
Chapter 2
Systemic Risk in Banking Networks
Without Monte Carlo Simulation

James P. Gleeson, T.R. Hurd, Sergey Melnik, and Adam Hackett

Abstract An analytical approach to calculating the expected size of contagion
events in models of banking networks is presented. The method is applicable to
networks with arbitrary degree distributions, permits cascades to be initiated by the
default of one or more banks, and includes liquidity risk effects. Theoretical results
are validated by comparison with Monte Carlo simulations, and may be used to
assess the stability of a given banking network topology.

2.1 Introduction

The study of contagion in financial systems is currently very topical. “Contagion”
refers to the spread of defaults through a system of financial institutions, with each
successive default causing increasing pressure on the remaining components of
the system. The term “systemic risk” refers to the contagion-induced threat to the
financial system as a whole, due to the default of one (or more) of its component
institutions, and it has become a familiar term since the failure of Lehman Brothers
and the rescue of AIG in the autumn of 2008.

Interbank (IB) networks in the real world are financial systems that range in size
from dozens to thousands of institutions [6,26,28]. An IB network may be modelled
as a (directed) graph; the nodes or vertices of the network are individual banks,
while the links or edges of the network are the loans from one bank to another. Such
systems are vulnerable to contagion effects, and the importance of studying these
complex networks has been highlighted by Andrew Haldane, Executive director of
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Financial Stability at the Bank of England in his speech [15], in which he posed
the following challenge: ‘Can network structure be altered to improve network
robustness? Answering that question is a mighty task for the current generation of
policymakers’.

The study of complex networks has advanced rapidly in the last decade or so,
with large-scale empirical datasets becoming readily available for a variety of social,
technological, and biological networks (see [19, 23, 24] for reviews). By virtue of
their size and complexity, such networks are amenable to statistical descriptions
of their characteristics. The degree distribution pk of a network, for example,
gives the probability that a randomly-chosen node of the network has degree k,
i.e., that it is connected by k edges to neighbours in the network. While classical
random graph models of networks [10] have Poisson degree distributions, many
empirical networks have been found to possess “fat-tailed” or “scale-free” degree
distributions, where the probability of finding nodes of degree k decays as a power
law in k (pk ∝ k−β) for large k, in contrast to the exponential decay with k of the
Poisson distribution [23].

This structural (topological) aspect of real-world networks has important impli-
cations for dynamical systems which run on the nodes of the network graph, see
Barrat et al. [3] for a review. For example, the rate of disease spread on networks
depends crucially on whether or not they have fat-tailed degree distributions. As
a consequence, there is considerable interest in the effect of network structure on
a range of dynamics. Cascade-type dynamics occur whenever the switching of a
node into a certain state increases the probability of its neighbours making the
same switch. Examples include cascading failures in power-grid infrastructure [22],
congestion failure in communications networks [21], the spread of fads on social
networks [27], and bootstrap percolation problems [5], among others [17]. Building
on earlier work on the random field Ising model of statistical physics [7], the
expected size of cascades has recently been determined analytically for a range of
cascade dynamics and (undirected) network topologies [13, 14]. Our goal in this
paper is to extend and develop these methods for application to default contagion
on (directed) interbank networks.

Although the importance of network topologies has been recognized for many
years in the finance and economics literature (e.g., [1]), it is only following the
publication of empirical studies for large-scale interbank networks [6,9,26,28] that
theoretical models have moved beyond small networks and simple topologies. In
this paper we focus on “deliberately simplified” models for contagion on interbank
networks exemplified by those of Gai and Kapadia [11] (“GK” for short) and of Nier
et al. [25] (“NYYA” for short), which have attracted significant recent attention [16,
18]. We develop an analytical approach to calculating the expected size of contagion
events in networks of a prescribed topology.

The calculation is “semi-”analytical because it requires the iteration of a
nonlinear map to its fixed point, but it nevertheless offers significantly faster
calculation than Monte Carlo simulation. This reduces the computational burden
of interbank network simulations, hence making network theory more useful for
practical applications. Moreover, the analytical approach gives insights into the
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mechanisms of contagion transmission in a given network topology, and enables
formulas relating critical parameter values to be derived.

Our work extends the seminal paper of May and Arinaminpathy [18] by moving
beyond their assumption that every bank in the network is identical (i.e., that all
banks have the same numbers of debtors and creditors). As shown by May and
Arinaminpathy, this “mean-field” assumption gives reasonably accurate results for
Erdös-Rényi random networks, which have independent Poisson distributions for
in- and out-degrees. This means that each bank in such a network is similar to
the “average” bank. However, real-world banking networks often have fat-tailed
degree distributions [6], meaning that there is a significant probability of finding a
bank with in-degree (or out-degree) very different to the mean degree. To analyze
contagion on such networks we need to move beyond the mean-field assumption.
Moreover, unlike May and Arinaminpathy, our formalism allows us to consider how
the extent of the contagion is affected by the size of the bank which initiates the
cascade, and so to inform the question of which banks are ‘too big to fail’.

The remainder of this paper is structured as follows. In Sect. 2.2 we review
the models of GK and NYYA. Sections 2.3 and 2.4 develop a general theoretical
framework for analyzing such models, while in Sect. 2.5 we compare the results of
our analytical approach with full Monte-Carlo simulations, and discuss conclusions
in Sect. 2.6. Three appendices give details of several results that are not crucial to
the main flow of the paper.

2.2 Models of Contagion in Banking Networks

We consider simplified models of banking networks, as introduced by GK and
NYYA. As noted in May and Arinaminpathy [18], such “deliberately oversim-
plified” mathematical models are caricatures of real banking networks, but may
nevertheless lead to useful insights. These model networks can be considered as
generated in two steps. First, a “skeleton” structure of N nodes (representing banks)
and directed edges (to represent the interbank positions) is created. This structure
should be a realization from the ensemble of all possible directed networks which
are consistent with the joint probability p jk (the probability that a randomly chosen
node has j in-edges and k out-edges). We choose the following convention for
the direction of edges: an arrow on an edge representing an interbank position
(“loan” for short) points from the debtor bank to the creditor bank, see Fig. 2.1.
This convention ensures that shocks due to defaults on loans travel in the direction
of the arrows on the edges. Thus p jk is the probability that a randomly-chosen bank
in the system has j debtors (or, more strictly, that it has j asset loans, since multiple
links are possible) and k creditors (strictly speaking, k liability loans).

In the second step, each node (bank) of the skeleton structure is endowed with a
balance sheet and the edges between banks are weighted with loan magnitudes.
This process is performed in such as way as to ensure the banking system so
represented is fully in equilibrium (i.e., assets exceed liabilities for each bank) in
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Fig. 2.1 Skeleton structure of the network locality of bank i. Bank i is in the ( j,k) = (3,2) class,
since it has three debtors and two creditors in the interbank (IB) network

the absence of exogenous shocks. Once the banking networks are generated, the
cascade dynamics can be implemented to examine the effects of various types
of shocks. In Monte Carlo implementations, each step of the process (skeleton
structure/balance sheets/dynamics) is repeated many times to simulate the ensemble
of possible systems. The most common output from such simulations is the expected
fraction of defaulted banks in steady-state (i.e., when all cascades have run their
course) for the prescribed p jk network topology.

We stress that this two-step procedure is only one of many possible alternatives
for generating an ensemble of random networks. However, it is easily explained
and reproducible by other researchers, and proves amenable to analysis. As a
“deliberately oversimplified” model of the true complexities of banking networks,
it is not suitable for calibration to real network data in its current form, but
may nevertheless provide a starting point for improving our understanding of the
interplay between network topology and default contagion cascades.

2.2.1 Generating Model Networks

We first discuss the creation of the skeleton structure for N banks (or nodes)
consistent with a prescribed p jk distribution. It is usually assumed that N is large
(indeed theoretical results are proven only in the N → ∞ limit), but in practice
values of N as low as 25 have been successfully examined (see Results section).
In each realization, N pairs of ( j,k) variables are drawn from the p jk distribution.
For each pair ( j,k), a node is created with j in-edge stubs and k out-edge stubs. Then
a randomly-chosen out-stub is connected to a randomly-chosen in-stub to create a
directed edge of the network. This process is continued until all stubs are connected.
Note it is possible under this process for multiple edges to exist between a given
pair of nodes, or for a node to be linked to itself, but both these likelihoods become
negligibly small (proportional to 1/N) as N → ∞. Note also that interbank positions
are not netted, so directed edges may exist in both directions between any two nodes
of the banking network.
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Fig. 2.2 Schematic balance sheet of banks in the ( j,k) = (3,2) class

The second step of the network generation process, the creation of balance sheets
for each bank node, can vary considerably from model to model. In both the GK
and NYYA models, the balance sheet quantities of a node depend on its in-degree
(number of debtors) j and out-degree (number of creditors) k; we collectively refer
to all banks with j debtors and k creditors as the “( j,k)-class”. The total assets a jk

of a ( j,k)-class bank are the sum of its external assets e jk (such as property assets),
and its interbank assets, i.e., the sum of its j loans to other banks, see Fig. 2.2. The
liabilities side of the balance sheet is composed of the interbank liabilities (sum of
the k loans taken from other banks) and customer deposits. The amount by which
the total assets exceed the total liabilities is termed the net worth of the bank, and is
denoted c jk for banks in the ( j,k) class. Within both the GK and NYYA models the
net worth c jk is assumed (in the initial, shock-free, state) to be proportional to the
total assets a jk of the bank:

c jk = γa jk, (2.1)

where the constant of proportionality γ is termed the “percentage net worth” or
“capital reserve fraction”. Note that shareholders’ funds and subordinated debt
are not considered here as useful to the loss absorption capacity; thus only three
categories (interbank, customer deposits, and capital) appear on the liabilities side
of the balance sheets.

An important difference between the GK and NYYA models is in how they
assign values to loans, see Fig. 2.3. Recall the number of loans is determined by
the number of directed edges in the skeleton structure of the first step, but there
remains considerable freedom in allocating the weight to each edge. In the GK
model (Fig. 2.3a), each bank is assumed to have precisely 20 % of its assets as
interbank assets, and all in-edges to a ( j,k)-class node (i.e. all asset loans of a ( j,k)
bank) are assigned equal weight 0.2/ j (in units where the total assets of every bank
equals unity):

a jk = 1, e jk = 0.8 for all ( j,k) classes. (2.2)

This case represents a maximum-diversity lending strategy, where banks give loans
of equal size to all their debtors [11].
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Fig. 2.3 Loan sizes in each of the models for a bank in the ( ji,ki) class. In the GK model, all
asset loans are of size 0.2/ ji; liability loans are determined endogenously (by the random linking
of in-stubs to out-stubs described in Sect. 2.2.1). In the NYYA model, every loan in the network is
of equal size w. (a) GK model. (b) NYYA model

Table 2.1 Summary of main balance sheet quantities within the GK and NYYA models
(see Gai and Kapadia [11] and Nier et al. [25] for details)

GK NYYA

Total assets of a ( j,k)-class bank a jk = 1 a jk = ẽ+wmax( j,k)
Net worth of a ( j,k)-class bank c jk = γa jk c jk = γa jk

Size of asset loans of ( j,k)-class bank 0.2
j w

External assets of ( j,k)-class bank e jk = 0.8 e jk = ẽ+wmax(0,k− j)

In the model of NYYA, on the other hand, the same weight w is assigned to all
directed edges in the network (Fig. 2.3b). A ( j,k)-class node therefore has interbank
assets of jw, and interbank liabilities of kw. To ensure all banks are initially solvent,
NYYA describe a process for distributing a pool of external assets over the banks
(see Nier et al. [25] for details). As a consequence, the resulting total assets and
external assets may respectively be written as

a jk = wmax( j,k)+ ẽ, e jk = a jk − jw for all ( j,k) classes, (2.3)

where ẽ is related to the pool of external assets. The balance sheet quantities and
their definitions within the two models considered are summarized in Table 2.1.

2.2.2 Contagion Mechanisms

Having generated the banking system via the network skeleton structure and balance
sheet allocations, the dynamics of cascading defaults can then be investigated.
Recall that the banks’ balance sheet have been set up so that the system is initially
in equilibrium, i.e., total assets for each bank equals its total liabilities plus its
net worth. The effect of an exogenous shock is simulated, typically by setting
to zero the external assets of one (or more) banks. The shocked bank(s) may be
chosen randomly from all banks in the simulation, or a specific ( j,k)-class may
be targeted—the latter case allows us to investigate the impact of the size of the
initially shocked bank upon the final cascade size (see Results section). The initial
exogenous shock is intended to model, for example, a sudden decrease in the market
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value of the external assets held by the bank. The decrease may lead to a situation
where the total liabilities of the bank now exceed the total assets: in this case, the
bank is deemed to be in default As a consequence, the bank will be unable to
repay its creditors the full values of their loans; the loans from these creditors to
the defaulted bank are termed “distressed”. The creditors (in network terminology,
the out-neighbors of the original “seed” bank) experience a shock to their balance
sheets at the next timestep due to writing-down the value of the distressed loans. If
at any time the total of the shocks received by a bank (i.e. the total losses to date
on its loan portfolio) exceeds the net worth of the bank, then its liabilities exceed
its assets, and it is deemed to be in default. The defaulted bank then passes shocks
to its creditors in the system, and so the cascade or contagion may spread through
the banking network. Timesteps are modelled as being discrete, with possibly many
banks defaulting simultaneously in each timestep, and with the shocks transmitted
to their creditors taking effect in the following timestep.

The mechanism of shock transmission is treated differently by GK and by
NYYA, and this is an important distinction between the models.

2.2.2.1 Shock Transmission in the GK Model

In the GK model, defaulted banks do not repay any portion of their outstanding
interbank debts because the timescale for any recovery on these defaulted loans
is assumed to exceed the timescale of the contagion spread in the system. Con-
sequently, all creditors of a bank which defaulted in timestep n receive, at timestep
n+1, a shock of magnitude equal to the total size of their loan to the defaulted bank.
If multiple banks defaulted at timestep n, then a bank which is a creditor of several
of these will receive multiple shocks at timestep n+ 1. Specifically, if the creditor
bank is in the ( j,k) class, then it receives a total shock of size 0.2µ/ j, where µ is the
number of its asset loans which defaulted at timestep n (since each loan is of size
0.2/ j, see Table 2.1). This process of shock transmission continues until there are
no new defaults, at which point the cascade terminates.

2.2.2.2 Shock Transmission in the NYYA Model

The NYYA model allows for the possibility of non-zero recovery on defaulted loans.
Suppose the total shock received by a ( j,k)-class bank from all its defaulted debtors
is of size σ, and this shock is sufficient to make the bank default, i.e., σ > c jk.
The amount σ− c jk by which total liabilities now exceed total assets for the bank
is distributed evenly among the k creditors of the bank, with the proviso that no
creditor can lose more than the size w of its original loan (recall every loan in the
NYYA system is the same size w, see Table 2.1). Thus the shock transmitted to each
creditor of the defaulted bank is

min

(
σ− c jk

k
,w

)
. (2.4)
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As in the GK model, shocks transmitted from banks which default at timestep n
will affect the creditor banks at timestep n+ 1, and a cascade of banks failures may
ensue. This cascade mechanism bears some resemblance to the “fictitious default”
cascade used by Eisenberg and Noe [8] (“EN” for short) to determine the clearing
payment vector in a system with defaults, see Appendix A. However, the NYYA
cascades are not identical to the EN cascades. When a bank defaults in the NYYA
model, it transmits a once-off shock to each of its creditors, but then plays no further
role in the dynamics of the system. In particular, any shocks received by this bank
subsequent to its default do not affect its creditors. In contrast, the EN clearing
algorithm effectively requires defaulted banks to transmit newly-received shocks to
their creditors. Although the EN algorithm is not the main focus of this paper, we
present in Sect. 2.5 (see Figs. 2.5a and 2.6a) numerical results for the fraction of
defaults in EN cascades. The results are qualitatively similar, though not identical,
to those obtained using the NYYA contagion dynamics, the difference being most
notable in cases where a large fraction of the network is in default.

2.2.3 Liquidity Risk

In both the GK and NYYA dynamics, it is possible to include liquidity risk effects
in a simple fashion. Suppose that at timestep n, a fraction ρn of all banks in the
system have already defaulted. It is plausible that the market value of external assets
(e.g., property) will be adversely affected by the weakened banking system. A bank
needing to liquidate its external assets may, for example, find it difficult to realise
the full value in a “fire sale” scenario. To model the effects of this system-wide
effect, we assume that at timestep n the external assets of a ( j,k)-class bank are
marked-to-market as

e jk exp(−αρn) . (2.5)

The liquidity risk parameter α measures the influence of the system contagion
upon asset prices; note when α = 0 the external asset values are constant over
time, but for α > 0 the asset values decrease with increasing contagion levels. This
effect is included in the dynamics of the GK and NYYA models by subtracting
the quantity e jk [1− exp(−αρn)] from the net worth c jk of the ( j,k)-class banks.
Thus, for example, banks default in the NYYA model if the incoming shock s is
bigger than c jk − e jk [1− exp(−αρn)] (the fire-sale adjusted net worth), and the
shock transmission equation (2.4) is generalized to

min

(
σ− c jk + e jk [1− exp(−αρn)]

k
,w

)
, (2.6)

for α ≥ 0. A similar modification applies in the GK model. Interestingly, if α is
sufficiently large, the liquidity risk effect can lead to banks defaulting even if they
receive no shocks from debtors, because their net worth is obliterated by the fall
in market value of their external assets. Consequences of this are explored in the
Results section.
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2.2.4 Monte Carlo Simulations

The steps needed to study the models using Monte Carlo simulation are now
clear. In each realization a skeleton structure for a network of N nodes with joint
in- and out-degree distribution p jk is first constructed. Then balance sheets are
assigned to each node, consistent with the specific model chosen (see Table 2.1).
The cascade of defaults initiated by an exogenous shock to one (or more) banks
proceeds on a timestep-by-timestep basis, following the dynamics of either the zero
recovery (GK) or non-zero recovery (NYYA) prescription for shock transmission.
When no further defaults occur, the fraction of defaulted banks (the “cascade
size”) is recorded, and then another realization may begin. When a sufficiently
large number of realizations are recorded, the average cascade size (and potentially
further statistics, i.e., the variance, of the cascade size) may be calculated in a
reproducible (up to statistical scatter) manner. Monte Carlo simulations of this type
were implemented in GK and NYYA; our focus in the remainder of this paper is on
analytical approaches to predicting the average size of cascades, and so avoiding the
need for computationally expensive numerical simulations.

2.3 Theory

In this section we derive analytical equations which allow us to calculate the
expected fraction of defaults in a banking network with a given topology (defined
by p jk). Like related approaches for cascades on undirected networks [13, 14], the
method is only approximate for finite-sized networks because it assumes the N → ∞
limit of infinite system size. However, in practice we find it nevertheless gives
reasonably accurate results for networks as small as N = 25 banks (see Sect. 2.5).

2.3.1 Thresholds for Default

We begin by defining the threshold level Mn
jk as the maximum number m of

distressed loans that can be sustained by a ( j,k)-class bank at timestep n without the
bank defaulting at timestep n+1. If a ( j,k)-class bank has m defaulted debtors, with
m > Mn

jk, then it will default in the subsequent timestep, otherwise it will remain
solvent. As we show below, the GK model is easily expressed in terms of thresholds,
but thresholds can be defined for the NYYA model only under an approximating
assumption.

In the GK model a bank in the ( j,k) class has total assets of unity (a jk = 1), net
worth of c jk = γa jk = γ, and each distressed loan carries a shock of 0.2/ j. In the
absence of a liquidity risk (fire sale) factor, the ( j,k) bank would then default if the
sum of the shocks it receives from its m defaulted debtors exceeds its net worth,
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i.e., if 0.2m/ j > γ, giving Mn
jk = �5 jc jk�, where �·� is the floor function (returning

the greatest integer less than or equal to its argument). Liquidity risk may also be
included in models of this type by appropriately reducing the effective net worth,
and we can write the threshold levels in their most general form as

Mn
jk = min

{
j,max

{
�5 jc jk − 5 je jk

(
1− e−αρn

)
�,−1

}}
. (2.7)

Here e jk is the value of external assets for ( j,k)-class banks, α is the liquidity
risk parameter introduced in Sect. 2.2 and we constrain Mn

jk to be between −1 and
j. Note that this expression for Mn

jk is constant over time n if α= 0, and is decreasing
in time if α is positive and ρn is increasing.

In the NYYA model the size of the write-down shock on a newly-distressed
loan depends on how large the shock received by the debtor bank was compared
to its net worth. This means that there will, in general, be a distribution of shocks
of various sizes in the system, and this distribution will change in time. Denoting
the distribution of shock sizes by Sn(σ)—so that at timestep n a randomly-chosen
distressed loan (i.e. an out-edge of a defaulted bank node) carries a shock of size σ
with probability Sn(σ)—we would require m-fold convolutions of Sn(σ) to correctly
describe the shock received by a bank with m distressed asset loans (as the sum of
m independent draws of shock values from Sn(σ)). It is clearly desirable to find
a simple parametrization of Sn(σ) to make the model computationally tractable,
even at the loss of some accuracy. With this in mind, we approximate the true
value of the shock received by a bank with m distressed loans at timestep n by
msn, where sn is the average shock on all distressed loans in the system at that
timestep. Effectively we are replacing the true distribution S(σ) of shock sizes by
a delta function distribution: Sn(σ) �→ δ(σ− sn), where sn is the average shock
sn =

∫
σSn(σ)dσ; in other words, every distressed loan at timestep n is assumed

to have equal recovery value w− sn. This approximation turns out to work rather
well because in cases where many debtors are in default, the total shock received
by a creditor is well approximated by m times the average shock. However we will
also show examples (in the Results section) where the approximation of the shock
distribution Sn(σ) by a delta function leads to less accurate results.

Using this approximation, the NYYA threshold levels are:

Mn
jk = min

{
j,max

{
� 1

sn

[
c jk − e jk

(
1− e−αρn

)]
�,−1

}}
. (2.8)

The time dependence of the thresholds in this case is due to both liquidity risk
(α > 0), and to the time-varying nature of the (mean) shock size sn. In Appendix B
we derive an iteration equation for sn, consistent with the general model (2.12) and
(2.13) below and based on the approximation of the true shock size distribution by
a delta function.
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2.3.2 General Theory

We consider ( j,k)-class banks, of which there are approximately N p jk in any given
network realization (for sufficiently large N). Each bank in the ( j,k) class has j
debtors, each of which may be either solvent or in default at a specific time. Given
that a bank is in the ( j,k) class, we define un

jk(m) as the probability that the bank
(1) is solvent at timestep n and (2) has m distressed asset loans (due to the default
of the corresponding debtors in earlier cascades). According to its definition, the
sum of un

jk(m) over all m gives the fraction of ( j,k)-class banks which are solvent
at timestep n:

j

∑
m=0

un
jk(m) = 1−ρn

jk, (2.9)

where ρn
jk denotes the fraction of ( j,k)-class banks which are in default at timestep

n. In a slight abuse of mathematical terminology we will refer to un
jk(m) as a

“distribution”, but note from (2.9) that the sum of un
jk(m) over all m is not unity.

We consider how the states of the banks change from timestep n to timestep n+1,
and update the un

jk(m) distribution accordingly. The update occurs in two stages:
first a “node update” stage, where the states of the banks are updated, followed by an
“edge update”, where the un

jk(m) distribution is updated to give un+1
jk (m). In the node

update stage, banks in the ( j,k) class default if their number of distressed loans m at
timestep n exceeds their threshold Mn

jk (see Sect. 2.3.1). Thus the newly defaulting
fraction of ( j,k)-class banks is made up of those who were previously solvent but
now have m values above threshold. These newly defaulted banks increase the total
default fraction of the ( j,k) class by the amount:

ρn+1
jk −ρn

jk =
j

∑
m=Mn

jk+1

un
jk(m). (2.10)

Each newly defaulted ( j,k)-class bank is a debtor of k other banks in the system
and correspondingly triggers k newly-distressed loans: this is the edge update stage
between timestep n and timestep n+1. The number of newly-distressed loans in the
network due to defaults in the ( j,k) class of banks is approximately N p jkk(ρn+1

jk −
ρn

jk) (since there are N p jk such banks, each newly-defaulted with probability ρn+1
jk −

ρn
jk, and each with k creditors). Summing over all classes gives

N ∑
j,k

kp jk

(
ρn+1

jk −ρn
jk

)
(2.11)

as the number of newly-distressed loans in the system. The total number of loans
which were not distressed at timestep n is similarly calculated as N ∑ j,k kp jk(1−
ρn

jk). So the probability that a previously-undistressed loan will be distressed at
timestep n+ 1 is given by
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f n+1 =
∑ j,k kp jk

(
ρn+1

jk −ρn
jk

)

∑ j,k kp jk

(
1−ρn

jk

) =
∑ j,k kp jk ∑ j

m=Mn
jk+1 un

jk(m)

∑ j,k kp jk ∑ j
m=0 un

jk(m)
. (2.12)

Consider a ( j,k)-class bank which remains solvent and has exactly m distressed
asset loans at timestep n + 1. This bank was also solvent at timestep n and had
some number � ≤ min(m,Mn

jk) of distressed asset loans at timestep n. Amongst
the remaining j − � asset loans of this bank, exactly m− � of the loans must have
become newly distressed due to the debtor bank having defaulted in the first stage
of the update: this happens independently to each of the j− � loans with probability
f n+1. If we introduce the convenient notation Bk

i (p) for the binomial probability(
k
i

)
pi(1− p)k−i, the probability that a ( j,k)-class bank remains solvent and has

exactly m distressed asset loans at timestep n+ 1 can be written as

un+1
jk (m) =

min(m,Mn
jk)

∑
�=0

B j−�
m−�

(
f n+1)un

jk(�). (2.13)

Equations (2.12) and (2.13) together define the updating of the state variables
u jk(m) and f in terms of the u jk(m) distribution at timestep n. Given the initial
condition—for instance, if a randomly-chosen fraction ρ0 of all banks are initially
subject to default-causing shocks, this is u0

jk(m) =
(
1−ρ0

)
B j

m
(
ρ0
)
—it is straight-

forward to iterate the system given by (2.12) and (2.13) forward through the discrete
timesteps until it converges to a steady state. The total fraction of defaulted banks in
the system at timestep n is given by summing (2.9) over all ( j,k) classes:

ρn = 1−∑
j,k

p jk

j

∑
m=0

un
jk(m), (2.14)

and the steady-state value of this quantity (as n → ∞) is reported for various cases
in Sect. 2.5 below.

In Sect. 2.4 we prove that a certain class of models, including GK, admits an
exact reduction of the system described here to just two state variables. In the GK
model, and for the case where a fraction ρ0 of the banks are chosen at random to be
the seed defaults, the fraction of bank defaults ρn and the fraction of edge defaults
gn are given by the recurrence

ρn+1 = ρ0 +
(
1−ρ0)∑

j,k

p jk

j

∑
m=Mn

jk+1

B j
m (gn) (2.15)

gn+1 = ρ0 +
(
1−ρ0)∑

j,k

k
z

p jk

j

∑
m=Mn

jk+1

B j
m (gn) , (2.16)

with the initial condition g0 = ρ0.
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For the NYYA model, we use the mean-shock-size approximation discussed in
Sect. 2.3.1, so the thresholds Mn

jk are given by Eq. (2.8). Then the iteration equation
for sn (see Appendix B), along with Eqs. (2.12) and (2.13), gives us a system of
equations for un+1

jk (m), f n+1, and sn+1 in terms of the values of these quantities
at the previous timstep. Results for both models are compared with Monte Carlo
simulations in Sect. 2.5.

2.4 Simplified Theory

In this section we show that the iteration of the system defined by Eqs. (2.12)
and (2.13) in order to obtain the expected fraction of defaulted banks (as given by
Eq. (2.14)) may be dramatically simplified in certain cases. A sufficient condition for
this simplified theory to exactly match the full theory of Eqs. (2.12) and (2.13) is:

Condition 1. For every ( j,k) class with p jk > 0, the threshold level Mn
jk is a non-

increasing function of n.

This condition holds if the threshold levels for each ( j,k) class are constant, or
decreasing with time, as in the GK model. For the NYYA model, cases where the
shock size decreases over time may have thresholds Mn

jk which increase with n, and
so this model does not satisfy Condition 1.

2.4.1 Simplified Theory for GK

Focussing now on the GK model, whose thresholds (2.7) satisfy Condition 1, we
claim that at timestep n, the distribution for the number m of distressed loans of
solvent banks is a binomial distribution, at least for m values below the threshold:

un
jk(m) =

(
1−ρ0

jk

)
B j

m (gn) for m ≤ Mn
jk, (2.17)

and the fraction of distressed edges is

gn = ∑
j,k

k
z

p jkρn
jk. (2.18)

Here ρ0
jk is the initially defaulted fraction of ( j,k)-class banks and ρn

jk is the
defaulted fraction of ( j,k)-class banks at timestep n. For the case m > Mn

jk, the
values un

jk(m) are slightly more complicated in form: they are given by the update
Eq. (2.13) for level n, with the right-hand side given using (2.17) at the level n− 1.
As we show below, the result (2.17) is sufficient to determine the expected fraction
of defaulted banks at any timestep n.
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To prove our claim, we use an induction argument, showing that if the sub-
threshold distribution at timestep n is assumed to take the form (2.17) and (2.18)
then the distribution at timestep n+ 1 (as given by Eq. (2.13) of the full theory)
is also of the form (2.17) and (2.18). Substituting for un

jk(�) in (2.13) using (2.17)
yields

un+1
jk (m) =

(
1−ρ0

jk

)min
(

m,Mn
jk

)

∑
�=0

B j−�
m−�

(
f n+1)B j

� (g
n) . (2.19)

To satisfy (2.17) at timestep n+ 1 we need only consider values of m between 0
and Mn+1

jk , and by Condition 1 we have Mn+1
jk ≤ Mn

jk, so that 0 ≤ m ≤ Mn+1
jk ≤ Mn

jk,

and thus the upper limit on the summation in (2.19) is min
(

m,Mn
jk

)
= m. The sum

in (2.19) is therefore a convolution sum of two binomial distributions, which is itself
a binomial distribution:

un+1
jk (m) =

(
1−ρ0

jk

)
B j

m

(
gn+1) for m ≤ Mn+1

jk , (2.20)

Here gn+1 is given by gn+1 = gn+(1− gn) f n+1. One can now use (2.12) and (2.18)
to verify that

gn+1 = ∑
j,k

k
z

p jkρn+1
jk . (2.21)

By assuming the form (2.17) and (2.18) at timestep n we have shown the full theory
yields the corresponding result (2.20) and (2.21) at timestep n+ 1. The induction
proof is completed by verifying that the initial condition is given by

u0
jk(m) =

(
1−ρ0

jk

)
B j

m

(
g0) for m = 0 to j, (2.22)

gamma0 = ∑
j,k

k
z

p jkρ0
jk (2.23)

which is of the form (2.17) and (2.18).
Using the binomial distribution for un

jk in (2.9) and (2.10) gives the update

equations for ρn+1 and gn+1 in terms of the parameter gn only:

ρn+1 = ∑
j,k

p jkρn+1
jk = 1−∑

j,k

p jk

(
1−ρ0

jk

) Mn
jk

∑
m=0

B j
m (gn)

= 1−∑
j,k

p jk

(
1−ρ0

jk

)⎛⎝1−
j

∑
m=Mn

jk+1

B j
m (gn)

⎞
⎠

= ρ0 +∑
j,k

p jk

(
1−ρ0

jk

) j

∑
m=Mn

jk+1

B j
m (gn) , (2.24)
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and

gn+1 = ∑
j,k

k
z

p jkρn+1
jk = ∑

j,k

k
z

p jk

⎡
⎣ρ0

jk +
(

1−ρ0
jk

) j

∑
m=Mn

jk+1

B j
m (gn)

⎤
⎦

= ρ0 +∑
j,k

k
z

p jk

(
1−ρ0

jk

) j

∑
m=Mn

jk+1

B j
m (gn) , (2.25)

where ρ0 = ∑ j,k p jkρ0
jk is the overall fraction of initially defaulted banks. In the case

where a fraction ρ0 of the banks are chosen at random to be the seed defaults we
have ρ0

jk = ρ0 for all ( j,k) classes, and Eqs. (2.24) and (2.25) reduce to Eqs. (2.15)
and (2.16).

The expected size of global cascades in a given GK-model network has essen-
tially been reduced to solving the single Eq. (2.16), since ρn+1 can be immediately
determined by substituting gn into (2.15). Equation (2.16) is of the form gn+1 =
J (gn), and the function J(·) is non-decreasing on [0,1]. It follows that gn+1 ≥ gn

for all n, and iteration of the map leads to the solution g∞ of the fixed-point
equation g∞ = J (g∞). The corresponding steady-state fraction of defaulted banks
is determined by substituting g∞ for gn in (2.15).

Equations of this sort, giving the expected size of cascades on directed networks,
have been previously derived in various contexts [2, 12]. In Gleeson [12], the main
focus is on percolation-type phenomena (see also the undirected networks case
Gleeson [13]), while Amini et al. [2] consider more complicated dynamics but take
the limit ρ0 → 0. The general case (2.24) and (2.25) where initial default fractions
can be different for each ( j,k) class has not, to our knowledge, been considered
previously, even in Monte Carlo simulations.

In the limit ρ0 → 0+, the scalar map gn+1 = J (gn) has a fixed point at gn = 0, but
it is an unstable fixed point if J′(0)> 1, where J′ is the derivative of the function J.
Thus the condition for an infinitesimally small seed fraction to grow to a large-scale
cascade may, using (2.16), be written as

J′(0) = ∑
j,k

jk
z

p jkΘ
[

0.2
j − c jk

]
> 1, (2.26)

where the GK threshold (2.7) for m = 1 and ρ0 = 0 has been used, and Θ is the
Heaviside step function (Θ(x) = 1 for x > 0; Θ(x) = 0 for x ≤ 0). This “cascade
condition” has been derived in a rather different fashion by GK; they extend Watts’
(2002) percolation theory approach from his work on undirected networks to the
case of directed networks considered here. In Gleeson and Cahalane [14] and
Gleeson [13], the generalization of this result to cases where ρ0 is finite but small
has been given for cascades on undirected networks. Similar “higher-order cascade
conditions” may similarly be derived for this directed-network case, but are beyond
the scope of the present paper.
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2.4.2 Frequency of Contagion Events

The simplified Eqs. (2.15) and (2.16), and indeed the more general method of
Sect. 2.3, allow the specification of a fraction ρ0 (or ρ0

jk in the case of targeted
( j,k) classes) of initially defaulted bank nodes. This fraction need not be small, and
this feature allows us to investigate features of systemic risk due to simultaneous
failure of more than one bank (see Results section). However, most work to date has
focussed exclusively on the case where a single initially defaulted bank leads to a
cascade of defaults through the network. Because our theory assumes an infinitely
large network, some special attention must be paid to the case of a single “seed”
default in the GK model. As we show in Appendix C, in this model the locality of
the seed node determines whether, in a given realization, a cascade will reach global
size, or remain restricted to a small neighborhood of the seed. The distribution of
cascade sizes observed in single-seed GK simulations is thus typically bimodal:
only a certain fraction (termed the frequency) of cascades reach a network-spanning
size, the remainder remain small (typically only a few nodes). The average extent
(i.e. size) of the global cascades is given by Eqs. (2.15) and (2.16), whereas the
frequency of cascades which escape the neighborhood of the seed may be expressed
in terms of the size of connected components for a suitable percolation problem,
see Appendix C and the Results section. The NYYA model does not exhibit this
sensitivity to the details of the neighborhood of the seed node(s), so its distribution
of cascade sizes is quite narrowly centered on the mean cascade size given by theory;
the same comment applies to the GK model with multiple seed nodes.

2.5 Results

2.5.1 GK Model

Figure 2.4a compares results of Monte Carlo simulations of the GK model
(symbols) with the results of the simplified theory of Eqs. (2.15) and (2.16). As
in Fig. 2.1 of the GK paper, we show the extent and frequency (see Appendix C)
of contagion resulting from a single seed default in Erdös-Rényi directed random
graphs with N = 104 nodes. The mean degree z of the network is varied to investigate
the effects of connectivity levels upon the contagion spread. In such networks the
in- and out-degree of a node (i.e., the number of debtors and creditors of a bank) are
independent, and the joint distribution p jk is a product of Poisson distributions:

p jk =
z j

j!
e−z zk

k!
e−z. (2.27)

The formula for the contagion window derived in Gai and Kapadia [11] (which
is the same as our Eq. (2.26)) predicts that cascades occur for z values between
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Fig. 2.4 Theory and Monte
Carlo simulation results for
GK model on Erdös-Rényi
networks with N = 104 nodes
and mean degree z. The
percentage net worth is set to
γ = 3.5% for all cases.
Cascades which exceed 0.5 %
of the network are considered
as “global” cascades; the
“extent” of contagion is the
average size of these global
cascades, while the
“frequency” is the fraction of
all cascades that become
global cascades. In (b), the
effects of non-zero liquidity
risk are clearly seen for lower
z values, and cause the
appearance of a discontinuous
transition which is not present
in the α = 0 case of (a).
Monte Carlo numerical
results are averages over
5,000 realizations

1 and 7.477, but our theory also accurately predicts the expected magnitude of these
events. Moreover, as shown in Fig. 2.4b, our theory also accurately incorporates the
effects of the liquidity risk model (2.5), capturing the discontinuous transition in
cascade size which appears above z = 1 for the case α = 0.1.

2.5.2 NYYA Benchmark Case

Figure 2.5a examines the benchmark case of NYYA; note our Monte Carlo
simulation results match those presented in Chart 1 of Nier et al. [25]. The fraction
of defaults (extent of contagion) is here plotted as a function of the percentage
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Fig. 2.5 Expected steady-state default fraction in Erdös-Rényi random graphs with mean degree
z = 5. Monte Carlo numerical simulation results are averages over 5,000 realizations. In the
networks with N = 25 nodes, cascades are initiated by the default of a single randomly-chosen
node; in the larger networks with N = 250, ten randomly-chosen nodes are defaulted to begin the
cascade; theory uses ρ0 = 1/25

net worth parameter γ, as defined in Eq. (2.1). The network structure is again
Erdös-Rényi, with p jk given by (2.27), and mean degree z = 5. We also show Monte
Carlo results for the default fraction resulting from the clearing vector algorithm
of Eisenberg and Noe (see Appendix A). This algorithm gives results which are
qualitatively similar in behavior (though not identical) to those generated by the
NYYA shock transmission dynamics described in Eq. (2.6). As in the NYYA paper,
our Monte Carlo simulations use N = 25 nodes (banks) in each realization, and
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cascades are initiated by a single randomly-chosen bank being defaulted by an
exogenous shock. Despite this relatively small value of N, we find very good
agreement between the theoretical prediction (which assumes the N → ∞ limit)
from Eqs. (2.12) and (2.13), and the Monte Carlo simulation results. The theory
also enables us to examine the case where multiple banks are defaulted to begin the
cascade. We demonstrate this by also showing numerical results for a larger Erdös-
Rényi network of N = 250 nodes, with the same mean degree z = 5. In order to
match the seed fraction of defaults, cascades in the larger networks are initiated by
simultaneously shocking ten randomly-chosen banks (each shock being calibrated
to wipe out the external assets of the bank), so ρ0 = 1/25 = 0.04. The numerical
results for this case are almost indistinguishable from the N = 25 case, and both
cases match very well to the theory curve.

In Fig. 2.5b we increase the liquidity risk parameter from α= 0 (as in Fig. 2.5a) to
α = 0.05 and α = 0.1. For clarity, the results of the Eisenberg-Noe dynamics are not
shown here, but as in Fig. 2.5a, they are qualitatively similar to the simulation results
using the NYYA shock transmission dynamics. The theory predicts a discontinuous
transition in ρ at γ values between 2 and 3 % for the α = 0.05 and α = 0.1 cases,
but this is not well reproduced in Monte Carlo simulations with N = 25 nodes and
ρ0 = 1/N (triangles). However, this is due to finite-N effects (i.e., due to having a
finite-sized network whereas theory assumes the N → ∞ limit), as can be seen by the
much closer agreement between the theory and the N = 250 (with ten seed defaults)
case (filled circles) for α = 0.05.

A more serious discrepancy between theory and numerics can be seen in the
γ range 4–5 %. Here the theory underpredicts the cascade size, and the difference
is unaffected by increasing the size of the network. Detailed analysis of this case
reveals that the root of the discrepancy is in fact the simplifying assumption made for
the shock size distribution Sn(σ) in the NYYA case (see Sect. 2.3.1). By replacing
all shocks with the mean shock size we are underestimating (at timestep n > 1)
the residual effects of the large shock which propagated from the first defaulted
node(s) at timestep n = 1. Indeed, if we modify the Monte Carlo simulations to
artificially replace all shocks at each timestep by their mean, we find excellent
agreement between theory and numerics over all γ values. We conclude that the
simplifying assumption Sn(σ)→ δ(σ− sn) of the shock size distribution may lead
to some errors, and further work on approximating Sn(σ) by analytically tractable
distributions is desirable. Despite this caveat, overall the theory works very well on
the Erdös-Rényi random graphs studied by NYYA.

2.5.3 Networks with Fat-Tailed Degree Distributions

As noted in May and Arinaminpathy [18], empirical data on banking networks
indicates that their in- and out-degree distributions are fat-tailed, and so it is
important that theoretical approaches not be restricted to Erdös-Rényi networks.
Accordingly, for Fig. 2.6 we generate a network with joint in- and out-degree
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Fig. 2.6 Comparison of
theory and Monte Carlo
numerical simulations for
banking networks with joint
in- and out- degree
distribution (2.28), with
N = 200 nodes. Cascades are
initiated by targeting a single
node of a specific ( j,k)
degree class. Monte Carlo
simulation results are
averages over 5,000
realizations. The dashed lines
in (b) mark the critical γ
values given by (2.33)

distribution given by

p jk =Cδ jkk−1.7 for k = 5,10,15, . . . ,50. (2.28)

Here C is a normalization constant (so that ∑ j,k p jk = 1), and the exponent 1.7 has
been chosen to be similar to that found for the in-degree distribution in the empirical
data set of Boss et al. [6]. The Kronecker delta δ jk appears in (2.28) to give our
networks very strong correlations between in- and out-degrees: in contrast to the
independent j and k distributions of (2.27), here we set the in- and out-degree of
every node to be equal (i.e., each bank has equal numbers of debtors and creditors).
We also consider for the first time the effect on the contagion of the size of the
initially defaulting bank. If the single bank to be defaulted by the initial exogenous
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shock is chosen randomly from a specific ( j,k) class, denoted ( j′,k′), then the initial
values of ρn

jk are

ρ0
jk =

{
1

N p j′k′
for ( j,k) = ( j′,k′)

0 for all other ( j,k) classes.
(2.29)

The corresponding initial conditions for u jk(m) are:

u0
jk(m) =

{(
1− 1

N p j′k′

)
B j′

m(g0) for ( j,k) = ( j′,k′)

B j
m(g0) for all other ( j,k) classes,

(2.30)

where

g0 = ∑
j,k

k
z

p jkρ0
jk =

k′

Nz
(2.31)

is the fraction of loans (edges) in the network which are initially distressed (i.e. have
their debtor bank in default). We use N = 200 banks and ignore liquidity effects:
α = 0. All other parameters are as in the benchmark case of NYYA [25].

Figure 2.6a shows the theoretical and numerical results for the case where one
of the largest banks in the network (i.e., with j′ = k′ = 50) is targeted initially. Note
that the theory accurately matches to the NYYA Monte Carlo simulation results;
also note that the Eisenberg-Noe clearing vector case is (at low γ values) somewhat
further removed from the NYYA dynamics than in previous figures.

Figure 2.6b compares the results of Fig. 2.6a to the case where the targeted bank
is from the class with j′ = k′ = 30, i.e., a mid-sized bank in this network. Theory
and numerics again match well, and over most of the γ range the smaller target bank
leads to smaller cascade sizes. Interestingly however, near γ = 2% is a range where
the smaller target bank actually generates a larger cascade than the bigger target
bank—this phenomenon is clearly visible in both numerical and theoretical results.
To explain it, we consider the threshold levels at timestep n = 0 (and with α = 0).
The initially-targeted bank was subject to an exogenous shock that wiped out its
external assets and each of its out-edges (liability loans) carries a residual shock
(cf. (2.4)) of magnitude

s0 = min

(
e j′k′ − c j′k′

k′
,w

)
, (2.32)

where ( j′,k′) denotes the class of the targeted bank. If a single such shock is to cause
further defaults, say of a ( j,k)-class node, then the threshold M0

jk must be zero (cf.

Eq. (2.8)). This requires c jk < s0 (note α = 0 here), or, using (2.1),

γ <
s0

a jk
. (2.33)
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The largest critical value s0/a jk for γ occurs for the lowest j = k value (because of
the dependence of a jk on degree, see Table 2.1) and this γ value for each case is
marked by the vertical dashed lines in Fig. 2.6b—note in each case it matches the
location of the sudden change in the contagion size. Essentially, this is the level of
γ below which a single shock of magnitude s0 can cause further defaults (moreover,
our argument indicates that these further defaults will be among the smallest banks
in the system). The shock magnitude s0 given by (2.32) (see Table 2.1 for details of
e jk and c jk) is a non-increasing function of k′, and in the crucial γ range the value
of s0 is less for k′ = 50 than for k′ = 30. This is reflected in the respective critical
values for γ, and allows the k′ = 30 case to cause larger cascades than the k′ = 50
case, at least while these cascades are relatively small.

2.6 Discussion

In this paper we have introduced an analytical method for calculating the expected
size of contagion cascades in the banking network models of Gai and Kapadia [11]
and Nier et al. [25]. Our method may be applied to cases with:

• An arbitrary joint distribution p jk of in- and out-degrees (i.e., numbers of debtors
and creditors) for banks in the network. This includes fat-tailed distributions; see
Eq. (2.28) and Fig. 2.6;

• Arbitrary initial conditions for the cascade, including the targeting of one or more
banks of a specified size (see Fig. 2.6);

• Liquidity risk effects (see Figs. 2.4 and 2.5).

In the general case, the theory gives a set of discrete-time update equations
(2.12), (2.13), and (2.42) for a vector of unknowns gn, which is composed of the
state variables f n, un

jk(m), and sn. The update equations may be written in the

form gn+1 = H(gn) and this vector mapping is iterated to steady-state to find the
fixed point solution g∞ = H(g∞), hence giving the expected fraction of defaults ρ∞,
see Figs. 2.5 and 2.6 for examples. Under certain conditions it proves possible to
simplify the equations to be iterated: as shown in Sect. 2.4, this reduces the vector
gn to a scalar gn, with iteration map gn+1 = J (gn). The GK model is of this type, and
the simplified Eqs. (2.15) and (2.16) were used to generate the theoretical results in
Fig. 2.4. In all cases we find very good agreement between Monte Carlo simulations
and theory, even on relatively small (N = 25) networks.

We expect it will prove possible to improve and extend these results in several
ways. As noted in Sect. 2.5.2, the approximation of the shock size distribution in
the NYYA model leads to some loss of accuracy, and this merits further attention.
It is also desirable to develop analytical methods for calculating the frequency
of cascades caused by single seeds in the GK model (see Appendix C). Even
in its current form, however, the theory presented here is ideally suited to the
study of some policy questions. For example, suppose the models are modified
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so that the capital reserve fraction γ is not the same for all banks in the system,
instead depending on the size of the bank (i.e. γ �→ γ jk). This requires only a
slight modification of the existing equations. The question is then: how should
γ jk depend on the ( j,k) class in order to optimally reduce the risk of contagion-
induced systemic failure? Other possible extensions, such as allowing for the
existence of subgroups of banks with different levels of interbank assets or with
interbank loans/liabilities drawn from a prescribed distribution, are required to begin
modelling the important non-homogeneities that are seen in the real banking system,
and these will be the subject of future work.

For these and similar questions, it is likely that a general cascade condition (or
“instability criterion”), analogous to Eq. (2.26) for the GK model, will prove very
useful. Cascade conditions for dynamics with vector mappings have been derived
for undirected networks (see Gleeson [13] and references therein), so we believe
that similar methods may be applied to the directed networks analyzed here.

Finally, it is hoped that the methods introduced here will prove extendable
beyond the stylized models of Gai and Kapadia [11] and Nier et al. [25], and
in particular that related methods will be applicable to datasets from real-world
banking networks. Ideally, such datasets would include information on bank sizes,
connections, and the sizes of loans [4]. Modelling the distribution of loan sizes
within a semi-analytical framework will be challenging, but the understanding
gained of how network topology affects systemic risk on toy models will no doubt
prove important to finding the solution.
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Appendix A: Generalized Eisenberg-Noe Clearing Vector
Cascades

This Appendix provides a summary of the financial cascade framework of Eisenberg
and Noe [8], placed in a slightly more general context. Extending their work
somewhat ([8] combine the quantities Yi and Di into a single quantity ei = Yi−Di),
we identify the following stylized elements of a financial system consisting of N
“banks” (which may include non-regulated leveraged institutions such as hedge
funds). The assets Ai of bank i at a specific time consists of external assets Yi

(typically a portfolio of loans to external debtors) plus internal assets Zi (typically in
the form of interbank overnight loans). The liabilities of the bank includes external
debts Di (largely in the form of bank deposits, but also including long term debt)
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and internal debt Xi. The bank’s equity is defined by Ei = Yi +Zi −Di −Xi and is
constrained to be non-negative.

The amounts Y,Z,D,X refer to the notional value, or face value, of the loans, and
are used to determine the relative claims by creditors in the event a debtor defaults.
Internal debt and assets refer to contracts between the N banks in the system. Banks
and institutions that are not part of the system are deemed to be part of the exterior,
and their exposures are included as part of the external debts and assets. Let L̄i j

denote the notional exposure of bank j to bank i, that is to say, the amount i owes j.
Note the constraints that hold for all i

Zi = ∑
j

L̄ ji, Xi = ∑
j

L̄i j, ∑
i

Zi = ∑
i

Xi, L̄ii = 0,

and that the matrix of exposures L̄ is not symmetric.

A.1 Default Cascades

A healthy bank manages its books to maintain mark-to-market values with sufficient
“economic capital” to provide an “equity buffer” against shocks to its balance sheet.
This means that the bank maintains its asset-to-equity ratio Ai/ei above a fixed
threshold Λi (a typical value imposed by regulators might be 12.5).

Following a bank-specific catastrophic event, such as the discovery of a major
fraud, or a system wide event, the assets of some banks may suddenly contract
by more than the equity buffer. Assets are then insufficient to cover the debts, and
these banks are deemed insolvent. The assets of an insolvent bank must be quickly
liquidated, and any proceeds go to pay off that bank’s creditors, in order of seniority.
We now discuss three simple settlement mechanisms for how an insolvent bank i is
removed from the system.

• Version A, the original mechanism of [8], supposes that external debt is always
senior to internal debt. We define fractions πi j = L̄i j/Xi. If pi denotes the amount
available to pay i’s internal debt, this amount is split amongst creditor banks
in proportion to πi j, that is bank j receives πi j pi. Given p = [p1, . . . , pN ], the
clearing conditions are pi = 0 if Yi −Di +∑ j π ji p j < 0 and pi = min(Yi −Di +

∑ j π ji p j,Xi) if Yi −Di+∑ j π ji p j ≥ 0. We can write this as

pi = F(A)
i (p) := min(Xi,max(Yi +∑

j
π ji p j −Di,0)), i = 1, . . . ,N (2.34)

• Version B supposes that external and internal debt have equal seniority. We
define fractions π̃i j = L̄i j/(Di +Xi). If p̃i denotes the amount available to pay
i’s total debt, creditor bank j receives π̃ ji p̃i while the external creditors receive
Di p̃i/(Di +Xi). The clearing conditions are:
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p̃i = F (B)
i (p̃) := min(Di +Xi,Yi +∑

j

π̃ ji p̃ j), i = 1, . . . ,N.

• Most simply, Version C supposes as in the GK model that the recovery from any
insolvent bank is zero. That means the amount pi available to pay i’s internal debt
is simply

pi = F (C)
i (p) := XiΘ(Yi −Di+∑

j
π ji p j)

where Θ denotes the Heaviside function.

Under each of these settlement mechanisms, any solution p = (p1, . . . , pN) ∈R
N
+ of

the clearing conditions is called a “clearing vector”. In the subsequent discussion
we consider only version A. The existence result extends easily to versions B and C
by considering fixed points of the monotonic mappings F(B),F (C) : RN

+ → R
N
+.

Proposition 2.1. Consider a financial system with Y= [Y1, . . . ,YN ],D= [D1, . . . ,DN ]
and matrix L̄ = (L̄i j)i, j=1...,N. Then the mapping F (A) : RN

+ → R
N
+ defined by (2.34)

has at least one clearing vector or fixed point p∗. If in addition the system is
“regular” (a natural economic constraint on the system), the clearing vector is
unique.

Proof. Existence is a straightforward application of the Tarski Fixed Point Theorem
to the mapping F acting on the complete lattice

[0, X̄ ] := {x = [x1, . . . ,xN ] ∈R
N
+ : 0 ≤ xi ≤ X̄i, i = 1, . . . ,N}.

One simply verifies the easy monotonicity results that for any vectors mathb f 0 ≤
p ≤ p′ ≤ X one has

0 ≤ F (A)(0)≤ F (A)(p) ≤ F (A)(p′)≤ F(A)(X)≤ X

(where a ≤ b for vectors means ai ≤ bi for all i = 1, . . . ,N). For the definition of
“regular” and the uniqueness result, please see [8].

A.2 Clearing Algorithm

Cascades of defaults arise when primary defaults trigger further losses to the remain-
ing banks. The above proposition proves the existence of a unique “equilibrium”
clearing vector that characterizes the end result of any such cascade. The following
algorithm for version A of the settlement mechanism resolves the cascade to the
fixed point p∗ in at most 2N iterations by constructing an increasing sequence
of defaulted banks Ak ∪ Bk,k = 0,1, . . . . Analogous (but simpler) algorithms are
available for settlement mechanisms B and C.
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1. Step 0 Determine the primary defaults by writing a disjoint union {1, . . . ,N} =
A0 ∪B0 ∪C0 where

A0 = {i|Yi +Zi−Di < 0}
B0 = {i|Yi +Zi−Di −Xi < 0} \A0

C0 = {1, . . . ,N} \ (A0 ∪B0).

2. Step k, k = 1,2, . . . Solve the |Bk−1| dimensional system of equations:

pi = Yi −Di + ∑
j∈Ck−1

π jiX j + ∑
j∈Bk−1

π ji p j, i ∈ Bk−1

and define result to be pk∗. Define a new decomposition

Ak = Ak−1 ∪{i ∈ Bk−1|pk∗
i ≤ 0}

Bk = (Bk−1 \Ak)∪{i ∈Ck−1|Yi −Di + ∑
j∈Ck−1

π jiX j + ∑
j∈Bk−1

π ji p
k∗
j ≤ Xi}

Ck = {1, . . . ,N} \ (Ak ∪Bk)

and correspondingly

pk
i =

⎧⎨
⎩

0 i ∈ Ak

Yi +∑ j∈Ck π jiX j +∑ j∈Bk π ji pk∗
j −Di i ∈ Bk

Xi i ∈Ck.

(2.35)

If Ak = Ak−1 and Bk = Bk−1, then halt the algorithm and set A∗ = Ak,B∗ =
Bk,p∗ = pk∗. Otherwise perform step k+ 1.

Appendix B: Updating of Average Shock Strength
for NYYA Model

Assuming a delta function distribution approximating Sn(σ) as in Sect. 2.3.1, we
need to count the number of loans (edges in the directed network) which link
defaulted banks to solvent banks. In the notation of Sect. 2.3.2, the number of such
“d-s” (for “defaulted-to-solvent”) edges in the network at timestep n is

N ∑
j,k

p jk

j

∑
m=0

mun
jk(m), (2.36)

since each solvent bank with m defaulted debtors contributes m d-s edges to the
total. We assume that all these d-s edges at timestep n carry an equal shock sn.
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Now consider the situation at timestep n+1. Some of the d-s edges from timestep
n are still d-s edges, although others will have become d-d (“defaulted-to-defaulted”)
edges. We count the number of d-s edges which remained as d-s from timestep n to
timestep n+ 1 as

Aold = N ∑
j,k

p jk

Mn
jk

∑
m=0

mun
jk(m). (2.37)

Note the upper limit of Mn
jk for the sum over m (cf. Eq. (2.36)); this arises because

the creditor banks in question remain solvent at timestep n+ 1.
The other mechanism generating d-s edges at timestep n+ 1 is the default of the

debtor end of a timestep-n s-s (solvent-to-solvent) edge. Similar to (2.36), we can
count the number of s-s edges at timestep n as

N ∑
j,k

p jk

j

∑
m=0

( j−m)un
jk(m), (2.38)

since each (solvent) ( j,k)-class bank with m defaulted debtors must also have j−m
solvent debtors. Each of the s-s edges at timestep n becomes an d-s edge at timestep
n+ 1 if (1) the debtor bank defaults during the timestep, and (2) the creditor bank
remains solvent to at least timestep n+ 1. Noting that (1) occurs with probability
f n+1 (see Eq. (1.12) of the main text), and that (2) requires m ≤ Mn

jk, we obtain the
number of new d-s edges at timestep n+ 1 as

Anew = f n+1N ∑
j,k

p jk

Mn
jk

∑
m=0

( j−m)un
jk(m). (2.39)

The total number of d-s edges at timestep n + 1 is then Aold + Anew, while the
cumulative total of the shock sizes transmitted by these edges is

snAold + s̃Anew, (2.40)

where s̃ is the average shock on each newly-distressed loan (using (1.6) of the main
text):

s̃ =
∑ j,k kp jk ∑ j

m=Mn
jk+1 un

jk(m)min
(

msn−c jk+e jk [1−exp(−αρn)]

k ,w
)

∑ j,k kp jk ∑ j
m=Mn

jk+1 un
jk(m)

. (2.41)

Thus, under the simplifying assumption on the shock size distribution (Sn(σ) �→
δ(σ− sn)) , we model the shocks on d-s edges at timestep n+ 1 to each be of equal
size sn+1, where

sn+1 =
snAold + s̃Anew

Aold +Anew , (2.42)

with Aold, Anew, and s̃ given in terms of un
jk by Eqs. (2.37), (2.39), and (2.41),

respectively. This gives an update equation for sn in terms of known quantities from
timestep n.
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Appendix C: Frequency of Cascades for Single-Seed Initiation
in GK Model

In this Appendix we consider the frequency of cascades in the GK model when
initiated by a single seed node. Mathematically, our theory applies to the limiting
case N → ∞ of a sequence of networks of size N, with �ρ0N� seed nodes. In
Monte Carlo simulations of real banking networks, the size N of the system is
fixed, and the case of a single seed corresponds to a fraction ρ0 = 1/N of initial
defaults. The mechanism of cascade initiation in the infinite-N network may be
understood as follows. As in [27], we call bank nodes vulnerable if they default
due to a single defaulting loan. When the cascade condition (2.26) is satisfied, a
giant connected cluster of vulnerable nodes exists in the network. The fractional
size of this vulnerable cluster is denoted Sv, and it may be calculated by solving a
site percolation problem for the directed network (see [20]) in a similar fashion to
the calculation for undirected networks in [27]:

Sv = ∑
jk

p jk
[
1− (1−φ) j]Θ

[
0.2

j
− c jk

]
, (2.43)

where φ is the non-zero solution of the equation

φ =∑
jk

k
z

p jk
[
1− (1−φ) j]Θ

[
0.2

j
− c jk

]
. (2.44)

Here, as in [27], the Θ term plays the role of a degree-dependent site occupation
probability: sites (nodes) are deemed occupied if they are vulnerable in the sense
defined above, and this happens if the shock due to a single defaulting loan (0.2/ j)
exceeds their net worth c jk. In Fig. 2.7 we directly calculate the size of the largest
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Fig. 2.7 Sizes of vulnerable
cluster (Sv) and of extended
vulnerable cluster (Se) as
calculated directly from (for
each value of mean degree z)
a single Erdös-Rényi network
with N = 104 nodes. The
vulnerable cluster size is
compared with the analytical
result of Eq. (2.43), while the
extended vulnerable cluster is
shown to closely match the
frequency of global cascades
in the single-seed GK model
(cf. Fig. 2.4)
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vulnerable cluster in a single realization of an Erdös-Rényi network with N = 104

nodes and mean degree z (cf. Fig. 2.4) and show that it closely matches to the
analytical result (2.43).

The extended vulnerable cluster [27], which takes up a fraction Se of the network,
consists of nodes which are debtors of at least one bank in the vulnerable cluster.
If a seed node is part of the extended vulnerable cluster, it immediately causes the
default of its creditor in the vulnerable cluster, which in turn leads to default of
other nodes in the vulnerable cluster, and so on until the entire vulnerable cluster
is in default. Nodes outside the vulnerable cluster (i.e. banks which can withstand
the default of a single asset loan) may also be defaulted later on in this cascade
as the percentage of defaulted banks increases; the result is a global cascade of
expected size ρ∞, given by Eq. (2.15). On the other hand, if no seed node is part
of the extended vulnerable cluster, then no further defaults will occur and the
cascade immediately terminates. Thus, if only a single seed node is used in each
realization, we expect cascades of size ρ∞ to occur in a fraction Se of realizations
(corresponding to cases where the seed node lies in the extended vulnerable cluster),
and no cascades to occur in the remaining fraction 1−Se of realizations. The size Se

of the extended vulnerable cluster thus determines the frequency of global cascades
among the set of single-seed realizations. The size of Se was calculated analytically
in [13] for the undirected networks case, but the corresponding derivation for
directed networks is non-trivial. Instead, we directly calculate the size of the largest
extended vulnerable cluster in the network, and show in Fig. 2.7 that it corresponds
very closely to the frequency of global cascades in the large ensemble of Monte
Carlo simulations of Fig. 2.4 in the main text.

As argued in [13], the frequency of cascades increases with the number �ρ0N�
of seed nodes used as

1− (1− Se)
�ρ0N� , (2.45)

which reduces to Se for the single-seed case (ρ0 = 1/N) and to 1 for the case where
ρ0 remains a finite fraction as N → ∞. The frequency of cascades (of size ρ∞) in the
GK model initiated by a single default is thus Se, whereas if multiple seeds (say, 10
initial defaults among 1,000 banks) are used we find that almost all cascades are of
size ρ∞.
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