Chapter 2
Discrete One-Dimensional Phononic
and Resonant Crystals

Pierre A. Deymier and L. Dobrzynski

Abstract The objective of this chapter is to introduce the broad range of concepts
necessary to appreciate and understand the various aspects and properties of
phononic crystals and acoustic metamaterials described in subsequent chapters.
These concepts range from the most elementary concepts of vibrational waves,
propagating waves, and evanescent waves, wave vector, phase and group velocity,
Bloch waves, Brillouin zone, band structure and band gaps, and bands with negative
group velocities in periodic or locally resonant structures. Simple models based
on the one-dimensional harmonic crystal serve as vehicles for illustrating these
concepts. We also illustrate the application of some of the tools used to study and
analyze these simple models. These analytical tools include eigenvalue problems
(o(k) or k(w)) and Green’s function methods. The purpose of this chapter is
primarily pedagogical. However, the simple models discussed herein will also
serve as common threads in each of the other chapters of this book.

2.1 One-Dimensional Monoatomic Harmonic Crystal

The one-dimensional (1-D) monoatomic harmonic crystal consists of an infinite
chain of masses, m, with nearest neighbor interaction modeled by harmonic springs
with spring constant, 5. The separation distance between the masses at rest is
defined as a. This model system is illustrated in Fig. 2.1.
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Fig. 2.1 Schematic illustration of one 1-D mono-atomic harmonic crystal

In the absence of external forces, the equation describing the motion of atom “n”

is given by
d*u,
dr?

m = Plups1 — up) — B(uy — ty—1). 2.1
In this equation, u, represents the displacement of the mass “n” with respect to its
position at rest. The first term on the right-hand side of the equal sign is the
harmonic force on mass “n” resulting from the spring on its right. The second
term is the force due to the spring on the left of “n.” The dynamics of the 1-D
monoatomic harmonic crystal can, therefore, be studied by solving (2.2):

d’u,
m
dr?

= Bunt1 — 21y + 1y—1). (2.2)

The next subsections aim at seeking solutions of (2.2).

2.1.1 Propagating Waves

We seek solutions to (2.2) in the form of propagating waves:
U, = Aeilmaeiwt7 (23)

where & is a wave number and o is an angular frequency. Inserting solutions of the
form given by (2.3) into (2.2) and simplifying by Ae!***el’ one obtains the relation
between angular frequency and wave number:

ika ika 2
=P (e‘T - eJT> . 2.4)
m

We use the relation 2isin0 = e — e~ and the fact that  is a positive quantity
to obtain the so-called dispersion relation for propagating waves in the 1-D har-
monic crystal:

(k) = wo’sinkg’, (2.5)

with wg = 2\/5 representing the upper limit for angular frequency. Since the

monoatomic crystal is discrete and waves with wave-length 4 = 27“ larger than 2a
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Fig. 2.2 Tllustration of the
dispersion relation for
propagating waves in 1-D
mono-atomic harmonic
crystal

-m/a m/a

are physically equivalent to those with wave-length smaller than 2a, the dispersion

relation of (2.5) needs only be represented in the symmetrical interval k£ € [— . %]
(see Fig. 2.2). This interval is the first Brillouin zone of the 1-D monoatomic

periodic crystal.

2.1.2 Phase and Group Velocity

The velocity at which the phase of the wave with wave vector, k, and angular
frequency, w, propagates is defined as

[(0)]
Vo= 2.6)

The group velocity is defined as the velocity at which a wave packet (a
superposition of propagating waves with different values of wave number ranging
over some interval) propagates. It is easier to understand this concept by consider-
ing the superposition of only two waves with angular velocities, w; and @,, and
wave vectors, k; and k. Choosing, w; =w —22 and w, =w+242, and,
ky =k — % and kp =k + %. The superposition of the two waves, assuming that

99,

they have the same amplitude, A, leads to the displacement field at mass “n’:

dna i Ak A
Ul = 24e*" e cos (— na + =2 t) ) 2.7
2 2
The first part of the right-hand side of (2.7) is a traveling wave that is modulated
by the cosine term. This later term represents a beat pulse. The velocity at which
this modulation travels is the group velocity and is given by

Aw

= 2.8)

Vg
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In the limit of infinitesimally small differences in wave number and frequency,
the group velocity is expressed as a derivative of the dispersion relation:

_ dofk)

=" 2.9)

In the case of the 1-D harmonic crystal, the group velocity is given by v = wq
gcosks.

We now open a parenthesis concerning the group velocity and show that it is also
equal to the velocity of the energy transported by a propagating wave. To that effect,
we calculate the average energy density as the sum of the potential energy and the
kinetic energy averaged over one cycle of time. The average energy is given by

1 1
<E> = Eﬁ(un - Mnfl)(un - Mnfl)* + Emul‘lu; (210)

In (2.10), the * denotes the complex conjugate and # the time derivative of
the displacement (i.e., the velocity of the mass “n”). Inserting into (2.10) the
displacements given by (2.3) and the dispersion relation given by (2.5) yields the
average energy density:

() :——4A2Esm 3 (2.11)

We now calculate the energy flow through one unit cell of the 1-D crystal in the

form of the real part of the power, @, defined as the product of the force on mass “n
due to one spring and the velocity of the mass:

® = Re{B(unr1 — un )it }zﬁAzwolsinkg’Sinka. (2.12)

The velocity of the energy, ve, is therefore the ratio of the energy flow to the
average energy density, which after using trigonometric relations yields: ve = wg§
cosk . This expression is the same as that of the group velocity. In summary, the
group velocity represents also the velocity of the energy transported by the
propagating waves in the crystal.

2.1.3 Evanescent Waves

In Sect. 2.1.1, we sought solutions to the equation of motion (2.2) in the form of
propagating waves (Eq. (2.3)). We may also seek solutions in the form of
nonpropagating waves with exponentially decaying amplitude:

" 1l H
u, = Ae—k naelk naelwt. (213)
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Equation (2.13) can be obtained by inserting a complex wave number k = k'+
ik"into (2.3). Combining solutions of the form given by (2.13) and the equation of
motion (2.2), one gets

2
spla _phta _ipla pha
—mw? = ﬁ(e‘kle K5 _ e K3k 2) . (2.14)

Since the mass and the angular frequency are positive numbers, (2.14) possesses
solutions only when the difference inside the parenthesis is imaginary. This condi-
tion is met at the edge of the Brillouin zone, when, k' = % In this case, (2.14) yields
the dispersion relation:

w = wqcosh k” g. (2.15)

This condition is only met for angular frequencies greater than wy, that is, for
frequencies above the dispersion curves of propagating waves illustrated in
Fig. 2.2.

The solutions of (2.2) in the form of propagating and evanescent waves did not
need to be postulated as was done above and in Sect. 2.1.1. We illustrate below a
different path to solving (2.2). Instead of solving for the frequency as a function of
wave number, this approach solves for the wave number as a function of frequency.
This approach is particularly interesting as it will enable us to determine iso-
frequency maps in wave vector space when dealing with 2-D or 3-D phononic
structures.

We start with (2.4) and rewrite it in the form

—mo? = (et — 2 4 ey, (2.16)

We now define the new variable: X = el** . Consequently, equation (2.16)
becomes a quadratic equation in terms of X:

X2+ (%a)22>X+10. 2.17)

This equation has two solutions, which in terms of wg are

1 2
X= o (0 —20%) £ o w?(0? — w}). (2.18a)

The solutions given by (2.18a) are real or complex depending on the value of
the angular frequency. Let us consider first the case, w < g, for which

1 2i
X= p (0§ —20%) + p w?(w} — 0?). (2.18b)
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We now generalize the problem to complex wave numbers k = k’ + ik”. In this
case, X should take the form

X = e ¥osk'a + ie ' *sink'a. (2.19)

We identify the real and imaginary parts of equations (2.18b) and (2.19) and
solve for k” and k. We find using standard trigonometric relations that £ = 0 and

sin’k’ § = & . This solution corresponds to propagating waves with a dispersion
0

relation equivalent to that previously found in Sect. 2.1.1 (Eq. (2.5)).

In contrast, when we consider w>wy, (2.18a) remains purely real. The real part
of (2.19) should then be equal to the right-hand side term of (2.18a). We will denote
this term A~ (w). The imaginary part of (2.19) is zero. A trivial solution exists for
k' = 0. However, in this case, the function h*(w) is always negative and one cannot

find a corresponding value for k”. There exists another solution, namely, &' =%

(there is also a similar solution k' = — ), for which, we obtain
1"+ 1 +
K= (w) = —=In(—=h~(w)). (2.20)
a

One of the solutions given by (2.20) is positive and the other negative. In the
former case, the displacement is representative of an exponentially decaying
evanescent wave. In the latter case, the displacement grows exponentially. This
second solution is unphysical. This unphysical solution is a mathematical artifact of
the approach used here as it leads to a quadratic equation in X (i.e., k) for a 1-D
monoatomic crystal. Since this crystal has only one mass per unit cell “a” it should
exhibit only one solution for (k) in the complex plane. We illustrate in Fig. 2.3 the
dispersion relations for the propagating and evanescent waves in the complex plane
k=K +ik".

2.1.4 Green’s Function Approach

In anticipation of subsequent sections where Green’s function approaches will be
used to shed light on the vibrational behavior of more complex harmonic structures,
we present here the Green’s function formalism applied to the 1-D monoatomic
crystal. Considering harmonic solution with angular frequency w, the equation of
motion (2.2) can be recast in the form

%[ﬁunﬂ + (maw?* = 2B)u, + Pu,_] = 0. (2.21)
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Fig. 2.3 Dispersion curves
for the 1-D mono-atomic
harmonic crystal extended to
the wave-number complex
plane. The black solid curves
are for propagating waves,
and the grey solid curve is for
the evanescent waves

We now rewrite (2.21) in matrix form when applying it to all masses in the 1-D
monoatomic crystal:

. 1 0 p —y 0 0 0 0
Ho i = — 00 B —y B 00 u, | =101, (222
0 0 0 B 0 0

Upi1

where y = 2 — mw?. The operator, 7—7(; , 1 a more compact representation of
the dynamic matrix in (2.22), and i/is the vector whose components are the
displacements of the masses in the crystal. With this notation, the Green’s function,

a, associated with m is defined by the relation

HoGo = 1. (2.23)

In this equation, 1 is the identity matrix. Equation (2.23) is written in component
form as

S Ho(n,n")Go(n", ) = 8. (2.24)

Here, we have used the Kroenecker symbol 5:“1 to represent the components
of the identity matrix, that is 1 when n =n' and 0 when n # n’. Since Hy is
tridiagonal (harmonic interactions are limited to first nearest neighbors), (2.23)
becomes

nlq[ﬁGo(n + 1,n") —yGo(n,n') + BGo(n — 1,7")] = Sy (2.25)
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From a physical point of view, the Green’s function Gy (n, n’) is the displacement

of mass “n” when a unit external force is applied at the site of mass “n’”. The
solution of (2.25) is known [1] and has the general form

m t\nfn/H»l

Go(n,n') = BA-1"

(2.26)

The quantity, ¢, is determined by inserting this general solution into (2.25) and
choosing n = . In this case, we obtain the simple quadratic equation:

P —28+1=0, (2.27)

2

with & = ZL/i =1- % =1- % The resolution of the quadratic equation yields

@ -0 it e
=3 @-1)" i oe<—1 - (2.28)
cril-)" i —1<e<

We note that for we [0, wo] and e [—1, 1] #is a complex quantity. We introduce
some wave number, k, and write this complex quantity, ¢ = e'**. We equate the
real part and the imaginary part of this quantity with those of the third form of
the solution in (2.28) and using standard trigonometric relations, we obtain the
dispersion relation given by (2.5). We therefore recover the propagating wave
solution in the crystal. For, ® > wy and ¢ < — 1, fe[—1,0]. Introducing a wave
number, k, we can therefore rewrite £ = —coshka and ¢ = —e’k“represents an
evanescent wave. .

As a final note, we recast the operator,m, as the difference, H'g — a)27, where the
operator, H'y, depends on the spring constant f§ only. Equation (2.23) then states that

- -/ — -1
Go =1 (H’o — wz) : (2.29)

meaning that the poles (zeros of the denominator) of the Green’s function are the
eigenvalues of the operator, H'g. According to (2.26), the poles of the Green’s
function of the 1-D monoatomic harmonic crystal are, therefore, given by the
equation

£ —1=0. (2.30)

This condition is met when ¢ = €** = cos ka + i sin ka. In the case, el0, wo], t =

E+i(1— 52)1/2 if —1 < & < 1. We can subsequently writecos ka = & =1 — 22

o2
Do

which, using trigonometric relation, reduces to the dispersion relation of propagating
waves in the crystal (Eq. (2.5)).
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2.2 Periodic One-Dimensional Harmonic Crystals

2.2.1 One-Dimensional Monoatomic Crystal and Super-Cell
Approach

We consider again the 1-D monoatomic harmonic crystal but treat it as a periodic
system with a super-period, R = Na i.e., a super-cell representation of the crystal.
This system is represented in Fig. 2.4.

We will solve the equation of motion of the mass, “/” in the first super-cell, that
is, /¢ [0, N — 1]. Equation (2.21) applied to “/” is

— mo’u; = Bupyy — 2w+ up_y). (2.31)

In contrast to Sect. 2.1, we now assume that the displacement obeys Block’s
theorem [2]. The solutions of (2.31) are the product of plane waves and a periodic
function of the super-cell structure:

up (k) = e (k). (2.32)

The periodic function, & (k) , satisfies the condition: #;(k) = &,y (k). The wave
number, &, is now limited to the interval: [— % ,1%] . The periodic function (k) is
subsequently written in the form of a Fourier series:

(k) =y g (k) e, (233)

where the reciprocal lattice vector of the periodic structure of super-cells g = %m
with m being an integer. Inserting (2.33) and (2.32) into (2.31) gives after some
algebra

> (R [ e? — (ke — g i) | o, (2.34)
8

In addition to the trivial solution, ug(k) = 0, (2.34) admits nontrivial dispersion
relations:

a

(k) = w()’sin (k+g) 2‘. (2.35)

We illustrate this dispersion relation for a super-cell 2a long and containing two
masses. For N = 2, the reciprocal space vectors, ¢ = Zn. Equation (2.35) becomes

sin(k +Zn)a

(k) = wy 2
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0 1 peee | =+« Ry=Na ---- .=« Ro=2Na

Fig. 2.4 Schematic representation of the 1-D mono-atomic crystal as a periodic structure with
super-period Na

-w/2a O TM/2a

Fig. 2.5 Schematic illustration of the dispersion relation of the 1-D monoatomic harmonic crystal
in the super-cell representation, N = 2

When n = 0, this dispersion relation is identical to that given by (2.5) that was
illustrated in Fig. 2.2. The dispersion relation when n = 1is equivalent to that of
(2.5) translated along the wave number axis by % . For n = 2a and other even
values, one obtains again the same result than for n = 0. The case n = 3 and other
odd values are identical to the case n = 1. There are therefore only two possible
nonequivalent representations of the dispersion relation (2.35). These dispersion
relations are only valid in the interval of wave number: [—Z Z|. They are
illustrated in Fig. 2.5.

In the super-cell representation, the dispersion relation consists of two branches
that can be obtained graphically by folding the dispersion curve of Fig. 2.2 about
two vertical lines at wave numbers — 7 and - . The super-cell representation of
the band structure of the monoatomic crystal is a purely mathematical representa-
tion. In general, one can construct the band structure of a super-cell with period
R = Na by folding the single dispersion curve of Fig. 2.2 N times inside a reduced
Brillouin zone: [07 [%} . We will show in the next section that this representation
may be useful in interpreting the band structure of the 1-D diatomic harmonic
crystal.

2.2.2 One-Dimensional Diatomic Harmonic Crystal

The 1-D diatomic harmonic crystal is illustrated in Fig. 2.6.
The equations of motion of two adjacent odd and even atoms are

{ ny 1.4.2;1 = ﬂ(u2n+l — Uy, + u2n—l) (2 36)

Malion1 = P(Uzna — Uzps1 — Uzy)
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2n-1 2n 2n#1

Fig. 2.6 Schematic illustration of the 1-D diatomic harmonic crystal. The atoms with an even
label have a mass my, and the odd atoms have a mass m,. The force constant of the springs is /5. The
periodicity of the crystal is 2a

We seek solutions in the form of propagating waves with different amplitudes
for odd or even atoms as their masses are different:
(2.37)

{MZn _ Aeimteiana

Uopi) = Bel(utelk(2n+1)a :

Inserting these solutions into (2.36) leads, after some algebraic manipulations
and using the definition of the cosine in terms of complex exponentials, to the set of
two linear equations in A and B:

(2B — miw?*)A — 2B coskaB = 0 (2.38)
—2BcoskaA + (2 — mw*)B=0" ’

This is an eigenvalue problem in ?. This set of equations admits nontrivial
solutions (i.e., A # 0, B # 0) when the determinant of the matrix composed of the
linear coefficients in equation (2.38) is equal to zero, that is,

2B —myw* —2B cos ka
=0. 2.
‘ —28B cos ka 2B — mrw? 0 (2.39)

Setting o = w?, (2.39) takes the form of the quadratic equation:

11 44?
o —2p <— + —) o+ b sin’ka = 0, (2.40)
ny niy ny myp

which admits two solutions:

1 1 1 1\* 4
wzzoc:ﬁ<—+—> i\/ﬁ2<—+—> —Lsinzka. (2.41)
m;  nmy mp  np my ny

These two solutions are periodic in wave number, k, with a period of § These
solutions are represented graphically in the band structure of Fig. 2.7 over the
interval, k¢ [0, £]. This interval is the smallest interval, the so-called irreducible
Brillouin zone, for representing the band structure. The complete band structure is
reconstructed by mirror symmetry with respect to a vertical line passing though the
origin.
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Fig. 2.7 Schematic
representation of the band
structure of the 1-D diatomic
harmonic crystal in the
irreducible Brillouin zone

The frequencies w;, w; and ws; are given by w; = \/fn:/f, Wy = \/i:'g, and
w3 = Zﬁ(mil—i—mlz) if one chooses mj;>m;,. The band structure of Fig. 2.7

exhibits two branches since the unit cell of the 1-D diatomic crystal contains
two atoms. These branches are separated by a gap in the interval of frequency
[y, wy]. The low-frequency branch is called the acoustic branch. The high-
frequency branch is called the optical branch. In the limit m; = my = m, the
diatomic crystal reduces to a monoatomic crystal. The band structure of Fig. 2.7
becomes that of the 1-D monoatomic harmonic crystal in the super-cell repre-
sentation with N =2 (see Fig. 2.5). The construction of the band structure
of the diatomic crystal may then be understood conceptually by first considering
the folded band structure of the monoatomic crystal with a super-period R = 2a.
The waves with wave number k =- have a wavelength A= 27": 4a. The
wavelength is twice the period of the diatomic crystal. Then, we label alter-
nating atoms with odd and even numbers in the monoatomic crystal. If at some
instant an even atom undergoes a zero displacement, then the displacement of
all other even atoms will also be zero. At the same time, all odd number atoms
will be subjected to a maximum displacement. The even atom and odd atom
sublattices support the 1 = 4a wave with the same frequency as long as their
masses are the same. However, if now one perturbs the monoatomic crystal by
making the mass of atoms on one sub-lattice different from the atoms on the
other (leading to the formation of a diatomic crystal), the frequency of the 1 = 4a
wave will be lower for the heavier atoms than for the lighter ones. Approaching
the diatomic crystal by perturbing the masses of the monoatomic crystals sepa-
rates the folded branches of the monoatomic crystal at k =, leading to the
formation of a gap.

It is interesting to note that in contrast to the acoustic branch, the optical branch
has a negative slope, i.e., a negative group velocity. The group velocity and energy
velocity point in a direction opposite to the direction of the wave vector and of the
phase velocity. This observation is particularly important when dealing with the
concept of negative refraction. However, since the diatomic crystal is one
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dimensional, we cannot address the phenomenon of refraction yet. However, we
rewrite the real part of the displacement of a superposition of waves given by (2.7)
in the form

uy = 2A cos(k(na + v,t)) cos (% (na + vgt)> . (2.42)

Equation (2.42) shows that the envelope of the wave packet appears to propagate
in the opposite direction of the superposition of waves when the phase velocity
and the group velocity have opposite signs.

2.2.3 Evanescent Waves in the Diatomic Crystal

In this section, we use the method introduced in Sect. 2.1.3 to shed some light on the
nature of waves with frequencies corresponding to the gap of Fig. 2.7. For this, we
start with (2.38) and recast it in the form
—miw*A = fBe*® — 2BA + fBe ke
2p _ ika —ika * (2.43)
—myw B = fAe™ — 2B + fAe

We set X = ' and insert it into the equations of motion (2.43) to obtain after
some algebraic manipulations the set of two quadratic equations:

2
X2A = —A +X(2 — mzﬁa’ )B

e
X’B = —B +X(2 —M)A

(2.44)
p

Equation (2.44) is recast further in the form of an eigenvalue problem taking the
matrix form

0 0 1 0
A 0 0 1 ) A
B np B
=1 -1 0 0 2 —
X XA 8 XA (2.45)
2
XB 0 1 o Mo 0 XB
There exists a nontrivial solution when
—a 0 1 0
0 —u 0 1 5
mMow
-1 0 —0  2- 2[3 -0 (2.46)
2
0 -1 2-"M® —u
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In (2.46), the eigenvalues are o = e'**. This equation yields a fourth-order
equation:

2 2
a4+a2{2—<2—%)(2—%ﬂ+1=0. (2.47)

By setting { = o? = el?

solutions are

, we transform (2.47) in a quadratic equation whose

2
22
w1wy

Vo (@ — 0}) (02 — o) (0 - 3).

(2.48)

1 2 2 4 )
C:w%w% (wla)2—|—2w —2w a)3)j:

To obtain (2.48), we have used the relations w; = \/%, Wy = \/fn:lj and w3
= 2ﬁ(mil+miz) = Vor+ . If 0<w<w; or wy<w<ws, then the argument

of the square root in equation (2.48) is negative and { is a complex function of
frequency corresponding to propagating waves (i.e., real wave number k). These
cases represent the acoustic and optical branches of the band structure of the
diatomic crystal. Inside the gap (w;<w<w,), { is a real function. Introducing a
complex wave number k = k' + ik” we redefine { as the quantity:

¢ =e X082k a + ie " sin 2K a. (2.49)

{is therefore real only when sin 2k’ a = 0, that is when X" = .. Equating the real
part of (2.49) to (2.48) leads to two solutions for k”. The positive solution is
unphysical as it represents an exponentially increasing wave. Again, the emergence
of this unphysical solution results from the fact that in the current eigenvalue
problem we used a 4 x 4 matrix (Eq. (2.45)) that is two times larger than the actual
2 x 2 dynamical matrix of the diatomic harmonic crystal. The negative solution for
k" corresponds to an evanescent wave with exponentially decaying amplitude.
Similarly, the vibrational modes for frequencies beyond w3 also correspond to
evanescent waves. The complete band structure of the 1-D diatomic harmonic
crystal is illustrated schematically in Fig. 2.8.

2.2.4 Monoatomic Crystal with a Mass Defect

To shed additional light on the origin of the band gap in the band structure of the
diatomic harmonic crystal, we investigate the propagation of waves in a 1-D
monoatomic harmonic crystal with a single mass defect. This is accomplished by
substituting one atom with mass m by another atom with mass m’. The diatomic
crystal may subsequently be created as a periodic substitution of atoms with
different masses. We address the following question: does the gap originate from
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w3

/ m/2a
kl|

Fig. 2.8 Complete band structure of the 1-D diatomic harmonic crystal. The black solid lines
correspond to propagating waves. The gray lines correspond to evanescent waves

m' m
-2 -1 0 1 2

Fig. 2.9 Schematic illustration of the 1-D mono-atomic harmonic crystal with a single mass
defect at site 0. The springs are all identical with the same spring constant

the scattering of propagating waves by mass defects independently of their period-
icity or does the gap originate from the periodic arrangement of the mass defects?
The defected monoatomic crystal is illustrated in Fig. 2.9.
The equations of motion of the atoms in the defected crystal are

a2y — _
{ meuy = Plupsr — 2y +tty-y) for n#0 (2.50)

—m'w?u, = Bluy —2ug +u_1)
Let us consider an incident wave (i) propagating from the left of the crystal:

ul) = A for n < —1. (2.51)

Part of this wave will be reflected by the mass defect. Another part of the
incident wave will be transmitted through the defect. We write the displacements
associated with these reflected and transmitted waves in the form

uﬁf) = Ae e for < —1

ul) = Ae™ for n>1. (2.52)
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In (2.52), the upper-scripts (r) and (t) stand for reflected and transmitted
waves, respectively. The total displacement on the left of the defect is the sum
of the incident and reflected displacement. The displacement on the right of the
defect consists only of the transmitted wave. The total displacement is therefore
given by

uy =ul) +ul” for n< -1
u, =ulV for n>1. (2.53)

The continuity of the displacement at the defected site “0” imposes the condition
uo = uf) +ul = ul. (2.54)

Substituting (2.51) and (2.52) into the condition (2.54) yields a relation between
the amplitudes of the incident, the reflected, and the transmitted waves:

Ai + A, = A, (2.55)

We now substitute equations (2.51), (2.52), and (2.54) into (2.50) for the motion
of the mass n7'. After some algebraic steps, this equation becomes

(=m' @ + 2B — Be*)Ar = Aife ™ + ArPe™. (2.56)

Equations (2.55) and (2.56) constitute a set of linear equations in the amplitudes
of the incident, reflected, and transmitted waves. We can express the amplitude of
the reflected and transmitted waves in terms of the amplitude of the incident wave
to define a transmission coefficient and a reflection coefficient:

T A P2isin ka
A (m — m)w? + BRisinka
A, —(m' — m)w?
R="= . 2.57
Ai  (m' —m)w? + P2isinka (2:57)

To obtain (2.57), we have used the fact that for the 1-D monoatomic harmonic
crystal, the dispersion relation of (2.5) can be recast in the form maw? = 2(1—
coska). To analyze the behavior of the defected crystal further, we calculate
the square of the modulus of the transmission coefficient:

4p%sin’ka

T =1T" = - 5 .
(m' —m)~w* + 4p°sinka

(2.58)



2 Discrete One-Dimensional Phononic and Resonant Crystals 29

We note that when m’ = m, the incident wave propagates without reflection, i.e.,
the transmission coefficient ((2.58)) is equal to 1. We also note that for k = 7, i.e.,
the edge of the Brillouin zone for the diatomic crystal, the transmission coefficient

4p”

(m' —m)* 4 +4
cally as a function of frequency showing no sign of resonance or any other localized
vibration phenomenon. In the absence of such a resonant phenomenon, the band
structure of the diatomic harmonic crystal can, therefore, be ascribed to the period-
icity of the structure, only. The presence of an acoustic branch and of an optical
branch separated by a gap results from scattering of waves by the periodic crystal,
namely, Bragg’s scattering.

simplifies to T? = . The transmission coefficient decreases monotoni-

2.2.5 Monoatomic Harmonic Crystal with a General Perturbation

The approach of Sect. 2.2.4 is generalized by introducing a frequency dependent
perturbation, V(w), of the 1-D monoatomic crystal at site 0. The equations of
motion of the atoms in this defected crystal are

—mwzun = ﬁ(u;1+l = 2u, + un+1) for n 7é 0 (2.59)
—ma*uy = B(uy — 2ug +u_1) + V(w)uo ’ ’

Following the derivation of the transmission and reflection coefficients in the
previous section, we obtain

B p2isin ka
~ V(w) + Bisinka
V(o)

R=————"—"7"—"7"—.
V(w) + f2isinka

(2.60)

We note that if V(w) = oo, then an incident wave is totally reflected. Such a
condition may arise from a local resonance. This case is discussed in the next
section.

2.2.6 Locally Resonant Structure

In this section, we are interested in the behavior of a monoatomic crystal with a
structural perturbation taking the form of a side branch. The side branch is
composed of L’ atoms of mass m’ interacting via harmonic springs with force
constant 8. The side branch is attached to the monoatomic crystal at site “0” via a
spring with stiffness 5;. We assume that the lattice parameter is the same in the



30 P.A. Deymier and L. Dobrzynski

Fig. 2.10 Illustration of the L
1-D mono-atomic crystal
perturbed by a side branch

side branch and the infinite monoatomic crystal. This structure is illustrated in
Fig. 2.10.

The derivation of an expression for the perturbation potential V begins with the
equations of motion of atoms in the side branch:

—m/a)zl,t,,/ = ﬁ/(unUrI — 2uy + un’71> for o' #1,L (a)
—m’wzuy = —ﬁl(ML/ — ML’—I) (b) (261)
—m'o*uy = —f;(ur — o) + f'(u — uy) (c)
This set of equations is complemented by the equation of motion of site “0”:
— mw’u, = pur — 2up + u_q) + f;(ur — uo). (2.62)
To find the perturbation potential, we are interested in coupling (2.61) and (2.62)

to obtain an effective equation taking the form of equation (2.69) for site “0.”
Rewriting (2.62) as (fmcu2 + ,BI( — M))uo = B(uy — 2up + u_p) yields

uoy

V= —/3,(1 ——>. (2.63)

The ratio of displacements in equation (2.63) is found by considering the general
solution to (2.61)(a):

un, — A/eik’n’a +Blefik’n'a. (264)
Inserting this solution in (2.61)(a) gives

m'w?* = 2f'(1 — cosk'a). (2.65)
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Should site N’ have been in an infinite monoatomic crystal, its equation of
motion would have been

—m' ?up = B (upy — 2up + up_y). (2.66)

Subtracting (2.66) and (2.61)(b) gives
ﬁ/(MLf+1 — MLI) =0. (267)
This equation serves as a boundary condition on site N’ in the side branch. We
define the displacement u;/ at a fictive site “L’ + 1” as support for the boundary
condition (2.67). Similarly subtracting the equation of motion (2.61)(c) and that of

site “1°” if it were embedded in an infinite monoatomic crystal leads to the
boundary condition

— By(ur —uo) + B’ (uy — ug) = 0. (2.68)

Fictive site “0’” is only used to impose the boundary condition. The two
boundary conditions at sites “/’”” and “L’” form the set of equations:

Uy — Uy = 0
{ (ﬁ[ - ﬁ/)ul’ + ﬁ/u(]/ = 0. (269)

We insert the general solution (2.64) into (2.69) and obtain the set of linear
equations

1k La (1 _ ika la—ik'L'a(1 _ a—ika) _
{A/e (1 / cIk’a ) +’B X / (1 e/ —il)<’a 0 / : (270)
A'[(B = B)e* + B'] + B'[(B; = B)e ™ + B] = Bjuo
Solving (2.70) gives
A — _ﬁ]uoe—ik’L’u <1 _ e—ik’a) /A
B= ﬁ,uoei’f’”“(l - eik’“) /A, (2.71)

where

/

A= —4isinl€2—a [(/3, — B)cosk’ (L’ - %)a + B'cosk’ (L’ + %) a] . (2.72)

To obtain (2.72), we have used a variety of trigonometric relations.
It is worth noting that in the limit of §; = 0, the set of (2.70) can be used to find
the displacement of an isolated finite segment of monoatomic crystal. The existence
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of nontrivial solutions for the amplitudes A’and B’ is ensured by the condition A = 0.
This condition is rewritten as cosk’ (L' — 1)a + cosk’ (L' + 1)a = —2sink'L’asin£¢
= 0 or sink’L'a = 0. These solutions correspond to vibrational modes of the finite
crystal of length L, i.e., standing waves with wave vectors: k' = L”,—’Z , where p is an
integer.

Finally, to find the perturbation V, we use (2.70) and (2.64) to obtain the
displacement of atom “1°,” which we subsequently insert into (2.63). After several
algebraic and trigonometric manipulations, the perturbation becomes

Zﬁ/ﬁ,sin%" sinL'k'a

Viw)= (B; — B)cosk! (L' — L)a + B'cosk! (L' +L)a’

(2.73)

The effect of the side branch on the propagation of waves along the infinite
crystal is most easily understood by considering the limiting case: f = ff; = f’ and
m = m' such that k = k’. In this case, the side branch is constituted of the same
material as the infinite crystal and equation (2.73) becomes

s ka Gar!
V(w) = 2f3sin smI; ka (2.74)
cosk (L’ + z)a

with the dispersion relation w(k) = woysink%} (i.e., (2.5)). At the frequency (wave
number) corresponding to the standing wave modes of the side branch, the pertur-
bation V = 0. The transmission and reflection coefficients given by (2.60) are equal
to 1 and 0, respectively. Zeros of transmission and complete reflection occur when
V = oo, that is, when cosk (L' +3)a = 0 or k = (2p + 1) iz, - These conditions
correspond to resonances with the side branch. For instance for a single atom side
branch, i.e., L' = 1, there is one zero of transmission in the irreducible Brillouin
zone of the monoatomic crystal atk = 3, For a two-atom side branch, L’ = 2, there
are two zeros of transmission in the irreducible Brillouin zone of the monoatomic
crystal at k =2~ and k = 2—2 The number of zeros of transmission scales with the
number of atoms in the side branch. Therefore, in contrast to the result of Sect. 2.2.4
where the mass defect did not introduce any zeros of transmission, the side branch
leads to perturbations of the band structure of the supporting infinite 1-D mono-
atomic crystal. These perturbations arise from resonances (V = oo) of the side
branch. The alterations to the band structure of the monoatomic crystal due to the
side branch may be visualized as infinitesimally narrow band gaps. The crystal with
a single side branch is not periodic, and the perturbed band structure results only
from local resonances. In the next sections, we develop the formalism necessary to
shed light on the interplay between Bragg’s scattering and local resonances on the
band structure of a 1-D monoatomic crystal with periodic arrangements of side
branches. This formalism is based on the Green’s function approach called the
Interface Response Theory.
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2.3 Interface Response Theory

2.3.1 Fundamental Equations of the Interface response Theory

In this section, we review the fundamental equations of the Interface Response
Theory (IRT) for discrete systems [3]. This formalism allows the calculation of the
Green’s function of a perturbed system in terms of Green’s functions of unperturbed
systems. We recall (2.23) and (2.22) defining the Green’s function, a; by

HoGo = 1.

The operator H is the infinite tridiagonal dynamic matrix:

o 0 0 ... ..
Hy = P 0O B —y B 0 ... ..., (2.75)
0 v B0 ...

where y = 28 — mw?. We initially consider a type of perturbation that cleaves the
1-D monoatomic harmonic crystal by severing a bond between two neighboring
atoms (Fig. 2.11).

The equations of motion of the atoms 0 and 1 are

L (—owy + pu—y) =0
m , (2.76)
{ +(—owy + Puz) =0
with o = mw? — B.
The dynamical operator for the cleaved crystal is written as
‘70’ _ ;121 ;6
.. =3 -2 -1 0 1 2 3 ...
g -y B 0 0 0 0 0 0|3
0 p -y P 0 0 0 0 0| -2
_1]o0 0 g -y B 0 0 0 0| _—1
“m|0 0 0 B -« 0 0 0 0|0 2.77)
0 0 0 0 0 —oa p 0O O 1
0 0 0 0 0 g -y B 0 2
| 0 0 0 0 0 0 p = B :
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3 -2 -1 o 1 2 3

Fig. 2.11 Schematic illustration of the 1-D mono-atomic harmonic crystal cleaved between
atoms 0 and 1

In (2.77),% is a block matrix composed of two independent matrices izS] and 7152,
corresponding to the two semi-infinite crystals on the left and right of the cleaved
bond, respectively. The Green’s function of the perturbed system, g, is therefore
defined through the relation

hogo = 1. (2.78)

Since the dynamical matrix of the cleaved system is a block matrix, its
associated Green’s function is also a Block matrix:

%0 = [gfl 0 ] (2.79)
0 go»

We define the perturbation operator or cleavage operator as the difference
between the dynamical matrices of the cleaved and unperturbed crystals:

Vo = ho — H. (2.80)

Using the matrix representation, the cleavage operator is a 2 X 2 matrix limited
to the sites 0 and 1 of the crystal:

o V(0,0) V(LO) 71 ﬁ 7/3
Vo= <V§(O,1) V2(1,1)> m<_ﬁ B > (2.81)

We rewrite (2.78) in the form §OZO = 7by using the commutative property of the
product of a matrix with its inverse. Introduction (2.80) into this later relation,
multiplying both sides of the equal sign by Gy, applying the distributive property of
the product of matrices, and finally using (2.23) yields

Zo (7 + \7060) =%, (7 + 20) — Go. (2.82)

Equation (2.82) is called Dyson’s equation. It enables the determination of the
Green'’s function of a perturbed system in terms of the perturbation operator and the
Green’s function of the unperturbed system. In (2.82), we have defined the surface
operator:

Ao = Vo Go. (2.83)
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The Green’s function of the perturbed system is then given by
~ o e oy
%, = Go (1 +A0) . (2.84)

The poles of g, (i.e., the eigenvalues of the operator Zo) are the zeros of [ + ;Xo.

2.3.2 Green’s Function of the Cleaved 1-D Monoatomic Crystal

We apply (2.84) to the calculation of the Green’s function of the semi-infinite
crystal on the right of the cleaved bond in Fig. 2.11 (i.e.,n > 1). The components of
the surface operator defined by (2.83) are written as

Asa(n,n') =" Vo(n,n")Go(n",n')  with n,n' > 1. (2.85)

The only nonzero components of the cleavage operator are for n,n' ¢[0, 1], so
(2.85) reduces to

As(1,7) = Vo(1,0)Go(0,1') 4 Vo (1, 1)Go(1,7), n' > 1. (2.86)

Inserting the terms in (2.81) and (2.26) into (2.86) results in

, tn’ o tn’+1
Agp(1 = 2.87
s(ln) =—— (2.87)
We now write equation (2.82) in component form:
gs2(n, 1) + gso(n, Asa(1,n) = Go(n,n'), n,n’ > 1. (2.88)

Expressing (2.88) at site n’ = land using the relation (2.87) gives

We can now combine that relation with (2.87), (2.26), and (2.88) to obtain the
function sought

n—n'|+1 n+n'
mt +t

gsz(”»”l)zﬁ s mrzl (2.89)

The procedure used in this section to find the Green’s function of the perturbed
system can be generalized to obtain the universal equation of the IRT. All matrices



36 P.A. Deymier and L. Dobrzynski

in equation (2.82) are defined for, n'¢[—00, 00| . We now consider the space D for
n,n’ > 1 and rewrite equation (2.82) as

86, (D,D) + 85, (D,M)Asy(M,D) = Gs,(D, D). (2.90)

The index S specifies that all functions are limited to the space of a semi-infinite
truncated chain. Equation (2.88) is a particular case of the general equation (2.90)
where we have specified the space corresponding to the location of the perturbation
by M. In the case of the cleavage of the monoatomic crystal, M = I. A particular
form of (2.90) is

80 (D, M) + 84, (D, M)Asy(M,M) = Gs,(D, M). (2.91)

We combine (2.91) and (2.90) to obtain the universal equation of the IRT:

g52(D, D) = Gsz(D, D) + Gsz(D,M)A™" (M, M)A5y (M, D), (2.92)
where
AM,M) = T(M,M) + Ag> (M, M). (2.93)

Equation (2.93) introduces the diffusion matrix A.
The displacement vector (D) is related to the Green’s function g via the relation

—

where f is some force distribution applied in the space D. Inserting (2.92) into
(2.94), we obtain the displacement vector of the perturbed system in terms of the
displacement vector of the unperturbed system, U, as

ii(D) = U(D) — UM)A™" (M, M)Asy(M, D). (2.95)
Applying (2.95) to the right side of the cleaved mono-atomic crystal yields

u(n') = U(n') —U)A(1,1)An(1,7) for n' > 1,

with A~'(1,1) = AT = 2=l and Agp(1,n') = ’";;L";“ . The displacement is
therefore

ud) =U@)+ U > 1.
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If we choose U(n') =", corresponding to an incident wave coming from
n'= +oo, the displacement field in the semi-infinite chain takes the form

u(n') _ [7}1, + tn’fl _ efikn’a + eik(n’fl)a.

This is a standing wave resulting from the superposition of an incident wave and
areflected wave. We can also obtain this result by writing the equation of motion at
site 1 of the cleaved crystal:

— mou; = Buy — uy).

This equation implies that #; — 1y = 0, where uy is the displacement of the site
0 taken as a fictive site imposing a zero force boundary condition on site 1. We
assume that the displacement in the semi-infinite crystal is the sum of a reflected
wave and a transmitted wave:

Uy, :Aie—lkna +Arelkna.

Inserting this general solution into the boundary condition leads to the relation
between the incident and reflected amplitudes: A, = Aje~**“ leading to the displace-
ment u(n) = Aj(e " 4 e*(n=1a),

2.3.3 Finite Monoatomic Crystal

The finite 1-D monoatomic crystal is formed by cleaving an infinite crystal at two
separate locations. This doubly cleaved system is illustrated in Fig. 2.12.

The cleavage operator is a 4x4 matrix expressed in the space of the perturbed
sites (0,1) and (L,L + 1):

0 1 L L+1
g - 0 0
-8 B 0 0O

Vo=—1|"/
0 0 -f B|L

! (2.96)
m

The dynamical matrix is composed of three separate blocks corresponding to
the three uncoupled regions of the cleaved system of Fig. 2.12, namely regions
“1,” “2,” and “3.” Similarly, the Green’s function and the surface operators are
also block diagonal matrices. Using (2.83), the nonzero components of the
surface operator matrix corresponding to the block of the finite segment of crystal
“2” are
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-'1 " "2" nge

-1 0o 1 2 L1 L L+

Fig. 2.12 Mono-atomic crystal cleaved between sites (0,1) and (L,L + 1) to obtain a finite crystal
composed of atoms [1,L]

Asz(l,}’l/) = VQ(I,O)G()(O, n’) + V()(l, I)Go(l,n,)

!
Ao (L) = Vo(L, L)Go(Lo ') + Vo(Lo L + 1)Go(L + 1,n) " € [LE @297

The Green’s function of the infinite crystal given by (2.26) is inserted into
(2.97) to obtain

/

"
Asp(1,n') =
t;r_i,ﬂ W e [1,L]. (2.98)
.-
An(l,n) = t+1

To apply the universal equation of the IRT, we need the block “2” of the surface
operator matrix in the space of the corresponding perturbed sites M ¢ [1,L], that is

i) Asz(l,L)] _ -1 [;L fL], (2.99)

Asa(M.M) = it

The green’s function of the finite segment of crystal takes the form

gs2(n,n') = Go(n,n') — Go(n,1)A™ (1,1)As2(1,n) — Go(n,1)A™" (1,L)Agy (L, n")
—Go(n,L)A" (L, 1)Asy(1,n") — Go(n,L)A™ " (L,L)As>(L,n"), n,n'e[1,L].
(2.100)

In (2.100),

- 11
Al(M’M):WM[rlL ﬂ (2.101)

with W = detA = :’12 and according to (2.93) A(M, M) = [ (M, M) + As, (M, M).
Inserting the expressions given by (2.26), (2.98), and (2.101) into (2.100) yields
the Green’s function of the finite crystal (for n, n’e [1,L]):

m t\nfn/Hl_;'_tﬂJrn’ 2L+1

n " Z}llfﬂ tnfn’ tlfnfn' tn+n’71> )
ssamm) =g | = +(t2—1)(1—t2L)( TeoTr o

(2.102)



2 Discrete One-Dimensional Phononic and Resonant Crystals 39

According to (2.84), the poles of the Green’s function are also those of A
Here, these poles are the zeros of . The Eigen values of the finite crystals are,
therefore, given by the condition 1 — r?* = 0. This condition may be rewritten as
t* — 7L = 0. For angular frequencies, w ¢ [0, mo],7 = e** and the modes of the
finite crystal are given by e“* — e 7.4 — sin kLa = 0. These modes correspond to
standing waves with wave number conditioned by k =7 with p being an integer.
The displacement field of these standing waves is obtained from (2.95). In

components form, (2.95) becomes
u(n') =U(n) — UMA™(1,1)Asy(1,n) — U(1)A™(1,L)Agy (L, ')
—UL)A (L, DA (1,7") — UL)A (L, L)Asy(L, 1), n,n'€[l,L].
(2.103)

Employing a reference displacement U(n') = ", (2.103) gives

, [2L+2 , t2L , t2L+ 1

/ ! t — —
u(n') = 1" +1" 1_,2L+t 1 1_t2L+tn 1_t2L+t 1 1 — 2L

This expression diverges when 1 — X =0 . It is therefore necessary to
obtain a finite displacement by renormalizing the previous expression by W. The
renormalized displacement then reduces to u(n’) = ¢ 4 t~"*!. This expression is
that of the displacement of standing waves in the finite crystal.

2.3.4 One-Dimensional Monoatomic Crystal with One Side
Branch

The calculation of the displacement in a system composed of a 1-D monoatomic
crystal with a finite crystal branch coupled to its side via a spring with constant, f3;,
as illustrated in Fig. 2.10, begins with the block matrix describing the Green’s
function of the uncoupled system (f5; = 0)

Gs = (Cio Hf) ) (2.104)
0 gsn

where G is the Green’s/function of the infinite crystal (whose components are given
by (2.26)) and where g, is the Green’s function of the finite side crystal given by
(2.102). This later Green’s function is labeled with a “prime” sign to indicate that
the spring constants and masses m’ and f'of the finite crystal may be different from
those of the infinite crystal m and f. The difference between the dynamic matrix of
the coupled systems and of the dynamic matrix of the uncoupled system defines a
coupling operator:
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noo vony (2 b

o (0, (0, -

Vi= (V1(1’70) V](l’, 1/)) = E 7”%1 . (2.105)
m m'

We note that if the masses in the finite and infinite crystals were the same, the
coupling operator would simply be the opposite of the cleavage operator of (2.81).
We now use the fundamental equation of the IRT to derive an expression for the
displacement field in the coupled system in terms of the Green’s function of the
constituent crystals making up the uncoupled system and the perturbation operator
of (2.105).

To that effect, we first write expressions for the surface operator:

A(Oa n) Vi (07 O)GO(Ov n)

" _ | A(0,#) Vi(0,1") g s, (1, ")

AMDY =\ Avn) | T | Vi(1,0)Go(0, n (2.106)
A1, 1) VI(I',l’)g’Sz(l’,n’)

In (2.106), n and n’ refer to sites in the infinite crystals and the finite side branch,
respectively. The diffusion matrix then takes the form of a 2x2 matrix in the space
of the interface sites M:

o _[14+A(0,0)  A(0,1)
AWM)—( A(1',0) 1+A(1,1')>

— 1 + VI(O7 O)GO(()?O) V1(07 ll)g/52(1/7 1/) (2 107)
- Vi(1',0)Go(0,0) 1+ V(1 1)g,(1,1) )" )

The inverse of the diffusion matrix is then

w7 _ L 14+ Vi(U 1) g (U, 1) =Vi(0,1)g's (17, 1)
A (MM)_detg<—V1(1’,o)Go 0,0) 14+ V,(0,0)Go(0,0) ) 108

We use (2.95) to obtain the displacement field. For this we also need to assume
a form for the reference displacement U(D) = #". This displacement corresponds
to a wave propagating in the infinite crystal and launched from n = —oco. The
displacement inside the side crystal is also assumed to be equal to zero. The
displacement in the space of the perturbed sites [0,1] take the form

UM) = (U(0),U(1") = (1,0). (2.109)

The displacement field at a site n > 1 along the infinite crystal (i.e., on the right
side of the grafted branch) is therefore determined from the equation:

o A7'(0,0)  AT'(0,1) ) [ A(0,n)
U, =" — (1,0)<A_1(1,70) A‘l(l’,l’)> (A(l,,n)) (2.110)
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Inserting (2.108) and (2.106) into (2.110) yields

1 -
Uy = " — ——V1(0,0)Go (0, n). 2.111)
detA

One then combines (2.26), (2.102), (2.105), and (2.111) to obtain

1 t
u, :t”(l +% =3 1) =T, (2.112)
detA ©°
with
- £+ t
detA =1 — b * bi (2.113)

B—ni-r) pe-1

In (2.112), T is the transmission coefficient. We can rewrite (2.113) in the form

N 1 B 1
detA = —— —— 2.114
¢ V™~ B 2isinka’ 2.114)
where — % =1- % % To obtain equation (2.114), we also defined t = e'*“.

With # = ¢'*“, one can show that the quantity V is that given by equation (2.73).

2.3.5 One-Dimensional Monoatomic Crystal with Multiple
Side Branches

We now consider N, side branches of various lengths grafted along an infinite 1-D
monoatomic crystal. The spaces D and M for this system are defined as

D={-c0,...,—1,0,1, ... 0}
u{{l’,2/,...L’},{1”,2”,...,L”},{1<3),2(3),...,L(3>}...,{1<Nﬁ>,2<N"),...7L(Nf)}}

and
M= {Pl =0,1,p2, 1", p3, 1(3), 3PN, ](Nu)}.

We have located the first finite crystal at site p; = O of the infinite crystal. The
second finite crystal is located at site p,>p; of the infinite crystal. The third finite
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crystal is located at p3>p,, etc. In this case, the coupling operator is a 2N, x 2N,
matrix, whose form is given by

-1 1 0 0 0 o0
1 -1 0 O 0 o0
o 0 -1 1 ... 0 O
‘7]:& 0 o 1 -1 ... 0 0 |. (2.115)

S
e
e
[
—_
—_

0
o o o o o0 1 -1

To calculate E(MM) = 7(MML# V,(MM)Gs(MM) , one needs the Green’s
function of the uncoupled system, Gs (MM, which takes the form

Go(pip1) 0 Go(p1p2) 0 Go(p1p3) 0 Go(pipw,) 0
0 g, (1'1) 0 0 0 0 0 0
Go(p2p1) 0 Go(p2p2) 0 Go(p2p3) 0 o Golpapn.) 0
0 0 0 g(1"1") 0 0 0 0
a(MM): Go(psp1) 0 Go(p3p2) 0 Go(paps) 0 ... Golpspn,) 0
0 0 0 0 0 g(1910) . 0 0
Go(pnepr) 0 Go(pnep2) 0 Go(pneps) 0 -+ Go(pnePne) 0

0 0 0 0 0 0 0 g5 (10 1)

(2.116)

In this matrix, the odd entries (rows or columns) correspond to locations along
the infinite crystal in M and the even entries correspond to the position of the first
atom of the finite crystals (also in the space M). From (2.26) and (2.102), the
elements of this matrix are therefore

ﬁ t|Pi7pf|+1
i) = — 2.117
GO(ij) m £2—1 ( )
and
) ) / t/+t/L/i
L(1010 _r . 2.118
8 ( ) m' (t’ _ 1)(1 _ t/2Lz) ( )

We use (2.95) to obtain the displacement field. For this we also need to assume a
form for the reference displacement U(D) = ¢". This displacement corresponds to a
wave propagating in the infinite crystal and launched from n = —oo. The displace-
ment inside the side crystal is also assumed to be equal to zero. The displacement
in the space M takes the form

UM) = (U(0),U(1"),U(p2), U(1"),..., U(pn,), U(1%)
=(1,0,#2,0,...,¢%,0). (2.119)
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Fig. 2.13 Infinite mono-atomic crystal with (a) from top to bottom, a one-atom (L' = 1) side
branch located at p; = 0; two single-atom side branches located at p; = 0 and at p; = 0; four
single-atom side branches at p; = 0, p» = 1, p3 = 2, p4 = 3; and ten one-atom side branches at
p1=0,...,p10 = 9and (b) from top to bottom, a one-atom (L’ = 1) side branch located atp; = 0;
two single-atom side branches located at and at p; = 0, p, = 4; four single-atom side branches at
p1=0,pp =4,p3 =8,p4 =12 ; and ten one-atom side branches at p; =0,...,p;o =36,
p=p=lm=m=1

The displacement field at a site n > py, along the infinite crystal (i.e., on the right
side of the last grafted finite crystal) is therefore determined from (2.95), where we use

VI(Ov O)GO(O»n) —t
V[(ll,O)Go(O,n) t
Vi(p2,p2)Go(p2, n) 85 o —l-r2
AM,n) = | Vi(1";p2)Go(p2,n) n; e tl‘.”z . (2.120)
Vi(pn, pn.)Go(p, 1) —1 PN
Vi(17¥, pn,)Go(pw,, ) e

A transmission coefficient is subsequently defined as the ratio T = u, /¢". For a
large number of grafted finite crystals, one has to resort to numerical calculation of
the transmission coefficient by inserting (2.115)—(2.120) into (2.95). For the sake of
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illustration, we have performed such calculations using the limiting case: = f3;
= f'andm = m’ (i.e.,t = ¢'). The numerical calculation involves the following steps
for a series of values of the angular frequency w < wy:

g

(a) calculating & = 1 — 22~
(b) calculating t = ¢ + l( 52)1/2 since — 1 < ¢&<1
(c) inserting ¢ into (2.115)—(2.120)

(d) Calculating the transmission coefficient T'(w)

Figure 2.13 illustrates the formation of a band gap by (a) local resonances and (b)
band folding effects (Bragg scattering) in the transmission coefficient as a function of
frequency for L' =1, § = B, =1, m = m’ = 1. With these conditions, wy = 2. A
single one-atom side branch produces one resonant zero of transmission at w = 1. As
one increases the number of side branches, spaced regularly by one interatomic
spacing, the periodicity of the infinite chain is conserved and the resonant zero of
transmission broadens into a stop band. Two additional dips in transmission on both
sides of the resonant stop band form if the side branches are spaced by four atomic
spacings. For a large number of side branches spaced by four lattice parameters, these
dips broaden and deepen approaching the band gaps that would result from the
multiple scattering of waves by a periodic array of side branches.

This example clearly illustrates the contribution of local resonance to wave
propagation as well as the contribution of scattering by a periodic array of scatterers.
The former mechanism is the foundation of locally resonant structures that determines
the properties of acoustic metamaterials. The latter is associated with Bragg’s scatter-
ing, which is the fundamental mechanism underlying the properties of phononic
crystals.
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