Chapter 7
Euclidean Spaces

The notions entering into the definition of a vector space do not provide a way of
formulating multidimensional analogues of the length of a vector, the angle between
vectors, and volumes. Yet such concepts appear in many branches of mathematics
and physics, and we shall study such concepts in this chapter. All the vector spaces
that we shall consider here will be real (with the exception of certain special cases in
which complex vector spaces will be considered as a means of studying real spaces).

7.1 The Definition of a Euclidean Space

Definition 7.1 A Euclidean space is a real vector space on which is defined a fixed
symmetric bilinear form whose associated quadratic form is positive definite.

The vector space itself will be denoted as a rule by L, and the fixed symmetric
bilinear form will be denoted by (x, y). Such an expression is also called the inner
product of the vectors x and y. Let us now reformulate the definition of a Euclidean
space using this terminology.

A Euclidean space is a real vector space L in which to every pair of vectors x
and y there corresponds a real number (x, y) such that the following conditions are
satisfied:

() (x1+x2,y)=(x1,y)+ (x2, y) for all vectors x1,x>,y € L.
2) (ax,y) =oa(x,y) for all vectors x, y € L and real number «.
3) (x,y)=(y,x) for all vectors x, y € L.

@) (x,x)>0forx #0.

Properties (1)—(3) show that the function (x, y) is a symmetric bilinear form on
L, and in particular, that (0, y) = O for every vector y € L. It is only property (4) that
expresses the specific character of a Euclidean space.

The expression (x, x) is frequently denoted by (x?); it is called the scalar square
of the vector x. Thus property (4) implies that the quadratic form corresponding to
the bilinear form (x, y) is positive definite.
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214 7 Euclidean Spaces

Let us point out some obvious consequences of these definitions. For a fixed vec-
tor y € L, where L is a Euclidean space, conditions (1) and (2) in the definition can
be formulated in such a way that the function f,(x) = (x, y) with argument x is
linear. Thus we have a mapping y — f, of the vector space L to L*. Condition (4)
in the definition of Euclidean space shows that the kernel of this mapping is equal
to (0). Indeed, f, # 0 for every y # 0, since f,(y) = (y%) > 0. If the dimension
of the space L is finite, then by Theorems 3.68 and 3.78, this mapping is an iso-
morphism. Moreover, we should note that in contrast to the construction used for
proving Theorem 3.78, we have now constructed an isomorphism L = L* without
using the specific choice of a basis in L. Thus we have a certain natural isomor-
phism L = L* defined only by the imposition of an inner product on L. In view of
this, in the case of a finite-dimensional Euclidean space L, we shall in what follows
sometimes identify L and L*. In other words, as for any bilinear form, for the in-
ner product (x, y) there exists a unique linear transformation +4 : L — L* such that
(x,y) = A(y)(x). The previous reasoning shows that in the case of a Euclidean
space, the transformation + is an isomorphism, and in particular, the bilinear form
(x, y) is nonsingular. Let us give some examples of Euclidean spaces.

Example 7.2 The plane, in which for (x, y) is taken the well-known inner product
of x and y as studied in analytic geometry, that is, the product of the vectors’ lengths
and the cosine of the angle between them, is a Euclidean space.

Example 7.3 The space R" consisting of rows (or columns) of length 7, in which
the inner product of rows x = («yq,...,a,) and y = (B, ..., B,) is defined by the
relation

(x,y)=a1B1 +af2+ -+ anfy, (7.1)

is a Euclidean space.

Example 7.4 The vector space L consisting of polynomials of degree at most n
with real coefficients, defined on some interval [a, b], is a Euclidean space. For two
polynomials f(¢) and g(¢), their inner product is defined by the relation

b
(f. &) :/ f(g)dt. (1.2)

Example 7.5 The vector space L consisting of all real-valued continuous functions
on the interval [a, b] is a Euclidean space. For two such functions f(¢) and g(¢), we
shall define their inner product by equality (7.2).

Example 7.5 shows that a Euclidean space, like a vector space, does not have to
be finite-dimensional.! In the sequel, we shall be concerned exclusively with finite-
dimensional Euclidean spaces, on which the inner product is sometimes called the

!nfinite-dimensional Euclidean spaces are usually called pre-Hilbert spaces. An especially impor-
tant role in a number of branches of mathematics and physics is played by the so-called Hilbert
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Fig. 7.1 Orthogonal
projection

oe

scalar product (because the inner product of two vectors is a scalar) or dot product
(because the notation x - y is frequently used instead of (x, y)).

Example 7.6 Every subspace L’ of a Euclidean space L is itself a Euclidean space if
we define on it the form (x, y) exactly as on the space L.

In analogy with Example 7.2, we make the following definition.

Definition 7.7 The length of a vector x in a Euclidean space is the nonnegative
value /(x2). The length of a vector x is denoted by |x|.

We note that we have here made essential use of property (4), by which the length
of a nonnull vector is a positive number.

Following the same analogy, it is natural to define the angle ¢ between two vec-
tors x and y by the condition

cosp = *, y)
x| - |yl

A
2

(7.3)

However, such a number ¢ exists only if the expression on the right-hand side of
equality (7.3) does not exceed 1 in absolute value. Such is indeed the case, and the
proof of this fact will be our immediate objective.

Lemma 7.8 Given a vector e # 0, every vector x € L can be expressed in the form
x=cae+y, (e,y) =0, (7.4)

for some scalar o and vector y € L; see Fig.7.1.

Proof Setting y = x — «e, we obtain « from the condition (e, y) = 0. This is equiv-

alent to (x, e) = «(e, e), which implies that o = (x, e)/|e|2. We remark that |e| # 0,
since by assumption, e # 0. O

spaces, which are pre-Hilbert spaces that have the additional property of completeness, just for
the case of infinite dimension. (Sometimes, in the definition of pre-Hilbert space, the condition
(x, x) > 0 is replaced by the weaker condition (x, x) > 0.)
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Definition 7.9 The vector «we from relation (7.4) is called the orthogonal projection
of the vector x onto the line (e).

Theorem 7.10 The length of the orthogonal projection of a vector x is at most its
length |x|.

Proof Indeed, since by definition, x = «e + y and (e, y) = 0, it follows that
x> = (x*) = (ce + y. ae + y) = lee|* + |y = |ael*,

and this implies that
x| > |ae]. (1.5)

This leads directly to the following necessary theorem.

Theorem 7.11 For arbitrary vectors x and y in a Euclidean space, the following
inequality holds:

|Ge, )| < Ix] - Lyl (7.6)

Proof If one of the vectors x, y is equal to zero, then the inequality (7.6) is obvious,
and is reduced to the equality 0 = 0. Now suppose that neither vector is the null
vector. In this case, let us denote by «y the orthogonal projection of the vector
x onto the line (y). Then by (7.4), we have the relationship x = ay + z, where
(¥, 2) = 0. From this we obtain the equality

x,y)=(@y+2z,y) = (ay, y) =aly.

This means that |(x, y)| = || - |y|*> = |ay| - |y|. But by Theorem 7.10, we have
the inequality |ay| < |x|, and consequently, |(x, y)| < |x]| - |y]. O

Inequality (7.6) goes by a number of names, but it is generally known as the
Cauchy—Schwarz inequality. From it we can derive the well-known triangle inequal-
— —

ity from elementary geometry. Indeed, suppose that the vectors x = AB, y = BC,

z= CA correspond to the sides of a triangle ABC. Then we have the relationship
x + y + z =0, from which with the help of (7.6) we obtain the inequality

1212 = (x + 3,0 + ) = [x[* +2(x, ) + |y> < |x > +2| e, p)| + |y
2
<IxPP+20x|- [yl +lyl* = (Ix] +lyl)",

from which clearly follows the triangle inequality |z| < |x| 4+ |y]|.

Thus from Theorem 7.11 it follows that there exists a number ¢ that satisfies the
equality (7.3). This number is what is called the angle between the vectors x and y.
Condition (7.3) determines the angle uniquely if we assume that 0 < ¢ <.
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Definition 7.12 Two vectors x and y are said to be orthogonal if their inner product
is equal to zero: (x,y) =0.

Let us note that this repeats the definition given in Sect. 6.2 for a bilinear form
@(x,y) = (x,y). By the definition given above in (7.3), the angle between orthog-
onal vectors is equal to 7.

For a Euclidean space, there is a useful criterion for the linear independence of
vectors. Let ay, ..., a, be m vectors in the Euclidean space L.

Definition 7.13 The Gram determinant, or Gramian, of a system of vectors
ai,...,a, is the determinant

(a1,a1) (a1,az) --- (ai,ay)
(az,ay) (az,az) --- (az,ap)
Gay,...,ay,) = : : . : . 71.7)
@an,a1) (am,az) - (am,an)
Theorem 7.14 If the vectors ay, ..., a,, are linearly dependent, then the Gram de-
terminant G(ay, ..., ay) is equal to zero, while if they are linearly independent,
then G(ay,...,a,) > 0.
Proof 1f the vectors ay,...,a, are linearly dependent, then as was shown in

Sect. 3.2, one of the vectors can be expressed as a linear combination of the oth-
ers. Let it be the vector a,,, that is, a,, = 1@y + - -+ + &, —1a,,—1. Then from the
properties of the inner product, it follows that for every i = 1, ..., m, we have the
equality

(@m,a;) =ai(ay,a;) +azx(az,a;)+ - +am_1(@n-1,a;).

From this it is clear that if we subtract from the last row of the determinant (7.7), all
the previous rows multiplied by coefficients a7y, ..., o, —1, then we obtain a deter-
minant with a row consisting entirely of zeros. Therefore, G(ay, ..., a;) =0.

Now suppose that vectors ay, .. ., a,, are linearly independent. Let us consider in
the subspace L = (ay, ..., a,;), the quadratic form (xz). Setting x = aoja; + -+
Um@m, Wwe may write it in the form

m
(a1 + -+ apan)’) = Z ajoj(ai,aj).
i,j=1

It is easily seen that this quadratic form is positive definite, and its determinant coin-
cides with the Gram determinant G(ay, ..., a,). By Theorem 6.19, it now follows
that G(ay,...,a,) > 0. O

Theorem 7.14 is a broad generalization of the Cauchy—Schwarz inequality. In-
deed, for m = 2, inequality (7.6) is obvious (it becomes an equality) if vectors x
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and y are linearly dependent. However, if x and y are linearly independent, then
their Gram determinant is equal to

(x,x) (x,y)

GOEN=wy oy

The inequality G(x, y) > O established in Theorem 7.14 gives us (7.6). In partic-
ular, we see that inequality (7.6) becomes an equality only if the vectors x and y
are proportional. We remark that this is easy to derive if we examine the proof of
Theorem 7.11.

Definition 7.15 Vectors ey, ..., e, in a Euclidean space form an orthonormal sys-
tem if

(ej,e;) =0 foris#j, (e;,e;) =1, (7.8)

that is, if these vectors are mutually orthogonal and the length of each of them is
equal to 1. If m = n and the vectors ey, ..., e, form a basis of the space, then such
a basis is called an orthonormal basis.

It is obvious that the Gram determinant of an orthonormal basis is equal to 1.

We shall now use the fact that a quadratic form (x?) is positive definite and
apply to it formula (6.28), in which by the definition of positive definiteness, s = n.
This result can now be reformulated as an assertion about the existence of a basis
eq, ..., e, of the space L in which the scalar square of a vector x = «je;1 +---+a,e,
is equal to the sum of the squares of its coordinates, that is, x?) = ozf + -4 oa,%.
In other words, we have the following result.

Theorem 7.16 Every Euclidean space has an orthonormal basis.

Remark 7.17 In an orthonormal basis, the inner product of x = («1, ..., ;) and
y =(B1,..., By) has a particularly simple form, given by formula (7.1). Accord-
ingly, in an orthonormal basis, the scalar square of an arbitrary vector is equal to the
sum of the squares of its coordinates, while its length is equal to the square root of
the sum of the squares.

The lemma establishing the decomposition (7.4) has an important and far-
reaching generalization. To formulate it, we recall that in Sect. 3.7, for every sub-
space L’ C L we defined its annihilator (L')¢ C L*, while earlier in this section, we
showed that an arbitrary Euclidean space L of finite dimension can be identified
with its dual space L*. As a result, we can view (L) as a subspace of the original
space L. In this light, we shall call it the orthogonal complement of the subspace
L’ and denote it by (L L. If we recall the relevant definitions, we obtain that the
orthogonal complement (L) of the subspace L’ C L consists of all vectors y € L
for which the following condition holds:

(x,y)=0 forallx el (7.9)
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On the other hand, (L)1 is the subspace (L’ )j;, defined for the case that the bilinear
form ¢(x, y) is given by ¢(x, y) = (x, y); see p. 198.

A basic property of the orthogonal complement in a finite-dimensional Euclidean
space is contained in the following theorem.

Theorem 7.18 For an arbitrary subspace L1 of a finite-dimensional Euclidean
space L, the following holds:

L=L; ®L. (7.10)
In the case L; = (e), Theorem 7.18 follows from Lemma 7.8.

Proof of Theorem 7.18 In the previous chapter, we saw that every quadratic form
¥ (x) in some basis of a vector space L can be reduced to the canonical form (6.22),
and in the case of a real vector space, to the form (6.28) for some scalars 0 < s <r,
where s is the index of inertia and r is the rank of the quadratic form ¥ (x), or
equivalently, the rank of the symmetric bilinear form ¢(x, y) associated with 1 (x)
by the relationship (6.11). We recall that a bilinear form ¢(x, y) is nonsingular if
r =n, where n = dimL.

The condition of positive definiteness for the form ¥ (x) is equivalent to the
condition that all scalars A1, ..., A, in (6.22) be positive, or equivalently, that the
equality s = r = n hold in formula (6.28). From this it follows that a symmetric
bilinear form ¢(x, y) associated with a positive definite quadratic form ¥ (x) is
nonsingular on the space L as well as on every subspace L’ C L. To complete the
proof, it suffices to recall that by definition, the quadratic form (x?2) associated with
the inner product (x, y) is positive definite and to use Theorem 6.9 for the bilinear
form ¢(x, y) = (x, y). U

From relationship (3.54) for the annihilator (see Sect. 3.7) or from Theorem 7.18,
it follows that

dim(L))* = dimL — dimL;.

The map that is the projection of the space L onto the subspace L parallel to Lf
(see the definition on p. 103) is called the orthogonal projection of L onto L. Then
the projection of the vector x € L onto the subspace L; is called its orthogonal
projection onto L. This is a natural generalization of the notion introduced above
of orthogonal projection of a vector onto a line. Similarly, for an arbitrary subset
X C L, we can define its orthogonal projection onto L.

The Gram determinant is connected to the notion of volume in a Euclidean space,
generalizing the notion of the length of a vector.

Definition 7.19 The parallelepiped spanned by vectors ay, ..., a,, is the collection
of all vectors aya + - - - +apa, forall 0 <o; <1.Itisdenoted by IT(ay,...,a,).
A base of the parallelepiped I1(a,...,a,) is a parallelepiped spanned by any
m — 1 vectors among ay, ..., a,,, for example, [T(ay, ..., au_1).
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Fig. 7.2 Altitude of a
parallelepiped

In the case of the plane (see Example 7.2), we have parallelepipeds I7(a1) and
I1(ai, a;). By definition, I7(a) is the segment whose beginning and end coincide
with the beginning and end of the vector a|, while I71(a1, a;) is the parallelogram
constructed from the vectors a; and a,.

We return now to the consideration of an arbitrary parallelepiped

H(ala"'aam)a

and we define the subspace L; = (ay, ..., a,—1). To this case we may apply the
notion introduced above of orthogonal projection of the space L. By the decompo-
sition (7.10), the vector a,, can be uniquely represented in the form a,, = x + y,
where x e Ly and y € Lf‘. The vector y is called the altitude of the parallelepiped
Il(ay,...,ay) dropped to the base I1(ay,...,a,—1). The construction we have
described is depicted in Fig. 7.2 for the case of the plane.

Now we can introduce the concept of volume of a parallelepiped

H(ala"'aam)a

or more precisely, its unoriented volume. This is by definition a nonnegative number,
denoted by V(ay, ..., a,) and defined by induction on m. In the case m = 1, it is
equal to V(a;) = |ai|, and in the general case, V(ay,...,a;) is the product of
V(ay,...,a,_1) and the length of the altitude of the parallelepiped I1(ay, ..., a;)
dropped to the base I1(aq, ..., a,—1).

The following is a numerical expression for the unoriented volume:

V3ai,....,an)=G@ai,...,an). (7.11)
This relationship shows the geometric meaning of the Gram determinant.

Formula (7.11) is obvious for m = 1, and in the general case, it is proved by
induction on m. According to (7.10), we may represent the vector a,, in the form

a,=x+y,wherex eL; ={(ai,...,a,_1) andyeLll.Thenam =aja;+- -+
Om—1am—1 + y. We note that y is the altitude of our parallelepiped dropped to the
base I1(ay,...,a,_1). Let us recall formula (7.7) for the Gram determinant and

subtract from its last column, each of the other columns multiplied by «1, ..., & —1.
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As a result, we obtain

(ai,ar) (ay,az) - 0
(az,ay) (ar,az) - 0
Gai,...,apn) = : : : , (7.12)
@n-1,a1) (ap-1,a2) --- 0
(@n,ay) (@m,az) - (y,am)

and moreover, (y, a,) = (y, y) = |y|?, since y € Lf‘.
Expanding the determinant (7.12) along its last column, we obtain the equality

G@ai,...,an) =Gy, ...,an-1)lyl

Let us recall that by construction, y is the altitude of the parallelepiped I1(a;, ...,
a,,) dropped to the base I1(ai,...,a;;—1). By the induction hypothesis, we have
Gay,...,ap—1) = V2(a1, ..., @y—_1), and this implies

G@i,....,an)=Viay,....an_Dly>=Via,...,an).

Thus the concept of unoriented volume that we have introduced differs from the
volume and area about which we spoke in Sects. 2.1 and 2.6, since the unoriented
volume cannot assume negative values. This explains the term “unoriented.” We
shall now formulate a second way of looking at the volume of a parallelepiped,
one that generalizes the notions of volume and area about which we spoke earlier
and differs from unoriented volume by the sign £1. By Theorem 7.14, of interest

is only the case in which the vectors ay, ..., a,, are linearly independent. Then we
may consider the space L = (ay, ..., a,) withbasis ay, ..., a,,.
Thus we are given n vectors ay, ..., a,, where n = dim L. We consider the matrix

A, whose jth column consists of the coordinates of the vector a; relative to some
orthonormal basis eq, ..., e;:

ar a2 -+ din

an] ayy -+ dp
A=

apl dp2 -+ dpp

An easy verification shows that in the matrix A*A, the intersection of the ith row
and jth column contains the element (a;, @ ;). This implies that the determinant of
the matrix A*A is equal to G(ay, ..., a,), and in view of the equalities |A*A| =
|A*|-|A| = |A|%, we obtain |A|> = G(ay, ..., a,). On the other hand, from formula
(7.11), it follows that G (ay, ..., a,) = V2(ai, ..., ay), and this implies that

Al =+V(ay,...,a).

The determinant of the matrix A is called the oriented volume of the n-dimensional
parallelepiped I1(ay, ..., a,). Itis denoted by v(ay, ..., a,). Thus the oriented and
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unoriented volumes are related by the equality
V(ay,...,a,) = |v(a1,...,a,,)|.

Since the determinant of a matrix does not change under the transpose operation,
it follows that v(ay,...,a,) = |A*|. In other words, for computing the oriented
volume, one may write the coordinates of the generators of the parallelepiped a; not
in the columns of the matrix, but in the rows, which is sometimes more convenient.

It is obvious that the sign of the oriented volume depends on the choice of or-
thonormal basis e, ..., e,. This dependence is suggested by the term “oriented.”
We shall have more to say about this in Sect. 7.3.

The volume possesses some important properties.

Theorem 7.20 Let C : L — L be a linear transformation of the Euclidean space L
of dimension n. Then for any n vectors ai, ..., a, in this space, one has the rela-
tionship

v(C@y),...,Cay)) =IClu(ai, ..., a). (7.13)

Proof We shall choose an orthonormal basis of the space L. Suppose that the trans-
formation C has matrix C in this basis and that the coordinates «j, ..., o, of an
arbitrary vector a are related to the coordinates By, ..., 8, of its image C(a) by
the relationship (3.25), or in matrix notation, (3.27). Let A be the matrix whose
columns consist of the coordinates of the vectors ay, ..., a,, and let A’ be the ma-
trix whose columns consist of the coordinates of the vectors C(ay), ..., C(a,). Then
it is obvious that we have the relationship A’ = C A, from which it follows that
|A'l=C]|- Al

To complete the proof, it remains to note that |G| = |C|, and by the def-
inition of oriented volume, we have the equalities v(ay,...,a,) = |A| and
v(C(ay),...,Clay)) =|A|. O

It follows from this theorem, of course, that
V(e(@),....Cln) =|lAl|V(ai,....a), (7.14)

where ||A|| denotes the absolute value of the determinant of the matrix A.

Using the concepts introduced thus far, we may define an analogue of the volume
V(M) for a very broad class of sets M containing all the sets actually encountered
in mathematics and physics. This is the subject of what is called measure theory, but
since it is a topic that is rather far removed from linear algebra, it will not concern
us here. Let us note only that the important relationship (7.14) remains valid here:

v(ewn) =||Al|V ). (7.15)

An interesting example of a set in an n-dimensional Euclidean space is the ball B(r)
of radius », namely the set of all vectors x € L such that |x| <r. The set of vectors
x € L for which |x| = r is called the sphere S(r) of radius r. From the relationship
(7.15) it follows that V(B(r)) = V,,r", where V,, = V(B(1)). The calculation of the
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interesting geometric constant V,, is a question from analysis, related to the theory
of the gamma function I". Here we shall simply quote the result:

n,n/Z
“Tw2t

Vi

It follows from the theory of the gamma function that if n is an even number
(n =2m), then V,, =7 /m!, and if n is odd (n = 2m + 1), then V,, =2"+1z™ /(1 .
3---2m+1)).

7.2 Orthogonal Transformations

Let L; and L, be Euclidean spaces of the same dimension with inner products
(x,y)1 and (x, y)> defined on them. We shall denote the length of a vector x in
the spaces L1 and L by |x|; and |x|, respectively.

Definition 7.21 An isomorphism of Euclidean spaces L and L, is an isomorphism
A : L1 — Ly of the underlying vector spaces that preserves the inner product, that
is, for arbitrary vectors x, y € L1, the following relationship holds:

(x, 1= (AX), AY)),- (7.16)

If we substitute the vector y = x into equality (7.16), we obtain that Ix|? =
|A(x)|%, and this implies that |x|; = |A(x)|2, that is, the isomorphism 4 preserves
the lengths of vectors.

Conversely, if 4 : L; — L is an isomorphism of vector spaces that preserves the
lengths of vectors, then |A(x + y)|§ = |x + y|?, and therefore,

A5 +2(A), AW, + [AD ] = 1x 2+ 20, )1 + 1y

But by assumption, we also have the equalities |A(x)|2 = |x|; and [A(y)]2 = |y]1,
which implies that (x, y); = (A(x), 4A(y))2. This, strictly speaking, is a conse-
quence of the fact (Theorem 6.6) that a symmetric bilinear form (x, y) is determined
by the quadratic form (x, x), and here we have simply repeated the proof given in
Sect. 4.1.

If the spaces L and L, have the same dimension, then from the fact that the linear
transformation # : L} — L, preserves the lengths of vectors, it already follows that
it is an isomorphism. Indeed, as we saw in Sect. 3.5, it suffices to verify that the
kernel of the transformation # is equal to (0). But if A(x) = 0, then |A(x)|, =0,
which implies that [x|; = 0, that is, x = 0.

Theorem 7.22 All Euclidean spaces of a given finite dimension are isomorphic to
each other.
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Proof From the existence of an orthonormal basis, it follows at once that every n-
dimensional Euclidean space is isomorphic to the Euclidean space in Example 7.3.
Indeed, let ey, ..., e, be an orthonormal basis of a Euclidean space L. Assigning to
each vector x € L the row of its coordinates in the basis ey, ..., e,, we obtain an
isomorphism of the space L and the space R" of rows of length n with inner product
(7.1) (see the remarks on p. 218). It is easily seen that isomorphism is an equivalence
relation (p. xii) on the set of Euclidean spaces, and by transitivity, it follows that all
Euclidean spaces of dimension n are isomorphic to each other. U

Theorem 7.22 is analogous to Theorem 3.64 for vector spaces, and its general
meaning is the same (this is elucidated in detail in Sect. 3.5). For example, using
Theorem 7.22, we could have proved the inequality (7.6) differently from how it
was done in the preceding section. Indeed, it is completely obvious (the inequality
is reduced to an equality) if the vectors x and y are linearly dependent. If, on the
other hand, they are linearly independent, then we can consider the subspace L' =
(x, y). By Theorem 7.22, it is isomorphic to the plane (Example 7.2 in the previous
section), where this inequality is well known. Therefore, it must also be correct for
arbitrary vectors x and y.

Definition 7.23 A linear transformation U of a Euclidean space L into itself that
preserves the inner product, that is, satisfies the condition that for all vectors x and

y,
(x,y) = (UX), U®Y)), (7.17)

is said to be orthogonal.

This is clearly a special case of an isomorphism of Euclidean spaces L; and L;
that coincide.

It is also easily seen that an orthogonal transformation U takes an orthonormal
basis to another orthonormal basis, since from the conditions (7.8) and (7.17), it
follows that U(ey), ..., U(e,) is an orthonormal basis if ey, ..., e, is. Conversely,
if a linear transformation U takes some orthonormal basis ey, ..., e, to another
orthonormal basis, then for vectors x = «je; + --- + aye, and y = Bre; + --- +
Bne,, we have

Ux) =ajU(er) +-- - +a,Uley), U(y) =B1U(er) + -+ B, U(en).

Since both ey, ..., e, and U(ey), ..., U(e,) are orthonormal bases, it follows by
(7.1) that both the left- and right-hand sides of relationship (7.17) are equal to the
expression oy B1 + - - - + 0, By, that is, relationship (7.17) is satisfied, and this implies
that U is an orthogonal transformation.

We note the following important reformulation of this fact: for any two orthonor-
mal bases of a Euclidean space, there exists a unique orthogonal transformation that
takes the first basis into the second.

Let U = (u;;) be the matrix of a linear transformation U in some orthonormal
basis ey, ..., e,. It follows from what has gone before that the transformation U is
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orthogonal if and only if the vectors U(ep), ..., U(e,) form an orthonormal basis.
But by the definition of the matrix U, the vector U(e;) is equal to ZZ: | Ukiek, and
since ey, ..., e, is an orthonormal basis, we have

(Ulei), Ulej)) =uriurj + usiuzj + - + niltj.

The expression on the right-hand side is equal to the element c¢;;, where the ma-
trix (c;;) is equal to U*U. This implies that the condition of orthogonality of the
transformation U can be written in the form

U*U =E, (7.18)
or equivalently, U* = U~!. This equality is equivalent to
UU*=E, (7.19)
and can be expressed as relationships among the elements of the matrix U:
witj) 4 uigujy =0 fori#j,  ud+--+ul, =1 (7.20)

The matrix U satisfying the relationship (7.18) or the equivalent relationship (7.19)
is said to be orthogonal.

The concept of an orthonormal basis of a Euclidean space can be interpreted
more graphically using the notion of flag (see the definition on p. 101). Namely, we

associate with an orthonormal basis ey, ..., e, the flag
OcLiclhc --Cl,=L, (7.21)
in which the subspace L; is equal to (eq, ..., e;), and the pair (L;,_y, L;) is directed

in the sense that Llf is the half-space of L; containing the vector e;. In the case of a
Euclidean space, the essential fact is that we obtain a bijection between orthonormal
bases and flags.

For the proof of this, we have only to verify that the orthonormal basis eq, ..., e,
is uniquely determined by its associated flag. Let this basis be associated with
the flag (7.21). If we have already constructed an orthonormal system of vectors
el,...,ej_1 such that L;_; = (ey, ..., e;j_1), then we should consider the orthogo-
nal complement Lf‘_l of the subspace L;_1 in L;. Then dim LI.J-_1 =1and Lf‘_l = (e;),
where the vector e; is uniquely defined up to the factor £1. This factor can be se-
lected unambiguously based on the condition e; € Li*.

An observation made earlier can now be interpreted as follows: For any two flags
@1 and @, of a Euclidean space L, there exists a unique orthogonal transformation
that maps @ to @;.

Our next goal will be the construction of an orthonormal basis in which a given
orthogonal transformation U has the simplest matrix possible. By Theorem 4.22,
the transformation U has a one- or two-dimensional invariant subspace L'. It is clear
that the restriction of U to the subspace L’ is again an orthogonal transformation.
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Let us determine first the sort of transformation that this can be, that is, what sorts
of orthogonal transformations of one- and two-dimensional spaces exist.

If dimL’ =1, then L' = {e) for some nonnull vector e. Then U(e) = ae, where
« is some scalar. From the orthogonality of the transformation U, we obtain that

(e,e) = (ne,ae) = az(e, e),

from which it follows that «® = 1, and this implies that @ = #1. Consequently, in
a one-dimensional space L', there exist two orthogonal transformations: the identity
&, for which & (x) = x for all vectors x, and the transformation U such that U (x) =
—x. It is obvious that U = —§.

Now let dimL’ = 2, in which case L’ is isomorphic to the plane with inner product
(7.1). It is well known from analytic geometry that an orthogonal transformation of
the plane is either a rotation through some angle ¢ about the origin or a reflection
with respect to some line /. In the first case, the orthogonal transformation U in an
arbitrary orthonormal basis of the plane has matrix

<cos ¢ —sin g0> . (7.22)

sing  cosg

In the second case, the plane can be represented in the form of the direct sum L' =
1 @ I+, where [ and [+ are lines, and for a vector x we have the decomposition
x =y +z, where y €/ and z € [, while the vector U(x) is equal to y — z. If we
choose an orthonormal basis e, e; in such a way that the vector e lies on the line
[, then the transformation U will have matrix

1 0
U:(O _1>. (7.23)

But we shall not presuppose this fact from analytic geometry, and instead show
that it derives from simple considerations in linear algebra. Let U have, in some
orthonormal basis eq, e;, the matrix

a b
<c d>’ (7.24)

that is, it maps the vector xe| + yez to (ax + by)e| + (cx 4+ dy)es. The fact that U
preserves the length of a vector gives the relationship

(ax +by)* + (cx +dy)? =x* + y*
for all x and y. Substituting in turn (1, 0), (0, 1), and (1, 1) for (x, y), we obtain
a?+ct=1, b +d>=1, ab+cd =0. (7.25)

From the relationship (7.19), it follows that [UU*| = 1, and since |U*| = |U/|, it fol-
lows that |U|> = 1, and this implies that |U| = 1. We need to consider separately
the cases of different signs.
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If |U| = —1, then the characteristic polynomial |U — ¢ E| of the matrix (7.24) is
equal to t?> —(a+d)t — 1 and has positive discriminant. Therefore, the matrix (7.24)
has two real eigenvalues A1 and A, of opposite signs (since by Viete’s theorem,
A1Az = —1) and two associated eigenvectors e and e>. Examining the restriction
of U to the one-dimensional invariant subspaces (e;) and (e»), we arrive at the
one-dimensional case considered above, from which, in particular, it follows that
the values A1 and A, are equal to £1. Let us show that the vectors e and e, are
orthogonal. By the definition of eigenvectors, we have the equalities U(e;) = X;e;,
from which we have

(Uer), U(ez)) = (r1e1, hrex) = Aira(er. €2). (7.26)

But since the transformation U is orthogonal, it follows that (U(e;), U(ez)) =
(e1, e2), and from (7.26), we obtain the equality (e, e2) = A1A2(eq, e2). Since A
and A, have opposite signs, it follows that (eq, e2) = 0. Choosing eigenvectors e
and e of unit length and such that A1 = 1 and A, = —1, we obtain the orthonormal
basis ey, e> in which the transformation U has matrix (7.23). We then have the de-
composition L =1 @ [, where [ = (e1) and [ = (e>), and the transformation U is
a reflection in the line /.

Butif |U| = 1, then by relationship (7.25) for a, b, c, d, it is easy to derive, keep-
ing in mind that ad — bc = 1, that there exists an angle ¢ such that a =d = cos¢
and ¢ = —b = sin g, that is, the matrix (7.24) has the form (7.22).

As a basis for examining the general case, we have the following theorem.

Theorem 7.24 If a subspace L' is invariant with respect to an orthogonal trans-
formation U, then its orthogonal complement (') is also invariant with respect
to U.

Proof We must show that for every vector y € (L)%, we have U(y) € (L)*L. If
y € (L)L, then (x, y) = 0 for all x € L’. From the orthogonality of the transforma-
tion U, we obtain that (U(x), U(y)) = (x, y) = 0. Since U is a bijective mapping
from L to L, its restriction to the invariant subspace L’ is a bijection from L’ to L". In
other words, every vector x” € L’ can be represented in the form x’ = U (x), where
x is some other vector in L’. Consequently, (x’, U(y)) = 0 for every vector x’ € L',
and this implies that U(y) € (L')*. O

Remark 7.25 1In the proof of Theorem 7.24, we nowhere used the positive definite-
ness of the quadratic form (x, x) associated with the inner product (x, y). Indeed,
this theorem holds as well for an arbitrary nonsingular bilinear form (x, y). The
condition of nonsingularity is required in order that the restriction of the transfor-
mation U to an invariant subspace be a bijection, without which the theorem would
not be true.

Definition 7.26 Subspaces L and L, of a Euclidean space are said to be mutually
orthogonal if (x, y) = 0 for all vectors x € L and y € L,. In such a case, we write
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L; L L. The decomposition of a Euclidean space as a direct sum of orthogonal
subspaces is called an orthogonal decomposition.

If dimL > 2, then by Theorem 4.22, the transformation U has a one- or two-
dimensional invariant subspace. Thus using Theorem 7.24 as many times as neces-
sary (depending on dim L), we obtain the orthogonal decomposition

L=Li®oL®---®Lx, wherel; LL;foralli+# j, (7.27)

with all subspaces L; invariant with respect to the transformation U and of dimen-
sion 1 or 2.

Combining the orthonormal bases of the subspaces Ly, ..., Ly and choosing a
convenient ordering, we obtain the following result.

Theorem 7.27 For every orthogonal transformation there exists an orthonormal
basis in which the matrix of the transformation has the block-diagonal form

1

0
1
-1
, (7.28)
-1
A‘Pl
0
Ag,
where
Ay = (Cf’s $i —SnGi > , (7.29)
S1n @; COS @;
o £k, ke,

Let us note that the determinants of all the matrices (7.29) are equal to 1, and
therefore, for a proper orthogonal transformation (see the definition on p. 135), the
number of —1’s on the main diagonal in (7.28) is even, and for an improper orthog-
onal transformation, that number is odd.

Let us now look at what the theorems we have proved give us in the cases n =
1, 2, 3 familiar from analytic geometry.

For n = 1, there exist, as we have already seen, altogether two orthogonal trans-
formations, namely & and —&, the first of which is proper, and the second, improper.

For n = 2, a proper orthogonal transformation is a rotation of the plane through
some angle ¢. In an arbitrary orthonormal basis, its matrix has the form A, from
(7.29), with no restriction on the angle ¢. For the improper transformation appearing
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Fig. 7.3 Reflection of the
plane with respect to a line

in (7.28), the number — 1 must be encountered an odd number of times, that is, once.
This implies that in some orthonormal basis ey, €3, its matrix has the form

-1 0
(0 1)
This transformation is a reflection of the plane with respect to the line (e;) (Fig. 7.3).
Let us now consider the case n = 3. Since the characteristic polynomial of the
transformation U has odd degree 3, it must have at least one real root. This implies
that in the representation (7.28), the number +1 or —1 must appear on the main
diagonal of the matrix.

Let us consider proper transformations first. In this case, for the matrix (7.28),
we have only one possibility:

1 0 0
0 cosp —sing
0 sing cosg

If the matrix is written in the basis e1, e;, e3, then the transformation U does not
change the points of the line / = (e1) and represents a rotation through the angle ¢
in the plane (e7, e3). In this case, we say that the transformation U is a a rotation
of the plane through the angle ¢ about the axis [. That every proper orthogonal
transformation of a three-dimensional Euclidean space possesses a “rotational axis”
is a result first proved by Euler. We shall discuss the mechanical significance of this
assertion later, in connection with motions of affine spaces.

Finally, if an orthogonal transformation is improper, then in expression (7.28),
we have only the possibility

-1 0 0
0 cosgp —sing
0 sing cosg

In this case, the orthogonal transformation U reduces to a rotation about the /-axis
with a simultaneous reflection with respect to the plane /.
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7.3 Orientation of a Euclidean Space*

In a Euclidean space, as in any real vector space, there are defined the notions
of equal and opposite orientations of two bases and orientation of the space (see
Sect. 4.4). But in Euclidean spaces, these notions possess certain specific features.

Leter,...,e, and e}, ..., e, be two orthonormal bases of a Euclidean space L.
By general definition, they have equal orientations if the transformation from one
basis to the other is proper. This implies that for a transformation U such that

Uler) = e, Ule,) = e,

the determinant of its matrix is positive. But in the case that both bases under consid-
eration are orthonormal, the mapping U, as we know, is orthogonal, and its matrix
U satisfies the relationship |U| = %1. This implies that U is a proper transforma-
tion if and only if |U| =1, and it is improper if and only if |U| = —1. We have the
following analogue to Theorems 4.38—4.40 of Sect. 4.4.

Theorem 7.28 Two orthogonal transformations of a real Euclidean space can be
continuously deformed into each other if and only if the signs of their determinants
coincide.

The definition of a continuous deformation repeats here the definition given in
Sect. 4.4 for the set 2, but now consisting only of orthogonal matrices (or trans-
formations). Since the product of any two orthogonal transformations is again or-
thogonal, Lemma 4.37 (p. 159) is also valid in this case, and we shall make use of
it.

Proof of Theorem 7.28 Let us show that an arbitrary proper orthogonal transfor-
mation U can be continuously deformed into the identity. Since the condition of
continuous deformability defines an equivalence relation on the set of orthogonal
transformations, then by transitivity, the assertion of the theorem will follow for all
proper transformations.

Thus we must prove that there exists a family of orthogonal transformations U;
depending continuously on the parameter ¢ € [0, 1] for which Uy = & and U = U.
The continuous dependence of U, implies that when it is represented in an arbitrary
basis, all the elements of the matrices of the transformations U; are continuous
functions of 7. We note that this is a not at all obvious corollary to Theorem 4.38.
Indeed, it did not guarantee us that all the intermediate transformations U; for 0 <
t < 1 are orthogonal. A possible “bad” deformation +4, taking us out of the domain
of orthogonal transformations is depicted as the dotted line in Fig. 7.4.

We shall use Theorem 7.27 and examine the orthonormal basis in which the
matrix of the transformation U has the form (7.28). The transformation U is proper
if and only if the number of instances of —1 on the main diagonal of (7.28) is odd.
We observe that the second-order matrix

(v )
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Fig. 7.4 Deformation taking nonorthogonal
us outside the domain of transformations
orthogonal transformations

orthogonal
transformations

can also be written in the form (7.29) for ¢; = w. Thus a proper orthogonal trans-
formation can be written in a suitable orthonormal basis in block-diagonal form

E
A
. , (7.30)

A‘ﬂk

where the arguments ¢; can now be taken to be any values. Formula (7.30) in fact
gives a continuous deformation of the transformation U into &. To maintain agree-
ment with our notation, let us examine the transformations U, having in this same
basis the matrix

E

Ay
Y (7.31)

Argy

Then it is clear first of all that the transformation U; is orthogonal for every ¢, and
secondly, that Uy = & and U1 = U. This gives us a proof of the theorem in the case
of a proper transformation.

Let us now consider improper orthogonal transformations and show that any such
transformation 'V can be continuously deformed into a reflection with respect to a
hyperplane, that is, into a transformation ¥ having in some orthonormal basis the
matrix

F= . . (7.32)

0 1
Let us choose an arbitrary orthonormal basis of the vector space and suppose that in
this basis, the improper orthogonal transformation 'V has matrix V. Then it is obvi-
ous that the transformation U with matrix U = V F' in this same basis is a proper
orthogonal transformation. Taking into account the obvious relationship F~! = F,

we have V = UF, that is, V = UF . We shall use the family U, effecting a con-
tinuous deformation of the proper transformation U into &. From the preceding
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Fig. 7.5 Oriented length
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equality, with the help of Lemma 4.37, we obtain the continuous family V;, = U, ¥,
where Vo= 6F = F and V| = UF = V. Thus the family V; = U; F effects the
deformation of the improper transformation 'V into £ . O

In analogy to what we did in Sect. 4.4, Theorem 7.28 gives us the following topo-
logical result: the set of orthogonal transformations consists of two path-connected
components: the proper and improper orthogonal transformations.

Exactly as in Sect. 4.4, from what we have proved, it also follows that two equally
oriented orthogonal bases can be continuously deformed into each other. That is, if
ey,...,e, and e/l, e e;l are orthogonal bases with the same orientation, then there
exists a family of orthonormal bases e (¢), ..., e,(t) depending continuously on
the parameter ¢ € [0, 1] such that ¢;(0) = e; and e; (1) = eg. In other words, the
concept of orientation of a space is the same whether we define it in terms of an
arbitrary basis or an orthonormal one. We shall further examine oriented Euclidean
spaces, choosing an orientation arbitrarily. This choice makes it possible to speak of
positively and negatively oriented orthonormal bases.

Now we can compare the concepts of oriented and unoriented volume. These two
numbers differ by the factor &1 (unoriented volumes are nonnegative by definition).
When the oriented volume of a parallelepiped I1(ay, ..., a,) in a space L of dimen-
sion n was introduced, we noted that its definition depends on the choice of some
orthonormal basis ey, ..., €,. Since we are assuming that the space L is oriented, we
can include in the definition of oriented volume of a parallelepiped I1(ay, ..., a,)
the condition that the basis ey, ..., e, used in the definition of v(ay,...,a;) be
positively oriented. Then the number v(ay, ..., a,) does not depend on the choice
of basis (that is, it remains unchanged if instead of ey, ..., e,, we take any other
orthonormal positively oriented basis e, ..., e;). This follows immediately from
formula (7.13) for the transformation € = U and from the fact that the transforma-
tion U taking one basis to the other is orthogonal and proper, that is, |U| = 1.

We can now say that the oriented volume v(ay, ..., a,) is positive (and conse-
quently equal to the unoriented volume) if the bases ey, ..., e, and ay, ..., a, are
equally oriented, and is negative (that is, it differs from the unoriented volume by a
sign) if these bases have opposite orientations. For example, on the line (Fig. 7.5),
the length of the segment O A is equal to 2, while the length of the segment O B is
equal to —2.

Thus, we may say that for the parallelepiped I1(a, ..., a,), its oriented volume
is its “volume with orientation.”

If we choose a coordinate origin on the real line, then a basis of it consists of
a single vector, and vectors e; and «e; are equally oriented if they lie to one side
of the origin, that is, & > 0. The choice of orientation on the line, one might say,
corresponds to the choice of “right” and “left.”

In the real plane, the orientation given by the basis ey, e> is determined by the
“direction of rotation” from e; to e;: clockwise or counterclockwise. Equally ori-
ented bases ey, ep and e/l, e/2 (Fig. 7.6(a) and (b)) can be continuously transformed
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Fig. 7.6 Oriented bases of e el
the plane

(a) (b) (©

one into the other, while oppositely oriented bases cannot even if they form equal
figures (Fig. 7.6(a) and (c)), since what is required for this is a reflection, that is, an
improper transformation.

In real three-dimensional space, the orientation is defined by a basis of three
orthonormal vectors. We again meet with two opposite orientations, which are rep-
resented by our right and left hands (see Fig. 7.7(a)). Another method of providing
an orientation in three-dimensional space is defined by a helix (Fig. 7.7(b)). In this
case, the orientation is defined by the direction in which the helix turns as it rises—
clockwise or counterclockwise.”

7.4 Examples*

Example 7.29 By the term “figure” in a Euclidean space L we shall understand an
arbitrary subset § C L. Two figures S and S’ contained in a Euclidean space M of
dimension n are said to be congruent, or geometrically identical, if there exists an
orthogonal transformation U of the space M taking S to S’. We shall be interested
in the following question: When are figures S and S’ congruent, that is, when do we
have U(S) =S?

Let us first deal with the case in which the figures S and S’ consist of collections

of m vectors: S = (ay,...,ay,) and §' = (a},...,a},) with m <n. For S and §’
to be congruent is equivalent to the existence of an orthogonal transformation U
such that U(a;) = a; foralli =1, ..., m. For this, of course, it is necessary that the

(@ (b)

Fig. 7.7 Different orientations of three-dimensional space

2The molecules of amino acids likewise determine a certain orientation of space. In biology, the
two possible orientations are designated by D (right = dexter in Latin) and L (left = laevus). For
some unknown reason, they all determine the same orientation, namely the counterclockwise one.
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following equality holds:

(ai,aj)z(a;,a’j-), i,j=1,...,m. (7.33)
Let us assume that vectors ay, ..., a, are linearly independent, and we shall
then prove that the condition (7.33) is sufficient. By Theorem 7.14, in this case
we have G(ay,...,a,) > 0, and by assumption, G(a/l, o a) =Gy, ..., ay).
From this same theorem, it follows that the vectors a/l, e a;n will also be linearly
independent.
Let us set

L={ai,...,an), U'=(a},....a,) (7.34)

and consider first the case m = n. Let M = (ay, ..., a, ). We shall consider the
transformation U : M — M given by the conditions U(a;) = ag foralli=1,...,m.
Obviously, such a transformation is uniquely determined, and by the relationship

(‘u (Zaia,'), U<Zﬁ/(l])> = (Zaiag, Zﬂ,aG) = Z Ot,‘ﬂj (ag,a/j)
i=1 j=1 i=1 j=1

ij=1

and equality (7.33), it is orthogonal.

Let m < n. Then we have the decomposition M =L @ L+ =L’ @ (L')*, where
the subspaces L and L’ of the space M are defined by formula (7.34). By what has
gone before, there exists an isomorphism V : L — L’ such that V(a;) = a for all
i =1,...,m. The orthogonal complements L and (L) of these subspaces have
dimension n — m, and consequently, are also isomorphic (Theorem 7.22). Let us
choose an arbitrary isomorphism W : L — (L')*. As a result of the decomposition
M =L@ L', an arbitrary vector x € M can be uniquely represented in the form x =
y 4z, where y € L and z € L. Let us define the linear transformation U : M — M
by the formula U(x) = V(y) + W(z). By construction, U(a;) = a; for all i =
1,...,m, and a trivial verification shows that the transformation U is orthogonal.

Let us now consider the case that S =1 and S’ =1’ are lines, and consequently,
consist of an infinite number of vectors. It suffices to set / = (e) and I’ = (e’), where
le] = |€’| = 1, and to use the fact that there exists an orthogonal transformation U
of the space M taking e to ¢’. Thus any two lines are congruent.

The next case in order of increasing complexity is that in which figures S and
S’ each consist of two lines: S =1; Ul and §' =1} Ul}. Let us set [; = (e;) and
Il = (e}), where |e;| = |e;| =1 for i =1 and 2. Now, however, vectors e| and e
are no longer defined uniquely, but can be replaced by —e; or —e;. In this case,
their lengths do not change, but the inner product (eq, e2) can change their sign,
that is, what remains unchanged is only their absolute value |(e, e2)|. Based on
previous considerations, we may say that figures S and S’ are congruent if and only
if |(e1, e2)| = |(e/1, e/2)|. If ¢ is the angle between the vectors e and e>, then we
see that the lines /; and /; determine | cos ¢|, or equivalently the angle ¢, for which
0<gpc< % In textbooks on geometry, one often reads about two angles between
straight lines, the “acute” and “obtuse” angles, but we shall choose only the one that
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is acute or a right angle. This angle ¢ is called the angle between the lines l1 and 1.
The previous exposition shows that two pairs of lines 1, [ and [, lé are congruent
if and only if the angles between them thus defined coincide.

The case in which a figure S consists of a line / and a plane L (dim/ = 1,
dimL = 2) is also related, strictly speaking, to elementary geometry, since dim(/ +
L) <3, and the figure S = /UL can be embedded in three-dimensional space. But we
shall consider it from a more abstract point of view, using the language of Euclidean
spaces. Let [ = (e) and let f be the orthogonal projection of e onto L. The angle
@ between the lines [ and I’ = (f) is called the angle berween | and L (as already
mentioned above, it is acute or right). The cosine of this angle can be calculated
according to the following formula:

,_len
el 171"

Let us show that if the angle between the line / and the plane L is equal to the
angle between the line I’ and the plane L', then the figures S =/ULand §' =1"UL’
are congruent. First of all, it is obvious that there exists an orthogonal transformation
taking L to L', so that we may consider that L=L'. Let ] = (e), |e| = 1 and I’ = (€'},
|e'| =1, and let us denote by f and f’ the orthogonal projections e and e’ onto L.
By assumption,

(7.35)

(e, HHI 1/, £

lel-1f1 e/l 1f
Since e and e’ can be represented in the form e = f + x and & = f' + y,
where x, y € Lt it follows that |(e, £)| = | fI% |(¢/, f)| = |f'|>. Moreover, |e| =
le’| = 1, and the relationship (7.36) shows that | f| = | f/].

Since e = x + f, we have |e|> = |x|?> 4+ 2(x, f) + | f|?, from which, if we take
into account the equalities |e|”> =1 and (x, f) = 0, we obtain |x|?> =1 — | f|* and
analogously, |y|> = 1 — | f/|*>. From this follows the equality |x| = |y|. Let us de-
fine the orthogonal transformation U of the space M = L @ L whose restriction to
the plane L carries the vector f to f’ (this is possible because | f| = | f'|), while
the restriction to its orthogonal complement L' takes the vector x to y (which is
possible on account of the equality |x| = |y|). Clearly, U takes e to ¢’ and hence /
to I/, and by construction, the plane L in both figures is one and the same, and the
transformation U takes it into itself.

We encounter a new and more interesting situation when we consider the case
in which a figure S consists of a pair of planes L; and L, (dimL; = dimL; = 2).
If Ly NLy # (0), then dim(L; + L) < 3, and we are dealing with a question from
elementary geometry (which, however, can be considered simply in the language of
Euclidean spaces). Therefore, we shall assume that L; N L, = (0) and similarly, that
L} NL, = (0). When are figures S =L; UL, and §" =L UL, congruent? It turns
out that for this to occur, it is necessary that there be agreement of not one (as in the
examples considered above) but two parameters, which can be interpreted as two
angles between the planes Lj and L.

(7.36)
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We shall consider all possible straight lines lying in the plane L; and the angles
that they form with the plane L. To this end, we recall the geometric interpretation
of the angle between a line [ and a plane L. If [ = (e), where |e| = 1, then the angle
@ between [ and L is determined by formula (7.35) with the condition 0 < ¢ < %,
where f is the orthogonal projection of the vector e onto L. From this, it follows that
e = f +x, where x € L, and this implies that (e, f) = (f, f) + (x, ) = | fI*,
whence the relationship (7.35) gives |cos¢@| = | f|. In other words, to consider all
the angles between lines lying in the plane L; and the plane L, we must consider
the circle in L consisting of all vectors of length 1 and the lengths of the orthogonal
projections of these vectors onto the plane L;. In order to write down these angles
in a formula, we shall consider the orthogonal projection M — L, of the space M
onto the plane L,. Let us denote by & the restriction of this linear transformation
to the plane L. Then the angles of interest to us are given by the formula | cos¢| =
| P (e)|, where e are all possible vectors in the plane L; of unit length. We restrict
our attention to the case in which the linear transformation & is an isomorphism.
The case in which this does not occur, that is, when the Kernel of the transformation
& is not equal to (0) and the image is not equal to L;, is dealt with similarly.

Since # is an isomorphism, there is an inverse transformation PL > L.
Let us choose in the planes L and L, orthonormal bases e, e; and g, g,. Let the
vector e € L have unit length. We set f = #(e), and assuming that f =x1g; +
X285, we shall obtain equations for the coordinates x1 and x». Let us set

P Ng) =aei + e, P (g) =vel +der.
Since f = & (e), it follows that
e=2 ' (f)=x12"(g) + 2P (g,) = (ax1 + yx2)er + (Bx1 + 8x2)es,

and the condition | ~!(f)| = 1, which we shall write in the form [P~ (f)|* =1,
reduces to the equality (ax] + yx2)2 + (Bx1 + 8x2)% =1, that is,

(2 + B2)x? +2(ay + BO)x1x2 + (¥2 +8%)x3 = 1. (7.37)

Equation (7.37) with variables x1, x, defines a second-degree curve in the rect-
angular coordinate system determined by the vectors g, and g,. This curve is
bounded, since | f| < |e| (f is the orthogonal projection of the vector e), and this
implies that (fz) <1, that is, x12 + x% < 1. As one learns in a course on analytic
geometry, such a curve is an ellipse. In our case, it has its center of symmetry at the
origin O, that is, it is unchanged by a change of variables x; — —x, xp &> —x2
(see Fig. 7.8).

It is known from analytic geometry that an ellipse has two distinguished points A
and A’, symmetric with respect to the origin, such that the length |OA| = |OA’| is
greater than |OC]| for all other points C of the ellipse. The segment |OA| = |0 A|
is called the semimajor axis of the ellipse. Similarly, there exist points B and B’
symmetric with respect to the origin such that the segment |O B| = |O B’| is shorter
than every other segment |OC|. The segment |O B| = | O B’| is called the semiminor
axis of the ellipse.
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Fig. 7.8 Ellipse described by
equation (7.37)

X

Let us recall that the length of an arbitrary line segment |OC|, where C is any
point on the ellipse, gives us the value cos ¢, where ¢ is the angle between a certain
line contained in L; and the plane L. From this it follows that cos¢ attains its
maximum for one value of ¢, while for some other value of ¢ it attains its minimum.
Let us denote these angles by ¢ and ¢; respectively. By definition, 0 < ¢ < ¢ <
7. Itis these two angles that are called the angles between the planes Ly and L;.

The case that we have omitted, in which the transformation J has a nonnull
kernel, reduces to the case in which the ellipse depicted in Fig. 7.8 shrinks to a line
segment.

It now remains for us to check that if both angles between the planes (L1, L>)
are equal to the corresponding angles between the planes (L}, L)), then the figures
S=L1ULy and §' =L} UL} will be congruent, that is, there exists an orthogonal
transformation U taking the plane L; into L}, i =1, 2.

Let ¢1 and ¢; be the angles between L and Lj, equal, by hypothesis, to the angles
between L} and L. Reasoning as previously (in the case of the angle between a line
and a plane), we can find an orthogonal transformation that takes L to L). This
implies that we may assume that L, = L. Let us denote this plane by L. Here, of
course, the angles ¢ and ¢> remain unchanged. Let cos ¢1 < cos¢; for the pair of
planes L and L. This implies that cos ¢ and cos ¢, are the lengths of the semiminor
and semimajor axes of the ellipse that we considered above. This is also the case for
the pair of planes L/1 and L. By construction, this means that cos¢; = | f | = | f /1|
and cosgy = | f»| = | f5|, where the vectors f; € L are orthogonal projections of
the vectors e; € L; of length 1. Reasoning similarly, we obtain the vectors f € L
ande; el,i=1,2.

Since | f1| = Ifl, | f2] =|f5|, and since by well-known properties of the el-
lipse, its semimajor and semiminor axes are orthogonal, we can find an orthogonal
transformation of the space M that takes f; to f' and f, to f’, and having done so,
assume that | = f and f, = f. But since an ellipse is defined by its semiaxes,
it follows that the ellipses C and C; that are obtained in the plane L from the planes
Ly and L simply coincide. Let us consider the orthogonal projections of the space
M to the plane L. Let us denote by & its restriction to the plane L;, and by &’ its
restriction to the plane L.

We shall assume, as we did previously, that the transformations & : L; — L and
&’ : L} — L are isomorphisms of the corresponding linear spaces, but it is not at all
necessary that they be isomorphisms of Euclidean spaces. Let us represent this with
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arrows in a commutative diagram

N

v L (7.38)

/3”

and let us show that the transformations & and &’ differ from each other by an
isomorphism of Euclidean spaces L and L} . In other words, we claim that the trans-
formation 'V = (')~ 1% is an isomorphism of the Euclidean spaces L; and L}

As the product of isomorphisms of linear spaces, the transformation V is also an
isomorphism, that is, a bijective linear transformation. It remains for us to verify that
'V preserves the inner product. As noted above, to do this, it suffices to verify that
V preserves the lengths of vectors. Let x be a vector in L. If x = 0, then the vector
V(x) is equal to 0 by the linearity of 'V, and the assertion is obvious. If x # 0, then
we set e = o~ !x, where @ = |x|, and then |e| = 1. The vector & (e) is contained
in the ellipse C in the plane L. Since C = C’, it follows that & (e) = 5’ (e’), where
¢’ is some vector in the plane L} and |e'| = 1. From this we obtain the equality
(P)"1P(e) =€, thatis, V(e) = ¢’ and |¢/| = 1, which implies that |V (x)| = o =
|x|, which is what we had to prove.

We shall now consider a basis of the plane L consisting of vectors f and f, ly-
ing on the semimajor and semiminor axes of the ellipse C = C’, and augment it with
vectors eg, e2, where P (e;) = f,;. We thereby obtain four vectors eg, e2, f, f, in
the space L + L (it is easily verified that they are linearly independent). Similarly,
in the space L} + L, we shall construct four vectors €/, e}, f1, f,. We shall show
that there exists an orthogonal transformation of the space M taking the first set of
four vectors into the second. To do so, it suffices to prove that the inner products of
the associated vectors (in the order in which we have written them) coincide. Here
what is least trivial is the relationship (e’l, e’z) = (e1, e2), but it follows from the fact
that e} = V(e;), where 'V is an isomorphism of the Euclidean spaces L; and L}. The
relationship (e}, f) = (e1, f) is a consequence of the fact that f is an orthog-
onal projection, (e, f;) = | f|%, and similarly, (e}, f|) = | f,|>. The remaining
relationships are even more obvious.

Thus the figures S =L; UL, and S’ = L} UL, are congruent if and only if both
angles between the planes L, Ly and L}, L) coincide. With the help of theorems
to be proved in Sect. 7.5, it will be easy for the reader to investigate the case of a
pair of subspaces L1, Ly C M of arbitrary dimension. In this case, the answer to the
question whether two pairs of subspaces S =L; UL, and §" = L UL are congruent
is determined by the agreement of two finite sets of numbers that can be interpreted
as “angles” between the subspaces Ly, L and L}, L.

L
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Example 7.30 When the senior of the two authors of this textbook gave the course
on which it is based (this was probably in 1952 or 1953) at Moscow State Uni-
versity, he told his students about a question that had arisen in the work of A.N.
Kolmogorov, A.A. Petrov, and N.V. Smirnov, the answer to which in one particular
case had been obtained by A.I. Maltsev. This question was presented by the pro-
fessor as an example of an unsolved problem that had been worked on by noted
mathematicians yet could be formulated entirely in the language of linear algebra.
At the next lecture, that is, a week later, one of the students in the class came up to
him and said that he had found a solution to the problem.?

The question posed by A.N. Kolmogorov et al. was this: In a Euclidean space
L of dimension n, we are given n nonnull mutually orthogonal vectors x1, ..., X,,
thatis, (x;,x;) =0foralli # j,i, j=1,...,n. For what values m < n does there
exist an m-dimensional subspace M C L such that the orthogonal projections of the
vectors X, ..., X, to it all have the same length? A.l. Maltsev showed that if all
the vectors x1, ..., X, have the same length, then there exists such a subspace M of
each dimension m < n.

The general case is approached as follows. Let us set |x;| = «; and assume that
there exists an m-dimensional subspace M such that the orthogonal projections of all
vectors x; to it have the same length «. Let us denote by & the orthogonal mapping
to the subspace M, so that | (x;)| = «. Let us set f; = Oll-_lx,'. Then the vectors

f1s..., f, form an orthonormal basis of the space L. Conversely, let us select in L
an orthonormal basis e, ..., e, such that the vectors ey, ..., e, form a basis in M,
that is, for the decomposition

L=MaM*, (7.39)
we join the orthonormal basis ey, . .., e, of the subspace M to the orthonormal basis
€m+1, - - -, ey of the subspace ML,

Let f;, = 22:1 uriex. Then we can interpret the matrix U = (uy;) as the ma-
trix of the linear transformation U, written in terms of the basis ey, ..., e,, taking
vectors ey, ..., e, to vectors f,..., f,. Since both sets of vectors ey, ..., e, and
f1s.-., f, are orthonormal bases, it follows that U is an orthogonal transforma-

tion, in particular, by formula (7.18), satisfying the relationship
UU*=E. (7.40)

From the decomposition (7.39) we see that every vector f; can be uniquely rep-
resented in the form of a sum f; = u; 4+ v;, where u; € M and v; € M- By defi-
nition, the orthogonal projection of the vector f; onto the subspace M is equal to

P(f;) =u;. By construction of the basis ey, ..., e,, it follows that
m
P =) uriex.
k=1

31t was published as L.B. Nisnevich, V.I. Bryzgalov, “On a problem of n-dimensional geometry,”
Uspekhi Mat. Nauk 8:4(56) (1953), 169-172.
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By assumption, we have the equalities |<‘P(f,-)|2 = |JP(0{l._lx,~)|2 = oezoci_z, which
in coordinates assume the form

m
Zu%i =a2af2, i=1,...,n.
k=1
If we sum these relationships for all i = 1, ..., n and change the order of summation

in the double sum, then taking into account the relationship (7.40) for the orthogonal
matrix U, we obtain the equality

n n m m n
aQZaf2=ZZu%i=ZZu,%i=m, (7.41)

i=1 i=1k=1 k=1i=1

from which it follows that o can be expressed in terms of a7y, ..., oy, and m by the
formula

n -1
ol=m (Z aiz) . (7.42)

i=1

2.,—2

From this, in view of the equalities |5’(f,»)|2 = |£P(ozi_1x,~)|2 =« , we ob-

tain the expressions

o;

—1
n
|f<fi>|2=m<azza;2> .

i=1

By Theorem 7.10, we have |2 (f;)| <|f;|, and since by construction, | f;| = 1, we
obtain the inequalities

n -1
2 -2 .
m(ai E Q; ) <1, i=1,...,n,

i=1

from which it follows that

n
oY at=m, i=1,....n (7.43)

i=1

Thus the inequalities (7.43) are necessary for the solvability of the problem. Let
us show that they are also sufficient.

Let us consider first the case m = 1. We observe that in this situation, the in-
equalities (7.43) are automatically satisfied for an arbitrary collection of positive
numbers oy, ..., &,. Therefore, for an arbitrary system of mutually orthogonal vec-
tors X1, ..., X, in L, we must produce a line M C L such that the orthogonal projec-
tions of all these vectors onto it have the same length. For this, we shall take as such
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aline M = (y) with the vectors

n
y= (Ol]'"()ln)zx
=) ———1x;,
DD

i=1

where as before, a? = (x;, x;). Since %y e Mand (x; — (T;"f)y, y) =0, it fol-

lows that the orthogonal projection of the vector x; onto the line M is equal to

Clearly, the length of each such projection

(i, )| (- a)?

|P(xi)| = =
|yl |yl

does not depend on the index of the vector x;. Thus we have proved that for an
arbitrary system of n nonnull mutually orthogonal vectors in an n-dimensional Eu-
clidean space, there exists a line such that the orthogonal projections of all vectors
onto it have the same length.

To facilitate understanding in what follows, we shall use the symbol P (m, n)
to denote the following assertion: If the lengths «1, ..., «, of a system of mutu-
ally orthogonal vectors x1,...,x, in an n-dimensional Euclidean space L satisfy
condition (7.43), then there exists an m-dimensional subspace M C L such that the
orthogonal projections P (x1), ..., P (x,) of the vectors x1, ..., x, onto it have the
same length «, expressed by the formula (7.42). Using this convention, we may say
that we have proved the assertion P(1,n) foralln > 1.

Before passing to the case of arbitrary m, let us recast the problem in a more
convenient form. Let f1, ..., B, be arbitrary numbers satisfying the following con-
dition:

Bi+-+p=m, 0<pi<li=1,...,n (7.44)
Let us denote by P’(m, n) the following assertion: In the Euclidean space L there
exist an orthonormal basis g, ..., g, and an m-dimensional subspace L’ C L such

that the orthogonal projections $’(g;) of the basis vectors onto L’ have length +/B;,
that is,

|‘(P/(gi)|2=l3i, i=1,...,n.

Lemma 7.31 The assertions P(m,n) and P’(m, n) with a suitable choice of num-
bersay,...,an and By, ..., By are equivalent.

Proof Let us first prove that the assertion P’(m,n) follows from the assertion
P(m,n). Here we are given a collection of numbers f1, ..., B, satisfying the con-
dition (7.44), and it is known that the assertion P (m, n) holds for arbitrary positive
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numbers oy, ..., &, satisfying condition (7.43). For the numbers Sy, ..., 8, and ar-

bitrary orthonormal basis gy, ..., g, we define vectors x; = f; 172

gi,iz 1,...,”1.
It is clear that these vectors are mutually orthogonal, and furthermore, |x;| = ,Bi_l/ 2,

Let us prove that the numbers o; = ,Bl._l/ 2 satisfy the inequalities (7.43). Indeed, if
we take into account the condition (7.44), we have

n n

2 -2 -1 -1

o E a " =p; E Bi=B m=>m.
i=1 i=l1

The assertion P(m,n) says that in the space L there exists an m-dimensional
subspace M such that the lengths of the orthogonal projections of the vectors x;
onto it are equal to

n -1 n -1
|P(x)|=a= m(Za;2> - ’”(Zﬂt) -1
i=1 i=1

But then the lengths of the orthogonal projections of the vectors g; onto the same
subspace M are equal to | (g;)| = |P (VBixi)| = /Bi.

Now let us prove that the assertion P’(m, n) yields P(m, n). Here we are given
a collection of nonnull mutually orthogonal vectors x1, ..., x, of length |x;| = «;,
and moreover, the numbers ¢; satisfy the inequalities (7.43). Let us set

n -1
-2 -2
Bi =« m(g Q; )
i=1

and verify that §; satisfies conditions (7.44). The equality 81 + - - - + B, = m clearly
follows from the definition of the numbers g;. From the inequalities (7.43) it follows
that

n -1
a? > mZafz )
i=1

and this implies that

-1
n

Bi =ai_2m(Zai_2) <1.
i=1

The assertion P’(m,n) says that there exist an orthonormal basis g, ..., g, of
the space L and an m-dimensional subspace L’ C L such that the lengths of the
orthogonal projections of the vectors g; onto it are equal to |’(g;)| = +/Bi. But
then the orthogonal projections of the mutually orthogonal vectors ,Bi_l/ 2 g, onto
the same subspace L’ will have the same length, namely 1.

To prove the assertion P(m,n) for given vectors x1, ..., X,, it now suffices to
consider the linear transformation U of the space L mapping the vectors g; to
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U(g;) = f;, where f; :ai_lxi. Since the bases g¢,..., g, and f{,..., f, are
orthonormal, it follows that U is an orthogonal transformation, and therefore, the
orthogonal projections of the x; onto the m-dimensional subspace M = U(L") have
the same length. Moreover, by what we have proved above, this length is equal to the
number « determined by formula (7.42). This completes the proof of the lemma. [J

Thanks to the lemma, we may prove the assertion P’(m, n) instead of the asser-
tion P(m, n). We shall do so by induction on m and n. We have already proved the
base case of the induction (m = 1, n > 1). The inductive step will be divided into
three parts:

(1) From assertion P’(m, n) for 2m < n + 1 we shall derive P'(m,n + 1).

(2) We shall prove that the assertion P’(m, n) implies P'(n, m — n).

(3) We shall prove that the assertion P’(m + 1, n) for alln > m + 1 is a consequence
of the assertion P'(m’,n) forallm’ <m and n > m’.

Part I: From assertion P’ (m, n) for 2m < n+1, we derive P’(m, n+1). We shall
consider the collection of positive numbers By, ..., B, Bn+1 satisfying conditions
(7.44) with n replaced by n + 1, with 2m < (n + 1). Without loss of generality, we
may assume that B = f2 = -+ = Bur1. Since Bi + -+ fas1 =m and n + 1 =
2m, it follows that B, + B,+1 < l. Indeed, for example for odd n, the contrary
assumption would give the inequality

Bi+pP2=-=Pp+ Pny1>1,
(n+1)/2 sums

from which clearly follows 81 +- -+ 8,41 > (n 4+ 1)/2 > m, which contradicts the
assumption that has been made.

Let us consider the (n + 1)-dimensional Euclidean space L and decompose it as
a direct sum L = (e) @ (e)*, where e € L is an arbitrary vector of length 1. By the
induction hypothesis, the assertion P’(m, n) holds for numbers Bi, ..., By—1 and
B = B + Bns1 and the n-dimensional Euclidean space (e)*. This implies that in
the space (e)™, there exist an orthonormal basis g1,-.-,8, and an m-dimensional
subspace L such that the squares of the lengths of the orthogonal projections of the
vectors g; onto L’ are equal to

P @) =8 i=1...n—=1, |P @) =Bu+Busi.

We shall denote by &# : L — L’ the orthogonal projection of the space L onto
L’ (in this case, of course, & (e) = 0), and we construct in L an orthonormal basis
g1, 8y for which [P (g)1?=p; foralli=1,...,n+1.

Letusset g, =g; fori=1,....,.n—2and g, =ag, + be, g, =cg, +de,
where the numbers a, b, ¢, d are chosen in such a way that the following conditions
are satisfied:

|gn|=|gl‘[+1|=15 (gnvgn+1)=0’

) ) (7.45)
P@I =B |P@u)] = Busr.
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Then the system of vectors g, ..., &, proves the assertion P'(m,n + 1).
The relationships (7.45) can be rewritten in the form

a+br=c2+d*=1, ac+bd =0,
a?Bu 4 Bu1) = Bus (B + But1) = But1.

It is easily verified that these relationships will be satisfied if we set

b =*c, d = Fa, a= L, c= A
IBn +.Bn+1 ,Bn +,Bn+1

Before proceeding to part 2, let us make the following observation.

Proposition 7.32 To prove the assertion P'(m, n), we may assume that B; < 1 for
alli=1,...,n

Proof Let 1 = 81 =--- = B > Br+1 = -+ = B > 0. We choose in the n-
dimensional vector space L an arbitrary subspace Ly of dimension k and consider
the orthogonal decomposition L =Ly @ LkL. We note that

1>Bey1=-=B,>0 and Bry1+---+Ba=m—k.

Therefore, if the assertion P’'(m — k,n — k) holds for the numbers Bi11, ..., Bu,
then in LJ- there exist a subspace L of dimension m — k and an orthonormal basis
Zisls---» &y such that [P (g,)> = ,8, fori=k+1,...,n, where £ : Li- — L] is
an orthogonal projection.

We now set L' =L & L;{ and choose in Ly an arbitrary orthonormal ba-
sis g1,..., 8- Then if &’ :L — L’ is the orthogonal projection, we have that
|2 (g)>=1fori=1,...,kand |P'(g)|> =B fori=k+1,...,n. O

Part 2: Assertion P’'(m,n) implies assertion P'(n,m — n). Let us consider n
numbers f; > --- > B, satisfying condition (7.44) in which the number m is re-
placed by n — m. We must construct an orthogonal projection ' : L — L’ of the
n-dimensional Euclidean space L onto the (m — n)-dimensional subspace L’ and
an orthonormal basis g, ..., g, in L for which the conditions |P'(g; )2 = Bi,
i=1,...,n, are satisfied. By a previous observation, we may assume that all §; are
less than 1. Then the numbers ,B/ =1 — B satisfy conditions (7.44), and by assertion
P’(m, n), there exist an orthonormal projection & : L — L of the space L onto the
m-dimensional subspace L and an orthonormal basis g, ..., g, for which the con-
ditions |{/5(g,~)|2 = ,Bi’ are satisfied. For the desired (m — n)-dimensional subspace
we shall take L’ = L+ and denote by £’ the orthogonal projection onto L’. Then for
eachi =1,...,n, the equalities

=P +Pg), 1=lgP=|P@) +|2 @) =B +|7 )]
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are satisfied, from which it follows that |#'(g;)|> =1 — Bl =Bi.

Part 3: Assertion P'(m + 1,n) for all n > m + 1 is a consequence of P’(m’, n)
for all m’ < m and n > m’. By our assumption, the assertion P’(m,n) holds in
particular for n = 2m + 1. By part 2, we may assert that P'(m + 1, 2m + 1) holds,
and since 2(m + 1) < (2m + 1) + 1, then by virtue of part 1, we may conclude that
P’(m+1, n) holds for all n > 2m + 1. It remains to prove the assertions P'(m+1, n)
for m +2 < n < 2m. But these assertions follow from P’(n — (m + 1), n) by part 2.
It is necessary only to verify that the inequalities 1 <n — (m 4 1) < m are satisfied,
which follows directly from the assumption that m + 2 <n < 2m.

7.5 Symmetric Transformations

As we observed at the beginning of Sect. 7.1, for a Euclidean space L, there exists
a natural isomorphism L = L* that allows us to identify in this case the space L*
with L. In particular, using the definition given in Sect. 3.7, we may define for an
arbitrary basis ey, ..., e, of the space L the dual basis f1, ..., f, of the space L by
the condition (f;,e;) =1, (f;,e;) =0 for i # j. Thus an orthonormal basis is one
that is its own dual.

In the same way, we can assume that for an arbitrary linear transformation
A : L — L, the dual transformation A* : L* — L* defined in Sect. 3.7 is a linear
transformation of the Euclidean space L into itself and is determined by the condi-
tion

(A*(x), y) = (x, A(p)) (7.46)

for all vectors x, y € L. By Theorem 3.81, the matrix of the linear transformation 4
in an arbitrary basis of the space L and the matrix of the dual transformation 4* in
the dual basis are transposes of each other. In particular, the matrices of the trans-
formations #4 and 4™ in an arbitrary orthonormal basis are transposes of each other.
This is in accord with the notation A* that we have chosen for the transpose matrix.
It is easily verified also that conversely, if the matrices of transformations 4 and B
in some orthonormal basis are transposes of each other, then the transformations #4
and B are dual.

As an example, let us consider the orthogonal transformation U, for which
by definition, the condition (U(x), U(y)) = (x,y) is satisfied. By formula
(7.46), we have the equality (U(x), U(y)) = (x, U*U(y)), from which follows
(x, U*U(y)) = (x, y). This implies that (x, U*U(y) — y) = O for all vectors x,
from which follows the equality U*U(y) = y for all vectors y € L. In other words,
the fact that U*U is equal to &, the identity transformation, is equivalent to the
property of orthogonality of the transformation U. In matrix form, this is the rela-
tionship (7.18).

Definition 7.33 A linear transformation -+ of a Euclidean space is called symmetric
or self-dual if A* = A.
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In other words, for a symmetric transformation -+ and arbitrary vectors x and y,
the following condition must be satisfied:

(A@), y) = (x, A)), (7.47)

that is, the bilinear form ¢ (x, y) = (A(x), y) is symmetric. As we have seen, from
this it follows that in an arbitrary orthonormal basis, the matrix of the transformation
A 1s symmetric.

Symmetric linear transformations play a very large role in mathematics and its
applications. Their most essential applications relate to quantum mechanics, where
symmetric transformations of infinite-dimensional Hilbert space (see the note on
p- 214) correspond to what are called observed physical quantities. We shall, how-
ever, restrict our attention to finite-dimensional spaces. As we shall see in the sequel,
even with this restriction, the theory of symmetric linear transformations has a great
number of applications.

The following theorem gives a basic property of symmetric linear transforma-
tions of finite-dimensional Euclidean spaces.

Theorem 7.34 Every symmetric linear transformation of a real vector space has an
eigenvector.

In view of the very large number of applications of this theorem, we shall present
three proofs, based on different principles.

Proof of Theorem 7.34 First proof. Let A be a symmetric linear transformation
of a Euclidean space L. If dimL > 2, then by Theorem 4.22, it has a one- or two-
dimensional invariant subspace L'. It is obvious that the restriction of the transforma-
tion #4 to the invariant subspace L’ is also a symmetric transformation. If dimL’ =1,
then we have L' = (e), where e # 0, and this implies that e is an eigenvector. Con-
sequently, to prove the theorem, it suffices to show that a symmetric linear transfor-
mation in the two-dimensional subspace L' has an eigenvector. Choosing in L" an
orthonormal basis, we obtain for 4 a symmetric matrix in this basis:

a b
a=(t )
In order to find an eigenvector of the transformation 4, we must find a real root of
the polynomial |A — ¢ E|. This polynomial has the form

(a—t)(c—t)—bz:tz—(a—}—c)t—i—ac—b2

and has a real root if and only if its discriminant in nonnegative. But the discriminant
of this quadratic trinomial is equal to

(a+c)? —4(ac—b*)=(a—c)? +4b* >0,

and the proof is complete.
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Second proof. The second proof is based on the complexification LC of the real
vector space L. Following the construction presented in Sect. 4.3, we may extend
the transformation 4 to the vectors of the space LC. By Theorem 4.18, the obtained
transformation AC : L — LC will already have an eigenvector e € L* and eigen-
value A € C, so that AC(e) = Ae.

We shall extend the inner product (x, y) from the space L to LC so that it de-
termines there a Hermitian form (see the definition on p. 210). It is clear that this
can be accomplished in only one way: defining two vectors a; = x; + iy, and
ay = x, + iy, of the space LC, we obtain the inner product according to the for-
mula

(a1, a2) = (x1,%2) + (1. y2) +i((y1. ¥2) — (x1. y2)). (7.48)

The verification of the fact that the inner product (a1, @) thus defined actually de-
termines in LC a Hermitian form is reduced to the verification of sesquilinearity (in
this case, it suffices to consider separately the product of a vector @| and a vector a;
by areal number and by i) and the property of being Hermitian. Here all calculations
are completely trivial, and we shall omit them.

An important new property of the inner product (a1, a,) that we have obtained is
its positive definiteness, that is, like the scalar product (a, a), it is real (this follows
from the Hermitian property) and (a, @) > 0, a # 0 (this is a direct consequence of
formula (7.48), for x1 = x2, y; = y,). It is obvious that for the new inner product
we also have an analogue of the relationship (7.47), that is,

(A% (@), a2) = (a1, AC(a2)); (7.49)

in other words, the form ¢(a, az) = (,A,(C(al), a») is Hermitian. Let us apply (7.49)
to the vectors a; = ay = e. Then we obtain (e, e) = (e, Le). Taking into ac-
count the Hermitian property, we have the equalities (Le, e) = A(e, €) and (e, Le) =
(e, e), from which it follows that A(e, e) = A(e, ). Since (e, e) > 0, we derive
from this that A = A, that is, the number A is real. Thus the characteristic polyno-
mial |AC — €| of the transformation AT has a real root A. But a basis of the space
L as a space over R is a basis of the space L over C, and the matrix of the trans-
formation 4T in this basis coincides with the matrix of the transformation 4. In
other words, |AC —t8| = |A — t&|, which implies that the characteristic polyno-
mial |4 — 7&]| of the transformation 4 has a real root A, and this implies that the
transformation «# : L — L has an eigenvector in the space L.

Third proof. The third proof rests on certain facts from analysis, which we now
introduce. We first observe that a Euclidean space can be naturally converted into a
metric space by defining the distance r(x, y) between two vectors x and y by the
relationship r(x, y) = |x — y|. Thus in the Euclidean space L we have the notions of
convergence, limit, continuous functions, and closed and bounded sets; see p. xvii.

The Bolzano—Weierstrass theorem asserts that for an arbitrary closed and
bounded set X in a finite-dimensional Euclidean space L and arbitrary continu-
ous function ¢(x) on X there exists a vector xo € X at which ¢(x) assumes its
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maximum value: that is, ¢(xg) > ¢(x) for all x € X. This theorem is well known
from real analysis in the case that the set X is an interval of the real line. Its proof in
the general case is exactly the same and is usually presented somewhat later. Here
we shall use the theorem without offering a proof.

Let us apply the Bolzano—Weierstrass theorem to the set X consisting of all vec-
tors x of the space L such that |x| = 1, that is, to the sphere of radius 1, and to the
function ¢(x) = (x, A (x)). This function is continuous not only on X, but also on
the entire space L. Indeed, it suffices to choose in the space L an arbitrary basis and
to write down in it the inner product (x, 4 (x)) as a quadratic form in the coordinates
of the vector x. Of importance to us is solely the fact that as a result, we obtain a
polynomial in the coordinates. After this, it suffices to use the well-known theorem
that states that the sum and product of continuous functions are continuous. Then
the question is reduced to a verification of the fact that an arbitrary coordinate of the
vector x is a continuous function of x, but this is completely obvious.

Thus the function (x, 4 (x)) assumes its maximum over the set X at some xo = e.
Let us denote this value by A. Consequently, (x, A(x)) < A for every x for which
|x| = 1. For every nonnull vector y, we set x = y/|y|. Then |x| = 1, and applying
to this vector the inequality above, we see that (y, A(y)) < A(y, y) for all y (this
obviously holds as well for y =0).

Let us prove that the number X is an eigenvalue of the transformation +. To this
end, let us write the condition that defines A in the form

(3. AD) <2, ¥, A= (e, Ae), le| =1, (7.50)

for an arbitrary vector y € L.

Let us apply (7.50) to the vector y = e + ez, where both the scalar ¢ and vector
Z € L are thus far arbitrary. Expanding the expressions (y, A4(y)) = (e + ez, A(e) +
eA(z)) and (y, y) = (e + €z, e + £7), we obtain the inequality

(e, A(e)) + (e, A(2)) + & (z, Ae)) + £(A(2), A(2))
<i((e,e) +e(e,2) +e(z,e) + (2, 2)).

In view of the symmetry of the transformation +, on the basis of the properties of
Euclidean spaces and recalling that (e, e) = 1, (e, A(e)) = A, after canceling the
common term (e, 4(e)) = A(e, e) on both sides of the above inequality, we obtain

2¢(e, A2) — Az) + &7 ((A(2), A(2)) — Az, 2)) <0. (7.51)

Let us now note that every expression ae + be? in the case a # 0 assumes a pos-
itive value for some ¢. For this it is necessary to choose a value |¢| sufficiently
small that a 4 be has the same sign as a, and then to choose the appropriate sign
for e. Thus the inequality (7.51) always leads to a contradiction except in the case
(e, A(z) —Az) =0.

If for some vector z # 0, we have 4A(z) = Az, then z is an eigenvector of the
transformation 4 with eigenvalue X, which is what we wished to prove. But if
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A(z) — Az # 0 for all z # 0, then the kernel of the transformation A — A& is equal
to (0). From Theorem 3.68 it follows that then the transformation A — A& is an
isomorphism, and its image is equal to all of the space L. This implies that for ar-
bitrary u € L, it is possible choose a vector z € L such that u = 4(z) — Az. Then
taking into account relationship (e, 4(z) — Az) = 0, we obtain that an arbitrary vec-
tor u € L satisfies the equality (e, u) = 0. But this is impossible at least for u =,
since |e| = 1. O

The further theory of symmetric transformations is constructed on the basis of
some very simple considerations.

Theorem 7.35 If a subspace L' of a Euclidean space L is invariant with respect
to the symmetric transformation A, then its orthogonal complement (') is also
invariant.

Proof The result is a direct consequence of the definitions. Let y be a vector in
(). Then (x, y) =0 for all x € L. In view of the symmetry of the transformation
4, we have the relationship

(x. AY) = (AX), y),

while taking into account the invariance of L’ yields that A(x) € L’. This implies
that (x, 4(y)) = 0 for all vectors x € L/, that is, A(y) € (L')*, and this completes
the proof of the theorem. O

Combining Theorems 7.34 and 7.35 yields a fundamental result in the theory of
symmetric transformations.

Theorem 7.36 For every symmetric transformation 4 of a Euclidean space L of
finite dimension, there exists an orthonormal basis of this space consisting of eigen-
vectors of the transformation 4.

Proof The proof is by induction on the dimension of the space L. Indeed, by Theo-
rem 7.34, the transformation + has at least one eigenvector e. Let us set

L=(e)® (e)F,

where (e)* has dimension n — 1, and by Theorem 7.35, is invariant with respect
to +A. By the induction hypothesis, in the space (e)~ there exists a required basis. If
we add the vector e to this basis, we obtain the desired basis in L. O

Let us discuss this result. For a symmetric transformation +, we have an or-
thonormal basis ey, ..., e, consisting of eigenvectors. But to what extent is such a
basis uniquely determined? Suppose the vector e; has the associated eigenvalue ;.
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Then in our basis, the transformation 4 has matrix

M 0 .- 0
0 A --- 0

A= . ) . (7.52)
0 0 - A

But as we saw in Sect. 4.1, the eigenvalues of a linear transformation + coincide
with the roots of the characteristic polynomial

n
A —t€|=|A—tE|=]J0u—0.
i=1

Thus the eigenvalues Ap, ..., A, of the transformation 4 are uniquely determined.
Suppose that the distinct values among them are A1, ..., A;. If we assemble all the
vectors of the constructed orthonormal basis that correspond to one and the same
eigenvalue A; (from the set Ap, ..., A; of distinct eigenvalues) and consider the sub-
space spanned by them, then we obviously obtain the eigensubspace L), (see the
definition on p. 138). We then have the orthogonal decomposition

L=Ly, & ---®Ly, wherely, L L; forall i # j. (7.53)

The restriction of +4 to the eigensubspace L, gives a transformation A; &, and in this
subspace, every orthonormal basis consists of eigenvectors (with eigenvalue ;).

Thus we see that a symmetric transformation + uniquely defines only the eigen-
subspace L,,, while in each of them, one can choose an orthonormal basis as one
likes. On combining these bases, we obtain an arbitrary basis of the space L satisty-
ing the conditions of Theorem 7.36.

Let us note that every eigenvector of the transformation 4 lies in one of the sub-
spaces L. If two eigenvectors x and y are associated with different eigenvalues
Ai # Aj, then they lie in different subspaces L,,; and L;Lj, and in view of the orthog-
onality of the decomposition (7.53), they must be orthogonal. We thus obtain the
following result.

Theorem 7.37 The eigenvectors of a symmetric transformation corresponding to
different eigenvalues are orthogonal.

We note that this theorem can also be easily proved by direct calculation.

Proof of Theorem 7.37 Let x and y be eigenvectors of a symmetric transformation
A corresponding to distinct eigenvalues A; and A ;. Let us substitute the expressions
A(x) = A;x and A(y) = A;y into the equality (A(x), y) = (x, A(y)). From this
we obtain (A; — A;)(x, y) =0, and since A; # A;, we have (x, y) =0. O

Theorem 7.36 is often formulated conveniently as a theorem about quadratic
forms using Theorem 6.3 from Sect. 6.1 and the possibility of identifying the space
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L* with L if the space L is equipped with an inner product. Indeed, Theorem 6.3
shows that every bilinear form ¢ on a Euclidean space L can be represented in the
form

o(x,y) = (x, A1), (7.54)

where s is the linear transformation of the space L to L* uniquely defined by the bi-
linear form g; that is, if we make the identification of L* with L, it is a transformation
of the space L into itself.

It is obvious that the symmetry of the transformation «+ coincides with the sym-
metry of the bilinear form ¢. Therefore, the bijection between symmetric bilin-
ear forms and linear transformations established above yields the same correspon-
dence between quadratic forms and symmetric linear transformations of a Euclidean
space L. Moreover, in view of relationship (7.54), to the symmetric transformation
A there corresponds the quadratic form

¥ (x) = (x, AX)),

and every quadratic form v (x) has a unique representation in this form.

If in some basis ey, ..., e,, the transformation 4 has a diagonal matrix (7.52),
then for the vector x = x1e1 + - - - + x, €5, the quadratic form ¥ (x) has in this basis
the canonical form

Yx) = Aixd 4+ Apxl (7.55)

Thus Theorem 7.36 is equivalent to the following.

Theorem 7.38 For any quadratic form in a finite-dimensional Euclidean space,
there exists an orthonormal basis in which it has the canonical form (7.55).

Theorem 7.38 is sometimes conveniently formulated as a theorem about arbitrary
vector spaces.

Theorem 7.39 For two quadratic forms in a finite-dimensional vector space, one of
which is positive definite, there exists a basis (not necessarily orthonormal) in which
they both have canonical form (7.55).

In this case, we say that in a suitable basis, these quadratic forms are reduced to
a sum of squares (even if there are negative coefficients A; in formula (7.55)).

Proof of Theorem 7.39 Let 1 (x) and v (x) be two such quadratic forms, one of
which, let it be 1 (x), is positive definite. By Theorem 6.10, there exists, in the
vector space L in question, a basis in which the form | (x) has the canonical form
(7.55). Since by assumption, the quadratic form ¥ (x) is positive definite, it follows
that in formula (7.55), all the numbers A; are positive, and therefore, there exists a
basis ey, ..., e, of the space L in which 1 (x) is brought into the form

Yx) =x7 4 +x2. (7.56)
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Let us consider as the scalar product (x, y) in the space L the symmetric bilinear
form ¢ (x, y), associated by Theorem 6.6 with the quadratic form 1/ (x). We thereby
convert L into a Euclidean space.

As can be seen from formulas (6.14) and (7.56), the basis ey, ..., e, for this inner
product is orthonormal. Then by Theorem 7.38, there exists an orthonormal basis
e}, ..., e, of the space L in which the form v, (x) has canonical form (7.55). But
since the basis e/l, e, e,’1 is orthonormal with respect to the inner product that we
defined with the help of the quadratic form | (x), then in this basis, 1 (x) as before
takes the form (7.56), and that completes the proof of the theorem. g

Remark 7.40 Tt is obvious that Theorem 7.39 remains true if in its formulation we
replace the condition of positive definiteness of one of the forms by the condition
of negative definiteness. Indeed, if ¥ (x) is a negative definite quadratic form, then
the form — (x) is positive definite, and both of these assume canonical form in one
and the same basis.

Without the assumption of positive (or negative) definiteness of one of the
quadratic forms, Theorem 7.39 is no longer true. To prove this, let us derive one
necessary (but not sufficient) condition for two quadratic forms 1 (x) and ¥»(x) to
be simultaneously reduced to a sum of squares. Let A} and A; be their matrices in
some basis. If the quadratic forms 11 (x) and yr»(x) are simultaneously reducible to
sums of squares, then in some other basis, their matrices A’1 and A’2 will be diagonal,
that is,

@ 0 o 0 B 0 - 0
/ 0 a -~ 0 , 0 B -~ 0
A=, . . ] A=l. . . .
0 0 - a 0 0 - B

Then the polynomial | Az 4 A} | is equal to [T'_, (@it + Bi), that s, it can be factored
as a product of linear factors «; ¢ + ;. But by formula (6.10) for replacing the matrix
of a bilinear form through a change of basis, the matrices Aq, A/1 and A, A/2 are
related by

Al =C*AC, Ay =C*AC,
where C is some nonsingular matrix, that is, |C| # 0. Therefore,
Al + Ay| = |C* (A1t + A)C| = |CH|| A1t + Az|CI,
from which taking into account the equality |C*| = |C|, we obtain the relationship
|A1t + Azl = |C| 72| At + A),

from which it follows that the polynomial |A1¢# + A3| can also be factored into
linear factors. Thus for two quadratic forms 1 (x) and v»(x) with matrices A; and
Aj to be simultaneously reduced each to a sum of squares, it is necessary that the
polynomial |Ajt + A| be factorable into real linear factors.
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Now forn =2 we set ¢ (x) = x12 — x% and y»(x) = x1x2. These quadratic forms
are neither positive definite nor negative definite. Their matrices have the form

1 0 0 1
A1=(0 _1>, Az=<1 0>,

and it is obvious that the polynomial |Af + A>| = —(#2 4+ 1) cannot be factored into
real linear factors. This implies that the quadratic forms ¥ (x) and ¥, (x) cannot
simultaneously be reduced to sums of squares.

The question of reducing pairs of quadratic forms with complex coefficients to
sums of squares (with the help of a complex linear transformation) is examined in
detail, for instance, in the book The Theory of Matrices, by FR. Gantmacher. See
the references section.

Remark 7.41 The last proof of Theorem 7.34 that we gave makes it possible to in-
terpret the largest eigenvalue A of a symmetric transformation +4 as the maximum
of the quadratic form (x, 4(x)) on the sphere |x| = 1. Let X; be the other eigen-
values, so that (x, A(x)) = Alxlz + -+ )»nx,f. Then A is the greatest among the
A;. Indeed, let us assume that the eigenvalues are numbered in descending order:

Al > A2 >--- > A,. Then
Ale+-~-+knxrzlfkl(x%+~--+x2),

and the maximum value of the form (x, 4 (x)) on the sphere |x| = 1 is equal to A;
(it is attained at the vector with coordinates x| = 1, x = - - - = x,, = 0). This implies
that A1 = A.

There is an analogous characteristic for the other eigenvalues 1; as well, namely
the Courant—Fischer theorem, which we shall present without proof. Let us consider
all possible vector subspaces L' C L of dimension k. We restrict the quadratic form
(x, A(x)) to the subspace L’ and examine its values at the intersection of L’ with the
unit sphere, that is, the set of all vectors x € L’ that satisfy |x| = 1. By the Bolzano—
Weierstrass theorem, the restriction of the form (x, #4(x)) to L’ assumes a maximum
value A" at some point of the sphere, which, of course depends on the subspace L'.
The Courant—Fischer theorem asserts that the smallest number thus obtained (as the
subspace L’ ranges over all subspaces of dimension k) is equal to the eigenvalue
An—k+1-

Remark 7.42 Eigenvectors are connected with the question of finding maxima and
minima. Let f(x1,...,x,) be a real-valued differentiable function of n real vari-
ables. A point at which all the derivatives of the function f with respect to the
variables (xi, ..., xy), that is, the derivatives in all directions from this point, are
equal to zero is called a critical point of the function. It is proved in real analysis
that with some natural constraints, this condition is necessary (but not sufficient) for
the function f to assume a maximum or minimum value at the point in question.
Let us consider a quadratic form f(x) = (x, #(x)) on the unit sphere |x| = 1. It is
not difficult to show that for an arbitrary point on this sphere, all points sufficiently
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Fig. 7.9 An ellipsoid

close to it can be written in some system of coordinates such that our function f
can be viewed as a function of these coordinates. Then the critical points of the
function (x, A(x)) are exactly those points of the sphere that are eigenvectors of
the symmetric transformation 4.

Example 7.43 Let an ellipsoid be given in three-dimensional space with coordinates
X, y, z by the equation

2 2 2
X y z
?+ﬁ+c—2=1. (7.57)
The expression on the left-hand side of (7.57) can be written in the form v (x) =
(x, A(x)), where

x=( ACx) = Xy z

=(x,y,2), (x)—(a—z,ﬁ,c—z).

Let us assume that 0 < a < b < c. Then the maximum value that the quadratic form
¥ (x) takes on the sphere [x|=1is A =1 /a?. It is attained on the vectors (£1, 0, 0).
If |¥(x)] < A for |x| = 1, then for an arbitrary vector y # 0, setting x = y/|y|, we
obtain |y (y)| < A|y|?. For the vector y = 0, this inequality is obvious. Therefore,
it holds in general for all y. For |{(y)| = 1, it then follows that |y|2 > 1/X. This
implies that the shortest vector y satisfying equation (7.57) is the vector (+a, 0, 0).
The line segments beginning at the point (0, 0, 0) and ending at the points (+a, 0, 0)
are called the semiminor axes of the ellipsoid (sometimes, this same term denotes
their length). Similarly, the smallest value that the quadratic form ¥ (x) attains on
the sphere |x| = 1 is equal to 1/c?. It attains this value at vectors (0,0, &1) on the
unit sphere. Line segments corresponding to vectors (0, 0, £¢) are called semima-
Jjor axes of the ellipsoid. A vector (0, b, 0) corresponds to a critical point of the
quadratic form v (x) that is neither a maximum nor a minimum. Such a point is
called a minimax, that is, as it moves from this point in one direction, the func-
tion ¥ (x) will increase, while in moving in another direction it will decrease (see
Fig. 7.9). The line segments corresponding to the vectors (0, £b, 0) are called the
median semiaxes of the ellipsoid.

Everything presented thus far in this chapter (with the exception of Sect. 7.3
on the orientation of a real Euclidean space) can be transferred verbatim to complex
Euclidean spaces if the inner product is defined using the positive definite Hermitian
form ¢(x, y). The condition of positive definiteness means that for the associated
quadratic Hermitian form v (x) = ¢(x, x), the inequality ¥ (x) > O is satisfied for
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all x # 0. If we denote, as before, the inner product by (x, y), the last condition can
be written in the form (x, x) > 0 for all x # 0.

The dual transformation A*, as previously, is defined by condition (7.46). But
now, the matrix of the transformation 4 in an orthonormal basis is obtained from
the matrix of the transformation + not simply by taking the transpose, but by taking
the complex conjugate of the transpose. The analogue of a symmetric transforma-
tion is defined as a transformation 4 whose associated bilinear form (x, A(y)) is
Hermitian.

It is a fundamental fact that in quantum mechanics, one deals with complex space.
We can formulate what was stated earlier in the following form: observed physical
quantities correspond to Hermitian forms in infinite-dimensional complex Hilbert
space.

The theory of Hermitian transformations in the finite-dimensional case is con-
structed even more simply than the theory of symmetric transformations in real
spaces, since there is no need to prove analogues of Theorem 7.34: we know already
that an arbitrary linear transformation of a complex vector space has an eigenvector.
From the definition of being Hermitian, it follows that the eigenvalues of a Her-
mitian transformation are real. The theorems proved in this section are valid for
Hermitian forms (with the same proofs).

In the complex case, a transformation U preserving the inner product is called
unitary. The reasoning carried out in Sect. 7.2 shows that for a unitary transforma-
tion U, there exists an orthonormal basis consisting of eigenvectors, and all eigen-
values of the transformation U are complex numbers of modulus 1.

7.6 Applications to Mechanics and Geometry*

We shall present two examples from two different areas—mechanics and geome-
try—in which the theorems of the previous section play a key role. Since these
questions will be taken up in other courses, we shall allow ourselves to be brief in
both the definitions and the proofs.

Example 7.44 Let us consider the motion of a mechanical system in a small neigh-
borhood of its equilibrium position. One says that such a system possesses n degrees
of freedom if in some region, its state is determined by n so-called generalized co-
ordinates q1, . .., qn, which we shall consider the coordinates of a vector g in some
coordinate system, and where we will take the origin 0 to be the equilibrium posi-
tion of our system. The motion of the system determines the dependence of a vector
q on time ¢. We shall assume that the equilibrium position under investigation is
determined by a strict local minimum of its potential energy I1. If this value is
equal to ¢, and the potential energy is a function I71(gi, ..., g,) in the generalized
coordinates (it is assumed that it does not depend on time), then this implies that
I1,...,0)=cand I1(q1, . - ., qn) > c for all remaining values ¢, ..., g, close to
zero. From the fact that a critical point of the function I7 corresponds to the min-
imum value, we may conclude that at the point 0, all partial derivatives dI17/dg;
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become zero. Therefore, for an expansion of the function I7(q1, ..., g,) as a series
in powers of the variables gy, ..., g, at the point 0, the linear terms will be equal
to zero, and we obtain the expression I1(q1,...,qn) =c¢ + Z?,j:l bijqiqj + -,
where b;; are certain constants, and the ellipsis indicates terms of degree greater
than 2. Since we are considering motions not far from the point 0, we can disregard
those values. It is in this approximation that we shall consider this problem. That is,
we set

n
(g1, ....qn) =c+ Z bijqiq;-
i,j=1
Since I1(q1,...,qn) > c for all values ¢, ..., g, not equal to zero, the quadratic
form Z? =1 bijgiq; will be positive definite.
Kinetic energy T is a quadratic form in so-called generalized velocities dq /dt,
...,dqp/dt, which are also denoted by ¢, ..., g,, that is,

n
T=Y" ajdig;. (7.58)
ij=1

where a;; = aj; are functions of g (we assume that they do not depend on time 7).
Considering as we did for potential energy only those values g; close to zero, we
may replace all the functions a;; in (7.58) by constants a;;(0), which is what we
shall now assume. Kinetic energy is always positive except in the case that all g; are
equal to 0, and therefore, the quadratic form (7.58) is positive definite.

Motion in a broad class of mechanical systems (so-called natural systems) is
described by a rather complex system of differential equations—second-order La-
grange equations:

d (dT\ T oIl
_(__)__=_ L i=1...n (7.59)
dt \ 3¢g; ag; 9g;

Application of Theorem 7.39 makes it possible to reduce these equations in the
given situation to much simpler ones. To this end, let us find a coordinate system

in which the quadratic form Z? j=14ijXix; can be brought into the form Yo xiz,
and the quadratic form Z?,j:l bijxix; into the form > ;_, Aixiz. Then in this case,
the form )/ j=1bijxix; is positive definite, which implies that all A; are positive.
In this system of coordinates (we shall again denote them by ¢, ..., g,), the system

of equations (7.59) is decomposed into the independent equations

d*q;
dt?

=—)Liql', i:l,...,n, (7.60)

which have the solutions g; = c¢; cos \/A;t + d; sin«/A;t, where ¢; and d; are arbi-
trary constants. This shows that “‘small oscillations” are periodic in each coordinate
gi. Since they are bounded, it follows that our equilibrium position 0 is stable. If
we were to examine the state of equilibrium at a point that was a critical point of
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potential energy I7 but not a strict minimum, then in the equations (7.60) we would
not be able to guarantee that all the A; were positive. Then for those i for which
A; <0, we would obtain the solutions g; = c¢; cosh «/—A;t + d; sinh/—A;¢, which
can grow without bound with the growth of ¢. Just as for A; = 0, we would obtain
an unbounded solution ¢g; = ¢; + d;t.

Strictly speaking, we have done only the following altogether: we have replaced
the given conditions of our problem with conditions close to them, with the result
that the problem became much simpler. Such a procedure is usual in the theory of
differential equations, where it is proved that solutions to a simplified system of
equations are in a certain sense similar to the solutions of the initial system. And
moreover, the degree of this deviation can be estimated as a function of the values
of the terms that we have ignored. This estimation takes place in a finite interval of
time whose length also depends on the value of the ignored terms. This justifies the
simplifications that we have made.

A beautiful example, which played an important role historically, is given by
lateral oscillations of a string of beads.*

Suppose we have a weightless and ideally flexible thread fixed at the ends. On it
are securely fastened n beads with masses my, ..., m,, and suppose they divide the
thread into segments of lengths o, /1, ..., I,. We shall assume that in its initial state,
the thread lies along the x-axis, and we shall denote by yi, ..., y, the displacements
of the beads along the y-axis. Then the kinetic energy of this system has the form

len .
1=

Assuming the tension of the thread to be constant (as we may because the displace-
ments are small) and equal to o, we obtain for the potential energy the expression
Il = o Al, where Al = Z?:o Al; is the change in length of the entire thread, and
Al; is the change in length of the portion of the thread corresponding to /;. Then we
know the Al; in terms of the /;:

Al = I+ i1 —y)? =L, i=0,....n,

where yp = y,+1 = 0. Expanding this expression as a sum in y; 1 — y;, we obtain
quadratic terms ) ;_ %(qu_l — y;)%, and we may set

n
o 1 5
= Egz(ym — )% Y0 =Ynut1 =0.

4This example is taken from Gantmacher and Krein’s book Oscillation Matrices and Kernels and
Small Vibrations of Mechanical Systems, Moscow 1950, English translation, AMS Chelsea Pub-
lishing, 2002.
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Thus in this case, the problem is reduced to simultaneously expressing two quadratic
forms in the variables yi, ..., y, as sums of squares:

1l & . |
T=5) my, M=) +0ii =37 Y=y =0.
i=0 i=0 "

But if the masses of all the beads are equal and they divide the thread into equal
segments, thatis, m; =m and l; =1/(n+ 1),i =1, ..., n, then all the formulas can
be written in a more explicit form. In this case, we are speaking about the simulta-
neous representation as the sum of squares of two forms:

m o on+1) [« n
T:SZ)}?’ H=f<zy12_Z)’1)’z+l>, yo:yn+1=0
i=l i=1 =0

Therefore, we must use an orthogonal transformation (preserving the form ) ;_, yl.z)
to express as a sum of squares the form ) y; y;4+1 with matrix

o1 o0 --- 0 O
1 0 1 0 O
1
AL 0 1 O 0
2
0o 0o . 1 0 1
o o --- 0 1 O
It would have been possible to take the standard route: find the eigenvalues
A, ..., Ay as roots of the determinant |A — ¢ E| and eigenvectors y from the system
of equations
Ay=2Ly, (7.61)
where A = A; and y is the column of unknowns yi, ..., y,. But it is simpler to

use equations (7.61) directly. They give a system of n equations in the unknowns
Y1y ooos Ynt

y2 = 2Ay1, V1 + y3 =2Ay7, R
Yn—2+Yn = 2)\yn—1 s Yn—1= 2)\yn»
which can be written in the form
Vk—1+ Yk+1 =22y, k=1,...,n, (7.62)

where we set yo = y,+1 = 0. The system of equations (7.62) is called a recurrence
relation, whereby each value yy1 is expressed in terms of the two preceding values:
vk and yx_1. Thus if we know two adjacent values, then we can use relationship
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(7.62) to construct all the y;. The condition yp = y,+1 = 0 is called a boundary
condition.

Let us note that for A = =£1, the equation (7.62) with boundary condition yy =
Yn+1 = 0 has only the null solution: yg = --- = y,4+1 = 0. Indeed, for L =1, we
obtain

2 =2yi, y3=23y1, Yn =Ny, Ynt1 = (m+ Dy,

from which by y,4+; = 0 it follows that y; = 0, and all y; are equal to 0. Similarly,
for A = —1, we obtain

y2 = —2y1, y3=13y1, y4 = —4y1,
yo = (=1)""nyy, Ynt1 = (=D"(n+ Dy1,

from which by y,4+1 = 0 it follows as well that y; = 0, and again all the yj are equal
to zero. Thus for A = %1, the system of equations (7.61) has as its only solution
the vector y = 0, which by definition, cannot be an eigenvector. In other words, this
implies that the numbers +1 are not eigenvalues of the matrix A.

There is a lovely formula for solving equation (7.62) with boundary condition
yo = Yn+1 = 0. Let us denote by o and B the roots of the quadratic equation
2 —2az+1=0. By the above reasoning, A # =1, and therefore, the numbers
o and B are distinct and cannot equal £1. Direct substitution shows that then for
arbitrary A and B, the sequence y; = AaX + BS¥ satisfies the relationship (7.62).
The coefficients A and B taken to satisfy yo =0, y1 are given. The following yx, as
we have seen, are determined by the relationship (7.62), and this implies that again
they are given by our formula. The conditions yp = 0, y; fixed give B = —A and
A(a — B) = y1, whence A = y; /(¢ — ). Thus we obtain the expression

y
= _lﬂ (a* — %) (7.63)

We now use the condition y, | = 0, which gives o”**! = "+ Moreover, since

o and B are roots of the polynomial z> — 2z + 1, we have a8 = 1, whence 8 =o',

which implies that &>+ = 1. From this (taking into account that o # 1), we

obtain
i .
o = COS J +isin *J ,
n+1 n+1

where i is the imaginary unit, and the number j assumes the values 1, ..., n. Again
using the equation 72 — 20z + 1 =0, whose roots are o and B, we obtain n distinct

values for A:
j .
A =cos , =1,...,n,
J <n+l) J "

since j =n+2,...,2n + 1 give the same values A ;. These are precisely the eigen-
values of the matrix A. For the eigenvector y; of the associated eigenvalue A, we
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obtain by formula (7.63) its coordinates yij, ..., ¥,; in the form

wkj
j=sinl —— ), k=1,...,n.
Vij sm<n+1> n

These formulas were derived by d’Alembert and Daniel Bernoulli. Passing to the
limit as n — oo, Lagrange derived from these the law of vibrations of a uniform
string.

Example 7.45 Let us consider in an n-dimensional real Euclidean space L the subset
X given by the equation

F(x1,...,xx) =0 (7.64)

in some coordinate system. Such a subset X is called a hypersurface and consists of
all vectors x = (x1, ..., x,) of the Euclidean space L whose coordinates satisfy the
equation5 (7.64). Using the change-of-coordinates formula (3.36), we see that the
property of the subset X C L being a hypersurface does not depend on the choice
of coordinates, that is, on the choice of the basis of L. Then if we assume that the
beginning of every vector is located at a single fixed point, then every vector x =
(x1,...,x,) can be identified with its endpoint, a point of the given space. In order
to conform to more customary terminology, as we continue with this example, we
shall call the vectors x of which the hypersurface X consists its points.

We shall assume that F(0) = 0 and that the function F(xy,...,x,) is differen-
tiable in each of its arguments as many times as necessary. It is easily verified that
this condition also does not depend on the choice of basis. Let us assume in addi-
tion that 0 is not a critical point of the hypersurface X, that is, that not all partial
derivatives d F(0)/0dx; are equal to zero. In other words, if we introduce the vector
grad F = (0F /0xy,...,0F /dx,), called the gradient of the function F, then this
implies that grad F'(0) # 0.

We shall be interested in local properties of the hypersurface X, that is, prop-
erties associated with points close to 0. With the assumptions that we have made,
the implicit function theorem, known from analysis, shows that near 0, the coordi-
nates x1, ..., X, of each point of the hypersurface X can be represented as a func-
tion of n — 1 arguments uy, ..., u,—_1, and furthermore, for each point, the values
ui,...,u,—1 are uniquely determined. It is possible to choose as u1, ..., u,—1 some
n — 1 of the coordinates x, ..., x,, after determining the remaining coordinate xj
from equation (7.64), for which must be satisfied only the condition 3712(0) # 0 for
the given k, which holds because of the assumption grad F'(0) # 0. The functions

that determine the dependence of the coordinates x1, ..., x,, of a point of the hyper-
plane X on the arguments uy, ..., u,_; are differentiable at all arguments as many
times as the original function F(xy, ..., Xx,).

5The more customary point of view, when the hypersurface (for example, a curve or surface) con-
sists of points, requires the consideration of an n-dimensional space consisting of points (otherwise
affine space), which will be introduced in the following chapter.
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The hyperplane defined by the equation

n

aF
ZE(O)M =0

i=1 !

is called the rangent space or tangent hyperplane to the hypersurface X at the point
0 and is denoted by TpX. In the case that the basis of the Euclidean space L is
orthonormal, this equation can also be written in the form (grad F(0),x) =0. Asa
subspace of the Euclidean space L, the tangent space ToX is also a Euclidean space.

The set of vectors depending on the parameter ¢ taking values on some interval
of the real line, that is, x(¢) = (x1(¢), ..., x,(2)), is called a smooth curve if all
functions x; (¢) are differentiable a sufficient number of times and if for every value
of the parameter 7, not all the derivatives dx;/dt are equal to zero. In analogy to
what was said above about hypersurfaces, we may visualize the curve as consisting
of points A(t), where each A(t) is the endpoint of some vector x(¢), while all the
vectors x(¢) begin at a certain fixed point O. In what follows, we shall refer to the
vectors x that constitute the curve as its points.

We say that a curve y passes through the point x if x(fp) = x( for some value
of the parameter fy. It is clear that here we may always assume that #y) = 0. Indeed,
let us consider a different curve X (¢) = (X1 (¢), ..., X, (¢)), where the functions X; (¢)
are equal to x; (¢ + fp). This can also be written in the form X (7) = x(¢), where we
have introduced a new parameter t related to the old one by T =1 — t.

Generally speaking, for a curve we may make an arbitrary change of parameter
by the formula r = ¥ (), where the function i defines a continuously differentiable
bijective mapping of one interval to another. Under such a change, a curve, consid-
ered as a set of points (or vectors), will remain the same. From this it follows that one
and the same curve can be written in a variety of ways using various parameters.®

: dx dx dx,
We now introduce the vector G- = (7t, ..., 7). Suppose the curve y passes

dr
through the point 0 for # = 0. Then the vector p = ‘fi—’t‘ (0) is called a tangent vector

to the curve y at the point 0. It depends, of course, on the choice of parameter ¢
defining the curve. Under a change of parameter ¢ = v (7), we have

dx dx dt dx , 765
= ar a s a v (7.65)
and the tangent vector p is multiplied by a constant equal to the value of the deriva-
tive ¥/ (0). Using this fact, it is possible to arrange things so that |‘fi—f (t)]=1forall ¢
close to 0. Such a parameter is said to be natural. The condition that the curve x (¢)
belong to the hyperplane (7.64) gives the equality F(x(¢)) = 0, which is satisfied
for all ¢. Differentiating this relationship with respect to ¢, we obtain that the vector
p lies in the space TpX. And conversely, an arbitrary vector contained in 7pX can

SFor example, the circle of radius 1 with center at the origin with Cartesian coordinates x, y can be
defined not only by the formula x = cost, y = sint, but also by the formula x =cost, y = —sint
(with the replacement ¢ = —7), or by the formula x =sint, y = cost (replacement t = 5 — 7).
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be represented in the form 4 S X (0) for some curve x(¢). This curve, of course, is not
uniquely determined. Curves whose tangent vectors p are proportional are said to
be tangent at the point 0.

Let us denote by n a unit vector orthogonal to the tangent space To X. There are
two such vectors, n and —n, and we shall choose one of them. For example, we may
set

grad F

= {rad Fl (0). (7.66)

We define the vector £ dz2 as a't( Xy and set

= @O 7.67
Q_<dt2( )7”)' ( . )

Proposition 7.46 The value Q depends only on the vector p; namely, it is a
quadratic form in its coordinates.

Proof 1t suffices to verify this assertion by substituting in (7.67) for the vector n,
any vector proportional to it, for example, grad F'(0). Since by assumption, the curve
x () is contained in the hyperplane (7.64), it follows that F(x(¢),...,x,(t)) =0
Differentiating this equality twice with respect to ¢, we obtain

— 9x; dr2

IF dx;  PF dxpdxj |~ OF dxi
0, —
D 2 2

- ox; 0x; dr dt
i j*
Setting here t = 0, we see that

n 2

d*x Jd°F
(Fm),gradnm): Za o, OPiv

where p = (p1, ..., pn). This proves the assertion. [l

The form Q(p) is called the second quadratic form of the hypersurface. The
form (p?) is called the first quadratic form when TyX is taken as a subspace of a
Euclidean space L. We observe that the second quadratic form requires the selec-
tion of one of two unit vectors (r or —n) orthogonal to TypX. This is frequently
interpreted as the selection of one side of the hypersurface in a neighborhood of the
point 0.

The first and second quadratic forms give us the possibility to obtain an expres-
sion for the curvature of certain curves x(¢) lying in the hypersurface X. Let us
suppose that a curve is the intersection of a plane L’ containing the point 0 and the
hypersurface X (even if only in an arbitrarily small neighborhood of the point 0).
Such a curve is called a plane section of the hypersurface. If we define the curve
x(¢) in such a way that ¢ is a natural parameter, then its curvature at the point 0 is
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the number
=[]
We assume that k # 0 and set
1 d’x
=—-—(0).
"= an ©

The vector m has length 1 by definition. It is said to be normal to the curve x(¢) at
the point 0. If the curve x (¢) is a plane section of the hypersurface, then x (¢) lies in
the plane L’ (for all sufficiently small ), and consequently, the vector

dx . x(t+h)—x(@)

— = lim
dt  h—0 h

also lies in the plane L. Therefore, this holds as well for the vector d 2y /d 2, which
implies that it holds as well for the normal m. If the curve y is defined in terms of
the natural parameter ¢, then

dx

2_ dx dx .
T \dtdt )

dt

Differentiating this equality with respect to 7, we obtain that the vectors d’x /dt>
and dx /dt are orthogonal. Hence the normal m to the curve y is orthogonal to an
arbitrary tangent vector (for arbitrary definition of the curve y in the form x (#) with
natural parameter ¢), and the vector m is defined uniquely up to sign. It is obvious
that L’ = (m, p), where p is an arbitrary tangent vector.

By definition (7.67) of the second quadratic form Q and taking into account the
equality |m| = |r| = 1, we obtain the expression

Q(p) =(km,n) =k(m,n) =kcosg, (7.68)

where ¢ is the angle between the vectors m and n. The expression k cos ¢ is denoted
by k and is called the normal curvature of the hypersurface X in the direction p.
We recall that here n denotes the chosen unit vector orthogonal to the tangent space
ToX, and m is the normal to the curve to which the vector p is tangent. An analo-
gous formula for an arbitrary parametric definition of the curve x (#) (where ¢ is not
necessarily a natural parameter) also uses the first quadratic form. Namely, if 7 is
another parameter, while ¢ is a natural parameter, then by formula (7.65), now in-
stead of the vector p, we obtain p’ = py’(0). Since Q is a quadratic form, it follows
that Q(py/'(0)) = W(O)2 Q(p), and instead of formula (7.68), we now obtain

o(p)
(r*»

=kcosg. (7.69)
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Here the first quadratic form (p?) is already involved as well as the second quadratic
form Q(p), but now (7.69), in contrast to (7.68), holds for an arbitrary choice of
parameter ¢ on the curve y.

The point of the term normal curvature given above is the following. The section
of the hypersurface X by the plane L’ is said to be normal if n € L. The vector n
defined by formula (7.66) is orthogonal to the tangent plane Ty X . But in the plane L’
there is also the vector p tangent to the curve y, and the normal vector m orthogonal
to it. Thus in the case of a normal section n = +m, this means that in formula (7.68),
the angle ¢ is equal to 0 or 7. Conversely, from the equality | cos ¢| = 1, it follows
that n € L. Thus in the case of a normal section, the normal curvature k differs from
k only by the factor 1 and is defined by the relationship

o(p)
Ipl>

k=

Since L' = {m, p), it follows that all normal sections correspond to straight lines in
the plane L'. For each line, there exists a unique normal section containing this line.
In other words, we “rotate” the plane L’ about the vector m, considering all obtained
planes (m, p), where p is a vector in the tangent hyperplane Ty X. Thus all normal
sections of the hypersurface X are obtained.

We shall now employ Theorem 7.38. In our case, it gives an orthonormal basis
ey, ..., e,_1 in the tangent hyperplane 79X (viewed as a subspace of the Euclidean
space L) in which the quadratic form Q(p) is brought into canonical form. In other
words, for the vector p =uje; + --- 4+ u,_1€,_1, the second quadratic form takes
the form Q(p) = Alu% + -4 An_luﬁ_l. Since the basis ey, ..., e,_1 is orthonor-
mal, we have in this case

ui  (p.e)
|pil |pil

=cos¢;, (7.70)

where ¢; is the angle between the vectors p and e;. From this we obtain for the
normal curvature k of the normal section y, the formula

c_ 0 N, ()
k= L =in(ﬁ> =Y hicos’ g, (7.71)
p i=1 p i=1

where p is an arbitrary tangent vector to the curve y at the point 0. Relationships
(7.70) and (7.71) are called Euler’s formula. The numbers A; are called principal
curvatures of the hypersurface X at the point 0.

In the case n = 3, the hypersurface (7.64) is an ordinary surface and has two prin-
cipal curvatures A; and A;. Taking into account the fact that cos? o1+ cos? ¢ =1,
Euler’s formula takes the form

k= A cos? 01+ A2 cos? 0= (A1 —A2) cos? o1+ As. (7.72)

Suppose A1 > Ay. Then from (7.72), it is clear that the normal curvature k as-
sumes a maximum (equal to A1) for cos? ¢1 = 1 and a minimum (equal to Aj) for
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n n

(a) (b)

Fig. 7.10 Elliptic (a) and hyperbolic (b) points

cos? @1 = 0. This assertion is called the extremal property of the principal curva-
tures of the surface. If A; and A, have the same sign (A1A2 > 0), then as can be
seen from (7.72), an arbitrary normal section of a surface at a given point 0 has
its curvature of the same sign, and therefore, all normal sections have convexity in
the same direction, and near the point 0, the surface lies on one side of its tangent
plane; see Fig. 7.10(a). Such points are called elliptic. If A; and X, have differ-
ent signs (A1A2 < 0), then as can be seen from formula (7.72), there exist normal
sections with opposite directions of convexity, and at points near 0, the surface is lo-
cated on different sides of its tangent plane; see Fig. 7.10(b). Such points are called
hyperbolic.”

From all this discussion, it is evident that the product of principal curvatures
k = A1Az characterizes some important properties of a surface (called “internal ge-
ometric properties” of the surface). This product is called the Gaussian or total
curvature of the surface.

7.7 Pseudo-Euclidean Spaces

Many of the theorems proved in the previous sections of this chapter remain valid
if in the definition of Euclidean space we forgo the requirement of positive definite-
ness of the quadratic form (x2) or replace it with something weaker. Without this
condition, the inner product (x, y) does not differ at all from an arbitrary symmetric
bil;near form. As Theorem 6.6 shows, it is uniquely defined by the quadratic form
(x9).

We thus obtain a theory that fully coincides with the theory of quadratic
forms that we presented in Chap. 6. The fundamental theorem (on bringing a
quadratic form into canonical form) consists in the existence of an orthonormal
basis ey, ..., e,, that is, a basis for which (e;, e;) =0 for all i # j. Then for the
vector x1eq + - -+ + xpe,, the quadratic form (x2) is equal to Alxlz + -+ )\,,xrzl.

7Examples of surfaces consisting entirely of elliptic points are ellipsoids, hyperboloids of two
sheets, and elliptic paraboloids, while surfaces consisting entirely of hyperbolic points include
hyperboloids of one sheet and hyperbolic paraboloids.
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Moreover, this is true for vector spaces and bilinear forms over an arbitrary field K
of characteristic different from 2. The concept of an isomorphism of spaces makes
sense also in this case; as previously, it is necessary to require that the scalar product
(x, y) be preserved.

The theory of such spaces (defined up to isomorphism) with a bilinear or
quadratic form is of great interest (for example, in the case K = Q, the field of
rational numbers). But here we are interested in real spaces. In this case, formula
(6.28) and Theorem 6.17 (law of inertia) show that up to isomorphism, a space is
uniquely defined by its rank and the index of inertia of the associated quadratic form.

We shall further restrict attention to an examination of real vector spaces with a
nonsingular symmetric bilinear form (x, y). Let us recall that the nonsingularity of
a bilinear form implies that its rank (that is, the rank of its matrix in an arbitrary
basis of the space) is equal to dimL. In other words, this means that its radical is
equal to (0); that is, if the vector x is such that (x, y) = 0 for all vectors y € L, then
x = 0 (see Sect. 6.2). For a Euclidean space, this condition follows automatically
from property (4) of the definition (it suffices to set there y = x).

Formula (6.28) shows that with these conditions, there exists a basis ey, ..., e,
of the space L for which

(ei,e;)=0 fori# j, (ef) = £1.

Such a basis is called, as it was previously, orthonormal. In it, the form (x2) can be
written in the form

0 JE R
and the number s is called the index of inertia of both the quadratic form (x2) and
the pseudo-Euclidean space L.

A new difficulty appears that was not present for Euclidean spaces if the quadratic
form (x2) is neither positive nor negative definite, that is, if its index of inertia s is
positive but less than #. In this case, the restriction of the bilinear form (x, y) to the
subspace L’ C L can turn out to be singular, even if the original bilinear form (x, y)
in L was nonsingular. For example, it is clear that in L, there exists a vector x # 0
for which (x2) = 0, and then the restriction of (x, y) to a one-dimensional subspace
(x) is singular (identically equal to zero).

Thus let us consider a vector space L with a nonsingular symmetric bilinear form
(x, y) defined on it. In this case, we shall use many concepts and much of the nota-
tion used for Euclidean spaces earlier. Hence, vectors x and y are called orthogonal
if (x, y) = 0. Subspaces L and L, are called orthogonal if (x, y) = 0 for all vectors
x €L and y € Ly, and we express this by writing L; L L. The orthogonal comple-
ment of the subspace L’ C L with respect to the bilinear form (x, y) is denoted by
(L). However, there is an important difference from the case of Euclidean spaces,
in connection with which it will be useful to give the following definition.

Definition 7.47 A subspace L’ C L is said to be nondegenerate if the bilinear form
obtained by restricting the form (x, y) to L is nonsingular. In the contrary case, L’
is said to be degenerate.
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By Theorem 6.9, in the case of a nondegenerate subspace L’ we have the orthog-
onal decomposition

L=U@(L)". (7.73)

In the case of a Euclidean space, as we have seen, every subspace L’ is nondegen-
erate, and the decomposition (7.73) holds without any additional conditions. As the
following example will show, in a pseudo-Euclidean space, the condition of nonde-
generacy of a subspace L’ for the decomposition (7.73) is in fact essential.

Example 7.48 Let us consider a three-dimensional space L with a symmetric bilin-
ear form defined in some chosen basis by the formula

(x,y) =x1y1 +x2y2 — X33,

where the x; are the coordinates of the vector x, and the y; are the coordinates
of the vector y. Let L' = (e), where the vector e has coordinates (0, 1, 1). Then
as is easily verified, (e, e) = 0, and therefore, the restriction of the form (x, y) to
L’ is identically equal to zero. This implies that the subspace L’ is degenerate. Its
orthogonal complement (L')* is two-dimensional and consists of all vectors z € L
with coordinates (z1, z2, z3) for which z» = z3. Consequently, L’ C (L), and the
intersection L’ N (L')* = L’ contains nonnull vectors. This implies that the sum L’ 4
(L") is not a direct sum. Furthermore, it is obvious that L’ 4 (L") # L.

It follows from the nonsingularity of a bilinear form (x, y) that the determinant
of its matrix (in an arbitrary basis) is different from zero. If this matrix is written in

the basis ey, ..., e,, then its determinant is equal to
(e1,e1) (er,e2) --- (e1,ey)
(e2,e1) (e2,e2) --- (e2,ey)
. . . , (7.74)
(eqn,e1) (eq,e2) -+ (en,e€y)

and just as in the case of a Euclidean space, we shall call this its Gram determi-
nant of the basis ey, ..., e,. Of course, this determinant depends on the choice of
basis, but its sign does not depend on the basis. Indeed, if A and A’ are matrices
of our bilinear form in two different bases, then they are related by the equality
A’ = C*AC, where C is a nonsingular transition matrix, from which it follows that
|A’| = |A| - |C|*. Thus the sign of the Gram determinant is the same for all bases.
As noted above, for a nondegenerate subspace L’ C L, we have the decomposition
(7.73), which yields the equality
dimL =dimL’ + dim(L')". (7.75)
But equality (7.75) holds as well for every subspace L’ C L, although as we saw in
Example 7.48, the decomposition (7.73) may already not hold in the general case.
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Indeed, by Theorem 6.3, we can write an arbitrary bilinear form (x, y) in the
space L in the form (x, y) = (x, A(y)), where 4 : L — L* is some linear transfor-
mation. From the nonsingularity of the bilinear form (x, y) follows the nonsingular-
ity of the transformation +. In other words, the transformation 4 is an isomorphism,
that is, its kernel is equal to (0), and in particular, for an arbitrary subspace L' C L,
we have the equality dim 4(L") = dimL’. On the other hand, we can write the or-
thogonal complement (L’ )L in the form (A(L)))4, using the notion of the annihilator
introduced in Sect. 3.7. On the basis of what we have said above and formula (3.54)
for the annihilator, we have the relationship

dim(4 (L))" =dimL — dim 4 (L) = dimL — dim L',

that is, dim(L’)" = dimL — dimL’. We note that this argument holds for vector
spaces L defined not only over the real numbers, but over any field.

The spaces that we have examined are defined (up to isomorphism) by the index
of inertia s, which can take values from 0 to n. By what we have said above, the sign
of the Gram determinant of an arbitrary basis is equal to (—1)"~*. It is obvious that
if we replace the inner product (x, y) in the space L by —(x, y), we shall preserve all
of its essential properties, but the index of inertia s will be replaced by n — s, whence
in what follows, we shall assume that n/2 < s < n. The case s = n corresponds
to a Euclidean space. There exists, however, a phenomenon whose explanation is
at present not completely clear; the most interesting questions in mathematics and
physics were until now connected with two types of spaces: those in which the index
of inertia s is equal to n and those for which s =n — 1. The theory of Euclidean
spaces (s = n) has been up till now the topic of this chapter. In the remaining part,
we shall consider the other case: s =n — 1. In the sequel, we shall call such spaces
pseudo-Euclidean spaces (although sometimes, this term is used when (x, y) is an
arbitrary nonsingular symmetric bilinear form neither positive nor negative definite,
that is, with index of inertia s #£ 0, n).

Thus a pseudo-Euclidean space of dimension n is a vector space L equipped with
a symmetric bilinear form (x, y) such that in some basis ey, ..., e,, the quadratic
form (x2) takes the form

P R P (7.76)

ne

As in the case of a Euclidean space, we shall, as we did previously, call such bases
orthonormal.

The best-known application of pseudo-Euclidean spaces is related to the special
theory of relativity. According to an idea put forward by Minkowski, in this theory,
one considers a four-dimensional space whose vectors are called space—time events
(we mentioned this earlier, on p. 86). They have coordinates (x, y, z,¢), and the
space is equipped with a quadratic form x? 4+ y* + z> — t? (here the speed of light
is assumed to be 1). The pseudo-Euclidean space thus obtained is called Minkowski
space. By analogy with the physical sense of these concepts in Minkowski space, in
an arbitrary pseudo-Euclidean space, a vector x is said to be spacelike if (x?) > 0,
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Fig. 7.11 A pseudo-
Euclidean plane

A
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while such a vector is said to be timelike if (x2) < 0, and lightlike, or isotropic, if
(x2) =038

Example 7.49 Let us consider the simplest case of a pseudo-Euclidean space L with
dimL =2 and index of inertia s = 1. By the general theory, in this space there exists
an orthonormal basis, in this case the basis e, e;, for which

2 2
(e})=1, (e5)=-1,  (e1.e2)=0, (7.77)
and the scalar square of the vector x = x1e; + xpe; is equal to (x2) = x12 — x%.
However, it is easier to write the formulas connected with the space L in the basis
consisting of lightlike vectors f{, f», after setting

€ —e

fr==5— (7.78)

_e1te

f1=""

Then (f%) = (f%) =0, (f, f2) = %, and the scalar square of the vector x =
x1f1+x2f, is equal to (x%) = x1x2. The lightlike vectors are located on the co-
ordinate axes; see Fig. 7.11. The timelike vectors comprise the second and fourth
quadrants, and the spacelike vectors make up the first and third quadrants.

Definition 7.50 The set V C L consisting of all lightlike vectors of a pseudo-
Euclidean space is called the light cone (or isotropic cone).

That we call the set V' a cone suggests that if it contains some vector e, then it
contains the entire straight line (e), which follows at once from the definition. The
set of timelike vectors is called the interior of the cone V, while the set of spacelike
vectors makes up its exterior. In the space from Example 7.49, the light cone V is
the union of two straight lines (f;) and (f,). A more visual representation of the
light cone is given by the following example.

8We remark that this terminology differs from what is generally used: Our “spacelike” vectors are
usually called “timelike,” and conversely. The difference is explained by the condition s =n — 1
that we have assumed. In the conventional definition of Minkowski space, one usually considers
the quadratic form —x? — y2 — z2 4+ 2, with index of inertia s = 1, and we need to multiply it by
—1 in order that the condition s > n/2 be satisfied.
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Fig. 7.12 The light cone

€

Example 7.51 We consider the pseudo-Euclidean space L with dimL = 3 and index
of inertia s = 2. With the selection of an orthonormal basis e, e>, e3 such that

(e%):(e%):l, (95)2—1, (ej,e;) =0 foralli#j,

the light cone V is defined by the equation x12 + x% - x32 = 0. This is an ordinary
right circular cone in three-dimensional space, familiar from a course in analytic
geometry; see Fig. 7.12.

We now return to the general case of a pseudo-Euclidean space L of dimension n
and consider the light cone V in L in greater detail. First of all, let us verify that it is
“completely circular.” By this we mean the following.

Lemma 7.52 Although the cone V contains along with every vector x the entire
line (x), it contains no two-dimensional subspace.

Proof Let us assume that V contains a two-dimensional subspace (x, y). We choose
a vector e € L such that (¢?) = —1. Then the line (e) is a nondegenerate subspace of
L, and we can use the decomposition (7.73):

L= (e) D (e)". (7.79)

From the law of inertia it follows that (e)* is a Euclidean space. Let us apply the
decomposition (7.79) to our vectors x, y € V. We obtain

X=cwoe+tu, y=pBe+w, (7.80)

where u and v are vectors in the Euclidean space (e)*, while o and B are some
scalars.

The conditions (x2) =0 and (y2) = 0 can be written as o2 = (u2) and ,32 = (v?).
Using the same reasoning for the vector x + y = (o 4+ 8)e + u + v, which by the
assumption (x, y) C V is also contained in V, we obtain the equality

(@+B)?=@+v,u+v)=(u?)+2®u,v) + (v?) =a® +2(u, v) + B~

Canceling the terms «? and 82 on the left- and right-hand sides of the equality, we
obtain that o8 = (u, v), that is, (u, v)2 = 052,32 = (u?) - (v?). Thus for the vectors
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u and v in the Euclidean space (e)*, the Cauchy—Schwarz inequality reduces to
an equality, from which it follows that u# and v are proportional (see p. 218). Let
v = Au. Then the vector y — Ax = (8 — Aa)e is also lightlike. Since (e2)=—1,it
follows that B = L«. But then from the relationship (7.80), it follows that y = Ax,
and this contradicts the assumption dim(x, y) = 2. O

Let us select an arbitrary timelike vector e € L. Then in the orthogonal comple-
ment ()’ of the line (e), the bilinear form (x, y) determines a positive definite
quadratic form. This implies that (e)~ NV = (0), and the hyperplane (e)* divides
the set V \ 0 into two parts, V; and V_, consisting of vectors x € V such that in
each part, the condition (e, x) > 0 or (e, x) < 0 is respectively satisfied. We shall
call these sets V. and V_ poles of the light cone V. In Fig. 7.12, the plane (eq, e3)
divides V into “upper” and “lower” poles V and V_ for the vector e = e3.

The partition V \ 0 = V, U V_ that we have constructed rested on the choice of
some timelike vector e, and ostensibly, it must depend on it (for example, a change
in the vector e to —e interchanges the poles V; and V_). We shall now show that
the decomposition V \ 0 = V. U V_, without taking into account how we designate
each pole, does not depend on the choice of vector e, that is, it is a property of
the pseudo-Euclidean space itself. To do so, we shall require the following, almost
obvious, assertion.

Lemma 7.53 Let L' be a subspace of the pseudo-Euclidean space L of dimension
dimL’ > 2. Then the following statements are equivalent:

(1) U is a pseudo-Euclidean space.
(2) U contains a timelike vector.
(3) L contains two linearly independent lightlike vectors.

Proof If ' is a pseudo-Euclidean space, then statements (2) and (3) obviously fol-
low from the definition of a pseudo-Euclidean space.

Let us show that statement (2) implies statement (1). Suppose L’ contains a time-
like vector e. That is, (e2) < 0, whence the subspace (e) is nondegenerate, and
therefore, we have the decomposition (7.79), and moreover, as follows from the
law of inertia, the subspace (e) is a Euclidean space. If the subspace L’ were de-
generate, then there would exist a nonnull vector u € L” such that (u,x) = 0 for
all x € L, and in particular, for vectors e and u. The condition (u, e) = 0 implies
that the vector u is contained in (e)*, while the condition (u,u) =0 implies that
the vector u is lightlike. But this is impossible, since the subspace (e)* is a Eu-
clidean space and cannot contain lightlike vectors. This contradiction shows that the
subspace L’ is nondegenerate, and therefore, it exhibits the decomposition (7.73).
Taking into account the law of inertia, it follows from this that the subspace L' is a
pseudo-Euclidean space.

Let us show that statement (3) implies statement (1). Suppose the subspace L’
contains linearly independent lightlike vectors f; and f,. We shall show that the
plane IT = (f, f,) contains a timelike vector e. Then obviously, e is contained
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Fig. 7.13 The plane IT in a

three-dimensional ". O
pseudo-Euclidean space \v v

(@ (b) (©)

in L', and by what was proved above, the subspace L’ is a pseudo-Euclidean space.
Every vector e € IT can be represented in the form e = « f| + B f,. From this, we
obtain (e?) = 2aB(f, f»). We note that (f,, f,) # 0, since in the contrary case,
for each vector e € IT, the equality (e?) = 0 would be satisfied, implying that the
plane I7 lies completely in the light cone V, which contradicts Lemma 7.52. Thus
(f1, f2) #0, and choosing coordinates @ and B such that the sign of their product
is opposite to the sign of (f;, f,), we obtain the vector e, for which (€)<0. O

Example 7.54 Let us consider the three-dimensional pseudo-Euclidean space L
from Example 7.51 and a plane I7 in L. The property of a plane I7 being a Euclidean
space, a pseudo-Euclidean space, or degenerate is clearly illustrated in Fig. 7.13.

In Fig. 7.13(a), the plane [T intersects the light cone V in two lines, correspond-
ing to two linearly independent lightlike vectors. Clearly, this is equivalent to the
condition that IT also intersects the interior of the light cone, which consists of
timelike vectors, and therefore is a pseudo-Euclidean plane. In Fig. 7.13(c), it is
shown that the plane [T intersects V only in its vertex, that is, /71 NV = (0). This
implies that the plane /7 is a Euclidean space, since every nonnull vector e € IT lies
outside the cone V, that is, (e2) > 0.

Finally, in Fig. 7.13(b) is shown the intermediate variant: the plane I7 intersects
the cone V in a single line, that is, it is tangent to it. Since the plane IT contains
lightlike vectors (lying on this line), it follows that it cannot be a Euclidean space,
and since it does not contain timelike vectors, it follows by Lemma 7.53 that it
cannot be a pseudo-Euclidean space. This implies that IT is degenerate.

This is not difficult to verify in another way if we write down the matrix of the
restriction of the inner product to the plane I7. Suppose that in the orthonormal basis
e1, ez, ez from Example 7.49, this plane is defined by the equation x3 = ax] + Bx3.
Then the vectors g; = e; + ae3z and g, = e2 + Be3 form a basis of [T in which

ek
the restriction of the inner product has matrix (1 0; : “/f )
—af 1—

(1 —a?)(1 — %) — (aB)?. On the other hand, the assumption of tangency of the
plane IT and cone V amounts to the discriminant of the quadratic form xl2 + x22 —
(axy + ,3x2)2 in the variables x| and x, being equal to zero. It is easily verified that
this discriminant is equal to — A, and this implies that it is zero precisely when the
determinant of this matrix is zero.

) with determinant A =
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Theorem 7.55 The partition of the light cone V into two poles Vi and V_ does
not depend on the choice of timelike vector e. In particular, the linearly independent
lightlike vectors x and y lie in one pole if and only if (x,y) <O.

Proof Let us assume that for some choice of timelike vector e, the lightlike vectors
x and y lie in one pole of the light cone V, and let us show that then, for any choice
e, they will always belong to the same pole. The case that the vectors x and y are
proportional, that is, y = Ax, is obvious. Indeed, since (e)- NV = (0), it follows
that (e, x) # 0, and this implies that the vectors x and y belong to one pole if and
only if A > 0, independent of the choice of the vector e.

Now let us consider the case that x and y are linearly independent. Then
(x,y) #0, since otherwise, the entire plane (x, y) would be contained in the light
cone V, which by Lemma 7.52, is impossible. Let us prove that regardless of what
timelike vector e we have chosen for the partition V \ 0 = V. U V_, the vectors
x,y € V \ 0 belong to one pole if and only if (x, y) < 0. Let us note that this ques-
tion, strictly speaking, relates not to the entire space L, but only to the subspace
(e, x, y), whose dimension, by the assumptions we have made, is equal to 2 or 3,
depending on whether the vector e does or does not lie in the plane (x, y).

Let us consider first the case dim(e, x, y) = 2, that is, e € (x, y). Then let us set
e = ax + By. Consequently, (e,x) = B(x, y) and (e, y) =a(x, y),sincex,y € V.
By definition, vectors x and y are in the same pole if and only if (e, x)(e, y) > O.
But since (e, x)(e, y) = af(x, y)?, this condition is equivalent to the inequality
aff > 0. The vector e is timelike, and therefore, (ez) < 0, and in view of the equality
(ez) =2af(x, y), we obtain that the condition o > 0 is equivalent to (x, y) <O.

Let us now consider the case that dim(e, x, y) = 3. The space (e, x, y) contains
the timelike vector e. Consequently, by Lemma 7.53, it is a pseudo-Euclidean space,
and its subspace (x, y) is nondegenerate, since (x, y) # 0 and (x?) = (y?) = 0.
Thus here the decomposition (7.73) takes the form

(e,x,y)=(x,y) @ (h), (7.81)
where the space (h) = (x, y)* is one-dimensional. On the left-hand side of the
decomposition (7.81) stands a three-dimensional pseudo-Euclidean space, and the
space (x,y) is a two-dimensional pseudo-Euclidean space; therefore, by the law
of inertia, the space (k) is a Euclidean space. Thus for the vector e, we have the
representation

e=ax+By+yh, (h,x)=0, (h,y)=0.
From this follows the equality
(€.x)=px,y), (ey)=axy), (&)=20px y)+r(#).

Taking into account the fact that (%) <0 and (hz) > 0, from the last of these re-
lationships, we obtain that ¢8(x, y) < 0. The condition that the vectors x and y
lie in one pole can be expressed as the inequality (e, x)(e, y) > 0, that is, a8 > 0.
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Since af(x, y) < 0, it follows as in the previous case that this is equivalent to the
condition (x, y) <O0. O

Remark 7.56 As we did in Sect. 3.2 in connection with the partition of a vector
space L by a hyperplane L, it is possible to ascertain that the partition of the set
V '\ 0 coincides with its partition into two path-connected components V. and V_.
From this we can obtain another proof of Theorem 7.55 without using any formulas.

A pseudo-Euclidean space emerges in the following remarkable relationship.

Theorem 7.57 For every pair of timelike vectors x and y, the reverse of the
Cauchy—Schwarz inequality is satisfied:

(x, 1) = (x?) - (»?). (7.82)

which reduces to an equality if and only if x and y are proportional.

Proof Let us consider the subspace (x, y), in which are contained all the vectors of
interest to us. If the vectors x and y are proportional, that is, y = Ax, where A is
some scalar, then the inequality (7.82) obviously reduces to a tautological equality.
Thus we may assume that dim(x, y) = 2, that is, we may suppose ourselves to be in
the situation considered in Example 7.49.

As we have seen, in the space (x, y), there exists a basis f, f, for which the
relationship (ff) = (f%) =0, (f, fo) = % holds. Writing the vectors x and y in
this basis, we obtain the expressions

x=x1f1+x2f>, y=wfi+»fo

from which it follows that

1
(x?) = x1x2, (¥*) =yiy2. (x,y)= E(X1y2+xzy1)~

Substituting these expressions into (7.82), we see that we have to verify the inequal-
ity (x1y2+x2y1)% > 4x1x2y1 y2. Having carried out in the last inequality the obvious
transformations, we see that this is equivalent to the inequality

(x1y2 — x2y1)? > 0, (7.83)

which holds for all real values of the variables. Moreover, it is obvious that the
inequality (7.83) reduces to an equality if and only if x;y» — x>y =0, that is, if and
only if the determinant | :1 ;C; | equals 0, and this implies that the vectors x = (x1, x2)
and y = (y1, y2) are proportional. 0

From Theorem 7.57 we obtain the following useful corollary.

Corollary 7.58 Two timelike vectors x and y cannot be orthogonal.
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Proof Indeed, if (x, y) =0, then from the inequality (7.82), it follows that (x2) -
(y?) <0, and this contradicts the condition (x%) < 0 and (y?) < 0. O

Similar to the partition of the light cone V into two poles, we can also partition
its interior into two parts. Namely, we shall say that timelike vectors e and e’ lie
inside one pole of the light cone V if the inner products (e, x) and (e’, x) have the
same sign for all vectors x € V and lie inside different poles if these inner products
have opposite signs.

A set M C L is said to be convex if for every pair of vectors e, e’ € M, the vectors
g, =te+ (1 —1)e’ are also in M for all ¢ € [0, 1]. We shall prove that the interior
of each pole of the light cone V is convex, that is, the vector g, lies in the same
pole as e and e’ for all ¢ € [0, 1]. To this end, let us note that in the expression
(g;,x)=t(e,x)+ (1 —1)(€, x), the coefficients 7 and 1 — 7 are nonnegative, and
the inner products (e, x) and (¢’, x) have the same sign. Therefore, for every vector
x € V, the inner product (g,, x) has the same sign as (e, x) and (¢, x).

Lemma 7.59 Timelike vectors e and €' lie inside one pole of the light cone V if and
only if (e, e") < 0.

Proof If timelike vectors e and e’ lie inside one pole, then by definition, we have
the inequality (e, x) - (¢/, x) > 0 for all x € V. Let us assume that (e, e’) > 0. As we
established above, the vector g, = re + (1 —r)e’ is timelike and lies inside the same
pole as e and e’ for all € [0, 1].

Let us consider the inner product (g,,e) =1(e, e) + (1 —t)(e, €) as a function
of the variable ¢ € [0, 1]. It is obvious that this function is continuous and that it
assumes for t = 0 the value (e, e’) > 0, and for r = 1 the value (e, ) < 0. There-
fore, as is proved in a course in calculus, there exists a value t € [0, 1] such that
(g.,e) =0. But this contradicts Corollary 7.58.

Thus we have proved that if vectors e and e’ lie inside one pole of the cone V,
then (e, €’) < 0. The converse assertion is obvious. Let e and e’ lie inside different
poles, for instance, e is within V., while ¢’ is within V_. Then we have by defini-
tion that the vector —e’ lies inside the pole V., and therefore, (e, —e’) < 0, that is,
(e,e") > 0. a

7.8 Lorentz Transformations

In this section, we shall examine an analogue of orthogonal transformations for
pseudo-Euclidean spaces called Lorentz transformations. Such transformations have
numerous applications in physics.” They are also defined by the condition of pre-
serving the inner product.

9For example, a Lorentz transformation of Minkowski space—a four-dimensional pseudo-
Euclidean space—plays the same role in the special theory of relativity (which is where the term
Lorentz transformation comes from) as that played by the Galilean transformations, which describe
the passage from one inertial reference frame to another in classical Newtonian mechanics.
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Definition 7.60 A linear transformation U of a pseudo-Euclidean space L is called
a Lorentz transformation if the relationship

(U, UW) = (x,y) (7.84)

is satisfied for all vectors x, y € L.

As in the case of orthogonal transformations, it suffices that the condition (7.84)
be satisfied for all vectors x = y of the pseudo-Euclidean space L. The proof of this
coincides completely with the proof of the analogous assertion in Sect. 7.2.

Here, as in the case of Euclidean spaces, we shall make use of the inner product
(x,y) in order to identify L* with L (let us recall that for this, we need only the
nonsingularity of the bilinear form (x, y) and not the positive definiteness of the
associated quadratic form (x2)). As a result, for an arbitrary linear transformation
A L — L, we may consider A™* also as a transformation of the space L into itself.
Repeating the same arguments that we employed in the case of Euclidean spaces,
we obtain that |A*| = |»|. In particular, from definition (7.84), it follows that for a
Lorentz transformation U, we have the relationship

U*AU = A, (7.85)

where U is the matrix of the transformation U in an arbitrary basis e, . .., e, of the
space L, and A = (a;;) is the Gram matrix of the bilinear form (x, y), that is, the
matrix with elements a;; = (e;, e;).

The bilinear form (x, y) is nonsingular, that is, |A| # 0, and from the relationship
(7.85) follows the equality |U|%> = 1, from which we obtain that |U| = %1. As in
the case of a Euclidean space, a transformation with determinant equal to 1 is called
proper, while if the determinant is equal to —1, it is improper.

It follows from the definition that every Lorentz transformation maps the light
cone V into itself. It follows from Theorem 7.55 that a Lorentz transformation either
maps each pole into itself (that is, U(V,) = V4 and U(V_) = V_), or else inter-
changes them (that is, U(V;) = V_ and U(V_) = V). Let us associate with each
Lorentz transformation U the number v(U) = +1 in the first case, and v(U) = —1
in the second. Like the determinant |U/|, this number v(U) is a natural character-
istic of the associated Lorentz transformation. Let us denote the pair of numbers
U, v(U)) by e(U). It is obvious that

e(U™) =e(W),  e(UiU) = e(UDe(Un),

where on the right-hand side, it is understood that the first and second components
of the pairs are multiplied separately. We shall soon see that in an arbitrary pseudo-
Euclidean space, there exist Lorentz transformations U of all four types, that is,
with e(U) taking all values

(+1,+D), (+1,-1), (=1,+D), (=1, =D.
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This property is sometimes interpreted as saying that a pseudo-Euclidean space has
not two (as in the case of a Euclidean space), but four orientations.

Like orthogonal transformations of a Euclidean space, Lorentz transformations
are characterized by the fact that they map an orthonormal basis of a pseudo-
Euclidean space to an orthonormal basis. Indeed, suppose that for the vectors of
the orthonormal basis ey, .. ., e,, the equalities

(ei,e;)=0 fori#j, (e%)=~-~=(e,%_l)=l, (ei):—l (7.86)
are satisfied. Then from the condition (7.84), it follows that the images U(e), ...,
U(e,) satisfy analogous equalities, that is, they form an orthonormal basis in L.
Conversely, if for the vectors e;, the equality (7.86) is satisfied and analogous equal-
ities hold for the vectors U(e;), then as is easily verified, for arbitrary vectors x and
y of the pseudo-Euclidean space L, the relationship (7.84) is satisfied.

Two orthonormal bases are said to have the same orientation if for a Lorentz
transformation U taking one basis to the other, e(U) = (41, +1). The choice of
a class of bases with the same orientation is called an orientation of the pseudo-
Euclidean space L. Taking for now on faith the fact (which will be proved a lit-
tle later) that there exist Lorentz transformations U with all theoretically possible
e(U), we see that in a pseudo-Euclidean space, it is possible to introduce exactly
four orientations.

Example 7.61 Let us consider some concepts about pseudo-Euclidean spaces that
we encountered in Example 7.49, that is, for dimL = 2 and s = 1. As we have seen,
in this space, there exists a basis f, f, for which the relationships ( f %) =(f %) =
0,(f1, f2)= %, are satisfied, and the scalar square of the vector x = x f| + y f, is
equal to (x%) = xy. If U : L — L is a Lorentz transformation given by the formula

x'=ax + by, y =cx +dy,

then the equality (U(x), U(x)) = (x, x) for the vector x = x f| + y f, takes the
form x’y’ = xy, that is, (ax + by)(cx + dy) = xy for all x and y. From this, we
obtain

ac =0, bd =0, ad +bc=1.

In view of the equality ad + bc = 1, the values a = b = 0 are impossible.
If a # 0, then ¢ = 0, and this implies that ad = 1, that is, d = a~! #0and b =0.
Thus the transformation U has the form

x' =ax, y =aly. (7.87)

This is a proper transformation.
On the other hand, if b # 0, then d = 0, and this implies that ¢ = b~!, a=0.The
transformation U has in this case the form

x' =by, y =b"1x. (7.88)
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This is an improper transformation.

If we write the transformation U in the form (7.87) or (7.88), depending on
whether it is proper or improper, then the sign of the number a or respectively b
indicates whether U interchanges the poles of the light cone or preserves each of
them. Namely, let us prove that the transformation (7.87) causes the poles to change
places if a < 0, and preserves them if @ > 0. And analogously, the transformation
(7.88) interchanges the poles if b < 0 and preserves them if b > 0.

By Theorem 7.55, the partition of the light cone V into two poles V, and V_
does not depend on the choice of timelike vector, and therefore, by Lemma 7.59, we
need only determine the sign of the inner product (e, U(e)) for an arbitrary timelike
vector e. Let e = x f| + v f,. Then (e?) = xy < 0. In the case that U is a proper
transformation, we have formula (7.87), from which it follows that

Ue)=ax fi+a 'y fs, (e. ‘li(e))z(a—i—a*l)xy.

Since xy < 0, the inner product (e, U (e)) is negative if a + a—1>0,and positive if
a+a~! <0.Butitis obviousthata+a~! > 0fora > 0,anda+a~! <0fora < 0.
Thus for a > 0, we have (e, U(e)) < 0, and by Lemma 7.59, the vectors e and U(e)
lie inside one pole. Consequently, the transformation U preserves the poles of the
light cone. Analogously, for a < 0, we obtain (e, U (e)) > 0, that is, e and U(e) lie
inside different poles, and therefore, the transformation U interchanges the poles.

The case of an improper transformation can be examined with the help of for-
mula (7.88). Reasoning analogously to what has gone before, we obtain from it the
relationships

Ue)=b"yfi+bxf,, (e, Ule)) = bx* + b 'y?,

from which it is clear that now the sign of (e, U(e)) coincides with the sign of the
number b.

Example 7.62 1t is sometimes convenient to use the fact that a Lorentz transfor-
mation of a pseudo-Euclidean plane can be written in an alternative form, using
the hyperbolic sine and cosine. We saw earlier (formulas (7.87) and (7.88)) that in
the basis f, f, defined by the relationship (7.78), proper and improper Lorentz
transformations are given respectively by the equalities

Uf) =af,, Uf)=a 'f
Uf)=bfr  UfD=b"f1.

From this, it is not difficult to derive that in the orthonormal basis e, e;, related
to f1, f, by formula (7.78), these transformations are given respectively by the
equalities

+a! a—a-

a
U(ey) = 7 e+ S e

(7.89)
a—a! a—+ a”!
U(er) = ;€ + 5 e
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b+b! b—b!

U(er) = 56— e
(7.90)
b—b! b+b~!
U(er) = S 6 - e

Setting here a = +e¥ and b = +eV, where the sign & coincides with the sign of the
number a or b in formula (7.89) or (7.90) respectively, we obtain that the matrices
of the proper transformations have the form

coshyy  sinhyr —coshyy —sinhy
<sinh1p COShI/f) o <—sinh1p —coshlp)’ (7.91)

while the matrices of the improper transformations have the form

coshyr sinh v —coshy —sinhyr
(— sinhy» —cosh 1/1) or ( sinh ¢ coshyr > ’ (7.92)

where sinh ¢y = (¥ — ¢~ ¥)/2 and coshyy = (¢¥ + e~ ") /2 are the hyperbolic sine
and cosine.

Theorem 7.63 In every pseudo-Euclidean space there exist Lorentz transforma-
tions U with all four possible values of e(U).

Proof For the case dimL = 2, we have already proved the theorem: In Exam-
ple 7.62, we saw that there exist four distinct types of Lorentz transformation of a
pseudo-Euclidean space having in a suitable orthonormal basis the matrices (7.91),
(7.92). It is obvious that with these matrices, the transformation U gives all possible
values g(U).

Let us now move on to the general case dimL > 2. Let us choose in the pseudo-
Euclidean space L an arbitrary timelike vector e and any e’ not proportional to it.
By Lemma 7.53, the two-dimensional space (e, e’) is a pseudo-Euclidean space
(therefore nondegenerate), and we have the decomposition

L=(e,e)® e, e’)L
From the law of inertia, it follows that the space (e, e’)l is a Euclidean space. In Ex-
ample 7.62, we saw that in the pseudo-Euclidean plane (e, e’), there exists a Lorentz
transformation U, with arbitrary value ¢(U). Let us define the transformation
U:L—Las U;in (e, €') and & in (e, e’)l, that is, for a vector x = y + z, where
yec (e ée)andz € (e, e')", we shall set U(x) = Ui (y) + z. Then U is clearly a
Lorentz transformation, and (U) = e(Uy). O

There is an analogue to Theorem 7.24 for Lorentz transformations.

Theorem 7.64 If a space L' is invariant with respect to a Lorentz transformation
U, then its orthogonal complement (L) is also invariant with respect to U.
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Proof The proof of this theorem is an exact repetition of the proof of Theorem 7.24,
since there, we did not use the positive definiteness of the quadratic form (x2) as-
sociated with the bilinear form (x, y), but only its nonsingularity. See Remark 7.25
on p. 227. g

The study of a Lorentz transformation of a pseudo-Euclidean space is reduced to
the analogous question for orthogonal transformations of a Euclidean space, based
on the following result.

Theorem 7.65 For every Lorentz transformation U of a pseudo-Euclidean space
L, there exist nondegenerate subspaces Lo and L| invariant with respect to U such
that L has the orthogonal decomposition

L=LodL;, LopLllLy, (7.93)

where the subspace L is a Euclidean space, and the dimension of L1 is equal to 1,
2, 0r3.

It follows from the law of inertia that if dimL; = 1, then L; is spanned by a
timelike vector. If dimL; = 2 or 3, then the pseudo-Euclidean space L; can be rep-
resented in turn by a direct sum of subspaces of lower dimension invariant with
respect to U. However, such a decomposition is no longer necessarily orthogonal
(see Example 7.48).

Proof of Theorem 7.65 The proof is by induction on n, the dimension of the space L.
For n = 2, the assertion of the theorem is obvious—in the decomposition (7.93) one
has only to set Lo = (0) and L; = L.'°

Now let n > 2, and suppose that the assertion of the theorem has been proved for
all pseudo-Euclidean spaces of dimension less than n. We shall use results obtained
in Chaps. 4 and 5 on linear transformations of a vector space into itself. Obviously,
one of the following three cases must hold: the transformation U has a complex
eigenvalue, U has two linearly independent eigenvectors, or the space L is cyclic
for U, corresponding to the only real eigenvalue. Let us consider the three cases
separately.

Case 1. A linear transformation U of a real vector space L has a complex eigen-
value L. As established in Sect. 4.3, then U also has the complex conjugate eigen-
value A, and moreover, to the pair A, A there corresponds the two-dimensional real
invariant subspace L’ C L, which contains no real eigenvectors. It is obvious that L’
cannot be a pseudo-Euclidean space: for then the restriction of U to L would have
real eigenvalues, and L’ would contain real eigenvectors of the transformation U;
see Examples 7.61 and 7.62. Let us show that L’ is nondegenerate.

10The nondegeneracy of the subspace Ly = (0) relative to a bilinear form follows from the defi-
nitions given on pages 266 and 195. Indeed, the rank of the restriction of the bilinear form to the
subspace (0) is zero, and therefore, it coincides with dim(0).
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Suppose that L’ is degenerate. Then it contains a lightlike vector e # 0. Since U
is a Lorentz transformation, the vector U (e) is also lightlike, and since the subspace
L’ is invariant with respect to U, it follows that U(e) is contained in L’. Therefore,
the subspace L’ contains two lightlike vectors: e and U(e). By Lemma 7.53, these
vectors cannot be linearly independent, since then L’ would be a pseudo-Euclidean
space, but that would contradict our assumption that L’ is degenerate. From this, it
follows that the vector U (e) is proportional to e, and that implies that e is an eigen-
vector of the transformation U, which, as we have observed above, cannot be. This
contradiction means that the subspace L’ is nondegenerate, and as a consequence, it
is a Euclidean space.

Case 2. The linear transformation U has two linearly independent eigenvectors: e
and e. If at least one of them is not lightlike, that is, (el.z) #0, then L' = (e;) is
a nondegenerate invariant subspace of dimension 1. And if both eigenvectors e
and e are lightlike, then by Lemma 7.53, the subspace L' = (e, e;) is an invariant
pseudo-Euclidean plane.

Thus in both cases, the transformation U has a nondegenerate invariant subspace
L’ of dimension 1 or 2. This means that in both cases, we have an orthogonal de-
composition (7.73), that is, L =L’ @ (L')*. If L’ is one-dimensional and spanned by
a timelike vector or is a pseudo-Euclidean plane, then this is exactly decomposition
(7.93) with Lg = (L')* and L; = L. In the opposite case, the subspace L’ is a Eu-
clidean space of dimension 1 or 2, and the subspace (L)' is a pseudo-Euclidean
space of dimension n — 1 or n — 2 respectively. By the induction hypothesis, for
(L)L, we have the orthogonal decomposition (L’ b= L6 @ L} analogous to (7.93).
From this, for L we obtain the decomposition (7.93) with Lo =L' @ L and Ly =L].

Case 3. The space L is cyclic for the transformation U, corresponding to the unique
real eigenvalue A and principal vector e of grade m = n. Obviously, for n = 2, this
is impossible: as we saw in Example 7.61, in a suitable basis of a pseudo-Euclidean
plane, a Lorentz transformation has either diagonal form (7.87) or the form (7.88)
with distinct eigenvalues £1. In both cases, it is obvious that the pseudo-Euclidean
plane L cannot be a cyclic subspace of the transformation U.

Let us consider the case of a pseudo-Euclidean space L of dimension n > 3. We
shall prove that L can be a cyclic subspace of the transformation U only if n = 3.

As we established in Sect. 5.1, in a cyclic subspace L, there is a basis e, ..., e,
defined by formula (5.5), that is,

e =e, er=(U—ArE)(e), e, :(U—ké‘)"‘l(e), (7.94)
in which relationships (5.6) hold:

U(e)) =rej + e, U(er) = rey + e3, e U(e,) = re,. (7.95)
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In this basis, the matrix of the transformation U has the form of a Jordan block

A 0 O 0
I » 0 0
0 1 2 0
U=| - T . (7.96)
: oA 0
00 0 -+ 1 A

It is easy to see that the eigenvector e, is lightlike. Indeed, if we had (eﬁ) #0,
then we would have the orthogonal decomposition L = (e,,) ® (e,,)", where both
subspaces (e,,) and (e,)" are invariant. But this contradicts the assumption that the
space L is cyclic.

Since U is a Lorentz transformation, it preserves the inner product of vectors,
and from (7.95), we obtain the equality

(ei,en) = (Ulei), Ulen)) = (he; + eiq1, hey)
=22(e;, en) + A(eit1, €n) (7.97)

foralli=1,...,n—1.
If 22 # 1, then from (7.97), it follows that

(ei,en) = ]_)h—)hz(el#l »€n).
Substituting into this equality the values of the index i =n — 1, ..., 1, taking into
account that (e%) = 0, we therefore obtain step by step that (e;, e,) = 0 for all i.
This means that the eigenvector e, is contained in the radical of the space L, and
since L is a pseudo-Euclidean space (that is, in particular, nondegenerate), it follows
that e, = 0. This contradiction shows that A2 = 1.

Substituting A> = 1 into the equalities (7.97) and collecting like terms, we find
that (¢; 41, e,) =0 forallindicesi =1, ...,n—1, thatis, (e}, e,) = 0 for all indices
Jj =2,...,n. In particular, we have the equalities (e,—_1,e,) =0 for n > 2 and
(e,—2, e,) =0 for n > 3. From this it follows that n = 3. Indeed, from the condition
of preservation of the inner product, we have the relationship

(en—2,€n—1) = (‘u(en72), u(enfl)) = (rep—2 t+ey—1,1ep—1 +ey)

=2 (en—2. en—1) + A(en—2,€,) + A(ep_,) + (a1, €n),

from which, taking into account the relationships A2 =1 and (e,_1,e,) =0, we
have the equality (e,—2, e,) + ("’371) =0.If n > 3, then (e,_», e,;) =0, and from
this, we obtain that (eﬁ_l) = 0, that is, the vector e, _ is lightlike.

Let us examine the subspace L' = (e, e,—_1). It is obvious that it is invariant
with respect to the transformation U, and since it contains two linearly independent
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lightlike vectors e, and e,_, then by Lemma 7.53, the subspace L’ is a pseudo-
Euclidean space, and we obtain the decomposition L =L’ @ (L) as a direct sum
of two invariant subspaces. But this contradicts the fact that the space L is cyclic.
Therefore, the transformation U can have cyclic subspaces only of dimension 3.
Putting together cases 1, 2, and 3, and taking into account the induction hypoth-
esis, we obtain the assertion of the theorem. O

Combining Theorems 7.27 and 7.65, we obtain the following corollary.

Corollary 7.66 For every transformation of a pseudo-Euclidean space, there exists
an orthonormal basis in which the matrix of the transformation has block-diagonal
form with blocks of the following types:

1. blocks of order 1 with elements £1;

2. blocks of order 2 of type (7.29);

3. blocks of order 2 of type (7.91)—(7.92);

4. blocks of order 3 corresponding to a three-dimensional cyclic subspace with
eigenvalue £1.

It follows from the law of inertia that the matrix of a Lorentz transformation can
contain not more than one block of type 3 or 4.

Let us note as well that a block of type 4 corresponding to a three-dimensional
cyclic subspace cannot be brought into Jordan normal form in an orthonormal basis.
Indeed, as we saw earlier, a block of type 4 is brought into Jordan normal form in the
basis (7.94), where the eigenvector e, is lightlike, and therefore, it cannot belong to
any orthonormal basis.

With the proof of Theorem 7.65 we have established necessary conditions for a
Lorentz transformation to have a cyclic subspace—in particular, its dimension must
be 3, corresponding to an eigenvalue equal to =1, and eigenvector that is lightlike.
Clearly, these necessary conditions are not sufficient, since in deriving them, we
used the equalities (e;, ex) = (U(e;), U(er)) for only some of the vectors of the
basis (7.94). Let us show that Lorentz transformations with cyclic subspaces indeed
exist.

Example 7.67 Let us consider a vector space L of dimension n = 3. Let us choose
in L a basis ey, e, e3 and define a transformation U : L — L using relationships
(7.95) with the number A = £1. Then the matrix of the transformation U will take
the form of a Jordan block with eigenvalue A.

Let us choose the Gram matrix for a basis ey, €2, e3 such that L is given the struc-
ture of a pseudo-Euclidean space. With the proof of Theorem 7.65, we have found
necessary conditions (ez, e3) =0 and (e%) = 0. Let us set (e%) =a, (e1,ey) =b,
(e1,e3) =c, and (e%) =d. Then the Gram matrix can be written as

A= (7.98)

o S Q
[« EESWEN
SO0
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On the other hand, as we know (see Example 7.51, p. 270), in L there exists an
orthonormal basis in which the Gram matrix is diagonal and has determinant —1.
Since the sign of the determinant of the Gram matrix is one and the same for all
bases, it follows that |[A| = —c%d <0, that is, ¢ #0andd > 0.

The conditions ¢ # 0 and d > 0 are also sufficient for the vector space in which
the inner product is given by the Gram matrix A in the form (7.98) to be a pseudo-
Euclidean space. Indeed, choosing a basis g, g,, g3 in which the quadratic form
associated with the matrix A has canonical form (6.28), we see that the condition
|A| < O is satisfied by, besides a pseudo-Euclidean space, only a space in which
(gl.2) = —1foralli =1,2,3. But such a quadratic form is negative definite, that is,
(x2) < 0 for all vectors x # 0, and this contradicts that (e%) =d > 0.

Let us now consider the equalities (e;, ex) = (U(e;), U(ey)) for all indices i <k
from 1 to 3. Taking into account A2=1, (e2,e3) =0, and (e%) =0, we see that they
are satisfied automatically except for the cases i =k =1 and i = 1, k = 2. These
two cases give the relationships 2Ab + d = 0 and ¢ + d = 0. Thus we may choose
the number a arbitrarily, the number d to be any positive number, and set ¢ = —d
and b = —Xd /2. It is also not difficult to ascertain that linearly independent vectors
e1, e2, ez satisfying such conditions in fact exist.

Just as in a Euclidean space, the presence of different orientations of a pseudo-
Euclidean space determined by the value of ¢(U) for the Lorentz transformation
U is connected with the concept of continuous deformation of a transformation
(p- 230), which defines an equivalence relation on the set of transformations.

Let U, be a family of Lorentz transformations continuously depending on the pa-
rameter . Then |U;| also depends continuously on ¢, and since the determinant of
a Lorentz transformation is equal to %1, the value of |U;| is constant for all z. Thus
Lorentz transformations with determinants having opposite signs cannot be contin-
uously deformed into each other. But in contrast to orthogonal transformations of a
Euclidean space, Lorentz transformations U; have an additional characteristic, the
number v(U,) (see the definition on p. 276). Let us show that like the determinant
|U;|, the number v(U,) is also constant.

To this end, let us choose an arbitrary timelike vector e and make use of
Lemma 7.59. The vector U; (e) is also timelike, and moreover, v(U;) = +1 if e and
U, (e) lie inside one pole of the light cone, that is, (e, U;(e)) < 0, and v(U;) = —1
if e and U, (e) lie inside different poles, that is, (e, U,;(e)) > 0. It then remains to
observe that the function (e, U;(e)) depends continuously on the argument ¢, and
therefore can change sign only if for some value of ¢, it assumes the value zero. But
from inequality (7.82) for timelike vectors x = e and y = U;(e), there follows the
inequality

(e, ‘ul‘(e))2 > (ez) . (‘u,(e)z) >0,

showing that (e, U, (e)) cannot be zero for any value of 7.
Thus taking into account Theorem 7.63, we see that the number of equivalence
classes of Lorentz transformations is certainly not less than four. Now we shall
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show that there are exactly four. To begin with, we shall establish this for a pseudo-
Euclidean plane, and thereafter shall prove it for a pseudo-Euclidean space of arbi-
trary dimension.

Example 7.68 The matrices (7.91), (7.92) presenting all possible Lorentz transfor-
mations of a pseudo-Euclidean plane can be continuously deformed into the matri-

ces
10 -1 0
=60 om0 5
10 -1 0
(o 5) =)

respectively. Indeed, we obtain the necessary continuous deformation if in the ma-
trices (7.91), (7.92) we replace the parameter ¢ by (1 — )y, where ¢ € [0, 1]. It is
also clear that none of the four matrices (7.99) can be continuously deformed into
any of the others: any two of them differ either by the signs of their determinants
or in that one of them preserves the poles of the light cone, while the other causes
them to exchange places.

(7.99)

In the general case, we have an analogue of Theorem 7.28.

Theorem 7.69 Two Lorentz transformations U, and Uy of a real pseudo-
Euclidean space are continuously deformable into each other if and only if e(U1) =
e(Uyp).

Proof Just as in the case of Theorem 7.28, we begin with a more specific assertion:
we shall show that an arbitrary Lorentz transformation U for which

e(W) = (Ul v(W) = (+1,+1) (7.100)

holds can be continuously deformed into &. Invoking Theorem 7.65, let us examine
the orthogonal decomposition (7.93), denoting by U; the restriction of the transfor-
mation U to the invariant subspace L;, where i = 0, 1. We shall investigate three
cases in turn.

Case 1. In the decomposition (7.93), the dimension of the subspace L is equal to
1, that is, L; = (e), where (e?) < 0. Then to the subspace Li, there corresponds
in the matrix of the transformation U a block of order 1 with o = 41 or —1,
and Ug is an orthogonal transformation that depending on the sign of o, can be
proper or improper, so that the condition |U| = o|Up| = 1 is satisfied. However,
it is easy to see that for o = —1, we have v(U) = —1 (since (e, U(e)) > 0), and
therefore, the condition (7.100) leaves only the case o = +1, and consequently, the
orthogonal transformation U is proper. Then U is the identity transformation (of
a one-dimensional space). By Theorem 7.28, an orthogonal transformation Uy is
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continuously deformable into the identity, and therefore, the transformation U is
continuously deformable into &.

Case 2. In the decomposition (7.93), the dimension of the subspace L is equal to
2, that is, L is a pseudo-Euclidean plane. Then as we established in Examples 7.62
and 7.68, in some orthonormal basis of the plane L, the matrix of the transformation
U1 has the form (7.92) and is continuously deformable into one of the four matrices
(7.99). It is obvious that the condition v(U) = 1 is associated with only the matrix
E and one of the matrices F,, F3, namely the one in which the eigenvalues +1
correspond to the eigenvectors g, in such a way that (gi) <0 and (g2_) > 0. In
this case, it is obvious that we have the orthogonal decompositionL; = (g, ) ®(g_).

If the matrix of the transformation U is continuously deformable into E, then
the orthogonal transformation U is proper, and it follows that it is also continuously
deformable into the identity, which proves our assertion.

If the matrix of the transformation U; is continuously deformable into F, or
F3, then the orthogonal transformation Uy is improper, and consequently, its matrix
is continuously deformable into the matrix (7.32), which has the eigenvalue —1
corresponding to some eigenvector & € Lo. From the orthogonal decomposition L =
Lo (g, ) ® (g_), taking into account (gi) < 0, it follows that the invariant plane
L' = (g_, h) is a Euclidean space. The matrix of the restriction of U to L’ is equal
to —E, and is therefore continuously deformable into E£. And this implies that the
transformation U is continuously deformable into &.

Case 3. In the decomposition (7.93), the subspace L; is a cyclic three-dimensional
pseudo-Euclidean space with eigenvalue A = 1. This case was examined in detail
in Example 7.67, and we will use the notation introduced there. It is obvious that the
condition v(U) = 1 is satisfied only for A = 1, since otherwise, the transformation
U, takes the lightlike eigenvector e3 to —es, that is, it transposes the poles of the
light cone. Thus condition (7.100) corresponds to the Lorentz transformation U
with the value ¢(U1) = (+1, +1) and proper orthogonal transformation Uy.

Let us show that such a transformation U is continuously deformable into the
identity. Since Uy is obviously also continuously deformable into the identity, this
will give us the required assertion.

Thus let . = 1. We shall fix in L; a basis ey, e>, e3 satisfying the following con-
ditions introduced in Example 7.67:

2 _ —_— e
(e}) =a, (e1,€2) = > (7.101)

(er,e3)=—d,  (e3)=d,  (e2,e3)=(e3)=0
with some numbers a and d > 0. The Gram matrix A in this basis has the form

(7.98) with ¢ = —d and b = —d /2, while the matrix U; of the transformation U
has the form of a Jordan block.



7.8 Lorentz Transformations 287

Let U; be a linear transformation of the space L; whose matrix in the basis
ey, ey, e3 has the form

1 00
u=|1+t 1 0], (7.102)
o) t 1

where 7 is a real parameter taking values from 0 to 1, and ¢(#) is a continuous func-
tion of ¢ that we shall choose in such a way that U; is a Lorentz transformation. As
we know, for this, the relationship (7.85) with matrix U = U; must be satisfied. Sub-
stituting in the equality U;AU; = A the matrix A of the form (7.98) with ¢ = —d
and b = —d/2 and matrix U; of the form (7.102) and equating corresponding el-
ements on the left- and right-hand sides, we obtain that the equality UFAU; = A
holds if ¢(¢) = ¢(t — 1)/2. For such a choice of function ¢(¢), we obtain a family
of Lorentz transformations U; depending continuously on the parameter ¢ € [0, 1].
Moreover, it is obvious that for # = 1, the matrix U; has the Jordan block U, while
for t =0, the matrix U, equals E. Thus the family U; effects a continuous defor-
mation of the transformation U into &.

Now let us prove the assertion of Theorem 7.69 in general form. Let ‘W be a
Lorentz transformation with arbitrary ¢('W). We shall show that it can be continu-
ously deformed into the transformation ¥, having in some orthonormal basis the

block-diagonal matrix
E 0
(5 #)

where E is the identity matrix of order n — 2 and F’ is one of the four matrices
(7.99). It is obvious that by choosing a suitable matrix F’, we may obtain the Lorentz
transformation & with any desired (¥ ). Let us select the matrix F’ in such a way
that e(F) = e(W).

Let us select in our space an arbitrary orthonormal basis, and in that basis, let
the transformation W have matrix W. Then the transformation U having in this
same basis the matrix U = W F is a Lorentz transformation, and moreover, by our
choice of ¢(F) = (W), we have the equality e(U) = e(W)e(F) = (41, +1). Fur-
ther, from the trivially verified relationship F ~1 — F, we obtain W = UF, that is,
W = UF . We shall now make use of a family U; that effects the continuous defor-
mation of the transformation U into &. From the equality ' W = U ¥, with the help
of Lemma 4.37, we obtain the relationship 'W; = U;F, in which Wy = §F = F
and W) = UF = W. Thus it is this family 'W; = U, F that accomplishes the defor-
mation of the Lorentz transformation ‘W into ¥ .

If U; and U, are Lorentz transformations such that e(U;) = e(U>), then by
what we showed earlier, each of them is continuously deformable into & with one
and the same matrix F’. Consequently, by transitivity, the transformations U, and
U, are continuously deformable into each other. g

Similarly to what we did in Sects. 4.4 and 7.3 for nonsingular and orthogonal
transformations, we can express the fact established by Theorem 7.69 in topological
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form: the set of Lorentz transformations of a pseudo-Euclidean space of a given
dimension has exactly four path-connected components. They correspond to the four
possible values of (U).

Let us note that the existence of four (instead of two) orientations is not a specific
property of pseudo-Euclidean spaces with the quadratic form (7.76), as was the case
with the majority of properties of this section. It holds for all vector spaces with a
bilinear inner product (x, y), provided that it is nonsingular and the quadratic form
(x?) is neither positive nor negative definite. We can indicate (without pretending
to provide a proof) the reason for this phenomenon. If the form (x2), in canonical
form, appears as

x12+---—|—)c52—xs2Jrl —--~—x,%, wheres € {1,...,n — 1},
then the transformations that preserve it include first of all, the orthogonal trans-
formations preserving the form x% + -+ xs2 and not changing the coordinates
Xs41,---5Xp, and secondly, the transformations preserving the quadratic form
xs2 + + " + x,% an§ not chal.lging the c.oordi.nates X1, ..., Xs. Every type of transfor-
mation is “responsible” for its own orientation.
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