Chapter 2
Stokes-Filtered Local Systems in Dimension One

Abstract We consider Stokes filtrations on local systems on S!. We review some
of the definitions of the previous chapter in this case and make explicit the
supplementary properties coming from this particular case. This chapter can be read
independently of Chap. 1.

2.1 Introduction

The notion of a (pre-)Stokes filtration is a special case of the notion of a (pre-)
J-filtration defined in Chap.1 with a suitable sheaf J on the topological space
Y = S'. We have chosen to present this notion independently of the general results
of the previous chapter, since many properties are simpler to explain in this case
(see Proposition 2.7). Nevertheless, we make precise the relation with the previous
chapter when we introduce new definitions. We moreover start with the non-ramified
Stokes filtrations, to make easier the manipulation of such objects, and we also call
it a J;-filtration, in accordance with the previous chapter. The (possibly ramified)
Stokes filtrations are introduced in Sect. 2.4, where we define the sheaf J with its
order. They correspond to the J-filtrations of the previous chapter.

We also make precise the relation with the approach by Stokes data in the case
of Stokes filtrations of simple exponential type.

References are [2,17,52] and [55, Chap. IV].

2.2 Non-ramified Stokes-Filtered Local Systems

Let k be a field. In this section, we consider local systems of finite dimensional
k-vector spaces on S'!. Recall (see Example 1.4) that we consider S' equipped
with the constant sheaf J; with fibre P = C({x})/C{x} consisting of polar parts of
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Laurent series, and the order depends on the point e’ = x/|x| € S! as follows. Let
n € P and let us set n = u,(x)x™" withn = 1 and u,(0) # 0 if n # 0. Then

n<,0 <= n=0or argu,(0) —nd € (7/2,37/2) mod 2, (1.4 %)

andn <, 0 & (n <, 0andn # 0) (see (1.4 xx)). The order is supposed to be
compatible with addition, namely, ¢ <, ¥ < ¢ — ¥ <, 0 and similarly for <. Let
us rephrase Definition 1.27 in this setting.

Definition 2.1. A non-ramified pre-Stokes filtration on a local system .Z of finite
dimensional k-vector spaces on S! consists of the data of a family of subsheaves
Z<, indexed by P such that, forany 6 € S', ¢ <, ¥ = L, 0 C Leyp-

Let us set, for any ¢ € P and any 0 € St

Leps =Y Leyo. 2.2)

V<qp

This defines a subsheaf £, of L., and we set gr, & = ZL<,/Z,. Note that

the étalé space Jf‘ is Hausdorff (see Example 1.1(1)) and the previous definition is
in accordance with Definition 1.34.

Notation 2.3. We rephrase here Notation 1.3 in the present setting. Let ¢, ¥ € P.
Recall that we denote by S, ., C S' the subset of S' consisting of the # for which
¥ <, @. Similarly, SJb 4 CS I'is the subset of S! consisting of the & for which
Y <, ¢. Both subsets are a finite union of open intervals. They are equal if ¢ # .
Otherwise, S(})sw = S'and S</l;<<p = .

Given a sheaf .#Z on S!, we will denote by By<,# the sheaf obtained by
restricting .% to the open set S:usw and extending it by O as a sheaf on S! (for
any open set Z C S, this operation is denoted .% in [39]). A similar definition

holds for By ., %.

Definition 2.4 ((Graded) Stokes filtration). Given a finite set @ C P, a Stokes-
graded local system with @ as set of exponential factors consists of the data of local
systems (that we denote by) gr, . on S! (¢ € ®). Then the graded non-ramified
Stokes filtration on gr . := 691//@ gry, £ is given by

(gr L)<y = @D By<pry Z.
YED
We then also have
(gr$)<¢ = 69 ﬁw<¢ gry, Z.
=

A non-ramified k -Stokes filtration on .Z is a pre-Stokes filtration which is locally
on S! isomorphic to a graded Stokes filtration. It is denoted by .Z,.
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For a Stokes-filtered local system (£, £,), each sheaf gr,, £’ is a (possibly zero)

local system on S'. By definition, for every ¢ and every 6, € S!, we have on some
neighbourhood nb(6,) of 6,,

Lepine,) = D By<p 8y Lo,
ved
L<plnb(8,) = L<gluv(6,) B 8y Lnb(o,) = @(p By<o &ty Llub(6,) (2.5)
Ve

Lo, = D gry Lo,
yeod

in a way compatible with the natural inclusions.

Exercise 2.6. Show that the category of Stokes-filtered local systems has direct
sums, and that any Stokes-graded local system is the direct sum of Stokes-graded
local systems, each of which has exactly one exponential factor.

One can make more explicit the definition of a non-ramified Stokes-filtered local
system.

Proposition 2.7. Giving a non-ramified Stokes-filtered local system (£,.%,) is
equivalent to giving, for each ¢ € P, a R-constructible subsheaf £<, C £ subject
to the following conditions:

1. Forany 8 € S, the germs L<, g form an exhaustive increasing filtration of .

2. Defining Z<,, and therefore gr, Z, from the family ZL<y as in (2.2), the sheaf
gr, £ is a local system of finite dimensional k-vector spaces on S 1

3. Forany 6 € S' and any ¢ € P, dim L<, 9 = Zwsw dim gr,, .Zp.

We note that when Proposition 2.7(2) is satisfied, Proposition 2.7(3) is equiva-
lent to

3. Forany § € S' andany ¢ € P, dim L.,y = Yy« dimer, .

Proof of Proposition 2.7. The point is to get the local gradedness property from the
dimension property of Proposition 2.7(3). Since the local filtrations are exhaustive,
the dimension property implies that the local systems .# and €9 0 &y Z are locally
isomorphic, hence for each 6,, there exists a finite family @5, C P such that
gr, 2, # 0 = ¢ € &y, Since gr, Z is a local system, it is zero if and only
if it is zero near some 6,. We conclude that the set @5, C P is independent of 6,
and we simply denote it by @. We thus have gr, & # 0 = ¢ € .

Lemma 2.8. Let F be a R-constructible sheaf of k-vector spaces on S'. For any
0, € S, let I be an open interval containing 6, such that Fl146,} 18 a local system
of finite dimensional k-vector spaces. Then H' (I, F) = 0.

Proof. Lett : I ~ {6,} < I be the inclusion. We have an exact sequence 0 —
w'F - F — 4 — 0, where ¢ is supported at 6,. It is therefore enough to
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prove the result for ¢y ~!.%. This reduces to the property that, if i : (a,b) < (a, b]
is the inclusion (with a,b € R, a < b), then H'((a, b],ik) = 0, which is clear by
Poincaré duality. O

Let us fix 6, € S'. Since Zy is R-constructible for any v, there exists an
open interval nb(6,) of S 1 containing 6, such that, for any € @, Z.y is a
local system on nb(6,) ~ {6,}. Then, for any such ¥, H'(nb(6,), Z~y) = 0,
according to the previous lemma and, as gr, 2" is a constant local system on
nb(6,), we can lift a basis of global sections of gr,, Zjun(,) as a family of sections
of Z<yun,). This defines a morphism P, gry, Luwe,) — Luv,) sending
@WSW gry, £y to L<y ¢ forany 6 € nb(6,) and any ¢. Let us show, by induction on
#y € @ |y <, ¢}, thatitsends @wsgw gry, £y onto L<, ¢ forany 6 € nb(6,) and
any ¢: indeed, the assertion is clear by the dimension property if this number is zero;
by the inductive assumption and according to (2.2), it sends @w <0 &y £ onto
L.y for any 6 enb(6,); since L<, = %, + image gr, Z in Z, the assertion
follows. As both spaces @W$9¢ gry £ and L, ¢ have the same dimension, due to
Proposition 2.7(3), this morphism is an isomorphism. O

The finite subset ¢ C P such that gr, £ # 0 = ¢ € @ is called the set of
exponential factors of the non-ramified Stokes filtration. The following proposition
is easily checked, showing more precisely exhaustivity.

Proposition 2.9. Let %, be a non-ramified k-Stokes filtration on £. Then, for any
0eS! andanyp € P,

o Ifp <, D, then L<,9 = 0.
e If® <, 9, then g«pﬂ = g@p’g = %. O

Remark 2.10. One can also remark that the category of Stokes-filtered local
systems with set of exponential factors contained in @ is equivalent to the category
of @-filtered local systems, where we regard @ as a constant sheaf on S, equipped
with the ordered induced by the order of J; (constant sheaf with fibre P).

Examples 2.11. 1. (Twist) Let n € P, and let (£, Z,) be a (pre-)Stokes-filtered
local system. The twisted local system (.Z,.%,)[n] is defined by Z[n]<, =
Z<4—y- In the Stokes-filtered case, the set of exponential factors @[] is equal to
@ + n. This is analogous to Definition 1.9.

2. The graded Stokes filtration with @ = {0} (see Example 1.35) on the constant
sheaf kg1 is defined by kg1 <, := Bo<yks1 for any ¢, so that kg1 <o = kg,
ksi o = 0, and, for any ¢ # 0, kg1 <, = kg1 ., has germ equal to kg at
6 € S'iff 0 <, ¢, and has germ equal to 0 otherwise.

3. Let %, be any non-ramified Stokes filtration with set of exponential factors @
reduced to one element 1. According to Proposition 2.9, we have .2, = 0,
and L, = gr, £ = £ is alocal system on S!. The non-ramified Stokes
filtration is then described as in Example 2.11(2) above, that is, Z<, = B,<¢-Z.
If we denote by %, this Stokes filtration of . then, using the twist operation
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Example 2.11(1), the twisted Stokes filtration .Z’[—n]. is nothing but the graded
Stokes filtration on %, defined as in Example 2.11(2).

4. Assume that #® = 2 or, equivalently (by twisting, see above), that @ = {0, ¢,}
with ¢, # 0. If the order of the pole of ¢, is n, then there are 2n Stokes directions
(see Example 1.4) dividing the circle in 2 intervals. Given such an open interval,
then 0 and ¢, are comparable (in the same way) at any 6 in the interval, and
the comparison changes alternatively on the intervals. Assume that 0 <, @,.
Then, according to Propositions 2.9 and 2.7(3), L<y, 6 = £p and Log = 0.
Moreover, when restricted to the open interval containing 0, L5y = £, is
a local system of rank equal to rk gr, .Z. On the other intervals, the roles of 0
and ¢, are exchanged.

Let now 6 be a Stokes direction for (0, ¢,). As ¢, and 0 are not compa-
rable at 6, Proposition 2.7(3') implies that 2, ¢ = Z<09 =0 and, using ¢
such that 0, ¢, <, ¢, we find, by exhaustivity, £y = Ly, 0 ® L<o09. This
decomposition reads as an isomorphism £y =~ gr, %y @ gryZy. It extends
on a neighbourhood nb(6) of € in S' (we can take for nb(#) the union of the
two adjacent intervals considered above ending at #) in a unique way as an
isomorphism of local systems L) = (gr,, £ @ gy L )nb(s)-

In order to end the description, we will show that the equality X<, = Z-,
for ¢ & {0, ¢,} can be deduced from the data of the corresponding sheaves for
¢ € {0,¢,}. Let us fix 6 € S!. Assume first 0 <, ¢, (and argue similarly if
Yo <, 0).

» If ¢ is neither comparable to ¢, nor to 0, then Proposition 2.7(3) shows that
Lo =0
e If ¢ is comparable to ¢, but not to 0

- Ifp, <,0,then L<p9 = 2
- If ¢ <, ¢, then Lcp9 C Loy 0 = ZL<o0, hence Proposition 2.7(3)
implies L, =0

o If ¢ is comparable to 0 but not to ¢,, the result is similar
o If ¢ is comparable to both ¢, and 0, then

- If0 <y Po <49, fg(p,g =%
- If0 <, ¢ <, @, then L<y 0 = L<o
- Ifp <,0 <, @, then L5, 9 =0

If ¢, and 0 are not comparable at 6, then one argues similarly to determine <, ¢.

Definition 2.12. A morphism A : (£, %) — (£', %)) of non-ramified k-Stokes-
filtered local systems is a morphism of local systems . — ¢’ on S' such that,
for any ¢ € P, AM(Z<,) C ‘Zéw' According to (2.2), a morphism also satisfies
ML) C Z.,. A morphism A is said to be strict if, for any ¢, A(L<,) =
MLYNLL,.

Definition 2.13. Given two non-ramified k-Stokes-filtered local systems (£, .Z,)
and (&', %)),
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o The direct sum (%, %) ® (&', %)) has local system .Z @ .’ and filtration
(Z & L)<y = L<p ® L2,

o Hom(ZL, L )<y is the subsheaf of Hom (L, L") consisting of local mor-
phisms . — " sending ., into £, for any ¢.

e The dual (Z,.%4,)" is hence defined as (Hom(Z, kgi), #Hom(L, kgi),),
where k g1 is equipped with the graded Stokes filtration of Example 2.11(2).

c (RN =2, L<y®LL, ,CLRL.

In particular, a morphism of non-ramified Stokes-filtered local systems is a global
section of #om (%L, L") <o.

Proposition 2.14. Given two non-ramified k-Stokes filtrations %4,, %) of ..,
L ® L, Hom(ZL, L), (LY)e and (L QL") are non-ramified k-Stokes
filtrations of the corresponding local systems and 7#om(%L, L )e =~ (L R L)..
Moreover,

1. Som(ZL, L )<y is the subsheaf of tom(ZL, L") consisting of local mor-
phisms & — ' sending L<, into Z_ . fo any ¢.

2. (L)< = ($<_¢)J' and (LY)<p = (fg_(/,)l for any ¢, so that
gr, &Y = (gr_, Z)" (here, ($<_¢,)J', resp. (fg_(/,)l, consists of local
morphisms £ — kg1 sending L, resp. L<_, to zero).

3(LRL )y =Y, Ly ®LL, =2, Ly ®LL,

<n—g
Proof. For the first assertion, let us consider the case of J#om for instance.
Using a local decomposition of .Z,.%’ given by the Stokes filtration condi-
tion, we find that a section of J#om(Z,.%" )y is decomposed as a section of
@D, , Hom(gr, L, gr, £")p, and that it belongs to Hom(L, L") <y ¢ if and only
if its components (¢, ¥) are zero whenever ¢ — ¢ £, 1. The assertion is then clear,
as well as the characterization of Zom (%L, L") <.

As a consequence, a local section of (£ <, has to send £, to zero for any ¢.
The converse is also clear by using the local decomposition of (£, .%,), as well as
the other assertions for .Z’~.

The assertion on the tensor product is then routine. O

Remark 2.15. One easily gets the behaviour of the set of exponential factors with
respect to such operations. For instance, the direct sum corresponds to (&, @) —
@ U @', the dual to @ + —@ and the tensor product to (@, @’) > & + &',

Poincaré—Verdier duality. For a sheaf .% on S', its Poincaré—Verdier dual D.Z is
R Somc(F, kg [1]) and we denote by D'.# = R stomc(F, k) the shifted
complex. We clearly have D'.¥ = Homc (L, kg1) =: L.

Lemma 2.16 (Poincaré duality). For any ¢ € P, the complexes D'(Z<,) and
D'(¥/%<,) are sheaves. Moreover, the two subsheaves (£)<, and
D'(ZL | %L—y) of £ coincide.

Proof. The assertions are local on S', so we can assume that (Z,.%,) is split
with respect to the Stokes filtration, and therefore that (£, .%,) has only one
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exponential factor 7, that is, Z<, = B,<,-Z (see Example 2.11(3). Let us denote

by oy <, the functor which is the composition of the restriction to the open set S 11p <0

(see Notation 2.3) and the maximal extension to S', and similarly with <. We have
an exact sequence

0— By<pl — £ — psy L — 0

which identifies «,<,-Z to £/ Z,, and a similar one with ,<, and &y<,. On the
other hand, D'(B,<y-%) = ay<,-Z" and D' (<L) = By<y-Z" . The dual of the
previous exact sequence, when we replace ¢ with —g, is then

0— Byl — &L — eyl — 0,
also written as
0— Byl — &L — apey " — 0,

showing that D' (L) L<—y) = (L)<, ]

2.3 Pull-Back and Push-Forward

Let /' : X’ — X be a holomorphic map from the disc X’ (with coordinate x’) to the
disc X with coordinate x. We assume that both discs are small enough so that f is
ramified at x’ = 0 only. We now denote by S;, and S| the circles of directions in the
spaces of polar coordinates X' and X respectively. Then f induces ]7: Si, — S1
which is the composition of the multiplication by N (the index of ramification of f)
and a translation (the argument of f)(0)). Similarly, P, and P, denote the polar
parts in the variables x and x’ respectively.

Remark 2.17. Let 7 € P, and set f*n = no f € Py. Forany 6’ € S, set
0 = f(0’). Then we have

f'n<,0&=n<,0 and f*n<,01n<,0.

(This is easily seen using the definition in terms of moderate growth in Example 1.4,
since f : X’ — X is a finite covering.)

Definition 2.18 (Pull-back). Let . be a local system on S; and let %, be a
non-ramified k-pre-Stokes filtration of .. For any ¢’ € P,/ and any 0’ € S;,,
let us set

+ — 2 : - (71
(f $)$(ﬂ/,9/ «— gswf(e/) C ff(e/) —_ (f f)g’.
VEPy
IrU<,9
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Then (fﬂiﬂ )e is a non-ramified pre-Stokes filtration on f_lf , called the pull-back
of %, by f. We denote by fT(Z,.%.,) the pull-back pre-Stokes-filtered local
system, in order to remember that the indexing set has changed (see Definition 1.33).

Proposition 2.19 (Pull-back). The pull-back fﬂf,f.) has the following
properties:

1. Forany ¢’ € Py andany 9’ € S!,,

T+ _ =1 ~
F Dy = 3 T Ly 7).
YEPy
f*'//<9/‘ﬂ/

2. Forany ¢ € Py,

(F*D)<pep = [ (Lsy)
(f+$)<f*<p = f_l(iﬂ«ﬂ)

and

gt e, (f72) = (e, 2).

3. In particular, if f+ (&, Z.) is a non-ramified Stokes-filtered local system for
some [, then for any ¢ € Py, gr, L is a local system on Sl

4. Let £, %' be two local systems on S} equipped with non-ramified pre-Stokes
filtrations and let A : & — £’ be a morphism of local systems such that,
for some f, f A f Y - f L %" is compatible with the non-ramified
pre-Stokes filtrations (f+.,5f)., (f+$/) Then A is compatible with the non-
ramified pre-Stokes filtrations %,, %L,.

5. Assume now that <, is a non-ramified k-Stokes filtration (i.e., is locally graded)
and let @ be its set of exponential factors. Then (f L) is_a non-ramified
k-Stokes filtration on f~'.% and, for any ¢' € Py, gr(p/f+$ # 0 =
¢ e f*o.

6. The pull-back of non-ramified Stokes filtrations is compatible with Zom, duality
and tensor product.

Proof. By definition,

[T Dpo= 3 [T Dyw= 3 3 Loy
V<o Vi<pp' Y
TS0

and this is the RHS in Proposition 2.19(1).

The first two lines of Proposition 2.19(2) are a direct consequence of
Remark 2.17, and the third one is a consequence of the previous ones.
Then Proposition 2.19(3) follows, as each gr, ( f +.$) is a local system on S,
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Proposition 2.19(4) follows from the first line in Propositions 2.19(2) and 2.19(5)
from third line and from the local gradedness condition. Then, Proposition 2.19(6)
is clear. O

Remark 2.20. In order to make clear the correspondence with the notion intro-
duced in Definition 1.33 and consideLed in Lemma 1.40, note that the sheaf J; is the
constant sheaf on S| with fibre Py, f~'J; is the constant sheaf on S, with fibre P
and J/ is the constant sheaf on § ;, with fibre P,». The map g is f* : Py — Py,

Exercise 2.21 (Push forward). Let .Z’ be a local system on S;, equipped with a
non-ramified pre-Stokes filtration .%/. Show that

1. f* < is naturally equipped with a non-ramified pre-Stokes filtration defined by
(f+L)<p = fi(LLpx,)

2. Assume moreover that .#/ is a non-ramified Stokes filtration and let @' C Py
be its set of exponential factors; if there exists a finite subset @ C P, such that
@' = f*®, then the push-forward pre-Stokes filtration ( o ") is a Stokes
filtration.

2.4 Stokes Filtrations on Local Systems

We now define the general notion of a (possibly ramified) Stokes filtration on a local
system .% on S'!.

Let d be a nonzero integer and let p; : X; — X be a holomorphic function
from a disc Xy (coordinate x”) to the disc X (coordinate x). For simplicity, we will
assume that the coordinates are chosen so that pg (x’) = x’“.

Definition 2.22 ((Pre-)Stokes filtration). Let . be a local system on S é
A k-(pre-)Stokes filtration (ramified of order < d) on £ consists of a non-ramified
(pre-)Stokes filtration on .’ := p;lf such that, for any automorphism o

o
Xg —————— Xy

N

and any ¢’ € Py, we have ZL . , = _I,Sfé(p/ in ¢ = 571 Similarly, a
morphism of (pre-)k-Stokes- filtered local systems is a morphism of local systems
which becomes a morphism of non-ramified Stokes-filtered local systems after
ramification.

We will make precise the relation with the notion of a J-filtration of Chap. 1 by
defining first the sheaf J.
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The sheaf J on S'. Let d be a positive integer. We denote by J, the local system
on S! whose fibre at & = 0 is P» and whose monodromy is given by P,/ >
0] (x’) > ¢’ (¥4 x’). If we denote by By : S|, — S1, 6" +> d - 0’ the associated
map, the sheaf p dljd is the constant sheaf on S1 W1th fibre P,,. One also says
that J, is obtained by descent by p,; from J;(x’ ) In particular, J; is a sheaf of
ordered abelian groups on S! » and the constant sheaf J; with fibre P, is a subsheaf
of ordered abelian groups. A germ at 6, of section of J; consists of a pair (¢’, 6)),
with ¢’ € P, and 0/ such that d - 8] = 6, mod 27, or equivalently of the vector
((¢"(x),0,),(¢'(5x"), 0, + 2m/d),...). Then (¢',0]) <, 0 means ¢’ s, 0, or
equivalently ¢’(£¥x) <, 0 for all k.

05 +2kn/d

We will then denote by J the sheaf  J 5, Ja-

Remark 2.23. Let us give another description of the sheaf J; which will be useful
in higher dimensions. We use the notation of Example 1.4. Let us denote by jj
and jj 4 the natural inclusions X * — X and X* — Xd, and by oy : Xd — X the
lifting of p,. The natural inclusion Ox* — pg ﬁ X* induces an injective morphism
JoxOxx —> ja,*pd,*ﬁX; = 5d,*j3,d,*ﬁxj, that we regard as the inclusion of a
subsheaf.

Let us denote by (jj, *ﬁx*)lb the subsheaf of jj «Ox= cons1st1ng of functions
which are locally bounded on X. We have GoxOx)® = Dux(oa. *ﬁX )b
JoaxOx* since py is proper.

Let us set J; = w0y (x0), that we consider as a subsheaf of JoxOxx. We
have w10y = 31 N (Jo, «Ox+)® in Ja.x«Ox+ (a meromorphic function which is
bounded in some sector is bounded everywhere, hence is holomorphic). Therefore,
91 := w1 (Ox(x0)/Oy) is also equal to 31/51 N (JaxOx*)®.

Similarly, we can first define J; as the subsheaf of C-vector spaces of jj « Ox+
which is the intersection of by« ' O, (x0) and jj«Ox+ in PdxjodxOxs. We
then set J; = %/% N (jaxOx+)"®, which is a subsheaf of j .« Oxx/(joxOx*)"®.
We have J; C Iy if d divides d’.

As we already noticed, J; = @~ (O (x0)/Ox). More generally, let us show
that 0,'9; = @;'(Ox,(x0)/Ox,). We will start by showing that p;'J; =
w; ! Oy, (x0).

Let us first note that p;l Ox+ = ﬁX; since py is a covering, and 0! jy «Ox+ =

Ja.d.xpy ' Ox= since Py is a covering. Hence, B, jo.« Ox+ = JoaxOxx.
__ Itfollows that 'ﬁd_lﬁ is equal to the intersection of 5,0y« [@ ! Ox, (x0)] (since
Iz,1 = w; ' Ox,(x0)) and JoaxOxx in D7 Paxljo.a Oxx]. This is @ Oy, (x0).
Indeed, a germ in p; 'y «[w; " Oy, (x0)] at 6’ consists of a d-uple of germs in
Ox,(x0) at 0. This d-uple belongs to ja’d’*ﬁxt}k’g/ iff the restrictions to X} of
the terms of the d-uple coincide. Then all the terms of the d-uple are equal. The
argument for J; is similar.

Let us express these results in terms of étalé spaces. We first note that, since J; is a
constant sheaf, the étalé space Ji" is a trivial covering of S!. The previous argument
shows that the fibre product S ;/ Xg1 JZ‘ is identified with Je‘/ 1 hence is a trivial
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Fig. 2.1 Example with

n = 2. The set Ségo is the
union of the open intervals in
full line

covering of S ;,. It follows that, since py : S ;, Xs1 Jj‘ — Jj‘ is a finite covering of
degree d, that Jé‘ — Slis a covering. »

The followmg property will also be useful: there is a one-to-one correspondence
between finite sets @, of Py and finite coverings blila Jet Indeed, given such a z,
its pull-back 4 by g is a covering of S, !, contained in the trivial covering o, IJZ‘,
hence is trivial, and is determined by its ﬁbre &y C Py Conversely, given such
@4, it defines a trivial covering Xy of Sy !, contained in 7’ y ljet Let ¥ be its image
in Je‘ Because the composed map T, > S1 — S is a covering, so are both
maps £; — X and £ — S!. Moreover, the degree of & — S is equal to that
of T, — Sl,, that is, #&,. Lastly, the pull-back of ) by 04 is a covering of Sl
contained in S Xs1 JZ‘, hence is a trivial covering, of degree #®,, and contamlng
Ed, so is equal to Ed
Order. The sheaf jj«Ox+ is naturally ordered by defining (js«Ox+)<o as

the subsheaf of jj«Ox+ whose sections have an exponential with moderate
growth along S!. Similarly, ja,d,*ﬁX; is ordered. In this way, J inherits an

order: Fvao = J N (jsxOx*)<o. This order is not altered by adding a local
section of (jaﬁ*ﬁx*)lb, and thus defines an order on J. For each d, we also
have J;<0 = Pux ((wd_lﬁxd (*0))<0) N Jja«Ox+ and we also conclude that

77" Ua<0) = (w;" (O, (*0)/@7)(,1))@- _
To any ¢’ € P, one associates a finite covering X,y = S;, C J¥ of S! as above.
Then X,y N I, is as in Fig. 2.1 (where the circle is S1).

Remark 2.24. The sheaf of ordered abelian groups J satisfies the property (1.41 ).
The direction = is clear. For the other direction, assume that 75 %, 0. We will prove
that there exists g such that 0 <, ng and ¥y £, ne. If Yo = u, (x)/x" withn € Q7
and argu, (0) —nf € [—x/2, /2] mod 27, then we take n # 0 having a pole order
strictly less than n and a dominant coefficient such that 0 <, ng. Then the order
relation between 0 and ¥y is the same as the order relation between 0 and ¥y — 1.
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Note that this argument does not hold on a subsheaf J; with d fixed.

One can rephrase the definition of a (pre-)Stokes filtration by using the terminol-
ogy of Chap. 1.

Lemma 2.25. A (pre-)Stokes filtration on £ is a (pre-)J-filtration on £, with J
defined above. It is ramified of order < d if the support of gr L is contained in
el =

Remarks 2.26. 1. The condition in Definition 2.22 can be restated by saying that,
for any o, the Stokes-filtered local system (.£’,.%)) and its pull-back by &
coincide (owing to the natural identification .’ = ~'.#").

2. Given a (possibly ramified) Stokes-filtration on a local system ., and given a
section ¢ € I'(U,J) on some open set of S', the subsheaf Z<, C .y is well-
defined, as well as .2, and gr, Z is a local system on U. If ¢ is a section
of J all over S!, then it is non-ramified, i.e., it is a section of J;, and Lep, Ly
are subsheaves of .. From the point of view of Definition 2.22, if the non-
ramified Stokes filtration exists on ¢’ = '/7_1.,2” one can restrict the set of
indices to P, C P,/. Then, for ¢ € P, .,2” pio is invariant by the automorphisms

of .’ induced by the automorphisms G, hence is the pull-back of a subsheaf
L<p of £, and similarly for £, and gr, . This defines a non-ramified pre-
Stokes filtration on . for which the graded sheaves are local systems (but the
dimension property 2.7(3) may not be satisfied). Note also that a morphism of
Stokes-filtered local systems is compatible with this pre-Stokes filtration. Hence
the category of Stokes filtrations on .Z is a subcategory of the category of non-
ramified pre-Stokes filtrations on .Z.

_Notice however that the non-ramified Stokes-filtered local system
(F1.Z.(F71.2).) is not (in general) equal to the pull-back fV(Z..%.)
where %, is this pre-Stokes filtration.

3. We will still denote by ., a (possibly ramified) Stokes filtration on . and by
(Z, Z.) a(possibly ramified) Stokes-filtered local system, although the previous
remark makes it clear that we do not understand .%, as a family of subsheaves of
ZonS!.

4. The “set of exponential factors of the Stokes-filtered local system” is now
replaced by a subset Y C 7% such that the projection to 39X is a finite covering.
It corresponds to a finite subset @; C P, for a suitable ramified covering py
(see the last part of Remark 2.23), which is the set of exponential factors of the
non-ramified Stokes filtration of ﬁ; Z.

5. The category of Stokes-filtered local systems (', £,) with associated covering
contained in ¥ is equivalent to the category of h_filtered local systems
(see Remark 2.10).

6. Proposition 2.14 holds for k-Stokes filtrations.

7. Lemma 2.16 holds for k-Stokes filtrations, that is, the family D'(£/ L. y) of
local subsheaves of .~ indexed by local sections of J forms a Stokes filtration
of £V.
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8. The category of non-ramified k-Stokes-filtered local systems on S ; is a full
subcategory of that of k-Stokes-filtered local systems. Indeed, given a non-
ramified Stokes-filtered local system on S!, one extends it as a ramified
Stokes-filtered local system of order d from Jf‘ to Ji,t using a formula analogous
to that of Proposition 2.19(1).

9. If the set @, of exponential factors of p, (£, Z.,) takes the form p; @ for some
finite subset @ C P, (equivalently, the finite covering ¥ of dX is trivial,
see Remark 2.26(4)), then the Stokes filtration is non-ramified.

2.5 Extension of Scalars

Let (£, %) be a k-Stokes-filtered local system and let k' be an extension of k.
Then (k' @ L. k' @ L) is a k’- Stokes-filtered local system defined over k'.
The following properties are satisfied for any local section ¢ of J:

o (K®k L)<y = k' Ly, and grw(k’ kL) =k ® gr, £, so the set of
exponential factors of (k' ®x £, k' ® £.) is equal to that of (£, 4).
o Ly =K@ L<p) NLink' Qi L.

In such a case, the k’-Stokes-filtered local system (k' ®; .2, k' ®; £.,) is said to
be defined over k.

Conversely, let now (., .%4,) be a k’-Stokes-filtered local system and let Xcy
be its covering of exponential factors. We wish to find sufficient conditions to ensure
that it comes from a k-Stokes-filtered local system by extension of scalars.

Proposition 2.27. Assume that the local system £ is defined over k, that is, £ =
k' ® % for some k-local system 2y (regarded as a subsheaf of ), and that, for
any local section ¢ of X,

Ly =K (%(i”k N Z<y),

where the intersection is taken in . Then (£, .%.) is a k’-Stokes-filtered local
system defined over k.

Proof. It is not difficult to reduce to the non-ramified case, so we will assume
below that J = J; and replace ) by @ C P,. We set, for any local section
of Py, Lh <y 1= L N Ly, so that the condition reads L<, = k' ® L <, for
@ € @. This defines a pre-J-filtration of %%, and we will show that this is indeed a
J-filtration.

1. We start with a general property of Stokes-filtered local systems. Let (., %)
and @ be as above, and let Y € P,. Set ¥ = @ U {y} and denote by St(¥, ¥)
the (finite) set of Stokes directions of pairs ¢,n € W. The sheaves Z<y and
£~y can be described as triples consisting of their restrictions to the open set
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ST~ St(¥, ), the closed set St(¥, ¥), and a gluing map from the latter to the
restriction to this closed set of the push-forward of the former. We will make this
description explicit.

On any connected component I of S! < St(¥, ¥), the set ¥ is totally ordered,
and there exists ¢ = (I, V) € @ such that L<y; = Lg,);. Similarly, there
exists n = n({, ) € @ such that £y, = Lp;.

Let us fix 0, € St(¥, ¥) and denote by I, I, the two connected components
of S' < St(¥, ¥) containing 6, in their closure, with corresponding inclusions
ji i 1; = S'.i = 1,2. We also denote by i, : {6,} < S the closed inclusion
and set ¢; 1= @(I;, V), i = 1,2 (resp. n; := n(I;, ¥)).

We claim that, in the neighbourhood of 6, (and more precisely, on
Iy U I, U {6,}), the sheaf <, is described by the data Ly, = L<g|1;5
i =12, ZLeys, = ia_ljl.,*gswl\ll N ia_ljz,*iﬂswzuz, where the intersection
is taken in i, ' j1 . = iy j2sxl = %, and the gluing map is the natural
inclusion map of the intersection into each of its components. A similar
statement holds for .Z.y,. This easily follows from the local description
L<y = Dyeo Bo<y gr, £, and similarly for L.

2. We now claim that % <y = % N L<y satisfies k' @ % <y = L<y. This
is by assumption on S' ~ St(¥, ¥), according to the previous description, and
it remains to check this at any 6, € St(¥,¥). The previous description gives
i Le<y = i 1xLh<oiin N iy joxLr <poi1, and the result follows easily
(by considering a suitable basis of .Z% g, for instance).

3. Let us now define %% <y as 3~ cp By’<y-Liy, as in (2.2). Then the previous
description also shows that % <y = % N %~y and that Ly = k' @k Ly <y

4. As aconsequence, we obtain that gr,, L =k ® gry % for any ¥, from which
the proposition follows. O

Remark 2.28. The condition considered in the proposition is that considered
in [40] in order to define a k-structure on a Stokes-filtered local system defined
overk’ (e.g. k = Qand k' = C). This proposition shows that there is no difference
with the notion of Stokes-filtered k-local system.

2.6 Stokes-Filtered Local Systems and Stokes Data

In this section, we make explicit the relationship between Stokes filtrations and the
more conventional approach with Stokes data in the simple case of a Stokes-filtered
local system of exponential type.

Stokes-filtered local systems of exponential type.

Definition 2.29 (see [40,55]). We say that a Stokes-filtered local system (&, Z,)
is of exponential type if it is non-ramified and its exponential factors have a pole of
order one at most.
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In such a case, we can replace P with C - x~!, and thus with C, and for each
6 € S, the partial order < ,on C is compatible with addition and satisfies

c<,0&c=0o0r argc—0 € (n/2,37/2) mod 2x.

We will use notation of Sect. 2.2 by replacing ¢ = ¢/x € P with ¢ € C. For each
pair ¢ # ¢’ € C, there are exactly two values of § mod 27, say 6. .- and 6, /> such
that ¢ and ¢’ are not comparable at . We have 96/’ o = B +m. These are the Stokes
directions of the pair (c, ¢’). For any 6 in one component of S' ~ {6, 6/ ,}, we
have ¢ <, ¢/, and the reverse inequality for any 6 in the other component. ’

Stokes data. These are linear data which provide a description of Stokes-filtered
local system. Given a finite set C C C and given 6§, € S' which is not a Stokes
direction of any pair ¢ # ¢’ € C, 0, defines a total ordering on C, that we write
Cl <90 c2 <90 cee <90 cn.

Definition 2.30. Let C be a finite subset of C totally ordered by 6,. The category of
Stokes data of type (C, 8,) has objects consisting of two families of k-vector spaces
(Ge1, Gea)eec and a diagram of morphisms

S
—
D.cc Gen D.cc Ge (2.30 %)
—_—
S/
such that, for the numbering C = {cy, ..., c,} given by 6,,

1. § = (Sij)ij=1..n is block-upper triangular, i.e., Si; : G¢;1 — G, 2 is zero
unless i < j, and Sj; is invertible (so dim G, ; = dim G, », and § itself is
invertible).

unless i > j, and Sj; is invertible (so S” itself is invertible).

A morphism of Stokes data consists of morphisms of k-vector spaces A, :
Gey — Gé’é, ¢ € C, ¢ = 1,2 which are compatible with the diagrams (2.30 ).

Fixing bases in the spaces G.¢, ¢ € C, £ = 1,2, allows one to present Stokes

block-lower (resp. -upper) triangular and each X;; (resp. X/,) is invertible.
The following is a translation of a classical result (see [52] and the references
given therein, see also [27] for applications):

Proposition 2.31. There is a natural functor from the category of Stokes-filtered
local systems with exponential factors contained in C and the category of Stokes
data of type (C, 6,), which is an equivalence of categories. O
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The proof of this proposition, that we will not reproduce here, mainly uses
Theorem 3.5 of the next chapter, and more precisely Lemma 3.12 to define the
functor.

Duality. Let (£, Z.,) be a Stokes-filtered local system. Recall (see Definition 2.13)
the dual local system £’ comes equipped with a Stokes filtration (.£"), defined by

(fv)$c = ($<—c)ly

where the orthogonality is relative to duality. In particular, gr.(Z") = (gr_. £)".
Similarly, given Stokes data ((G..1,Gc2)cec,S,S’) of type (C, 6), let us denote
by 'S the adjoint of S by duality. Define Stokes data ((G..1, G¢2)cec, S, S’)Y of type
(=C, 6,) by the formula G”.; = (G.;)¥ (i =1,2)and SV = 1§=1 8§V = 19/=1,

so that the diagram (2.30 *) becomes

ts—l
—_—

Di=i1(Ge)” Di=1(Ge;2)” (2.30%)"

—_—
ts/—l

Then the equivalence of Proposition 2.31 is compatible with duality (see [27]).
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