Chapter 5
Process Overview

So far, the focus was on extracting as much information as possible from the finan-
cial time series, with a special concern on generic features. This overview of the
“stylized facts” sets a benchmark against which various processes can be gauged.
The next goal is to construct mathematical processes that can reproduce some, pos-
sibly all, stylized facts. This is of primary concern for many areas in finance, for
example, portfolio construction, derivative pricing, or risk control.

This chapter gives a first “grand tour” of the existing processes used to model
financial time series. The goal is to set the notations and basic ideas, as well as
to present the structures for the main models used in finance. Then, subsequent
chapters delve into more details and extensions of the basic processes. The challenge
then is to be realistic, namely to reproduce as many stylized facts as possible. This
will require more complex structures, but possibly some empirical features cannot
be reproduced at all inside a given structure. The “mug shots” give a convenient
summary of the main properties, either of the empirical data or of the processes.

5.1 Why Using a Finite Time Increment for the Processes?

The process equations are given in this book in a discrete form, with a finite time
increment &¢. There are several reasons for this choice.

e The empirical data are known with a finite time increment, mostly of one day,
possibly at a shorter time increment with tick-by-tick data. The processes should
reproduce the empirical time series at this time scale and longer, and the behavior
of the data and processes at shorter time horizon than §t is irrelevant, as unacces-
sible empirically.

e A continuous-time process needs to be discretized in order to perform Monte
Carlo simulations, to compute a forecast, or to evaluate a figure of merits like
a log-likelihood. The discretization of a continuous-time stochastic equation is
a nontrivial business. Because in general stochastic equations involve terms of
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order /8¢ and 8¢, inequivalent discretizations can be constructed. A good exam-
ple is the Heston (continuous-)time process which can be discretized in different
ways, with different properties with respect to positivity [73].

e The continuous-time limit of some discretized process may not exist, or be quite
different to a “naive” limit. An example of a process with a nonobvious limit is
the GARCH(1, 1) process [45, 115]. At a deeper level, the description of finan-
cial time series at the tick-by-tick time horizons involves a new phenomenology,
related to order queue, limit orders and market orders, and to the exchange of
information [46, 144, 162]. This new phenomenology is important at time hori-
zons ranging from a few seconds to a few hours. Only at longer time scales, the
details of the price formation mechanism are small enough to be safely neglected.
This very short term effects are not included, and are not needed, at a mesoscopic
scales ranging from a few hours to months. Therefore, the continuous limit of a
mesoscopic model is anyway missing some part of the price formation mecha-
nism.

e The comparison of the process properties with empirical data shows that for all
processes, fat-tailed innovations should be used. The most common choice is to
use Student innovations with a number of degrees of freedom in the range from 3
to 7, albeit other distributions are possible. The Student distribution is not a stable
distribution, namely the sum of independent Student variables is not distributed
according to a Student distribution. For this reason, it is not possible to construct
a process where the increments over several time intervals are distributed ac-
cording to a Student distribution. The Student distribution has a weaker property,
namely is infinitely divisible. An infinitely divisible distribution P (y) is such that
for any integer n, a probability distribution p,(x) can be found so that the sum
y = > x; of n independent variables x; ~ p,(x) is distributed according to the
distribution P. This condition is needed to construct Lévy processes (see, e.g.,
[44]). Therefore, a Lévy process can be constructed so that the innovations over
one selected time interval 6¢ are distributed according to a Student distribution.
But the independence condition for the increments leads to a central limit type
convergence toward a normal distribution for longer time intervals.

In the continuum formulation, the Itd calculus is based on Wiener processes. The
16 calculus is very important to price derivatives and to formulate rigorously the as-
sociated replication strategy. In order to price contingent claims in a Black—Scholes
scheme, the process equations can be fairly general, but the source(s) of randomness
has to be infinitely divisible. The scheme can be generalized to accommodate ran-
dom volatility, processes with jumps or a broader class of distributions (but still with
infinite divisibility) [44]. Yet, stochastic calculus cannot accommodate dependency
involving the process history like in a GARCH model.

In a discrete-time formulation, there is no rigorous Itd calculus, and this creates
a problem with respect to option pricing as an important computational tool is now
missing. Yet, if the time increment is sufficiently small, a “physicist” approach can
be used in algebraic manipulation by using the simple rule that E[dz?] = dt and
neglecting higher-order terms. Therefore, the key issue is not the continuum limit
per se, but that many interesting process equations do not admit a straightforward
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continuum extension. Yet, it would be wrong to select a particular process structure
because of its mathematical tractability in an idealized continuum limit. It is to the
mathematics and our models to adapt to the empirical properties of the financial time
series, as clearly the financial world will not change just to conform to an elegant
mathematical idealization. The formulation of the process equations directly in a
discretized framework avoid these difficulties. Recent progresses for option pricing
has been made in order to accommodate a broader class of volatility processes like
GARCH [40] and fat-tailed innovations [116]. These formulations are based on a
discrete-time increment for the underlying processes and are presented in Chap. 16.

5.2 The Definition of the Returns

The vast majority of the time series models in finance are derived from a random
walk for the logarithm of the price

log(p(t +81)) =log(p(t)) +r(t +5t). (5.1

The change of variable x = log(p) makes this equation slightly simpler. The (loga-
rithmic) return is then

Pt +80) = u(t) — %offf(r) + Oerr(1)e(t + 81) (5.2)

with u fixing the drift and o.fr the effective volatility. The It6 term —1/ 2‘7esz is such
that the mean expected price is w. In general, the innovations € are i.i.d. random
variables with

Ele(t)]=0 5.3)

E[e*] =1 (5.4)

but the distribution is otherwise not specified. Both conditions are needed so that the
drift ;o and volatility o.fr can be identified.

This is not the only way to write the basic random walk equation for a finite
discretization step &z. A slightly different discretization is given by

p(t+8t)=p®)(1+r@ +51)) (5.5)
with the (relative) return
r(t 4 8t) = u(t) + oee(t)e(t + 5t). (5.6)

Up to higher-order terms in &7, both discretizations are equivalent, and therefore they
share the same continuum limit. Yet, they have different properties for fat-tailed
innovations, and in particular the discretization in term of the logarithmic return
leads to diverging expectations. This issue is explored in more details in Chap. 6.
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The Gaussian random walk corresponds to no drift © = 0, a constant volatility
oeff(t) = 00, and to a normal distribution for the innovations p(e) = N(0, 1). An
example of returns for a Gaussian random walk is given in Fig. 5.4 in the top panel.
This random walk model was written by Bachelier in 1900 [12], but for the price
(i.e., with p instead of x = In(p) in Eq. (5.1)). It is only in the 1960s that it becomes
clear that the model should be written for the logarithm of the price. This change of
variable can be deduced from a change of numeraire argument, namely the change
p — ap for any positive o corresponds to a change of the currency unit, and this
change should not affect the economy. The logarithm transformation changes the
scaling by « into an additive transformation, and this leaves the logarithmic price
differences r(t) = x () — x (¢t — §t) invariant for any «. This argument can be used
for any contract which basically trades the numeraire, like stocks, stock indexes, or
FX rates. For other time series, like interest rates, implied volatilities or spreads, the
change of numeraire argument cannot be used (even if denominated in a currency
unit, a bond price is trading the underlying interest rates). For these other time series,
the change of variable that transforms the time series into a random walk is open as
the change of numeraire argument cannot be used. For example, with interest rates,
[154] uses the condition that the volatility o = o (x) computed with the transformed
price should be uncorrelated with the price, namely p(p, o) >~ 0.

5.3 The Most Important Stylized Facts

As a daily return is the sum of many intra-day transactions, the central limit theorem
justifies to model the returns with a Gaussian distribution, at least at first glance. In
the other direction, as a Gaussian random variable can be decomposed as a sum of
random variables distributed according to a Gaussian law, a continuum limit can be
constructed where the infinitesimal random variables are Gaussian. This construc-
tion is such that, at any time scale, the corresponding random variable is Gaussian.
This construction can be made rigorous, leading to Wiener process. Yet, as explained
in the later sections, the relationship between return distribution and the central limit
theorem is quite complex because the returns are not independent. Independence is
one of the prerequisites for the central limit theorem to hold, and as the dependency
between returns is subtle, the return distribution is converging to a Gaussian but at
a much slower pace.

The basic Gaussian random walk is very successful at giving a first good descrip-
tion of the behavior of the prices, and today a large part of finance is relying on this
model. However, a simple visual comparison of returns time series shows that this
model is deficient on two important aspects.

1. The volatility is constant, namely the time series is homoscedastic.
2. The return distribution is Gaussian instead of the observed fat-tailed distribution.

Both points can be seen directly on plots of the returns as function of time, like in
Figs. 5.1, 5.2, and 5.3 for empirical time series and on Fig. 5.4 for some popular
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Fig. 5.1 The standardized return for one commodity and some FX against the USD (from top to
bottom): 3 month future on copper, BRL/USD (Brazil), GBP/USD (GB), EUR/USD (Euroland),
and JPY/USD (Japan)
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Fig. 5.2 The standardized return for several stock indices (from top to bottom): Merval (Ar-
gentina), Nasdaq (USA), FTSE-100 (GB), SMI (Switzerland), and Nikkei-225 (Japan)
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Fig. 5.3 The standardized return for several interest rates (from top to bottom): Brazil at 1 year,
US at 1 year (interest rate swap), UK at 1 year (interest rate), Euro at 1 year (Government debt),
and Japan at 10 years (Government debt; this period had very (very) low rate in Japan for IR up to
1 year)
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Fig. 5.4 The standardized return for a few processes (from top to bottom): constant volatility
with normal innovations, constant volatility with Student innovations, GARCH(1, 1) with normal
innovations, GARCH(1, 1) with Student innovation, and Heston process with normal innovations.
Student innovations have 5 degrees of freedom, and the characteristic time of the GARCH and
Heston processes is of one month (21 business day)
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theoretical processes. For all plots, the returns are normalized using the empirical
standard deviation computed on the visualized sample. In this way, the returns are
displayed directly in terms of the sample empirical standard deviation. The empir-
ical time series have been chosen to display many geographic areas and many in-
struments types over the same 5 year period, but have not been selected specifically
otherwise. When visually comparing a Gaussian constant volatility random walk
(Fig. 5.4, top panel) with the empirical time series, the deficiencies can be directly
seen without any statistical analysis. Let us discuss both points in turn.

The magnitude for the returns is not constant, but there are periods of low volatil-
ity and periods of large volatility. The figure is at a time scale of half a decade,
and the cluster of volatility with a characteristic length between months and years
are clearly visible. If only one year of data is used for the figure, a similar picture
emerges, but with a characteristic length for the clusters between weeks and months.
This intuitively shows that there is not a single characteristic time for the volatility
clusters, but that many time scales are needed to describe their dynamic. The multi-
ple time scales structure is quantified by the lagged correlations for the volatilities,
which show a slow decay (and not an exponential decay). This important empirical
stylized fact was discussed in Chap. 3 and is illustrated by two graphs in the mug
shots.

The range for the y-axes (—12, +12) has been chosen so that the largest stan-
dardized daily return appears on the graphs. This range is very wide, and many
daily returns are beyond a 6 sigma level. On the other hand, the Gaussian random
walk does not display any point above a 5 sigma level. This simple comparison
shows clearly that the returns have a fat-tailed distribution.

Both features need to be quantified by a serious statistical analysis of empirical
data, yet the dominant characteristics of any financial time series can be seen with
naked eyes on most graphs of the time series of returns. The next question is how
to incorporate them in a process used to describe the evolution of prices. The eas-
iest part is the fat tail, as it is enough to use fat-tailed innovations. More complex
mechanism can be used, as, for example, in a GARCH process, but in practice all
realistic models need to include fat-tailed innovations. The more complex part is
the heteroscedasticity: to capture this feature, some memory from the past volatility
needs to be included in the price process. Essentially three paths can be taken that
are introduced in the next three paragraphs. A full discussion of each process classes
are presented in the subsequent chapters, with Monte Carlo simulations of the key
processes and the corresponding mug shots.

5.4 ARCH Processes

In a (G)ARCH process, the volatility is a function of the past return magnitudes,
and this dependency on the past brings in the volatility clustering. The simplest
model is to have the squared volatility (i.e., the variance) to be a weighted sum
of past squared returns. For most ARCH processes, this dependency is induced by
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exponential moving averages of the squared returns. This structure provides for a
efficient mean to construct estimators of the past volatilities at various horizons, but
the dependency of the past returns can be more complex. Ultimately in a GARCH
process, the volatility is a function of the past (squared) returns. The key point is
that the volatility can be removed completely from the equations and the magnitude
of the next return is a function of the past returns only. In this family of processes,
the volatility is a parsimonious way to construct the equations and to interpret them,
but is nothing more than a convenient intermediate variable that could be eliminated
from the equations.

5.5 Stochastic Volatility Processes

In a stochastic volatility process, the variance has a higher status as it becomes an in-
tegral part of the process with its own source of randomness. The heteroscedasticity
is introduced by a dependency of the volatility on its past, typically by a moving av-
erage. As the volatility has to be mean reverting, a natural candidate is an Ornstein—
Uhlenbeck process. Then, the return appears as a slave process, with the magnitude
given by the volatility process. In particular, there is no feed-back from returns to the
volatility. Many variations can be constructed around this theme, while preserving
the core feature of a volatility depending on its past, but not on the returns.

The process for the volatility has to preserve the positivity of the volatility. One
simple way to enforce this restriction is to write a process for the logarithm of the
volatility. Another way is to modify the amplitude of the random term by a power
of the volatility, so that when the volatility decreases, the random term decreases,
leaving the mean reverting term to “pull up” the volatility. Both families will be
explored.

A closely related family of processes is based on the idea of subordinating the
return to a random time. The time is viewed as progressing randomly, for exam-
ple, increasing according to the events on the market. The process for the time can
depend on its own past, in order to introduce heteroscedasticity. Then, the return
follows a simple random walk with constant volatility but is indexed by the random
time. This setup is in fact similar to a stochastic volatility process, with the volatility
acting like the “speed of time”. This equivalence is explained in Sect. 8.1.1.

5.6 Regime-Switching Processes

In a regime-switching process, a new hidden stochastic variable is introduced. This
variable define the “state of the word”. The state of the world follows its own pro-
cess, typically given by a Markov chain over a discrete space with only a few states,
for example, with two states taken as “quiet” and “crisis”. The volatility takes val-
ues depending only of the state of the world, and the return follows a simple random
walk with the given state dependent volatility. In this family, the heteroscedasticity
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is introduced by the Markov chain for the state of the world, while the volatility and
return are simple slave processes, without feed-back on the state of the world.

5.7 The Plan for the Forthcoming Chapters

The next four chapters discuss in details the possible processes inside the differ-
ent structures. First, the discretization of price process is investigated, using either
the logarithmic returns or the relative returns. This part investigates whether (5.1)
or (5.5) should be used. Then, the heteroscedasticity is added to the price random
walk in the next three chapters which investigate in details respectively the ARCH,
stochastic volatility, and regime switching structures. This exploration gives many
mug shots which can be compared to the empirical ones. The systematic process
investigation allows us to select the relevant mathematical structures to be used in
our mathematical description of the price dynamics. Some graphs in the mug shots
acquire a more important status, as they allow one to decide clearly in favor of some
process structures. In particular, the time reversal invariance, the precise form for
the heteroscedasticity, and the leverage effect for stocks are very important and de-
serve further chapters in their own. Finally, the distribution of the innovations can be
analyzed. With a clear view on the process structure, the applications to market risk
evaluations and to option pricing are presented. This completes the discussion of
the univariate case, and the subsequent chapters move to the analysis of multivariate
time series.
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