpansive operators presented in the previous
section yield further properties of the metric projection.

Theorem 2.2.21. Let C C 'H be a nonempty closed convex subset and Pc : H — H
be the metric projection onto C. Then the operator Pc is:

(i) Idempotent, consequently Fix Pc = C,
(ii) A cutter,
(iii) Firmly nonexpansive,
(iv) Monotone and nonexpansive,

(v) Averaged.

Proof. (i) The property follows directly from the definition of the metric projec-
tion.

(ii) It follows from (i) and from the characterization of the metric projection (see
Theorem 1.2.4) that (z — Pcx,x — Pcx) < 0 for all x € H and for all 7 €
C = Fix P¢, which means that P¢ is a cutter.

(iii) The property follows directly from (i), (ii) and from Theorem 2.2.5 (ii).
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(iv) By Theorem 2.2.4, any firmly nonexpansive operator is monotone and nonex-
pansive. Therefore, the property follows from (iii).
(v) By the firm nonexpansivity of P¢ and by the implication (i)=>(iii) in The-
orem 2.2.10, we can write Pc = %(S + Id) for a nonexpansive operator
S : X — H. Hence, P¢ is averaged.
O

Definition 2.2.22. Let C € H be a nonempty closed convex subset. We call a
relaxation of the metric projection Pc : H — C a relaxed metric projection onto
the subset C and we denote it by Pc ; or, shortly, by Py. If A < 1, then P, is called
an under-projection. If A > 1, then P, is called an over-projection. If A = 2, then
P is called the reflection.

We have
Pcj = Py, =1d+A(Pc —1d).

Corollary 2.2.23. Let C C H be a nonempty closed convex subset, A > 0 and
Py : 'H — 'H be a relaxed metric projection. Then

(i) P, is a nonexpansive operator for all A € [0, 2],

(ii) Fix Py = C forall A > 0,
(iii) Forallx € H,z € C and A € (0, 2] the following inequality holds

2—A
[Pax —z||* < [lx —z]* — — | Pix — x|*. (2.49)

Consequently, Py is #-strongly quasi-nonexpansive for all A € (0, 2].

Proof. Part (i) follows from the equivalence (i)<>(ii) in Theorem 2.2.10, because
P¢ is firmly nonexpansive (see Theorem 2.2.21 (iii)). Part (ii) is obvious, because
Fix Pc = C. Part (iii) follows now from Corollary 2.2.9. O

Corollary 2.2.24. Let C C 'H be a nonempty closed convex subset and x,y € H.
Then
IPcx = Peyl® < lx = y[? = I(Pex = x) = (Pcy =) (2.50)
<llx=yI? = (lPex = x| = Pcy —y)* (.51
In particular,
IPex —2l* < [lx =2l = | Pex — x| (2.52)

for all x € 'H and z € C. Consequently, the metric projection Pc : H — C is
strongly quasi-nonexpansive.

Proof. By Theorem 2.2.21 (iii), the metric projection is firmly nonexpansive.
Therefore, inequalities (2.50) and (2.51) follow directly from the implication
(i)=(v) in Theorem 2.2.10 and from the Cauchy—Schwarz inequality. The second
part follows directly from Theorem 2.2.21 (i). O
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Fig. 2.11 Function T+ asu
fx) = 11Px(x + au) — x|

is nondecreasing T+ au

X (T + o) x

Corollary 2.2.25. Let T : X — Hand A € (0,2). If T is a cutter, then for any
x € X and z € Fix T the following estimations hold

IPxTix —2)* < lx = 2> =22 = M) I Tx = x|?

and 01
| PxTax —z||” < [|x —z||* — —— IPxTix - x| (2.53)

Consequently, the operator PxT): X — X is %-strongly quasi-nonexpansive.
Proof. Note that Py is a nonexpansive operator and that
Fix Py NFixT = X NFixT =Fix T # 0.

Therefore, the corollary follows from Theorem 2.1.51. O

The following corollary will be useful in further parts of the book (see also [327,
Lemma 2] and [172, Lemma 1] for related results).

Corollary 2.2.26. Let x € X, u € Hand 0 < «a; < «ap. Then the following
inequality holds
I Px (x + oqu) — x||*
= [[Px(x + o) = x|P + | Py (x + aow) = Px(x + cww)|*. (2.54)
Consequently, the function f : Ry — Ry, f(a) := || Px(x + au) — x|| is non-
decreasing.
Corollary 2.2.26 is illustrated in Fig. 2.11.

Proof. Inequality (2.54) is obvious for oy = 0. Letnow «; > 0. Take y := x + ayu,
z:=x+ oquand A = z—; Then we have A € (0,1) and (x —z) = —ﬁ(y —2).
Now inequality (2.54) can be written in the form

IPxy — x| > | Pxz — x||* + || Pxy — Pxz|*. (2.55)
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The characterization of the metric projection (see Theorem 1.2.4) and its mono-
tonicity (see Theorem 2.2.21 (iv)) yield

()C—PXz,PXy—PXz): (X—Z,PXy—PXZ>+(Z—PxZ,PXy—PXZ)

A
< —m()’ -2z, Pxy — Pxz) <0,

ie., (x — Pxz, Pxy — Pxz) <0, which is equivalent to (2.55), by Lemma 1.2.5. O

Let C C H be convex. Define the distance function d(-,C) : H — Rbyd(x,C) =
infyec ||x — y||. It follows from the continuity of the norm and from the definition
of the metric projection that

d(x,C)=d(x,clC) = ||x — Pycx|.

Therefore, we suppose without loss of generality that C is closed. It turns out that
the functions d(-, C) and d?(-, C) are convex and differentiable.

Lemma 2.2.27. Let C C€H be a closed convex subset. Then the function
f H—->R f(x):= %dz(x,C) is differentiable and D r(x) = x — Pcx for
all x € H.

Proof. (cf.[167, Proposition 2.2] and [209, Chap. 1V, Example 4.1.6]) Let x, h € H.

It follows from the definition of the metric projection and from the properties of the
inner product that

Jx+h) = f(x) = (x = Pcx.h)

1 1

=5 I+ h=Pelx+ M =3 llx = Pex| = {x = Pex. )
1 , 1 )

< §||x+h—ch|| —§||x—ch|| —(x — Pcx,h)

1

= ||

> Il

Similarly, by the definition of the metric projection, the Cauchy—Schwarz inequality
and the nonexpansivity of the metric projection, we obtain

Fx 4 h)— F(x)— {x — Pex. h)
S B = Pe( I = 3 e = Pexlf — (v — Pex. )

1 1
= 5 = Pe(x +WI* = S llx = Pe(x + W* = {x = Pex. h)

1
= 5 1B + (Pex — Pe(x + h). )
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1
3 7% = 1| Pex = Pe(x + )| - ||A]

v

%

1 1
—a)* = |h)? = —= ||h]%.
2|I 17— [I7]] 2|I [

Now we see that
1 2 1 2
—3 IBIP < (fGx +h) = f() = (x = Pex.h)) = 5 AP
Consequently,

Jx+h) = f(x) + (x = Pcx. h) + o(||h]).

Therefore, f is differentiable and D s (x) = x — Pcx. O

Lemma 2.2.28. Let C C H be a closed convex subset. The function h : H — R,
h(x) := d(x, C) is convex and differentiable for all x ¢ C and

X — Pcx

Dh(x) = (2.56)

llx — Pex]’

Proof. Since h(x) = infyec ||x — y|, the convexity of /& follows from the fact that
the function p : H x H — H, p(x,y) := ||x — y| is convex (as a composition
of a linear function (x,y) — x — y and a convex function z — |z||) and from
the fact that for a convex function p, the function infyec p(-, ) is convex. Since
h = /d?(-,C), the differentiability of & as well as equality (2.56) for x ¢ C
follow from Lemma 2.2.27 and from the formula D(||z]|) = g5 forz # 0. O

Corollary 2.2.29. Let C C H be a closed convex subset. Then the function f :
H—->R, f(x):= %dz(x, C) is convex.

Proof. The function f is convex as a composition f = g o & of a convex function
— . : . . .+ 1.2
h :=d(-,C) and of a convex and increasing function g : R™ — R, g(¢) := 51°.
O

2.2.4 Metric Projection onto a Closed Subspace

Let V' € 'H be a closed linear subspace. Since V' is convex, the metric projection
Py is well defined. The theorem below states some properties of Py . In particular,
the first part of the theorem states that the metric projection onto V' is equal to the
orthogonal projection onto V.

Theorem 2.2.30. Let V C H be a closed subspace and x € H, y € V. Then

(i) y = Pyxifandonlyif (x —y,z) =0 forallzeV,
(ii) Py is a bounded linear operator and || Py | = 1,
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(iii) Py is self-adjoint,
(iv) Id = Py + Py..

Proof. (i) Necessity. Let y := Pyx. By the characterization of the metric

(i)

(iii)

(iv)

projection (see Theorem 1.2.4), (x — y,z — y) < 0 for all z € V. Suppose
that (x —y,w—y) < Oforsomew € V.Letu := 2y —w. Thenu € V because
V' is a linear subspace and we have

(x=yu—y)={(x—y,y—w)>0.

This contradiction shows that (x —y,z—y) = Oforall z € V. If we take z :=
0 € V in the latter equality, we obtain (x — y, y) = 0. Hence, (x — y,z) =0
forallze V.

Sufficiency. Let (x — y,z) = Oforall z € V. Taking z := y € V we obtain
in particular (x — y,y) = 0. Hence, (x — y,z —y) = Oforall z € V.
By the characterization of the metric projection (see Theorem 1.2.4), we have
y = Pyx.

Let x1,x2 € H, 1,00 € R, y; := Pyxy, y2 := Pyxp and x 1= a1x] + 027,
y = o1y; + a2y,. We show that y = Py x. By (i) we have

(x —y.2) = {a1(x1 — y1) + a2(x2 — ¥2).2)

= ar{x; — y1.2) + a2{x2 — ¥2.,2)

= 0’
for all z € V,ie., y = Pyx. Since Py is nonexpansive, it is bounded.
Furthermore,
[ Pvx|l = [|[Pyx — PyO] < [lx —Of =[x
forall x € H and || Pyx|| = ||x| forx € V. Hence, || Py| = 1.
Let x, u € H. It follows from (i) that

(x, Pvu) = (PVx, PVM)

and
(u, Pyx) = (Pyu, Pyx).

By the symmetry of the inner product
(PV)C, u) = (xv PV”)v
i.e., Py is self-adjoint.

Let x € H. By (i), we have x — Pyx € V1 and x — Pyx = P, .Lx. Since
x = Pyx 4+ (x — Pyx),itholds x = Pyx + Pyp.x. O
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Corollary 2.2.31. Let V C 'H be a closed subspace and x € H. Then
(Pyx.x) = | Pyx|’.

Proof. Since Py is self-adjoint (see Theorem 2.2.30 (iii)), we have (Pyx,u) =
(x, Pyu) for all u € H. If we take u := Py x we obtain the desired property. O

Corollary 2.2.32. A bounded linear operator is an orthogonal projection if and
only if it is idempotent and self-adjoint.

Proof. The necessity follows from Theorems 2.2.21 (i) and 2.2.30 (iii). Let now
T : 'H — 'H be idempotent and self-adjoint. Let V' := T (H). It is clear that
V = Fix T and that V is a closed subspace. Now we show that 7" = Py.Letx € H
and z € V. Then

(Tx,z) = (x,Tz) = (x,2),

ie., (Tx — x,z) = 0. Theorem 2.2.30 (i) implies now that T = Py. O

2.2.5 Metric Projection onto a Closed Affine Subspace

Let A C 'H be a closed affine subspace and @ € A. Then A — a is a closed linear
subspace. In order to show some properties of the metric projection P4 we apply
Theorem 2.2.30 together with

Pyx =Py_y(x—a)+a (2.57)

(see Lemma 1.2.6).

Theorem 2.2.33. Let A C 'H be a closed affine subspace and x,u,v,w € H,
a,y € A. Then

(i) y = Paxifandonlyif (x —y,z—y) =0forall z € A,
(ii) Pau— Pqv=Ps_ygu—v)= Ps(u—v)— P40,
(iii) (Pau— Pav,w) = (u—v, Pa—qw) = (u—v, Pyw — P40),
(iv) (Pau— Pav,u—v) = |[Pyu— Pyv|?

(v) Nl =vI* = [|Pau = Pav|* + (P = u) = (Pav =),
(vi) Py is an affine operator.

Proof. (i) Since A — a is a linear subspace,v € A —a ifand only if v = z — y,
for some z € A. By (2.57) and Theorem 2.2.30 (i), we have

y=Pix&y-a=Pi(x—a)& (y—a—(x—a)z—y)=0

forany z € A.
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(i) By (2.57) and the linearity of P4_,, we have

Piu—Pyv=Pyyu—a)+a— (Ps—g(v—a)+a)

= Pa—a(u—v)
= PA_a(M—V_a)_PA—u(_a)
= PA(M—V)—PAO-

(iii) Since P4—, is self-adjoint, (2.57) and (ii) yield

(Pau— Pav,w) = (Pa—q(u—a) — (Ps—a(v —a),w)
= (u—v, Py—qw)

= (u—v, Ps—a(w—a) — Py—y(—a))
= (u—v, Pyw— P40).

(iv) Property (i) yields
(Pau—u, Pyu— Pyv) =0and (Pyv—v, Psu— Pyv) =0

Therefore,
((Pau—u) — (Pqv—v), Psu— Pyv) =0,

i.e.,
(Pauu— Pyv,u—v) = ||Pau— Pyv|?*.

(v) It follows from the properties of the inner product and from property (iv) that
[(Pau—u) = (Pav—)|
= ||Pau— Pav||* + |lu—v||* = 2(Psu— Pyv,u—v)
= Ju—v|* = [ Pau— Pav|*.
(vi) Let A € R. Since A — a is a closed subspace, (2.57) and Theorem 2.2.30 yield
Pa((1=Du+Ay) = Pao((1 =) (u—a) + A(y —a)) +a
= (=) (Pa—a—a)+a)+ A(Pra(y —a) +a)
= (1 —/\)PAM + /\PAy

which completes the proof.
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2.2.6 Properties of Relaxed Firmly Nonexpansive Operators

In this section we present relationships among families of relaxed firmly nonexpan-
sive operators, contractions, averaged operators and strongly quasi-nonexpansive
operators. Furthermore, we give properties of relaxed firmly nonexpansive operators
which are used in many constructions of algorithmic operators.

Theorem 2.2.34. An a-contraction is (1 + «)-relaxed firmly nonexpansive.

Proof. Let T : X — 'H be an a-contraction, i.e., |[Tx — Ty| < «|x — y| for all

x,y € X,wherea € (0,1). Let U := H_%T — 114__0( Id, or, equivalently,

1+« l—«a
T = U 1d,
2 + 2

ie.. T is “g“ -averaged. By the convexity of the norm and the nonexpansivity of 7,

2 1l -«
Ux—Uy| = |——(Tx—Ty) — -
[Ux — Uyl H1+a(x y) 1er(x y)H
2 1l -«
= W Tx-T —
< T 1T =Tyl o Ik =l
< 2 Y )
X — X —
T 14+« Y 1+ « Y
=lx—yl,

i.e., U is nonexpansive. Therefore, T is (1 + «)-relaxed firmly nonexpansive as a
(H'T"‘)-averaged operator (see Corollary 2.2.17). O

The next results show that a family of relaxed firmly nonexpansive operators is
closed under convex combination and under composition.

Theorem 2.2.35. Let A; € [0,2] and U; : X — H be A;-relaxed firmly nonexpan-
sive, i € I :={1,2,....m}, U := Y7 iU forw = (w1,...,0n) € Ap.
Then the operator U is A-relaxed firmly nonexpansive, where A = Z'}’:l wik;.
Consequently, U is strictly relaxed firmly nonexpansive if A; € (0,2) for somei € I

and the corresponding weight w; > 0.

Proof. Let U; := Id+A;(T; — Id), where T; : X — H are firmly nonexpansive,
Ai€[0,2],i e I,andw = (w1, ...,wy) € A, Itis clear that A := Z’;Llekj €
[0,2]. For A = 0 the claim is obvious, because U = Id in this case. Let now
A € (0,2]. Since
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the operator
Tyt
i1 Z]—lw]

is firmly nonexpansive as a convex combination of firmly nonexpansive operators
T; (see Corollary 2.2.20). Let U := Zf.”:l w; U;. Then we have

U=> wld+A(T; —1d)]
i=1

=1d+ Y widi(T; —1d)

i=1

=Id+ ;wjkj (ZZ _lw] sz_le )

i=1 i=1
=Id+A(T —1d)
and, consequently, U is A-relaxed firmly nonexpansive. The second part of the
theorem is obvious. O

Corollary 2.2.36. A convex combination of averaged operators is an averaged
operator.

Proof. Tt suffices to apply Corollary 2.2.17 to Theorem 2.2.35. O

Theorem 2.2.37. Let T,U : X — X and A, € [0,2]. If T is A-RFNE and U is
W-RFNE, then the composition V := UT is y-RFNE, with

0 fA=0andpu =0
2 Ff2-MN2-wn) =0
y=9140+p—Aw _ 2 .
R otherwise.
7 14
(2 A+ ) +

(2.58)

Proof. If A = 0or u = 0,then T = Id or U = Id, respectively, and the claim is
obvious, because the operator Id is O-RFNE. If A = 2 or u = 2, then T and U are
nonexpansive (see Theorem 2.2.10 (ii)) and U T is nonexpansive as a composition of
nonexpansive operators. Therefore, UT is 2-RFNE (see Corollary 2.2.13). Let now
A, € (0,2)and x,y € H.Denotea; := Tx—x,a, :=Ty—y,by :=UTx—Tx
and by ;== UTy — Ty. Itis clear that

y—x=Ty—Tx+a; —a. (2.59)
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By Corollary 2.2.3, we have

1
(y—x.a) +(x = y.a) = 7 a1 — s’

and 1
(Ty —Tx,b1) +{(Tx —Ty,by) > m by = ba .

Therefore, the properties of the inner product, equality (2.59) and Lemma 2.1.45
yield

1
(y =x,UTx —x)+ (x =y, UTy —y) — ;(u(UTx —x)=(UTy -y’

1
= (y—x,ai +bi) + (x —y,a + by) — ;(n(al +by) — (az + b))
=(y—x,a1)+{(x—y,a)+(Ty—Tx,b1) + (Tx —Ty,by)

1
+(ay —az, by — by) — ;(H(al +b1) — (a2 + bo)|P)
1 2 1 2
> T lar —az||” + — |by — b2||” + (a1 — a2, by — by)
n

—%(”(01 +b1) — (@ + b)|

1 1 1 1 2
- (X - —) lar — aal? + (— - —) 1B — Bl + (1 - —) (a1 —az. by — by)
Mmooy Y
(

Y
1 1 1 1 ’
= H X__(al—az)_ ———=bi1—by)
Vi oy Vi v

Now it follows from Corollary 2.2.3 that UT is y-RFNE. O

> 0.

Remark 2.2.38.  Because of Corollary 2.2.17, Theorem 2.2.37 can be stated
equivalently in terms of averaged operators:

if T is a-averaged and U is B-averaged, where o, € (0,1), then UT is
8-averaged, with

§:= 2= (2.60)

This result is due to Ogura and Yamada (see [273, Theorem 3 (b)]). The fact that a
composition of averaged operators 7" := (1 —a) Id+aR and U := (1 - ) Id+8S
is averaged follows also from the following identity (cf. [56, Lemma 2.2 and
Proposition 2.1])

(-Po . P

UT = (1—a)(1—ﬁ)1d+(a+ﬁ—aﬁ)[a+ﬂ_aﬂ a+ﬂ—aﬂST

I
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and from the fact that the family of nonexpansive operators is closed under
compositions and convex combinations (see Lemma 2.1.12). Note, however, that
[273, Theorem 3 (b)] is stronger than the result mentioned above, because

S<a+pB—apf

for , B € (0,1) and § given by (2.60). It follows from Corollary 2.2.17 that the
result of Ogura and Yamada is equivalent to Theorem 2.2.37 with A, u € (0, 2).
Moreover, the proof of this theorem differs from the proof of [273, Theorem 3 (b)].
Note that the property of composition of relaxed cutters with a common fixed point,
expressed in Theorem 2.1.46 and the property of compositions of relaxed firmly
nonexpansive operators presented in Theorem 2.2.37 are similar. Therefore, it is
quite natural that the proofs of both theorems are similar. But Theorem 2.1.46 is no
special case of Theorem 2.2.37 because a cutter needs not to be firmly nonexpansive,
even if it is nonexpansive (see Example 2.2.8).

An equivalent formulation of the following result can be found in [349,
Lemma 1].

Corollary 2.2.39. Let T,U : 'H — 'H be firmly nonexpansive. Then the com-
position V = UT is %-relaxed firmly nonexpansive. Consequently, Vy is firmly
nonexpansive for all A € [0, %] and nonexpansive for all A € [0, %] If, furthermore,
V has a fixed point, then V), is strongly quasi-nonexpansive for all A € (0, %)

Proof. If we take A = p = 1 in Theorem 2.2.37, we obtain that V' is %-relaxed
firmly nonexpansive. Recall that (V)), = V), (see Remark 2.1.3). Corollary 2.2.19
yields the firm nonexpansivity of V), for all y € [0, %] By the implication (i)=>(ii)
in Theorem 2.2.10, V,, is nonexpansive for all y € [0, %] Now let Fix V' # @ and
y € (0, %). Then V, is strongly quasi-nonexpansive, by Corollary 2.2.9. O

Yamada et al. also proved that, for any A > %, there exist firmly nonexpansive
operators T, U such that V) is not nonexpansive, where V' := UT (see [349,
Remark 1 (b)]). This means that the constant % is optimal in Corollary 2.2.39.

Remark 2.2.40. LetT,U : 'H — 'H be firmly nonexpansive having a common fixed
point. Then it follows from Corollaries 2.2.39 and 2.2.15that U T  is %-strongly quasi
nonexpansive. A special case of this property was proved in [152, Proposition 1] for
T, U being orthogonal projections onto subspaces of .

Corollary 2.2.41. Let T : H — H be firmly nonexpansive and A € [0,2]. If V is a
closed affine subspace, then the operator U := (1 — A)Py + APy T is ﬁ-relaxed
firmly nonexpansive.

Proof. Let V be a closed affine subspace. By Theorem 2.2.33 (vi), the operator Py
is affine, consequently,

(1=A)Py +APyT = PyT).

Now it follows from Theorem 2.2.37 that U is ﬁ-relaxed firmly nonexpansive,

because the metric projection is firmly nonexpansive. O



88 2 Algorithmic Operators

A weaker formulation of Corollary 2.2.41 can be found in [349, Lemma 2], where
T := Pc¢ for a closed convex subset C.

Theorem 2.2.42. Let T; : X — X be A;-relaxed firmly nonexpansive, where
a; €10,2],i € I. Then the composition Sy, := Ty Ty—1 ... T\ is ym-relaxed firmly
nonexpansive, where y,, = 0if A; = 0 foralli € 1, y,, = 2 if A; = 2 for at least
onei € I and

2
Yn= — (2.61)
(ﬁ‘i‘z_iz-f-...—i-z_'xm) +1
otherwise. Moreover,
2m miniel Ai 2m max;ey /\,‘ (2 62)

: =Vm = ,
(m — 1) min;e; A; + 2 (m —1)max;e; A; +2

consequently, y,, <2 ifA; <2 foralli € I.

Proof. Let A; = 0 for all i € [I. In this case, S,, = Id, i.e., S, is O-relaxed
firmly nonexpansive. Let A; = 2 for some i € [. Then S,, is nonexpansive as a
composition of nonexpansive operators, i.e., S, is 2-RFNE (see Corollary 2.2.13).

Letnow A; € [0,2) foralli € / and A; > O for at least one j € /. We prove by
induction with respect to m that S,, is y,,,-RFNE, where y,, is given by (2.61). Note
that (2.61) is equivalent to

(2.63)

1° For m = 2 the above fact follows directly from Theorem 2.2.37.

2% Suppose that, for some m = k, the operator S,, is ¥,,-RFNE. We prove that
Sk+1 18 Yk+1-RENE. If A4+ = 0, then T4, = Id, Sk+; is a composition of k
operators which are relaxed firmly nonexpansive and the claim follows from the
induction assumption. Let now A4 € (0, 2), then we have S+ = Tk 415k, where
Ti+1 18 Ax+1-RFNE and Sy, is yx-RFNE. It follows from Theorem 2.2.37 that Sy 4+
is y-RFNE, where

2
y = A _1 9’
Yk k+1
(Z—Vk + 2—1k+1) +1

and, together with (2.63), this gives form = k

A (S Ak+1
2—y 2=y 2= Akt1
Al Ar Ak Akt

iy P s PO S PR S P
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consequently, y = yx+1. We have proved that, for any m € N, the operator S,, is
yYm-RENE, where y,, is given by (2.61).
Now we prove (2.62). By (2.63), we have

min;es A; Ym max;e; A;
m N < =m B
2 —minje; A; T 2— Y 2 —max;es A;
which is equivalent to (2.62). O

A part of the results presented in Theorem 2.2.42 can be found in [122, Lemma
2.2 (iii)], where it was proved that a composition of A;-RFNE operators 7;, where

. . 2mmax;ey A
A.,' S [0,2], RS I, 18 m-SQNE

Corollary 2.2.43. Let T; : X — X, i € I, be firmly nonexpansive. Then the oper-
2m

ator Sy = Ty ... T\ is ym-relaxed firmly nonexpansive with y, = 775. Conse-

| . .
quently, Sy, is +.-strongly quasi-nonexpansive.

Proof. 1t suffices to take A; = 1,7 € I, in (2.61). The second part of the corollary
follows from Corollary 2.2.9. O

Dye and Reich obtained a result which is a special case of the second part of
Corollary 2.2.43 with T;, i € I, being orthogonal projections onto one-dimensional
subspace of a Hilbert space (see [152, Theorem on page 109]).

Corollary 2.2.44. Let T; : X — X be firmly nonexpansive, S; :=T; ... Ty, i € I,
andw = (w1,...,0n) € Ay. Then the operator S = Z;’Ll w; S; is A-relaxed
firmly nonexpansive, where

" 2i
A:Zwii—i—l' (2.64)

i=1

Proof. By Corollary 2.2.43, the operators S; are y;-relaxed firmly nonexpansive
with y; = l% By Theorem 2.2.35, S is A-relaxed firmly nonexpansive, where A
is given by (2.64). O
The composition of firmly nonexpansive operators needs not to be firmly nonexpan-

sive (see Exercise 2.5.10).

Definition 2.2.45. Let 7T : X — H, A € [0,2]. The operator R : X — H,
R) := PxT, is called a projected relaxation of T .

The theorem below gives important properties of the projected relaxation of a
firmly nonexpansive operator.

Theorem 2.2.46. Let T : X — 'H be firmly nonexpansive, R) := PxT),, be the
projected relaxation of T, where A € (0, 2). Then:

(i) Ry is ﬁ-relaxed firmly nonexpansive.
(ii) Fix R, = Fix(PxT).
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(iii) IfFix(PxT) # @, then the operator R) is %-SQNE, ie.,

2—-A
| Rax =2l < flx =2l = == | Rax — x| (2.65)

forall x € X and for all 7 € Fix(PxT).
(iv) IfFix T # @, then the operator R) is %-SQNE.

Proof. (i) Since the metric projection Py is firmly nonexpansive, it is 1-relaxed
firmly nonexpansive. By Theorem 2.2.37, the operator R} is ﬁ-RFNE.

(i1) This property follows from Corollary 1.2.10.

(iii) Since R, is u-RFNE, where u = ﬁ (see (i)), Corollary 2.2.9 yields

2—pu
IRwx — 2> < flx —2)|* — . IRyx — x]?

2 — 2
= llx = 2> = = | Rax — x|

(iv) The claim follows from Corollary 2.2.25.
O

If X = H, then R = T,, nevertheless, estimation (2.65) is weaker than
estimation (2.47). Furthermore, estimation (2.65) is weaker than estimation (2.53).
Note, however, that we have supposed in Corollary 2.2.25 that the operator 7' :
X — 'H is a cutter, consequently Fix 7 # @, while in Theorem 2.2.46 (iii) we have
supposed that Fix(Py T) # @, which is weaker than the assumption Fix T # 0.

2.2.7 Fixed Points of Firmly Nonexpansive Operators

A firmly nonexpansive operator is nonexpansive (see Theorem 2.2.4), therefore, the
subset of its fixed points is closed and convex (see Proposition 2.1.11). In this section
we show that the subsets Fix T for FNE- and for NE-operators are intersections of
half-spaces, which also yields the closedness and convexity of Fix 7. Equivalent
formulations to the results below can be found in [185, Equalities (11.3) and (11.4)].

Theorem 2.2.47. Let X C H be closed convex and T : X — H be firmly
nonexpansive. Then

FixT = ﬂ{zeX: (Tx —x,Tx —2z) <0}.
xeX

Consequently, Fix T is a closed convex subset.
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Proof. Since a firmly nonexpansive operator with a fixed point is a cutter (see
Theorem 2.2.5), the theorem follows from Lemmas 2.1.36 and 2.1.35. O

Corollary 2.2.48. Let X C H be closed and convex. The subset of fixed points of a
nonexpansive operator S : X — H has the form

FixS=(|zeX: 2z—x.Sx—x)=|Sx—x|} (2.66)

x€X

consequently, Fix S is a closed convex subset.

Proof. Let S : X — 'H be nonexpansive. By Corollary 2.2.13, we have S = 27 —Id
for a firmly nonexpansive operator 7. It is clear that Fix S = Fix 7. Theorem 2.2.47
yields now

1 1
Fix S = (Jize X: (s(Sx+x)—x.2(Sx+x)—2) <0}
xeX 2 2

which is equivalent to (2.66). O

2.3 Strongly Nonexpansive Operators

Definition 2.3.1. An operator T : X — H is called strongly nonexpansive (SNE),
if 7' is nonexpansive and for all sequences {x* Yoo yk Jrey S X the following
implication is true

(x* — y*) is bounded and P ‘ ‘
= (X" =y —(Tx"—-Ty*) —0,
[ = = T+* =T >0
The notion of strongly nonexpansive operators in Banach spaces was proposed
by Bruck and Reich in [51, Sect. 1], where also properties of these operators are
proved (see also [23, Sect. 4.3]).

Remark 2.3.2. 1t is clear that a contraction is a strongly nonexpansive operator.
Indeed, let 7" be a contraction, i.e., |Tx — Ty| < a|x — y| forall x,y € X and
for a constant @ € (0, 1), and (x¥ — y*) be bounded and such that ka —yk H —
|7x*¥ — Ty*|| — 0. Then we have

[ =y =T =T = =) [ &* = *] = 0.

Consequently, x¥ — y¥ — 0 and Tx* — Ty¥ — 0, i.e., T is strongly nonexpansive.
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Remark 2.3.3.  (S. Reich, A private communication (2009)) Let X € H be com-
pact. Then a strictly nonexpansive operator defined on X is strongly nonexpansive.
Indeed, let T : X — 'H be strictly nonexpansive, i.e.,

ITx =Tyl <llx=yll orx =y =Tx—-Ty

for all x,y € X, and X be compact. We show that 7" is strongly nonexpansive.
Suppose that sequences {xk}]fozo and {yk}]fo=0 are given such that ||xk —yk || —
|Tx* —Ty*| — 0 and that there exist subsequences {x"<}?° € {x*}2°  and
DR, S {yk},‘{’o=0 and a constant & > 0 such that

G = y™) = (T = Ty™)| = e.

Since X is compact, we can suppose without loss of generality that x"* — x and
y™ — y.Since T is continuous as a nonexpansive operator, we have 7x"* — Tx
and Ty"™ — Ty. Hence, we obtain in the limit ||x — y|| = ||Tx — Ty||, which
yields, due to strict nonexpansivity of 7', that x —y = T'x — T'y. On the other hand,
we have

G =) = (Tx = Ty)| = lim | (™ = y™) = (Tx™ = Ty")| = e,

a contradiction, which shows that T is strongly nonexpansive.

Theorem 2.3.4. Let T : X — H be firmly nonexpansive and A € (0,2). Then the
relaxation Ty of T is strongly nonexpansive.

Proof. Let {x*}22 | {y*}2 / € X be such that |x* — y*| is bounded and

[ =y* | = I = Ty > 0.
The firm nonexpansivity of 7" yields the nonexpansivity of 7 (see Theorem 2.2.10
(i1)), consequently, the sequence {ka —yk H + || Tyxk — Tkyk”}:ozo is bounded.

Therefore, by the obvious equality 7)x — x = A(T x — x) and by Corollary 2.2.15,
we have

| = yb) = (Tox* = Toyh) |

|(Tox* = x5 = (Toyh = 34|

A 2 2
< A (| = P - I - T )
A
= o (" = | = 17" = Ty (" = o] + [ Tox = Tyt — 0,
ie., |(xk — y¥) = (Tax* — Ty y*)|| — 0and T} is strongly nonexpansive. O
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In the previous sections we have proved that the following classes of operators are
closed under composition and under convex combination:

(a) The class of strictly relaxed cutters with a common fixed point (see Theo-
rems 2.1.46 and 2.1.50),

(b) The class of strongly quasi-nonexpansive operators with a common fixed point
(see Corollary 2.1.47 and Theorem 2.1.50),

(c) The class of strictly relaxed firmly nonexpansive operators (see Theo-
rems 2.2.37 and 2.2.35)

(d) The class of averaged operators (see Remark 2.2.38 and Corollary 2.2.36).

It turns out that the class of strongly nonexpansive operators has the same properties.
The first part of the theorem below was proved by Bruck and Reich in [51,
Proposition 1.1] and the other one by Reich in [295, Lemma 1.3].

Theorem 2.3.5. Let T\, T, : X — X be strongly nonexpansive and T have one of
the following forms:

(i) T =TT,
(ii) T := (1 —A)Ty + AT, where A € [0, 1].

Then T is strongly nonexpansive.

Proof. By Lemma 2.1.12, the operator 7" is nonexpansive. Let the sequences
{xk},fio,{yk}]f‘;o C X be such that (x* — y¥) is bounded and ka —yk H —
H Txk — Tyk || — 0.

(i) By the nonexpansivity of T} and 75, we have

|TxE = Tyk| = | To(Tix*) = To(Tiy")|| < | Tixk — TiyF|| < 2% = »F

k > 0, consequently,
[x* =" = [7ix* =Ty -0
and
|Tix* = Tiy*| = | To(Tix*) — To(T1 ") | — o.

Since T; and T, are strongly nonexpansive, we have

(=) = (T = Ty") =
(K =y = (T1xF = Ty yk) + (Tix* — Ty y*) — (To(T1x¥) — To(Ti %)) —0.
i.e., T is strongly nonexpansive.

(ii) The assertion is clear when A = O or A = 1. Let A € (0, 1). By the convexity
of the norm and the nonexpansivity of 7} and 7», we have
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Fig. 2.12 SNE operator
which is not AV

[Tx* = Ty*| = [(1 = VTix* + ATox* — (1 = D) Tiy* = ATy" |
< (1= | Tix* = Ty | + 2| Tox* — Ty |
e R Y Sl B B

>

consequently,
€ =y | = Tt =T
= (= D" =2 = [ 7" = Ty )+ A =y | = [Tt = oyt
Therefore,
" =y = 7" = Ty -0

and
O [ A

By the strong nonexpansivity of 7} and 75, we have now

(=) = (Tx* = Ty")
= (1= 2)((" =) = (112" = T1y") + A" = ") = (Tox = Tay")) — 0,
i.e., T is strongly nonexpansive.
O

The following example shows that the class of averaged operators or, equivalently,
the class of strictly relaxed firmly nonexpansive operators is a proper subclass of the
class of strongly nonexpansive operators.

Example 2.3.6. Let X := B(0,1) € H be a unit ball, U : H — H be a unitary
operator such that (Ux, x) = 0 for all x € H (e.g., U : R> — R? is defined by
Ux := (—&.&) for x = (£1,&) € R? with the standard inner product) and the
operator T : X — X be defined by

Tx :=a(x)Ux.

with a(x) := 1 — 3 |lx| (see Fig.2.12).
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It is clear that ¢ (x)Ux = U(a(x)x), consequently,

ITx =Ty| = lla(x)Ux —a(y)Uy||
= [[U(a(x)x) = Ula(»)y)l
= la()x —a(y)yl-

A straightforward calculation shows that

lx = y[I* = 1Tx = Ty|?

[x =y )* = flee(x)x —a(y)y|’

1 s 1 4 3 3
= 4IIXII 4||y|| + [lx )17+ [ ¥l

(e )l + vl = % (IR R4

1
(el = Iy DAl + Iy D = 2 U+ 111D

1
Uyl = ey il + 1yl =5 - 1 ID-

We have || x|| 4+ ||yl = |x]|- ¥, since ||x]|, |¥]l € [0, 1]. This fact and the Cauchy—
Schwarz inequality yield

1 1 1 1
el Ay = S el iyl = S el il = g el Qv = 2 e )
consequently,
e = yI* = ITx = Ty|?

1 1
= (Ixll = Iy D> Al + vy D — 21y Dy + 2 -yl = (x.»))?

and T is nonexpansive. We apply the above inequalities to x = x* and y = y*.
Suppose that x*, y* € X and that | x* — y*| —| Tx* — Ty*| — 0. Then, of course,

|+ = = 7 =14 0.

because ||xk - yk” + H Txk — Tyk || is bounded. Therefore,

<[ = 1y ] =0
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(note that 1 — 3 (|| x| + |[»*|) = 3) and
0 1] = 5.5 = 0.
Now we have
I =17 = (= 1A D"+ 2 (- 4] = . 00) > o,

i.e., (x¥ — y¥) — 0. Furthermore, (T x* — Ty*) — 0, by the nonexpansivity of T,
consequently,
(F = y5) = (Tx* =Ty*) >0,

i.e., T is strongly nonexpansive. Note that z = 0 is the unique fixed point
of T. Suppose that T is «-averaged, for a constant « € (0,1). By Corol-
lary 2.2.17, the operator T is (2a)-relaxed firmly nonexpansive. Consequently,
the operator V = T, where u = (2a)™! € (%, +00) is firmly nonexpansive (see
Corollary 2.2.19) and V is a cutter (see Theorem 2.2.5), i.e.,
—p{x,x = Tx) + p? flx = Tx|?
=—u{x + u(Tx —x),x — Tx)
= (—Tux,x —T,x)

=(0—Vx,x—Vx) <0.
Dividing the inequalities above by . > 0, we obtain, for all x # z,

(x,x =Tx) _ x| 1

<p= 7 = 7 > 7= i 7
lx — Tx|| [xl]” 4+ o= (x) [|x]] L+ (1 =3 (x[D

N =

Applying the inequalities above to a sequence {x* Fo with limy x¥ = 0, we obtain

im ! —l
R P

1
—<u<l
2 n=

a contradiction, which proves that 7 is not averaged.

2.4 Generalized Relaxations of Algorithmic Operators

In the definition of a relaxation 7 of an operator 7 : X — H we have supposed
that the relaxation parameter A € [0,2] (see Definition 2.1.2). Furthermore, the
assumption A € (0,2) is necessary for the strong quasi nonexpansivity of the
A-relaxation of a firmly nonexpansive operator 7" with Fix # @ (see proof of
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Theorem 2.1.39). However, in some applications, relaxations of operators (e.g., of
firmly nonexpansive ones) with the relaxation parameter which are greater than 2
are successfully used. In general, the convergence of sequences generated by such
operators is not guaranteed. It turns out that, if we allow to vary the relaxation
parameter in dependence on the current point, in such a way that the relaxed operator
is a cutter, then we can apply the usual convergence analysis for sequences generated
by such an operator. Below we define a generalization of a relaxation of an operator,
which permits us to extend the convergence results to sequences generated by the
generalized relaxation.

Definition 2.4.1. Let7T : X — H,A €[0,2]and o : X — (0, +00). The operator
To,l X = H,
Tosx ==x + Aa(x)(Tx —x) (2.67)

is called the generalized relaxation of T, the value A is called the relaxation
parameter and o is called the step size function. If o(x) > 1 for all x € X, then the
operator Ty is called an extrapolation of T).

Some special cases of generalized relaxations of some classes of nonexpansive
operators, presented in various forms and applied in most cases to the convex
feasibility problems, were studied by Gurin et al. [196, Sect. 3], Pierra [284,
Sect. 1], Cegielski [62, Sect. 4.3], Kiwiel [229, Sect. 3], Bauschke [17, Sects. 7.3 and
8.3], Combettes [118, Sects. 5.4-5.8], [120, Sect. IV], Bauschke et al. [30, Sect. 3]
Bauschke et al. [25] and by Cegielski and Suchocka in [76].

In this section we present properties of generalized relaxations of cutters and
give conditions for a generalized relaxation to be strongly quasi-nonexpansive.
These properties will be applied in one of the next chapters in order to prove the
convergence of sequences generated by such operators.

Denote T, = Ty .

Remark 2.4.2. LetT : X — H,A €[0,2]and o : X — (0, +00).

(a) Ifo(x) = 1forall x € X, then T, = T, i.e., the generalized relaxation of T
is reduced to the classical relaxation of 7.

(b) The values of the step size function o for x € Fix T have no influence on the
form of an operator 7, 5 because 75, |rix 7= Id for any step size function o and
for any A € (0, 2]. Therefore, we can suppose without loss of generality that
o(x) = 1forall x € Fix T.

(c) Forany x € X the following equalities hold

Toax —x = Ao(x)(Tx —x) = AMTrx — x), (2.68)

i.e., T, is a A-relaxation of an operator 7.
(d) Forany A # 0 itholds Fix T,y = Fix T (cf. Remark 2.1.4).

The corollary below is a version of Theorem 2.1.39.
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Corollary 2.4.3. Let T : X — H have a fixed point, 0 : X — (0, +00) be a step
size function and A € (0,2). Then T, is a cutter if and only if T ) is #-strongly
quasi-nonexpansive. In both cases

1 Topx — 2| < [Ix — 2> = A2 — V)0 (x) | Tx — x| (2.69)

forall x € X and z € Fix T.

Proof. By Remark 2.4.2 (c), T, is the A-relaxation of T,. The first part of the
theorem follows now from Theorem 2.1.39. The %-strong quasi nonexpansivity
of T, means

2-2
1 Toax =2l* < llx —2l* = === | Tonx — x|I”.

Applying now (2.68) to the inequality above we obtain (2.69). O

Let T : X — 'H be an operator with a fixed point. Our aim is to give sufficient
conditions for the step size function o : X — (0, +00), at which Ty is a cutter. The
following definition was proposed in [70, Definition 9.17].

Definition 2.4.4. We say that an operator 7 : X — H with a fixed point is oriented
if forall x ¢ Fix T

(z—x,Tx —x)
T
z€Fix T ”Tx — _x”

8(x) := (2.70)

If§(x) > § > 0 forall x ¢ Fix T, then we say that T is strongly oriented.

It follows from Remark 2.1.31 that 7 : X — H is strongly oriented if and only
if T is an a-relaxed cutter for some o > 0.

Corollary 2.4.5. Let T : X — H be an oriented operator with FixT # 0. If a
step size function o : X — (0, +00) satisfies the inequality

(z—x,Tx —x)

ox) <
()= I7x - x|?

2.71)

forallx ¢ FixT and z € Fix T, then Ty is a cutter. Consequently, for any A € (0, 2),
the generalized relaxation Ty ) of T is %-strongly quasi-nonexpansive.

Proof. Let x ¢ FixT,z € FixT ando : X — (0,400) be a step size function
satisfying (2.71). The existence of o follows from the assumption that 7 is oriented.
Then (2.68) and inequality (2.71) yield
(z—x,Tox —x) = (z—x,0(x)(Tx —x))
> o (x)(Tx —x)|*

= ||Tyx — x]||*.
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By the equivalence (a)<>(b) in Lemma 1.2.5, we have
(Z_ Tox,x — Tax> <0,

i.e., T, is a cutter. The 2;—A-stlrong quasi nonexpansivity of 75 3 follows now from
Corollary 2.4.3. O

The convergence of sequences generated by generalized relaxations of an algorith-
mic operator U, which we present in the next chapter, requires a stronger condition
than (2.71). As we will see, the convergence holds if we additionally suppose that
U is strongly oriented, or, equivalently, that the step size o(x) > « forall x € X
and for a constant ¢ > 0. This leads to «-relaxed cutters (see Remark 2.1.31).
It is clear that if an operator 7 : X — ‘H with a fixed point is an a-relaxed cutter
for some « > 0, then there exists a step size function o : X — (0, +00) satisfying
inequality (2.71),e.g.,0(x) = o ! forall x € X (cf.(2.22)). In practice, however, it
is important to determine a step size o (x) for which the difference between the right-
and the left-hand side of inequality (2.71) is as small as possible for all z € Fix T'.
Theoretically, the best possibility would be o(x) = §(x) for x ¢ Fix U, where
8(x) is defined by (2.70), but the computation of §(x) is, in most cases, impossible,
because we usually do not know Fix T explicitly.

Having an «-relaxed cutter 77 we can construct its generalized relaxation Ty )
with the range of the step size function o contained in [, +00) and satisfying
assumptions of Corollary 2.4.5. The corollary below gives a collection of operators
which are a-relaxed cutters.

Corollary 2.4.6. LetU : X — H have a fixed point. Then U is an a-relaxed cutter
with:

(a) o = 1ifU is firmly nonexpansive,

(b) o = AifU is A-relaxed firmly nonexpansive, where A € (0, 2],
(c) a = 2ifU is nonexpansive,

(d) a =2vifU isv-averaged, where v € (0, 1),

(e) a = ﬁ if U is B-strongly quasi-nonexpansive, where 5 > 0.

Proof. (a) Let U be firmly nonexpansive. Then it follows from the first part of
Theorem 2.2.5 that T is a cutter, i.e., T is a 1-relaxed cutter.

(b) Let A € (0,2] and U := Id +A(T — Id) for a firmly nonexpansive operator 7.
Then, by (a), we have

(z—x,Ux—x)=AMz—x,Tx —x)
1
> A Tx = x|* = 3 |Ux — x|

(c) Let U be nonexpansive. Then U = 2T — Id for a firmly nonexpansive operator
T (see Corollary 2.2.13) and this case is covered by (b) for A = 2.

(d) Letv € (0,1) and U := (1 — v)Id 4+vS for a nonexpansive operator S. Then
U is 2v-relaxed firmly nonexpansive (see Corollary 2.2.17). The claim follows
now from (b) with A = 2v.
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(e) Let B > 0 and U be B-strongly quasi-nonexpansive. It follows from Corol-
lary 2.1.43 that U is a ﬁ-relaxed cutter.
O

In the lemma below we state some obvious properties of the generalized relaxation.

Lemma 2.4.7. Let T : X — H be an operator with a fixed point, and {0} ey :
X — (0, 400) be a family of step size functions.

(i) IfT(,j, j € J, are cutters, then Tsup/_ej o; I a cutter.
(ii) If o; < o; for somei,j € J and T,,j is a cutter, then Ty, is a cutter.

If T is a cutter, then there exists a step size function o with o(x) > 1 for
all x ¢ Fix T, for which T, is a cutter, e.g., a step size function ¢ defined by
o(x) = §(x), where §(x) is given by (2.70) for x ¢ Fix T. Consequently, the
generalized relaxation Ty, is strongly quasi-nonexpansive for any A € (0,2) (see
Theorem 2.4.5). Note that o(x) > 1, by Remark 2.1.31. The following example
shows, however, that there is a cutter 7" such that the generalized relaxation T 3
is strongly quasi-nonexpansive for all A € (0,2) if and only if o(x) < 1 for all
x ¢ FixT.

Example 2.4.8. Let T, ) be a generalized relaxation of the metric projection Pc :
H — 'H, where C C “H is a nonempty closed convex subset, i.e., T, (x) =
x + Ao(x)(Pcx — x) for a relaxation parameter A € (0,2) and for some step
size function o : H — (0, +00). For any x € H we have
| Torx = Pex||” = |lx + Ao (x)(Pcx — x) = Pex|)®
= |lx = Pex|* + A0 (x) | Pex — x||* = 220 (x) || Pcx — x|*
= |lx = Pex |’ = A0 (x)(2 = 20(x)) || Pex — x|*,

consequently,

12— 2 — Ao (x)

Tyox —x||%. 2.72
pye) | Topx — x| (2.72)

2
[To2x — Pcx|” = ||x — Pcx

Let A € (0,2). Suppose that Ty, is strongly quasi-nonexpansive, i.e.,
| Tonx =2l < flx —2l* — e [ T () — x|1° (2.73)

for some o > 0, for all x € H and z € C := Fix P¢. Note that « can depend on A.
Let x ¢ C and z = Pcx. Then (2.72) and (2.73) yield

2— Ao (x)

0 <
R PTeS)

There exists a constant « satisfying the above inequalities for all A € (0, 2) if and
onlyif o(x) < 1.
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Fig. 2.13 Operators 7" and
T, from Example 2.4.9

If T : X — 'H is firmly nonexpansive with a fixed point, then T is oriented
and for the function § defined by (2.70) it holds §(x) > 1 for all x ¢ FixT.
Therefore, Corollary 2.4.5 applied to a firmly nonexpansive operator 7" with the
step size o(x) := §(x) for x ¢ Fix T is an extension of Theorem 2.2.5 (i) for
generalized relaxations. Unfortunately, Theorem 2.2.5 (ii) cannot be analogously
extended. The fact that 7 : X — 'H is a projection and 75 is a cutter for some
step size function o : X — (0, +00) does not yield the firm nonexpansivity of 7.
Even if we additionally suppose that T is nonexpansive, 7' needs not to be firmly
nonexpansive (see Example 2.2.7). Moreover, a projection 7' for which 75 is a cutter
needs not to be continuous.

Example 2.4.9. Let H = R% C := B(0,1), D := bd B(0,+/2), a = (1,0).
Define the operator 7 : R?> — R? by

Pcx for x| <2
Tx:=3—a for|x||>2,&=>0
a for ||x|| >2,¢ <O.

It is clear that T is a projection with Fix T = C. For || x| > 2, let Ux be the
unique common point of the segment [x, 7 x| and the circle D. Define the function
o :R*> - Rby

() 1 if [|x[| <2
X) = —x|| -
=it x| > 2.
Observe that for ||x|| > 2 it holds T,x = Ux. It follows from geometrical

considerations (note that the square circumscribed on the circle bd B(0, 1) is
inscribed in the circle bd B(0, +/2)) that for all x € R2and z € C = Fix T it
holds

(x =T5(x). 2= T5(x)) =0

(see Fig.2.13). Therefore, T, is a cutter. Note that T is not continuous, therefore,
T cannot be firmly nonexpansive.
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FNE operators

cutters with
a common fixed point

is closed under
convex combination

relaxed cutters with
a common fixed point

The family of ’ RFNE operators

strictly RFNE
operators

71\

is closed under
composition

SQNE operators with
a common fixed point

NV \V

SNE operators

Fig. 2.14 Closedness of families of algorithmic operators

SUMMARY

In Fig.2.14 we recall in a short form the properties of algorithmic operators
which were presented in this chapter. These properties are useful in construction
of projection methods. We will describe these constructions in Chaps. 4 and 5.

2.5 Exercises

Exercise 2.5.1. Show that (7}), = T, forall A, u € R.
Exercise 2.5.2. Let7T :R — R,

x2if x| <
Tx = 3 .

lx| — 55 if |x[ >
Show that T is quasi-nonexpansive and continuous, but 7" is not a nonexpansive
operator.

Exercise 2.5.3. Let {U,};c; be a finite family of operators, U; : X — H,i € I.
Letw : X — A, be a weight function satisfying w; (x) > 0 for some i(x) =
argmax;¢; ||Uix — x|| for all x € X. Prove that w is appropriate with respect to the
famlly {Ui}iel-
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Exercise 2.5.4. Prove that the assumption on the C-strict quasi nonexpansivity
in Theorem 2.1.26 (i) can be weakened. In this case it suffices to suppose that all
U; are quasi-nonexpansive, i € [, and at least one of them is C-strictly quasi-
nonexpansive. The assumption that the weight function w is appropriate should be
replaced in this case by a stronger one, namely: w;(x) > 0 for all x such that
I(x) # @ and forall j € I(x).

Exercise 2.5.5. Prove Corollary 2.1.29.
Exercise 2.5.6. Prove Lemma 2.1.45.

Exercise 2.5.7. Show that the operator 7' : R?> — R?,

Tax = (§1cosp — & sing. & sing + & cos )

is nonexpansive and monotone for ¢ € (0, 7/2), but T is not firmly nonexpansive.
Exercise 2.5.8. Prove Lemma 2.2.2.

Exercise 2.5.9. Show that the operator 7" presented in Example 2.2.7 is nonexpan-
sive and that T is a separator of A, but T is not firmly nonexpansive.

Exercise 2.5.10. LetH = R, 4 := {x e R?: & = 0}and B := {x € R? :
& = &}. By Theorem 2.2.21 (iii) P4 and Py are firmly nonexpansive. Check that
T := Pp P4 is not firmly nonexpansive.



2 Springer
http://www.springer.com/978-3-642-30900-7

lterative Methods for Fiked Point Problems in Hilbert
Spaces

Ceqgielski, A

2013, XV, 298 p. 61 illus., 3 illus. in color., Softcover
ISBEN: 978-3-642-30900-7



