
Chapter 2
Decay and Amplification of Magnetic Fields

It’s not whether a thing is hard to understand.
It’s whether, once understood, it makes any sense.

Hans Zinsser
Rats, Lice and History (1934)

We now begin our long modelling journey towards astrophysical dynamos. This
chapter concentrate for the most part on a series of (relatively) simple model
problems illustrating the myriad of manners in which a flow and a magnetic field can
interact. We first consider the purely resistive decay of magnetic fields (Sect. 2.1),
then examine various circumstances under which stretching and shearing by a flow
can amplify a magnetic field (Sect. 2.2). This is followed by a deeper look at some
important subtleties of these processes in the context of some (relatively) simple 2D
flows (Sect. 2.3). We then move on to the so-called anti-dynamo theorems (Sect. 2.4),
which will shed light on results from previous sections and indicate the way towards
dynamo action, which we will finally encounter in Sects. 2.5 and 2.6.

Some of the material contained in this chapter may feel pretty far removed from
the realm of astrophysics at times, but please do stick to it because the physical
insight (hopefully) developed in the following sections will prove essential to pretty
much everything that will come next.

2.1 Resistive Decays of Magnetic Fields

Before we try to come up with flows leading to field amplification and dynamo action,
we better understand the enemy, namely magnetic field decay by Ohmic dissipation.
Consequently, and with the sun and stars in mind, we first consider the evolution of
magnetic fields in a sphere (radius R) of electrically conducting fluid, in the absence
of any fluid motion (or, more generally, in the Rm � 1 limit). The induction equation
then reduces to
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38 2 Decay and Amplification of Magnetic Fields

∂ B
∂t

= −∇ × (η∇ × B) = η∇2 B − (∇η) × (∇ × B) . (2.1)

Were it not that we are dealing here with a vector—as opposed to scalar—quantity,
for constant η this would look just like a simple heat diffusion equation, with η
playing the role of thermal diffusivity. Our derivation of the magnetic energy equation
(1.87) already indicates that under such circumstances, the field can only decay. Back
in Chap. 1 we already obtained an order-of-magnitude estimate for the timescale
τη ∼ �2/η over which a magnetic field B with typical length scale � can be expected
to resistively decay, which in the case of the stellar interiors ended up at ∼ 1010 yr,
i.e., about the main-sequence lifetime of the sun. Let’s now validate this estimate by
securing formal solutions to the diffusive decay problem.

2.1.1 Axisymmetric Magnetic Fields

Without any significant loss of generality, we can focus on axisymmetric magnetic
fields, i.e., fields showing symmetry with respect to an axis, usually rotational. Work-
ing in spherical polar coordinates (r, θ,φ) with the polar axis coinciding with the
field’s symmetry axis, the most general axisymmetric (now meaning ∂/∂φ = 0)
magnetic field can be written as:

B(r, θ, t) = ∇ × (A(r, θ, t)êφ) + B(r, θ, t)êφ . (2.2)

Here the vector potential component A defines the poloidal component of the mag-
netic field, i.e., the component contained in meridional (r, θ) planes. The azimuthal
component B is often called the toroidal field. Equation (2.2) satisfies the constraint
∇ · B = 0 by construction, and another great advantage of this mixed representation
is that the MHD induction equation for the vector B can be separated in two equa-
tions for the scalar components A and B. The trick is the following: substitution of
Eq. (2.2) into (2.1) leads to a series of (vector) terms, some oriented in the (toroidal)
êφ-direction, others perpendicularly, in the (poloidal) meridional plane. The origi-
nal, full induction equation can only be satisfied if the two sub-equations defined by
each sets of orthogonal terms are individually satisfied, thus defining two separate
evolution equations for A and B.

In the case of pure diffusive decay, and for a magnetic diffusivity η depending at
worst only on r , this poloidal/toroidal separation leads to:

∂ A

∂t
= η

(
∇2 − 1

�2

)
A , (2.3)

∂B

∂t
= η

(
∇2 − 1

�2

)
B + 1

�

∂η

∂r

∂(�B)

∂r
, (2.4)
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where � = r sin θ. These are still diffusion-like PDEs, now fully decoupled from
one another. In the “exterior” r > R there is only vacuum, which implies vanishing
electric currents. In practice we will need to match whatever solution we compute in
r < R to a current-free solution in r > R; such a solution must satisfy

μ0 J = ∇ × B = 0 . (2.5)

For an axisymmetric system, Eq. (2.5) translates into the requirement that

(
∇2 − 1

�2

)
A(r, θ, t) = 0 , r > R , (2.6)

B(r, θ, t) = 0 , r > R . (2.7)

Solutions to Eq. (2.6) have the general form

A(r, θ, t) =
∞∑

l=1

al

(
R

r

)l+1

Yl0(cos θ) r > R , (2.8)

where the Yl0 are the usual spherical harmonics of m = 0 azimuthal order, and l is
a positive integer, modes with negative l being discarded to ensure proper behavior
as r → ∞.

2.1.2 Poloidal Field Decay

Let us now seek specific solutions for a few situations of solar/stellar interest.1 The
first point to note is that the coefficients that appear in Eqs. (2.3)–(2.4) have no
explicit dependence on time; provided that the magnetic diffusivity η is at worst only
a function of r , it is then profitable to seek a separable solution of the form:

e−λt fλ(r) Ylm(θ,φ) , (2.9)

where the Ylm are again the spherical harmonics, the natural functional basis for
modal development on a spherical surface. Substitution of this Ansatz into Eq. (2.3)
with m = 0 in view of axisymmetry, yields the ODE:

[ 1

r2

d

dr
r2 d

dr
− l(l + 1)

r2 + λ

η(r)

]
fλ(r) = 0 . (2.10)

1 This and the following subsection are to a large extent adapted from class notes written by Thomas
J. Bogdan for the graduate class APAS7500 we co-taught in 1997 at CU Boulder.
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(a) (c)(b)

(f)(e)(d)

Fig. 2.1 Six diffusive eigenmodes for a purely poloidal field pervading a sphere of constant mag-
netic diffusivity embedded in vacuum. The top row shows the three fundamental (n = 1) diffusive
eigenmodes with smallest eigenvalues, i.e., largest decay times. They correspond to the well-known
dipolar, quadrupolar, and hexapolar modes (l = 1, 2 and 3). The bottom row shows a few eigen-
modes of higher radial overtones. Poloidal fieldlines are shown in a meridional plane, and the
eigenvalues are given in units of the inverse diffusion time (τ−1 ∼ η/R2).

Assume now that the magnetic diffusivity η is constant; the spherical Bessel func-
tions j (kr), with k2 = λ/η, are then the appropriate solution. The decay rate, λ,
is then determined by the above 1D eigenvalue problem, along with some bound-
ary conditions at the surface of the sphere, which turns out to depend on the vector
character of the decaying magnetic field.

We first consider the decay of a purely poloidal field, i.e., fλ(r) is taken to describe
the radial dependency of the toroidal vector potential component A(r, θ, t). Both the
interior solution and outer potential field solution carry the Yl0 angular dependency,
so continuity of A at r = R demands that
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fλ(r) =
{

jl(kr) r < R ,

jl(k R)
(

R
r

)l+1
r > R .

(2.11)

The continuity of the radial derivative at r = R, necessary for the continuity of the
latitudinal component of the magnetic field, then requires

k R j ′l (k R) + (l + 1) jl(k R) = k R jl−1(k R) = 0 , (2.12)

which means that the decay rate of a poloidal magnetic field is determined by the
zeros of a spherical Bessel function. An l = 1 dipole calls for the positive zeros of
j0(x) = sin x/x :

λn = ηπ2n2

R2 for l = 1 , n = 1, 2, 3, ... . (2.13)

Notice the many possible overtones associated with n ≥ 2. These decay more rapidly
than the fundamental (n = 1), since the radial eigenfunctions possess n − 1 field
reversals. For such overtones, the effective length scale to be used in the decay-time
estimate is roughly the radial distance between the field reversals, or ≈R/n.

Figure 2.1 (top row) shows the first three fundamental (n = 1) modes of angular
degrees l = 1, 2, 3, corresponding to dipolar, quadrupolar, and hexapolar magnetic
fields, as well as a few higher overtones for l = 1, 2 (bottom row). The decay time
estimate provided by Eq. (1.63) turns out to be too large by a factor π2 ≈ 10, for a
sun with constant diffusivity. Still not so bad for a pure order-of-magnitude estimate!

2.1.3 Toroidal Field Decay

Computing the decay rate of a purely toroidal magnetic field follows the same basic
logic. We now require B = 0 at r = R, and the decay rate ends up related to the
zero of a spherical Bessel function—only of index l rather than l − 1 as was found
for the decay of the poloidal field. Hence, a dipole (l = 1) toroidal magnetic field
decays at precisely the same rate as a quadrupole (l = 2) poloidal magnetic field (still
for constant diffusivity). Sneaking a peak in a handbook of special functions soon
reveals that the decay rate of a l = 1 toroidal field follows from the transcendental
equation:

tan k R = k R . (2.14)

The smallest non-zero solution of this equation gives,

λ1 = η(4.493409...)2

R2 , l = 1 toroidal and l = 2 poloidal . (2.15)

As with a purely poloidal field, higher radial overtones decay proportionally faster.

http://dx.doi.org/10.1007/978-3-642-32093-4_1
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2.1.4 Results for a Magnetic Diffusivity Varying with Depth

We end this section by a brief examination of the diffusive decay of large-scale
poloidal magnetic fields in the solar interior. The primary complication centers on
the magnetic diffusivity, which is no longer constant throughout the domain, and
turns out to be rather difficult to compute from first principles. To begin with, the
depth variations of the temperature and density in a solar model causes the magnetic
diffusivity to increase from about 10−2 m2 s−1 in the central core to ∼ 1 m2 s−1 at
the core–envelope interface. This already substantial variation is however dwarfed
by the much larger increase in the net magnetic diffusivity expected in the turbulent
environment of the convective envelope. We will look into this in some detail in
Chap. 3, but for the time being let us simply take for granted that η is much larger in
the envelope than in the core.

In order to examine the consequences of a strongly depth-dependent magnetic
diffusivity for the diffusive eigenmodes, we consider a simplified situation whereby
η assumes a constant value ηc in the core, a constant value ηe (
 ηc) in the envelope,
the transition occurring smoothly across a thin spherical layer coinciding with the
core–envelope interface. Mathematically, such a variation can be expressed as

η(r) = ηc + ηe − ηc

2

[
1 + erf

(
r − rc

w

)]
, (2.16)

where erf(x) is the error function, rc is the radius of the core–envelope interface, and
w is the half-width of the transition layer.

We are still facing the 1D eigenvalue problem presented by Eq. (2.10)! Expressing
time in units of the diffusion time R2/ηe based on the envelope diffusivity, we seek
numerical solutions, subjected to the boundary conditions fλ(0) = 0 and smooth
matching to a potential field solution in r/R > 1, with the diffusivity ratio Δη =
ηc/ηe as a parameter of the model. Since we can make a reasonable guess at the
first few eigenvalues on the basis of the diffusion time and adopted values of l and
ηc (∼ π2nlΔη, for l and n not too large), a (relatively) simple technique such as
inverse iteration is well-suited to secure both eigenvalues and eigenfunctions for the
problem.

Figure 2.2 shows the radial eigenfunctions for the slowest decaying poloidal eigen-
modes (l = 1, n = 1), with rc/R = 0.7, w/R = 0.05 in Eq. (2.16) and diffusivity
contrasts Δη = 1 (constant diffusivity), 10−1 and 10−3. The corresponding eigen-
values, in units of R2/ηe, are λ = 9.87, 2.14 and 0.028. Clearly, the (global) decay
time is regulated by the region of smallest diffusivity, since λ scales approximately
as (Δη)−1. Notice also how the eigenmodes are increasingly concentrated in the core
region (r/R � 0.7) as Δη decreases, i.e., they are “expelled” from the convective
envelope.

http://dx.doi.org/10.1007/978-3-642-32093-4_3
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Fig. 2.2 Radial eigenfunctions for the slowest decaying (� = 1) poloidal eigenmodes (l = 1,
n = 1) in a sphere embedded in a vacuum. The diffusivity is computed using Eq. (2.16) with
rc/R = 0.7, w/R = 0.05, and for three values of the core-to-envelope diffusivity ratio (Δη).
The eigenvalues, in units of ηe/R2, are λ = 9.87, 2.14 and 0.028 for Δη = 1, 0.1, and 10−3,
respectively. The diffusivity profile for Δη = 10−3 is also plotted (dash-dotted line). The vertical
dashed line indicates the location of the core–envelope interface.

2.1.5 Fossil Stellar Magnetic Fields

The marked decrease of the diffusive decay time with increasing angular and radial
degrees of the eigenmodes is a noteworthy result. It means that left to decay long
enough, any arbitrarily complex magnetic field in the sun or stars will eventually end
up looking dipolar. Conversely, a fluid flow acting as a dynamo in a sphere and trying
to “beat” Ohmic dissipation can be expected to preferentially produce a magnetic
field approximating diffusive eigenmodes of low angular and radial degrees (or some
combination thereof), since these are the least sensitive to Ohmic dissipation.

There exists classes of early-type main-sequence stars, i.e., stars hotter and more
luminous than the sun and without deep convective envelope, that are believed to
contain strong, large-scale fossil magnetic fields left over from their contraction
toward the main-sequence. The chemically peculiar Ap/Bp stars are the best studied
class of such objects. Reconstruction of their surface magnetic field distribution
suggests almost invariably that the fields are dominated by a large-scale dipole-like
component, as one would have expected from the preceding discussion if the observed
magnetic fields have been diffusively decaying for tens or hundreds of millions of
years. It is indeed quite striking that the highest strengths of large-scale magnetic
fields in main-sequence stars (a few T in Ap stars), in white dwarfs (∼ 105 T) and
in the most strongly magnetized neutron stars (∼ 1011 T) all amount to similar total
surface magnetic fluxes, ∼ 1019 Wb, lending support to the idea that these high
field strengths can be understood from simple flux-freezing arguments (Sect. 1.10),

http://dx.doi.org/10.1007/978-3-642-32093-4_1
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with field amplification resulting directly from magnetic flux conservation as the star
shrinks to form a compact object. We will revisit the origin of A-star magnetic fields
in Chap. 5.

2.2 Magnetic Field Amplification by Stretching and Shearing

Having thus investigated in some details the resistive decay of magnetic field, we
turn to the other physical mechanism embodied in Eq. (1.59): growth of the magnetic
field in response to the inductive action of a flow u. We first take a quick look at field
amplification in a few idealized model flows, and then move on to a specific example
involving a “real” astrophysical flow.

2.2.1 Hydrodynamical Stretching and Field Amplification

Let’s revert for a moment to the ideal MHD case (η = 0). The induction equation
can then be expressed as

(
∂

∂t
+ u · ∇

)
B = B · ∇u , (2.17)

where it was further assumed that the flow is incompressible (∇ ·u = 0). The LHS of
Eq. (2.17) is the Lagrangian derivative of B, expressing the time rate of change of B
in a fluid element moving with the flow. The RHS expresses the fact that this rate of
change is proportional to the local shear in the flow field. Shearing has the effect of
stretching magnetic fieldlines, which is what leads to magnetic field amplification.

As a simple example, consider on Fig. 2.3 a cylindrical fluid element of length L1,
threaded by a constant magnetic field of strength B1 oriented parallel to the axis of the
cylinder. In MHD, such a magnetic field could be sustained by an azimuthal current
concentrated in a thin sheet coinciding with the outer boundary of the cylinder,
giving a solenoid-like current+field system. Assume now that this magnetic “flux
tube” is embedded in a perfectly conducting incompressible fluid and subjected to a
stretching motion (∂uz/∂z > 0) along its central axis such that its length increases
to L2. Mass conservation demands that

R2

R1
=

√
L1

L2
. (2.18)

Conservation of the magnetic flux (= πR2 B), in turn, leads to

http://dx.doi.org/10.1007/978-3-642-32093-4_5
http://dx.doi.org/10.1007/978-3-642-32093-4_1
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Fig. 2.3 Stretching of a mag-
netized cylindrical fluid ele-
ment by a diverging flow. The
magnetic field (fieldlines in
gray) is horizontal within the
tube, has a strength B1 origi-
nally, and B2 after stretching.
In the flux-freezing limit, mass
conservation within the tube
requires its radius to decrease,
which in turn leads to field
amplification (see text).

B2

B1
= L2

L1
, (2.19)

i.e., the field strength is amplified in direct proportion to the level of stretching.
This almost trivial result is in fact at the very heart of any magnetic field ampli-

fication in the magnetohydrodynamical context, and illustrates two crucial aspects
of the mechanism: first, this works only if the fieldlines are frozen into the fluid,
i.e., in the high-Rm regime. Second, mass conservation plays an essential role here;
the stretching motion along the tube axis must be accompanied by a compressing
fluid motion perpendicular to the axis if mass conservation is to be satisfied. It is
this latter compressive motion, occurring perpendicular to the magnetic fieldlines
forming the flux tube, that is ultimately responsible for field amplification; the hori-
zontal fluid motion occurs parallel to the magnetic fieldline, and so cannot in itself
have any inductive effect as per Eq. (1.59). This becomes evident upon considering
the transfer of energy in this magnetized fluid system. With the electrical current
sustaining the magnetic field concentrated in a thin cylindrical sheet bounding the
tube, the field is force-free everywhere except at the surface of the tube, where the
Lorentz force points radially outwards. It is the work done by the flow against this
force which transfers energy from the flow to the magnetic field, and ultimately ends
up in magnetic energy (viz. Eq. (1.87)).

The challenge, of course, is to realize this idealized scenario in practice, i.e., to
find a flow which achieves the effect illustrated on Fig. 2.3. This, it turns out, is much
simpler than one might expect! Working in cylindrical coordinates (s,φ, z), consider
the following incompressible flow:

us(s) = αs

2
, uφ = 0 , uz(z) = −αz , (2.20)

http://dx.doi.org/10.1007/978-3-642-32093-4_1
http://dx.doi.org/10.1007/978-3-642-32093-4_1
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Fig. 2.4 Streamlines of the
stagnation point flow defined
by Eq. (2.20), plotted in a
constant-φ plane. The flow is
rotationally invariant about the
symmetry (z) axis, indicated
by the dotted line, and the
stagnation point (solid dot)
is located at the origin of the
cylindrical coordinate system.
A thin magnetic flux tube
located in the z = 0 plane
and crossing the origin, as
shown, will be subjected to the
stretching motion illustrated
in cartoon form on Fig. 2.3.

with α > 0. This describes a flow converging towards the z = 0 plane along the
z-axis, and diverging radially away from the origin within the z = 0 plane. Clearly,
u = 0 at the origin (0,φ, 0) of the cylindrical coordinate system. This is called
a stagnation point, and its presence is vital to the inductive amplification of the
magnetic field. Now place a thin, straight magnetic flux tube in the z = 0 plane, and
enclosing the stagnation point, as shown on Fig. 2.4. You can easily verify that you
will get exactly the type of stretching effect illustrated in cartoon form on Fig. 2.3.

2.2.2 The Vainshtein & Zeldovich Flux Rope Dynamo

So, the linear stretching of a flux tube amplifies the magnetic field, but the magnetic
flux remains constant by the very nature of the amplification mechanism. Nonethe-
less, this idea actually forms the basis of a dynamo that can increase both the magnetic
field strength and flux. S. Vainshtein and Ya. B. Zeldovich have proposed one of the
first and justly celebrated “cartoon” model for this idea, as illustrated on Fig. 2.5.
The steps are the following:

1. A circular rope of magnetic field is stretched to twice its length (a → b). As we
just learned, this doubles the magnetic field strength while conserving the flux;



2.2 Magnetic Field Amplification by Stretching and Shearing 47

(a) (b)

(d)

(f)

(c)

(e)

(g)

Fig. 2.5 Cartoon of the Stretch–Twist–Fold flux rope dynamo of Vainshtein & Zeldovich. A circular
flux rope is (a →b) stretched, (c →d) twisted, and (e→ f) folded. Diagram g shows the resulting
structure after another such sequence acting on (f). Diagram produced by D. Passos.

2. The rope is twisted by half a turn (c → d);
3. One half of the rope is folded over the other half in such a way as to align the

magnetic field of each half (e → f ); this now doubles the magnetic flux through
any plane crossed by the stacked loops.

This is quite remarkable; the so-called stretch–twist–fold sequence (hereafter
STF) illustrated on Fig. 2.5 first doubles the field strength while conserving the mag-
netic flux of the original rope, because the tube’s cross-section (∝ R2) varies as the
inverse of its length (as per Eq. 2.18), then folding doubles the magnetic flux without
reducing the field strength since the loop’s cross-section remains unaffected. If the
sequence is repeated n times, the magnetic field strength (and flux) is then amplified
by a factor

Bn

B0
∝ 2n = exp(n ln 2) . (2.21)

With n playing the role of a (discrete) time-like variable, Eq. (2.21) indicates an
exponential growth of the magnetic field, with a growth rate σ = ln 2. Rejoice! This
is our first dynamo!



48 2 Decay and Amplification of Magnetic Fields

A concept central to the STF dynamo—and other dynamos to be encountered
later—is that of constructive folding. Note how essential the twisting step is to the
STF dynamo: without it (or with an even number of twists), the magnetic field in
each half of the folded rope would end up pointing in opposite direction, and would
then add up to zero net flux, a case of destructive folding. We’ll have more to say
on the STF dynamo later on; for now we turn to amplification by fluid motions that
shear rather than stretch.

2.2.3 Hydrodynamical Shearing and Field Amplification

Magnetic field amplification by stretching, as illustrated on Fig. 2.3, evidently
requires (1) a stagnation point in the flow, and (2) a rather specific positioning and
orientation of the flux tube with respect to this stagnation point. We will encounter
later more realistic flows that do achieve field amplification through stretching in the
vicinity of stagnation points, but there is a different type of fluid motion that can
produce a more robust form of magnetic field amplification: shearing.

The idea is illustrated in cartoon form on Fig. 2.6. We start with a magnetic flux
tube, as before, but this time the flow is everywhere perpendicular to the axis of
the tube, and its magnitude varies with height along the length of the tube, e.g.,
u = ux (z)êx , so that ∂ux/∂z �= 0; this is called a planar sheared flow. In the ideal
MHD limit, every small section of the tube is displaced sideways at a rate equal to
the flow speed. After a while, the tube will no longer be straight, and for the type of
shearing motion illustrated on Fig. 2.6, its length will have increased. By the same
logic as before, the field strength within the tube must have increased proportionally
to the increase in length of the tube. Note also that here the action of the shear leaves
the z-component of the magnetic field unaffected, but produces an x-component
where there was initially none.

The beauty of this mechanism is that it does not require stagnation points, and
will in general operate for any sheared flow. The latter turn out to be rather common
in astrophysical objects, and we now turn to one particularly important example.

2.2.4 Toroidal Field Production by Differential Rotation

A situation of great (astro)physical interest is the induction of a toroidal magnetic
field via the shearing of a pre-existing poloidal magnetic field threading a differ-
entially rotating sphere of electrically conducting fluid. Working now in spherical
polar coordinates (r, θ,φ) and assuming overall axisymmetry (i.e., the poloidal field
and differential rotation share the same symmetry axis), the flow velocity can be
written as:

u(r, θ) = �Ω(r, θ)êφ , (2.22)
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Fig. 2.6 Stretching of a flux tube by a shearing motion directed perpendicularly to the tube’s axis.
Unlike on Fig. 2.3, here the tube does not remain straight, but it’s length is still increasing as a
consequence of the tube’s deformation; consequently, in the ideal MHD limit the magnetic field
threading the tube will be amplified by a factor given by the ratio of its final to initial length, as per
Eq. (2.19).

where again � = r sin θ, and the angular velocity Ω(r, θ) is assumed steady
(∂/∂t = 0), corresponding to the kinematic regime introduced earlier. Once again,
we take advantage of the poloidal/toroidal separation for axisymmetric magnetic
fields (introduced in Sect. 2.1). For the (divergenceless) azimuthal flow u given by
the above expression, ∇×(u× B) = (B ·∇)u−(u ·∇)B, which for an axisymmetric
magnetic field only has a non-zero contribution in the φ-direction since u itself is
azimuthally-directed.2

If moreover one neglects magnetic dissipation, the induction equation now
separates into:

∂ A

∂t
= 0 , (2.23)

∂B

∂t
= �[∇ × (Aêφ)] · ∇Ω . (2.24)

Equation (2.23) states that the poloidal component remains constant in time, so that
Eq. (2.24) integrates immediately to

B(r, θ, t) = B(r, θ, 0) +
(
�[∇ × (Aêφ)] · ∇Ω

)
t . (2.25)

Anywhere in the domain, the toroidal component of the magnetic field grows
linearly in time, at a rate proportional to the net local shear and local poloidal
field strength. A toroidal magnetic component is being generated by shearing the

2 In trying to demonstrate this, keep in mind that B · ∇ and u · ∇ are differential operators acting
on vector quantities; it may come as a surprise to realize that (B · ∇)u has non-vanishing r - and
θ-components, even though u is azimuthally-directed! See Appendix A for the component form of
these operators in spherical polar coordinates.
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(a) (b) (c)

Fig. 2.7 Shearing of a poloidal field into a toroidal component by a solar-like differential rota-
tion profile. Part a shows isocontours of the rotation rate Ω(r, θ)/2π (solid lines, contour spacing
10 nHz). The red lines are fieldlines for the n = 1 dipolar diffusive eigenmode with core-to-envelope
diffusivity contrast Δη = 10−2. The dashed line is the core–envelope interface at r/R = 0.7. Part
b shows isocontours of the toroidal field, with yellow-red (green-blue) corresponding to positive
(negative) B, after 10 yr of shearing. The maximum toroidal field strength is about 0.2 T, and con-
tour spacing is 0.02 T. Part c shows logarithmically spaced isocontours of the φ-component of the
Lorentz force associated with the poloidal/toroidal fields of panels (a) and (b).

initially purely poloidal fieldlines in theφ-direction, and the magnitude of the poloidal
magnetic component remains unaffected, as per Eq. (2.23). Note also that for such
an axisymmetric configuration, the only possible steady-state (∂/∂t = 0) solutions
must have

[∇ × (Aêφ)] · ∇Ω = 0 , (2.26)

i.e., the angular velocity must be constant on any given poloidal flux surface. This
result is known as Ferraro’s theorem.

Evidently, computing B via Eq. (2.25) requires a knowledge of the solar internal
(differential) rotation profile Ω(r, θ). Consider the following parametrization:

Ω(r, θ) = ΩC + ΩS(θ) − ΩC

2

[
1 + erf

(
r − rC

w

)]
, (2.27)

where
ΩS(θ) = ΩEq(1 − a2 cos2 θ − a4 cos4 θ) (2.28)

is the surface latitudinal differential rotation. We will make repeated use of this
parametrization in this and following chapters, so let’s look into it in some detail.
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Figure 2.7a shows isocontours of angular velocity (in black) generated by the
above parameterization with parameter values ΩC/2π = 432.8 nHz, ΩEq/2π =
460.7 nHz, a2 = 0.1264, a4 = 0.1591, rc = 0.713R, and w = 0.05R, as obtained by
a best-fit to helioseismic frequency splittings. This properly reproduces the primary
features of full helioseismic inversions, namely:

1. A convective envelope (r � rc) where the shear is purely latitudinal, with the
equatorial region rotating faster than the poles;

2. A core (r � rc) that rotates rigidly, at a rate equal to that of the surface mid-
latitudes;

3. A smooth matching of the core and envelope rotation profiles occurring across a
thin spherical layer coinciding with the core–envelope interface (r = rc), known
as the tachocline.

It should be emphasized already at this juncture that such a solar-like differential
rotation profile is quite complex, in that it is characterized by three partially overlap-
ping shear regions: a strong positive radial shear (i.e., ∂Ω/∂r > 0) in the equatorial
regions of the tachocline, an even stronger negative radial shear (∂Ω/∂r < 0) in its
polar regions, and a significant positive latitudinal shear (∂Ω/∂θ > 0) throughout
the convective envelope and extending partway into the tachocline. For a tachocline
of half-thickness w/R = 0.05, the mid-latitude latitudinal shear at r/R = 0.7 is
comparable in magnitude to the equatorial radial shear; as we will see in the next
chapter, its potential contribution to dynamo action should not be casually dismissed.

Figure 2.7b shows the distribution of toroidal magnetic field resulting from the
shearing of the slowest decaying, n = 1 dipole-like diffusive eigenmode of Sect. 2.1
of strength 10−4 T at r/R = 0.7, using the diffusivity profile given by Eq. (2.16)
with diffusivity contrast Δη = 10−2 (part a, red lines). This is nothing more than
Eq. (2.25) evaluated for t = 10 yr, with B(r, θ, 0) = 0. Not surprisingly, the toroidal
field is concentrated in the regions of large radial shear, at the core–envelope interface
(dashed line). Note how the toroidal field distribution is antisymmetric about the
equatorial plane, precisely what one would expect from the inductive action of a
shear flow that is equatorially symmetric on a poloidal magnetic field that is itself
antisymmetric about the equator.

Knowing the distributions of toroidal and poloidal fields on Fig. 2.7 allows us
to flirt a bit with dynamics, by computing the Lorentz force. For the axisymmetric
magnetic field considered here, the φ-component of Eq. (1.75) reduces to:

[F]φ = 1

μ0�
B p · ∇(�B) , (2.29)

with B p = ∇ × (Aêφ) the poloidal field. The resulting spatial distribution of [F]φ
is plotted on Fig. 2.7c. Examine this carefully to convince yourself that the Lorentz
force is such as to oppose the driving shear. This is an important and totally general
property of interacting flows and magnetic fields: the Lorentz force tends to resist the
hydrodynamical shearing responsible here for field induction. The ultimate fate of
the system depends on whether the Lorentz force becomes dynamically significant

http://dx.doi.org/10.1007/978-3-642-32093-4_1
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before the growth of the toroidal field is mitigated by resistive dissipation: this is
likely the case in solar/stellar interiors.

Clearly, the growing magnetic energy of the toroidal field is supplied by the
kinetic energy of the rotational shearing motion (this is hidden in the second term
on the RHS of Eq. (1.87)). In the solar case, this is an attractive field amplification
mechanism, because the available supply of rotational kinetic energy is immense.3

But don’t make the mistake of thinking that this is a dynamo! In obtaining Eq. (2.25)
we have completely neglected magnetic dissipation, and remember, the dynamos we
are seeking are flows that can amplify and sustain a magnetic field against Ohmic
dissipation. In fact, neither flux tube stretching (Fig. 2.3) or shearing (Fig. 2.6) is
a dynamo either, for the same reason.4 Nonetheless, shearing of a poloidal field by
differential rotation will turn out to be a central component of all solar/stellar dynamo
models constructed in later chapters. It is also believed to be an important ingredient
of magnetic amplification in stellar accretion disks, and even in galactic disks.

2.3 Magnetic Field Evolution in a Cellular Flow

Having examined separately the resistive decay and hydrodynamical induction of
magnetic field, we now turn to a situation where both processes operate simultane-
ously.

2.3.1 A Cellular Flow Solution

Working now in Cartesian geometry, we consider the action of a steady,
incompressible (∇ · u = 0) two-dimensional flow

u(x, y) = ux (x, y)êx + uy(x, y)êy (2.30)

on a two-dimensional magnetic field

B(x, y, t) = Bx (x, y, t)êx + By(x, y, t)êy . (2.31)

Note that neither the flow nor the magnetic field have a z-component, and that their
x and y-components are both independent of the z-coordinate. The flow is said
to be planar because uz = 0, and has an ignorable coordinate (i.e., translational

3 This may no longer be the case, however, if dynamo action takes place in a thin layer below the
base of the convective envelope; see the paper by see the paper by Steiner & Ferris-Mas (2005) in
the bibliography of the next chapter, for more on this aspect of the problem.
4 The STF dynamo (Fig. 2.5) is the lone exception here, in that it remains a dynamo even when
magnetic dissipation is brought into the picture; the reasons why are subtle and will be clarified
later on.

http://dx.doi.org/10.1007/978-3-642-32093-4_1
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symmetry) since ∂/∂z ≡ 0 for all field and flow components. Such a magnetic field
can be represented by the vector potential

A = A(x, y, t)êz , (2.32)

where, as usual, B = ∇ × A. Under this representation, lines of constant A in the
[x, y] plane coincide with magnetic fieldlines. The only non-trivial component of
the induction equation (1.97) is its z-components, which takes the form

∂ A

∂t
+ u · ∇ A = η∇2 A . (2.33)

This is a linear advection-diffusion equation, describing the transport of a passive
scalar quantity A by a flow u, and subject to diffusion, the magnitude of which being
measured by η. In view of the symmetry and planar nature of the flow, it is convenient
to write the 2D flow field in terms of a stream function Ψ (x, y):

u(x, y) = u0

(
∂Ψ

∂y
êx − ∂Ψ

∂x
êy

)
. (2.34)

It is easily verified that any flow so defined will identically satisfy the condition
∇ · u = 0. As with Eq. (2.32), a given numerical value of Ψ uniquely labels one
streamline of the flow. Consider now the stream function

Ψ (x, y) = L

4π

(
1 − cos

(
2πx

L

)) (
1 − cos

(
2πy

L

))
, x, y ∈ [0, L] . (2.35)

This describes a counterclockwise cellular flow centered on (x, y) = (L/2, L/2) as
shown on Fig. 2.8. The maximal velocity amplitude max‖u‖ = u0 is found along
the streamline Ψ = u0 L/(2π), plotted as a thicker line on Fig. 2.8. This streamline
is well approximated by a circle of radius L/4, and its streamwise circulation period
turns out to be 1.065 πL/2u0, quite close to what one would expect in the case of
a perfectly circular streamline. In what follows, this timescale is denoted τc and
referred to as the turnover time of the flow. Note that both the normal and tangential
components of the flow vanish on the boundaries x = 0, L and y = 0, L . This
implies that the domain boundary is itself a streamline (Ψ = 0, in fact), and that
every streamline interior to the boundary closes upon itself within the spatial domain.

We now investigate the inductive action of this flow by solving a nondimensional
version of Eq. (2.33), by expressing all lengths in units of L , and time in units of
L/u0, so that

∂ A

∂t
= −∂Ψ

∂y

∂ A

∂x
+ ∂Ψ

∂x

∂ A

∂y
+ 1

Rm

(
∂2 A

∂x2 + ∂2 A

∂y2

)
, x, y ∈ [0, L] , (2.36)

http://dx.doi.org/10.1007/978-3-642-32093-4_1
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(a) (b)

Fig. 2.8 Counterclockwise cellular flow generated by the streamfunction given by Eq. (2.35). Part
a shows streamlines of the flow, with the thicker streamline corresponding to Ψ = u0 L/(2π), on
which the flow attains its maximum speed u0. Part b shows the profile of uy(x) along a horizontal
cut at y = 1/2. A “typical” length scale for the flow is then ∼ L .

where Rm = u0 L/η is the magnetic Reynolds number for this problem, and the cor-
responding diffusion time is then τη = Rm in dimensionless units. Equation (2.36)
is solved as an initial-boundary value problem in two spatial dimensions. All calcu-
lations described below start at t = 0 with an initially uniform, constant magnetic
field B = B0 êx , equivalent to:

A(x, y, 0) = B0 y . (2.37)

We consider a situation where the magnetic field component normal to the bound-
aries is held fixed, which amounts to holding the vector potential fixed on the
boundary.

Figure 2.9 shows the variation with time of the magnetic energy (Eq. 1.89), for
four solutions having Rm = 10, 102, 103 and 104. Figure 2.10 shows the evolving
shape of the magnetic fieldlines in the Rm = 103 solution at 9 successive epochs. The
solid dots are “floaters”, namely Lagrangian markers moving along with the flow. At
t = 0 all floaters are equidistant and located on the fieldline initially coinciding with
the coordinate line y/L = 0.5, that (evolving) fieldline being plotted in the same
color as the floaters on all panels. Figure 2.10 covers two turnover times.5

At first, the magnetic energy increases quadratically in time. This is precisely
what one would expect from the shearing action of the flow on the initial Bx -directed
magnetic field, which leads to a growth of the By-component that is linear in time.
However, for t/τc � 2 the magnetic energy starts to decrease again and eventually
(t/τc 
 1) levels off to a constant value. To understand the origin of this behavior
we need to turn to Fig. 2.10 and examine the solutions in some detail.

5 An animation of this solution, and related additional solutions, can be viewed on the course
web-page http://obswww.unige.ch/SSAA/sf39/dynamos.

http://dx.doi.org/10.1007/978-3-642-32093-4_1
http://obswww.unige.ch/SSAA/sf39/dynamos
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Fig. 2.9 Evolution of the
magnetic energy for solutions
with different values of Rm.
The solutions have been
computed over 10 turnover
times, at which point they
are getting reasonably close
to steady-state, at least as
far as magnetic energy is
concerned. One turnover time
corresponds to t/π = 0.532.

The counterclockwise shearing action of the flow is quite obvious on Fig. 2.10 in
the early phases of the evolution, leading to a rather pretty spiral pattern as magnetic
fieldlines get wrapped around one another. Note that the distortion of magnetic field-
lines by the flow implies a great deal of stretching in the streamwise direction, as well
as folding in the cross-stream direction. The latter shows up as sharp bends in the
fieldlines, while the former is most obvious upon noting that the distance between
adjacent floaters increases monotonically in time. In other words, an imaginary flux
tube enclosing this fieldline is experiencing the same type of stretching as on Fig. 2.6.
It is no accident that the floaters end up in the regions of maximum field amplifica-
tion on frames 2–5; they are initially positioned on the fieldline coinciding with the
line y = L/2, everywhere perpendicular to the shearing flow (cf. Figs. 2.6 and 2.8),
which pretty much ensures maximal inductive effect, as per Eq. (2.33).

That all floaters remain at first “attached” onto their original fieldline is what one
would have expected from the fact that this is a relatively high-Rm solution, so that
flux-freezing is effectively enforced. As the evolution proceeds, the magnetic field
keeps building up in strength (as indicated by the color scale), but is increasingly
confined to spiral “sheets” of decreasing thickness. Coincident with these sheets are
strong electrical currents perpendicular to the plane of the page, the current density
being given here by

Jz(x, y) = − 1

μ0
∇2 A(x, y) . (2.38)

This current density, integrated over the [x, y] plane, exhibits a time-evolution resem-
bling that of magnetic energy.

By the time we hit one turnover time (corresponding approximately to frame 5
on Fig. 2.10), it seems that we are making progress towards our goal of producing
a dynamo; we have a flow field which, upon acting on a preexisting magnetic field,
has intensified the strength of that field, at least in some localized regions of the
spatial domain. However, beyond t ∼ τc the sheets of magnetic fields are gradually
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Fig. 2.10 Solution to Eq. (2.36) starting from an initially horizontal magnetic field. The panels
show the shape of the magnetic fieldlines at successive times. The color scale encodes the absolute

strength of the magnetic field, i.e.,
√

B2
x + B2

y . The x- and y-axes are horizontal and vertical,

respectively, and span the range x, y ∈ [0, L]. Time t is in units of L/u0. The solid dots are
“floaters”, i.e., Lagrangian marker passively advected by the flow. The magnetic Reynolds number
is Rm = 103.

disappearing, first near the center of the flow cell (frames 5–7), and later everywhere
except close to the domain boundaries (frames 7–9). Notice also how, from frame
5 onward, the floaters are seen to “slip” off their original fieldlines. This means
that flux-freezing no longer holds; in other words, diffusion is taking place. Yet, we
evidently still have t � τη (≡ Rm = 103 here), which indicates that diffusion should
not yet have had enough time to significantly affect the solution. What is going on
here?
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2.3.2 Flux Expulsion

The solution to this apparent dilemma lies with the realization that we have defined
Rm in terms of the global length scale L characterizing the flow. This was a perfectly
sensible thing to do on the basis of the flow configuration and initial condition on
the magnetic field. However, as the evolution proceeds beyond ∼τc the decreasing
thickness of the magnetic field sheets means that the global length scale L is no
longer an adequate measure of the “typical” length scale of the magnetic field, which
is what is needed to estimate the diffusion time τη (see Eq. (1.63)).

Fig. 2.11 Cuts of a Rm = 104 solution along the coordinate line y = 0.5, at successive times.
Note how the “typical” length scale � for the solution decreases with time, from �/L ∼ 0.25 at
t/π = 0.266, down to �/L ∼ 0.05 after two turnover times (t/π = 1.065).

Figure 2.11 shows a series of cuts of the vector potential A in a Rm = 104 solution,
plotted along the coordinate line y = L/2, at equally spaced successive time intervals
covering two turnover times. Clearly the inexorable winding of the fieldline leads to
a general decrease of the length scale characterizing the evolving solution. In fact,
each turnover time adds two new “layers” of alternating magnetic polarity to the
spiraling sheet configuration, so that the average length scale � decreases as t−1:

�(t)

L
∝ L

u0t
, (2.39)

which implies in turn that the local dissipation time, ∝ �2/η, is decreasing as t−2.
On the other hand, examination of Fig. 2.10 soon reveals that the (decreasing) length
scale characterizes the thickness of elongated magnetic structures that are themselves
more or less aligned with the streamlines, so that the turnover time τc remains
the proper timescale measuring field induction. With τc fixed and τη inexorably

http://dx.doi.org/10.1007/978-3-642-32093-4_1
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(b)(a)

(c) (d)

Fig. 2.12 Steady-state solutions to the cellular flow problem, for increasing values of the magnetic
Reynolds number Rm. The Rm = 104 solution is at the resolution limit of the Nx × Ny = 128 ×
128 mesh used to obtain these solutions, as evidenced on part (d) by the presence of small scale
irregularities where magnetic fieldlines are sharply bent. The color scale encodes the local magnitude
of the magnetic field. Note how, in the higher Rm solutions, magnetic flux is expelled from the center
of the flow cell. With EB(0) denoting the energy of a purely horizontal field with same normal
boundary flux distribution, the magnetic energy for these steady states is EB/EB(0) = 1.37, 2.80,
5.81 and 11.75, respectively, for panels (a) through (d).

decreasing, the solution is bound to reach a point where τη � τc, no matter how
small dissipation actually is. To reach that stage just takes longer in the higher Rm
solutions, since more winding of the fieldlines is needed. Larger magnetic energy
can build up in the transient phase, but the growth of the magnetic field is always
arrested even in the limit Rm → 0. Equating τc (∼ L/u0) to the local dissipation
time �2/η, one readily finds that the length scale � at which both process become
comparable can be expressed in terms of the global Rm as

�

L
= (Rm)−1/2 , Rm = u0 L

η
. (2.40)

That such a balance between induction and dissipation materializes means that a
steady-state can be attained. Figure 2.12 shows four such steady state solutions for
increasing values of the (global) magnetic Reynolds number Rm. The higher Rm
solutions clearly show flux expulsion from the central regions of the domain. This
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is a general feature of steady, high-Rm magnetized flows with closed streamlines:
magnetic flux is expelled from the regions of closed streamlines towards the edges of
the flow cells, where it ends up concentrated in boundary layers which indeed have a
thickness of order R−1/2

m , as suggested by Eq. (2.40), within which strong z-directed
electrical currents flow—and dissipate! It is important to understand how and why
this happens.

To first get an intuitive feel for how flux expulsion operates, go back to Fig. 2.10.
As the flow wraps the fieldlines around one another, it does so in a manner that
folds fieldlines of opposite polarity closer and closer to each other. When two such
fieldlines are squeezed closer together than the dissipative length scale (Eq. (2.40)),
resistive decay takes over and destroys the field faster than it is being stretched. This
is an instance of destructive folding, and can only be avoided along the boundaries,
where the normal component of the field is held fixed. For flux expulsion to operate,
flux-freezing must be effectively enforced on the spatial scale of the flow. Otherwise
the field is largely insensitive to the flow, and fieldlines are hardly deformed with
respect to their initial configuration (as on panel (a) of Fig. 2.12).

Consider now the implication for the total magnetic flux across the domain; flux
conservation requires that the normal flux B0 L imposed at the right and left bound-
aries must somehow cross the interior, otherwise Maxwell’s equation, ∇ · B = 0,
would not be satisfied; because of flux expulsion, it can only do so in the thin layers
along the bottom and top boundaries. Since the thickness of these layers scales as
R−1/2

m , it follows that the field strength therein scales as
√

Rm, which in turn implies
that the total magnetic energy in the domain also scales as

√
Rm in the t 
 τc limit.

2.3.3 Digression: The Electromagnetic Skin Depth

You may recall that a sinusoidally oscillating magnetic field imposed at the boundary
of a conductor will penetrate the conductor with an amplitude decreasing exponen-
tially away from the boundary and into the conductor, with a length scale called the
electromagnetic skin depth:

� =
√

2η

ω
. (2.41)

Now, go back to the cellular flow and imagine that you are an observer located in the
center of the flow cell, looking at the domain boundaries while rotating with angular
frequency ∝ u0/L; what you “see” in front of you is an “oscillating” magnetic field,
in the sense that it flips sign with “angular frequency” u0/L . The corresponding
electromagnetic skin depth would then be

�

L
=

√
2η

u0 L
≡

√
2

Rm
, (2.42)
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which basically corresponds to the thickness of the boundary layer where significant
magnetic field is present in the steady-states shown on Fig. 2.12. How about that for
a mind flip...

2.3.4 Timescales for Field Amplification and Decay

Back to our cellular flow. Flux expulsion or not, it is clear from Fig. 2.9 (solid lines)
that some level of field amplification has occurred in the high Rm solutions, in the
sense that EB(t → ∞) > EB(0). But is this a dynamo? The solutions of Fig. 2.12
have strong electric currents in the direction perpendicular to the plane of the paper,
concentrated in boundary layers adjacent to the domain boundaries and subjected to
resistive dissipation. Have we then reached our goal, namely to amplify and maintain
a weak, preexisting magnetic field against Ohmic dissipation?

In a narrow sense yes, but a bit of reflection will show that the boundary conditions
are playing a crucial role. The only reason that the magnetic energy does not asymp-
totically go to zero is that the normal field component is held fixed at the boundaries,
which, in the steady-state, implies a non-zero Poynting flux into the domain across
the left and right vertical boundaries. The magnetic field is not avoiding resistive
decay because of field induction within the domain, but rather because external
energy (and magnetic flux) is being pumped in through the boundaries. This is pre-
cisely what is embodied in the first term on the RHS of Eq. (1.87).

What if this were not the case? One way to work around the boundary problem is
to replace the fixed flux boundary conditions by periodic boundary conditions on B,
which in terms of A becomes:

A(0, y) = A(L , y) ,
∂ A(x, 0)

∂y
= ∂ A(x, L)

∂y
. (2.43)

There is still a net flux across the horizontal boundaries at t = 0, but the boundary
flux is now free to decay away along with the solution. Effectively, we now have
an infinitely long row of contiguous flow cells, initially threaded by a horizontal
magnetic field extending to ±∞. It is time to reveal that the hitherto unexplained
dotted lines on Fig. 2.9 correspond in fact to solutions computed with such boundary
conditions, for the same cellular flow and initial condition as before. The magnetic
energy now decays to zero, confirming that the boundaries indeed played a crucial role
in the sustenance of the magnetic field in our previous solutions. What is noteworthy
is the rate at which it does so. In the absence of the flow and with freely decaying
boundary flux, the initial field would diffuse away on a timescale τη ∼ L2/η, which
is equal to Rm in units of L/u0. With the flow turned on, the decay proceeds at
an accelerated rate because of the inexorable decrease of the typical length scale
associated with the evolving solution, which we argued earlier varied as t−1. What
then is the typical timescale for this enhanced dissipation? The decay phase of the
field (for t 
 L/u0) is approximately described by

http://dx.doi.org/10.1007/978-3-642-32093-4_1
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∂ A

∂t
= η∇2 A . (2.44)

An estimate for the dissipation timescale can be obtained once again via dimensional
analysis, by replacing ∇2 by 1/�2, as in Sect. 2.1 but with the important difference
that � is now a function of time:

� → �(t) =
(

L

t

) (
L

u0

)
, (2.45)

in view of our previous discussion (cf. Fig. 2.11 and accompanying text). This
leads to

∂ A

∂t
� −ηu2

0t2

L4 A , (2.46)

where the minus sign is introduced “by hand” in view of the fact that ∇2 A < 0 in
the decay phase. Equation (2.46) integrates to

A(t)

A0
= exp

[
− ηu2

0

3L4 t3

]
= exp

[
− 1

3Rm

(
u3

0t3

L3

)]
. (2.47)

This last expression indicates that with t measured in units of L/u0, the decay time
scales as R1/3

m . This is indeed a remarkable situation: in the low magnetic diffusivity
regime (i.e., high Rm), the flow has in fact accelerated the decay of the magnetic
field, even though large field intensification can occur in the early, transient phases
of the evolution. This is not at all what a dynamo should be doing!

As it turns out, flux expulsion is even trickier than the foregoing discussion may
have led you to believe! Flux expulsion destroys the mean magnetic field component
directed perpendicular to the flow streamlines. It cannot do a thing to a mean com-
ponent oriented parallel to streamlines. For completely general flow patterns and
initial conditions, the dissipative phase with timescale ∝ R1/3

m actually characterizes
the approach to a state where the advected trace quantity—here the vector potential
A—becomes constant along each streamline, at a value Ā equal to the initial value of
A averaged on each of those streamlines. For the cellular flow and initial conditions
used above, this average turns out to be Ā = 0.5 for every streamline, so that the R1/3

m
decay phase corresponds to the true decay of the magnetic field to zero amplitude.
If Ā varies from one fieldline to the next, however, the R1/3

m phase is followed by a
third decay phase, which proceeds on a timescale ∼ Rm, since induction no longer
operates (u ·∇ A = 0) and the typical length scale for A is once again L . At any rate,
even with a more favorable initial condition we have further delayed field dissipation,
but we still don’t have a dynamo since dissipation will proceed inexorably, at best
on the “long” timescale Rm × (L/u0).
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2.3.5 Flux Expulsion in Spherical Geometry: Axisymmetrization

You may think that the flux expulsion problem considered in the preceding section
has nothing to do with any astronomical objects you are likely to encounter in your
astrophysical careers. Wrong!

Consider the evolution of a magnetic field pervading a sphere of electrically
conducting fluid, with the solar-like differential rotation profile already encountered
previously (Sect. 2.2.4 and Eqs. (2.27)–(2.28)), and with the field having initially the
form of a dipole whose axis is inclined by an angle Θ with respect to the rotation
axis (θ = 0). Such a magnetic field can be expressed in terms of a vector potential
having components:

Ar (r, θ,φ)= 0 , (2.48)

Aθ(r, θ,φ)= (R/r)2 sin Θ(sin β cos φ − cos β sin φ) , (2.49)

Aφ(r, θ,φ)= (R/r)2[cos Θ sin θ − sin Θ cos θ(cos β cos φ + sin β sin φ)] ,

(2.50)

where β is the azimuthal angle locating the projection of the dipole axis on the
equatorial plane.

Now, the vector potential for an inclined dipole can be written as the sum of two
contributions, the first corresponding to an aligned dipole (Θ = 0), the second to a
perpendicular dipole (Θ = π/2), their relative magnitude being equal to tan Θ . Since
the governing equation is linear, the solution for an inclined dipole can be broken
into two independent solutions for the aligned and perpendicular dipoles. The former
is precisely what we investigated already in Sect. 2.2.4, where we concluded there
that the shearing of an aligned dipole by an axisymmetric differential rotation would
lead to the buildup of a toroidal component, whose magnitude would grow linearly
in time at a rate set by the magnitude of the shear.

The solution for a perpendicular dipole is in many way similar to the cellular flow
problem of Sect. 2.3. You can see how this may be the case by imagining looking from
above onto the equatorial plane of the sphere; the fieldlines contained in that plane will
have a curvature and will be contained within a circular boundary, yet topologically
the situation is similar to the cellular flow studied in the preceding section: the
(sheared) flow in the equatorial plane is made of closed, circular streamlines contained
within that plane, so that we can expect flux expulsion to occur. The equivalent of the
turnover time here is the differential rotation timescale, namely the time for a point
located on the equator to perform a full 2π revolution with respect to the poles:

τDR = (ΩEqu − ΩPole)
−1 . (2.51)

For a freely decaying dipole, the perpendicular component of the initial dipole will
then be subjected to flux expulsion, and dissipated away, at a rate far exceeding purely
diffusive decay in the high Rm limit, as argued earlier.
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(a) (b) (c)

(f)

(i)

(e)(d)
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Fig. 2.13 Symmetrization of an inclined dipole in an electrically conducting sphere in a state
of solar-like axisymmetric differential rotation. Each panel shows contours of constant Br at the
surface of the sphere, and the solution is matched to a potential in the exterior (r/R > 1). The
differential rotation is given by Eq. (2.27). Time is given in units of τDR, in which the turnover period
(or differential rotation period) is equal to 2π, and the magnetic Reynolds number is Rm = 103.

But here is the amusing thing; for an observer looking at the magnetic field at
the surface of the sphere, the enhanced decay of the perpendicular component of the
dipole will translate into a gradual decrease in the inferred tilt axis of the dipole.
Figure 2.13 shows this effect, for the differential rotation profile given by Eq. (2.27)
and a magnetic Reynolds number Rm = 103. Contours of constant Br are plotted on
the surface r/R = 1, with the neutral line (Br = 0) plotted as a thicker line. At t = 0
the field has the form of a pure dipole tilted by π/3 with respect to the coordinate
axis, and the sphere is oriented so that the observer (you!) is initially looking straight
down the magnetic axis of the dipole. Advection by the flow leads to a distortion
of the initial field, with the subsequent buildup of small spatial scales in the r - and
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θ-directions (only the latter can be seen here).6 After only two turnover times (last
frame), the surface field looks highly axisymmetric.

So, in a differentially rotating fluid system with high Rm, flux expulsion leads
to the symmetrization of any non-axisymmetric magnetic field component initially
present—or contemporaneously generated. The efficiency of the symmetrization
process should make us a little cautious in assuming that the large-scale magnetic
field of the sun, which one would deem roughly axisymmetric upon consideration of
surface things like the sunspot butterfly diagram, is characterized by the same level
of axisymmetry in the deep-seated generating layers, where the dynamo is presumed
to operate. After all, standing in between is a thick, axisymmetrically differentially
rotating convective envelope that must be reckoned with. In fact, observations of
coronal density structures in the descending phase of the solar cycle can be inter-
preted in terms of a large-scale, tilted dipole component, with the tilt angle steadily
decreasing over 3–4 years towards solar minimum. Interestingly, the differential
rotation timescale for the sun is ∼ 6 months. Are we seeing the axisymmetrization
process in operation? Maybe. Axisymmetry is certainly a very convenient modelling
assumption when working on the large scales of the solar magnetic field, but it may
be totally wrong.

Axisymmetrization has also been invoked as an explanation for the almost per-
fectly axisymmetric magnetic field of the planet Saturn, which stands in stark contrast
to the other solar system planetary magnetic fields. Saturn has a very pronounced
surface latitudinal differential rotation, characterized by equatorial acceleration, and
current structural models suggest that this differential rotation may persist in the
molecular Hydrogen envelope, down to the edge of the metallic Hydrogen core
(r/RS � 0.55), where dynamo action is presumed to take place. This would be
an ideal configuration for axisymmetrization of a non-axisymmetric deep magnetic
field, provided the electrical conductivity is high enough at the base of the envelope
to ensure good coupling between the magnetic field and the fluid.

2.4 Two Anti-Dynamo Theorems

The cellular flow studied in Sect. 2.3, although it initially looked encouraging
(cf. Fig. 2.9), proved not to be a dynamo after all. Is this peculiar to the flow defined
by Eqs. (2.34)–(2.35), or is this something more general? Exhaustively testing for
dynamo action in all possible kinds of flow geometries is clearly impractical. How-
ever, it turns out that one can rule out a priori dynamo action in many classes of
flows. These demonstrations are known as anti-dynamo theorems.

6 An animation of this solution, as well as a few others for different Rm and/or tilt angle, can be
viewed on the course web-page.
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2.4.1 Zeldovich’s Theorem

A powerful anti-dynamo theorem due to Zeldovich (1914–87), has a lot to teach us
about our cellular flow results. The theorem rules out dynamo action in incompress-
ible (∇ · u = 0) steady planar flows in cartesian geometry, i.e., flows of the form

u2(x, y, z) = ux (x, y, z)êx + uy(x, y, z)êy (2.52)

in a bounded volume V at the boundaries (∂V ) of which the magnetic field vanishes.
Note that no other restrictions are placed on the magnetic field, which can depend
on all three spatial coordinate as well as time. Nonetheless, in view of Eq. (2.52) it
will prove useful to consider the z-component of the magnetic field Bz(x, y, z, t)
separately from the (2D) field component in the [x, y] plane (hereafter denoted B2).
It is readily shown that the z-component of the induction equation then reduces to

(
∂

∂t
+ u · ∇

)
Bz = η∇2 Bz (2.53)

for spatially constant magnetic diffusivity. Now, the LHS is just a Lagrangian deriva-
tive, yielding the time variation of Bz as one moves along with the fluid. Multiplying
this equation by Bz and integrating over V yields, after judicious use of Green’s first
identity (see Appendix A):

1

2

∫
V

DB2
z

Dt
dV = η

∫
∂V

Bz(∇Bz) · n dS − η

∫
V
(∇Bz)

2dV . (2.54)

Now, the first integral on the RHS vanishes since B = 0 on ∂V by assumption.
The second integral is positive definite, therefore Bz always decays on the diffusive
timescale (cf. Sect. 2.1).

Consider now the magnetic field B2 in [x, y] planes. The most general such 2D
field can be written as the sum of a solenoidal and potential component:

B2(x, y, z, t) = ∇ × (Aêz) + ∇Φ , (2.55)

where the vector potential A and scalar potential Φ both depend on time and on
all three spatial coordinates, except for Φ having no z-dependency. The constraint
∇ · B = 0 then implies

∇2
2Φ = −∂Bz

∂z
, (2.56)

where ∇2
2 ≡ ∂2/∂x2 + ∂2/∂y2 is the 2D Laplacian operator in the [x, y] plane.

Clearly, once Bz has resistively dissipated, i.e., for times much larger than the global
resistive decay time τη , Φ is simply a solution of the 2D Laplace equation ∇2

2Φ = 0.
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Here comes the sneaky part. We first substitute Eq. (2.55) into the induction (1.59),
and then take the curl of the resulting expression; this last manoeuvre will lead to
the disappearance of all but one contribution from the ∇Φ term, since ∇ × ∇Φ = 0
identically. Moreover, since u2 and Aêz are here orthogonal by construction, we also
have u2 × ∇ × (Aêz) = −(u2 · ∇)(Aêz). Since the time and spatial derivatives
commute, a bit of vector algebra allows to write the remaining terms in the form:

∇ × ∇ ×
[
∂(Aêz)

∂t
+ u2 · ∇(Aêz) − η∇2

2 (Aêz) − u2 × ∇Φ

]
= 0 , (2.57)

with ∇ · (Aêz) = 0 as a choice of gauge. In general, the above expression is only
satisfied if the quantity in square brackets itself vanishes, i.e.,

(
∂

∂t
+ u2 · ∇

)
A = η∇2

2 A + (u2 × ∇Φ) · êz . (2.58)

This expression is identical to that obtained above for Bz , except for the presence
of the source term u2 × ∇Φ. However, we just argued that for t 
 τη , ∇2

2Φ = 0.
In addition, B vanishes on ∂V by assumption, so that the only possible asymptotic
interior solutions are of the form Φ =const, which means that the source term
vanishes in the limit t 
 τη . From this point on Eq. (2.58) is indeed identical to
Eq. (2.53), for which we already demonstrated the inevitability of resistive decay.
Therefore, dynamo action, i.e., maintenance of a magnetic field against resistive
dissipation, is impossible in a planar flow for any 3D magnetic field.

2.4.2 Cowling’s Theorem

Another powerful anti-dynamo theorem, predating in fact Zeldovich’s, is due to
Cowling (1906–90). This anti-dynamo theorem is particularly important historically,
since it rules out dynamo action for 3D but axisymmetric flows and magnetic fields,
which happen to be the types of flows and fields one sees in the sun, at least on
the larger spatial scales. Rather than going over one of the many formal proofs of
Cowling’s theorem found in the literature, let’s just follow the underlying logic of
our proof of Zeldovich’s theorem.

Assuming once again that there are no sources of magnetic field exterior to the
domain boundaries, we consider the inductive action of a 3D, steady axisymmetric
flow on a 3D axisymmetric magnetic field. Working in spherical polar coordinates
(r, θ,φ), we write:

u(r, θ) = 1

�
∇ × (Ψ (r, θ)êφ) + �Ω(r, θ)êφ , (2.59)

B(r, θ, t) = ∇ × (A(r, θ, t)êφ) + B(r, θ, t)êφ , (2.60)

http://dx.doi.org/10.1007/978-3-642-32093-4_1
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where � = r sin θ. Here, the azimuthal vector potential A and stream function Ψ

define the poloidal components of the field and flow, and Ω is the angular velocity
(units rad s−1). Note that the form of Eq. (2.59) guarantees that ∇ · (�u) = 0,
describing mass conservation in a steady flow. Separation of the (vector) MHD
induction equation into two components for the 2D scalar fields A and B, as done in
Sect. 2.1, now leads to:

(
∂

∂t
+ up · ∇

)
(�A) = �η

(
∇2 − 1

�2

)
A , (2.61)

(
∂

∂t
+ up · ∇

) (
B

�

)
= η

�

(
∇2 − 1

�2

)
B + 1

�2

dη

dr

∂(�B)

∂r

−
(

B

�

)
∇ · up + B p · ∇Ω , (2.62)

where B p and up are notational shortcuts for the poloidal field and meridional flow.
Notice that the vector potential A evolves in a manner entirely independent of the
toroidal field B, the latter being conspicuously absent on the RHS of Eq. (2.61). This
is not true of the toroidal field B, which is well aware of the poloidal field’s presence
via the ∇Ω shearing term.

The LHS of these expressions is again a Lagrangian derivative for the quantities
in parentheses, and the first terms on each RHS are of course diffusion. The next term
on the RHS of Eq. (2.62) vanishes for incompressible flows, and remains negligible
for very subsonic compressible flows. The last term on the RHS, however, is a source
term, in that it can lead to the growth of B as long as A does not decay away. This
is the very situation we have considered in Sect. 2.2.4, by holding A fixed as per
Eq. (2.23). However, there is no similar source-like term on the RHS of Eq. (2.61),
which governs the evolution of A.

This should now start to remind you of Zeldovich’s theorem. In fact, Eq. (2.3) is
structurally identical to Eq. (2.53), for which we demonstrated the inevitability of
resistive decay in the absence of sources exterior to the domain. This means that
A will inexorably decay, implying in turn that B will then also decay once A has
vanished. Since axisymmetric flows cannot maintain A against Ohmic dissipation, a
3D axisymmetric flow cannot act as a dynamo for a 3D axisymmetric magnetic field.7

Cowling’s theorem is not restricted to spherical geometry, and is readily generalized
to any situation where both flow and field showing translational symmetry in one
and the same spatial coordinate. Such physical systems are said to have an ignorable
coordinate.

It is worth pausing and reflecting on what these two antidynamo theorems imply
for the cellular flow of Sect. 2.3. It was indeed a planar flow (uz = 0), and moreover
the magnetic field had an ignorable coordinate (∂ B/∂z ≡ 0)! We thus fell under the

7 A fact often unappreciated is that Cowling’s theorem does not rule out the dynamo generation of
a non-axisymmetric 3D magnetic field by a 3D axisymmetric flow.
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purview of both Zeldovich’s and Cowling’s theorems, so in retrospect our failure to
find dynamo action is now understood.

2.5 The Roberts Cell Dynamo

Clearly, the way to evade both theorems is to consider flows and fields that are fully
three-dimensional, and lack translational symmetry in either the flow or the magnetic
field. We now consider one such flow, and examine some of its dynamo properties.

2.5.1 The Roberts Cell

The Roberts cell is a spatially periodic, incompressible flow defined over a 2D domain
(x, y) ∈ [0, 2π] in terms of a stream function

Ψ (x, y) = cos x + sin y , (2.63)

so that

u(x, y) = ∂Ψ (x, y)

∂y
êx − ∂Ψ (x, y)

∂x
êy + Ψ (x, y)êz . (2.64)

Note that the flow velocity is independent of the z-coordinate, even though the flow
has a non-zero z-component. Equations (2.63)–(2.64) describe a periodic array of
counterrotating flow cells in the [x, y] plane, with a z-component that changes sign
from one cell to the next; the total flow is then a series of helices, which have the
same kinetic helicity h = u · ∇ × u in each cell. The Roberts cell flow represents
one example of a Beltrami flows, i.e., it satisfies the relation ∇ × u = αu, where
α is a numerical constant. Such flows are maximally helical, in the sense that their
vorticity (ω ≡ ∇ × u) is everywhere parallel to the flow, which maximizes helicity
for a given flow speed. Figure 2.14 shows one periodic “unit” of the the Roberts
cell flow pattern. Take note already of the presence of stagnation points where the
corners of four contiguous flow cells meet.

Let’s first pause and consider why one should expect the Roberts cell to evade
Cowling’s and Zeldovich’s theorems. First, note that this is not a planar flow in
the sense demanded by Zeldovich’s theorem, since we do have three non-vanishing
flow components. However, the z-coordinate is ignorable in the sense of Cowling’s
theorem, since all flow components are independent of z. If this flow is to evade
Cowling’s theorem and act as a dynamo, it must act on a magnetic field that is
dependent on all three spatial coordinates.

Consequently, we consider the inductive effects of this flow acting on a fully three
dimensional magnetic field B(x, y, z, t). Since the flow speed is independent of z,
we can expect solutions of the linear induction equation to be separable in z, i.e.:



2.5 The Roberts Cell Dynamo 69

Fig. 2.14 The Roberts cell
flow. The flow is periodic in
the [x, y] plane, and indepen-
dent of the z-coordinate (but
uz �= 0!). Flow streamlines
are shown projected in the
[x, y] plane, and the +/−
signs indicate the direction of
the z-component of the flow.
The thicker contour defines
the network of separatrix
surfaces in the flow, corre-
sponding to cell boundaries
and intersecting at stagna-
tion points. The uz(x, y)

isocontours coincide with the
projected streamlines.

B(x, y, z, t) = b(x, y, t)eikz , (2.65)

where k is a (specified) wave vector in the z-direction, and the 2D magnetic amplitude
b is now a complex quantity. We are still dealing with a fully 3D magnetic field, but
the problem has been effectively reduced to two spatial dimensions (x, y), which
represents a great computational advantage.

2.5.2 Dynamo Solutions

From the dynamo point of view, the idea is again to look for solutions of the induction
equations where the magnetic energy does not fall to zero as t → ∞. In practice
this means specifying k, as well as some weak field as an initial condition, and solve
the 2D linear initial value problem for b(x, y, t) resulting from the substitution of
Eq. (2.65) into the induction equation:

∂b
∂t

= (b · ∇xy)u − (u · ∇xy)b − ikuz b + R−1
m (∇2

xy b − k2b) , (2.66)

subjected to periodic boundary conditions on b, in order to avoid the potentially
misleading role of fixed-flux boundary conditions in driving dynamo action, as
encountered in Sect. 2.3. Here ∇xy and ∇2

xy are the 2D gradient and Laplacian oper-
ators in the [x, y] plane. As before we use as a time unit the turnover time τc, which
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Fig. 2.15 Isocontours for the z-component of the magnetic field in the [x, y] plane, for Roberts
cell dynamo solutions with Rm = 100 and k = 2, in the asymptotic regime t 
 τc. The color scale
codes the real part of the z-component of b(x, y, t) (gray-to-blue is negative, gray-to-red positive).
The green straight lines indicate the separatrix surfaces of the flow (see Fig. 2.14). Note the flux
expulsion from the cell centers, and the concentration of the magnetic flux in thin sheets pressed
against the separatrices. In the t 
 τc regime, the field grows exponentially but the shape of the
planform is otherwise steady. Compare this with Fig. 2.12b.

is of order 2π here. All solutions described below were again obtained numerically,
starting from a weak, horizontal magnetic field as the initial condition.

The time evolution can be divided into three more or less distinct phases, the
first two being similar to the case of the 2D cellular flow considered in Sect. 2.3:
(1) quadratic growth of the magnetic energy for t � τc; (2) flux expulsion for the
subsequent few τc. However, and unlike the case considered in Sect. 2.3, for some
values of k the third phase is one of exponential growth in the magnetic field (and
energy).

Figure 2.15 shows a typical Roberts cell dynamo solution, for Rm = 102 and
k = 2. What is plotted is the real part of the z-component of b(x, y, t), at time
t 
 τc. The thick green lines are the separatrices of the flow. One immediately
recognizes the workings of flux expulsion, in that very little magnetic flux is present
near the center of the flow cells. Instead the field is concentrated in boundary-layer-
like thin sheets parallel to the separatrix surfaces. Given our extensive discussion of
flux expulsion in Sect. 2.3, it should come as no surprise that the thickness of those
sheets scales as R−1/2

m . For t 
 τc, the field grows exponentially, but the shape of
the “planform” remains fixed. In other words, even though we solved the induction
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Fig. 2.16 Growth rates of the magnetic energy in the Roberts cell, for sequences of solutions
with increasing k and various values of Rm, as labeled near the maxima of the various curves.
Growth typically occurs for a restricted range in k, and peaks at a value kmax that increases slowly
with increasing Rm. Note however how the corresponding maximum growth rate decreases with
increasing Rm. The small “dip” left of the main peaks for the high-Rm solutions is a real feature,
although here it is not very well resolved in k.

equation as an initial value problem, the solution can be thought of as an eigensolution
of the form B(x, y, z, t) = b(x, y)eikz+st , with Re(s) > 0 and Im(s) = 0.

In terms of the magnetic energy evolution, the growth rate s of b(x, y, t) is readily
obtained by a linear least-squares fit to the log EB versus t curves in the t 
 τc regime,
or more formally defined as

s = lim
t→∞

[
1

2t
log(EB)

]
. (2.67)

It turns out that the Roberts cell flows yields dynamo action (i.e., s > 0) over wide
ranges of wave numbers k and magnetic Reynolds number Rm. Figure 2.16 shows
the variations in growth rates with k, for various values of Rm. The curves peak
at a growth rate value kmax that gradually shifts to higher k as Rm increases. The
largest growth rate is kmax � 0.17, and occurs at Rm � 10. It can be shown (see
bibliography) that in the high Rm regimes the following scalings hold:

kmax∝ R1/2
m , Rm 
 1 , (2.68)

s(kmax) ∝ log(log Rm)

log Rm
, Rm 
 1 . (2.69)

To understand the origin of these peculiar scaling relations, we need to take a closer
look at the mechanism through which the magnetic field is amplified by the Roberts
cell.
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2.5.3 Exponential Stretching and Stagnation Points

Even cursory examination of Fig. 2.15 suggests that magnetic field amplification
in the Roberts cell is somehow associated with the network of separatrices and
stagnation points. It will prove convenient in the foregoing analysis and discussion
to first introduce new coordinates:

x ′ = x − y , y′ = x + y + 3π

2
, (2.70)

corresponding to a 3π/2 translation in the y-direction, followed by 45◦ rotation about
the origin in the [x, y] plane. The separatrices are now parallel to the coordinate lines
x ′ = nπ, y′ = nπ (n = 0, 1, ...), and the stream function has become

Ψ (x ′, y′) = 2 sin(x ′) sin(y′) . (2.71)

Close to the stagnation points, a good approximation to Eq. (2.71) is

Ψ (x ′, y′) � 2x ′y′ , x ′, y′ � 1 , (2.72)

which, if anything else, should now clarify why this is called a hyperbolic stagnation
point... Consider now a fluid element flowing in the vicinity of this stagnation point.
From a Lagrangian point of view its equations of motion are:

∂x ′

∂t
= ux ′ = 2x ′ , (2.73)

∂y′

∂t
= uy′ = −2y′ , (2.74)

which immediately integrates to

x ′(t) = x ′
0e2t , y′(t) = y′

0e−2t , (2.75)

where (x ′
0, y′

0) is the location of the fluid element at t = 0. Evidently, the fluid
element experiences exponential stretching in the x ′-direction, and corresponding
contraction in the y′-direction (since ∇ · u = 0!). Now, recall that in ideal MHD
(Rm = ∞) a magnetic fieldline obeys an equation identical to that of a line element,
and that stretching leads to field amplification as per the mass conservation constraint
(Sect. 2.2.1). Clearly, stagnation points have quite a bit of potential, when it comes
to amplifying exponentially a pre-existing magnetic field... provided diffusion and
destructive folding can be held at bay. Let’s look into how this is achieved in the
Roberts Cell.
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2.5.4 Mechanism of Field Amplification in the Roberts Cell

We stick to the rotated Roberts cell used above, restrict ourselves to the Rm 
 1
regime, and pick up the field evolution after flux expulsion is completed and the
magnetic field is concentrated in thin boundary layers (thickness ∝ R−1/2

m ) pressed
against the separatrices (as on Fig. 2.15).

Consider a x ′-directed magnetic fieldline crossing a vertical separatrix, as shown
on Fig. 2.17a (gray line labeled “a”). The y′ component of the flow is positive on
either side of the separatrix, and peaks on the separatrix. Consequently, the fieldline
experiences stretching in the y′-direction (a → b → c → d on Fig. 2.17a). However,
the induced y′ component of the magnetic field changes sign across the separatrix, so
that we seem to be heading towards our dreaded destructive folding. This is where the
crucial role of the vertical (z) dimension becomes apparent. Figure 2.17b is a view of
the same configuration in the [x ′, z] plane, looking down onto the y′ axis on part A. At
t = 0 the fieldlines have no component in the z-direction, but in view of the assumed
eikz spatial dependency the x ′ component changes sign every half-wavelength k/π.
Consider now the inductive action of the z-component of the velocity, which changes
sign across the separatrix. After some time interval of order k/(πuz) the configuration

(a) (b) (c)

Fig. 2.17 Mechanism of magnetic field amplification in the Roberts cell flow. The diagram is
plotted in terms of the rotated [x ′, y′] Roberts cell. The thick vertical line is a separatrix surface,
and the gray lines are magnetic fieldlines. Part a is a view in the horizontal plane [x ′, y′], and
shows the production of a y′-directed magnetic component from an initially x ′-directed magnetic
field (line labeled “a”). Parts b and c are views in the [x ′, z] plane looking down along the y′
axis, and illustrate the phase shift in the z-direction of the y′ magnetic component caused by the
z-component of the velocity. The symbol � (⊗) indicates a magnetic field coming out (into) the
plane of the page. Note on part (c) how footpoints of identical polarity are brought in close proximity,
thus avoiding the destructive folding that would have otherwise characterized the situation depicted
on part (b) in the uz = 0 2D case.
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of Fig. 2.17b will have evolved to that shown on part C. Observe what has happened:
the fieldlines have been sheared in such a way that y′-components of the magnetic
field of like signs have been brought in close proximity. Contrast this to the situation
on part B, where magnetic footpoints in closest proximity have oppositely directed
y′-components.

The end result of this process is that a y′-directed magnetic field is produced by
shearing of the initial x ′-directed field, with a phase shift in the z-direction such that
destructive folding is avoided. Clearly, this requires both a z-component of velocity,
and a z-dependency in the magnetic field. Either alone won’t do the trick.

Now, the same reasoning evidently applies to a y′-directed magnetic fieldline
crossing a horizontal separatrix: a x ′-directed magnetic field will be induced. That
magnetic field will be swept along the horizontal separatrix, get further amplified by
exponential stretching as it zooms by the stagnation point, and continue along the
vertical separatrix, where it can now serve as a seed field for the production of a y′-
directed field. The dynamo “loop” is closed, at any time the rate of field production
is proportional to the local field strength, and exponential growth of the field follows.
The process works best if the half wavelength k/π is of order of the boundary layer
thickness, which in fact is what leads to the scaling law given by Eq. (2.68). The
scaling for the growth rate (Eq. 2.69), in turn, is related to the time spent by a fluid
element in the vicinity of the stagnation point.

2.5.5 Fast Versus Slow Dynamos

One worrisome aspect of the Roberts cell dynamo is the general decrease of the
growth rates with increasing Rm (see Fig. 2.16); worrisome, because the Rm → ∞
limit is the one relevant to most astrophysically interesting circumstances. A dynamo
exhibiting this property is called a slow dynamo, in contrast to a fast dynamo, which
(by definition) retains a finite growth rate as Rm → ∞, the formal requirement being
that

lim
Rm→∞ s(kmax) > 0 . (2.76)

In view of Eq. (2.69), the Roberts cell is thus formally a slow dynamo. However
the RHS of Eq. (2.69) is such a slowly decreasing function of Rm that the Roberts
cell is arguably the closest thing it could be to a fast dynamo... without formally
being one.

The distinction hinges on the profound differences between the strict mathematical
case of Rm = ∞ (ideal MHD), and the more physically relevant limit Rm → ∞.
From the physical point of view, the distinction is a crucial one. One example will
suffice. Recall that in the absence of dissipation magnetic helicity is a conserved
quantity in any evolving magnetized fluid:
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dHB

dt
= d

dt

∫
V

A · B dV = 0, (2.77)

where B = ∇ × A. Dynamo action, in the sense of amplifying a weak initial field, is
then clearly impossible except for the subset of initial fields having HB = 0. This is a
very stringent constraint on dynamo action! Go back now to the Roberts cell dynamo
in the high-Rm regime. We saw that magnetic structures build up on a horizontal
length scale ∝ R−1/2

m , and that the vertical wavelength of the fastest growing mode
also decreases as R−1/2

m . The inexorable shrinking of the length scales ensures that
dissipation always continue to operate even in the Rm → ∞ limit. This is why the
Roberts cell dynamo can evade the constraint of helicity conservation. This is also
why it is a slow dynamo. On the other hand, the Vainshtein & Zeldovich Stretch–
Twist–Fold dynamo of Sect. 2.2, with its growth rate σ = ln 2, is a fast dynamo since
nothing prevents it from operating in the Rm → ∞ limit.

But is this really the case? In the flows we have considered up to now, the existence
of dynamo action hinges on stretching winning over destructive folding; in the 2D
cellular flow of Sect. 2.3, destructive folding won over stretching everywhere away
from boundaries. In the Roberts cell, destructive folding is avoided only for vertical
wave numbers such that magnetic fields of like signs are brought together, minimizing
dissipation. The STF dynamo actually combines stretching and constructive folding,
such that folding reinforces stretching. The fact that destructive folding is avoided
entirely is why the growth rate does not depend on Rm.

Well, upon further consideration it turns out that magnetic diffusivity must play
a role in the STF rope dynamo after all. Diffusion comes in at two levels; the first
and most obvious one is at the “crossings” formed by the STF sequence. The second
and less obvious arises from the fact that as one applies the STF operation n times,
the resulting “flux rope” is in fact made up of n closely packed flux ropes, each
of cross-section ∝ 2−n times smaller than the original circular flux rope, so that
the total cross-section looks more like a handful of spaghettis that it does a single
monolithic flux rope of strength ∝ 2n . If one waits long enough, the magnetic length
scale perpendicular to the loop axis shrinks to zero, so that even in the Rm → ∞
limit dissipation is bound to come into to play.

2.6 The CP Flow and Fast Dynamo Action

It turns out that a simple modification of the Roberts cell flow can turn it into a true
fast dynamo. The so-called CP flow (for “Circularly Polarized”) is nothing more
that the original Roberts cell flow, with a forced time-dependence. It is once again
a spatially periodic, incompressible flow, defined in cartesian coordinate over a 2D
domain (x, y) ∈ [0, 2π]:
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ux (x, y, t) = A cos(y + ε sin ωt), (2.78)

uy(x, y, t) = C sin(x + ε cos ωt), (2.79)

uz(x, y, t) = A sin(y + ε sin ωt) + C cos(x + ε cos ωt). (2.80)

Although the CP flow is not expressed here in terms of a stream function, this is the
same as the Roberts Cell flow, except that now the counter-rotating flow cells are
“precessing” in unison in the [x, y] plane, along circular paths of radius ε, undergoing
a full revolution in a time interval 2π/ω. Here and in what follows we set ω = 1,
ε = 1, A = C = √

3/2, without any loss of generality.

2.6.1 Dynamo Solutions

The CP flow has the same spatial symmetry properties as the Roberts cell, and
in particular is invariant in the z-direction. Consequently we again need to seek
magnetic solutions with a z-dependency to evade Cowling’s theorem. The magnetic
field is again separable in z (Eq. 2.65), which leads to the 2D form of the induction
equation already encountered with the Roberts cell (Eq. 2.66), subjected to periodic
boundary conditions on b(x, y, t). As before, the idea is to pick a value for the vertical
wavenumber k, and monitor dynamo action by tracking the growth (or decay) of the
magnetic energy via Eq. (2.67).

Computing solutions for varying k soon reveals that dynamo action (i.e., posi-
tive growth rates s(k, Rm)) occurs in a finite range of vertical wavenumber k, with
exponential growth setting in after a time of order of the turnover time. Figure 2.18
shows a snapshot of the vertical magnetic field bz(x, y, t) in this phase of exponen-
tial growth, for a Rm = 2000 solution with k = 0.57, which here yields the largest
growth rate. The solution is fully time-dependent, and its behavior is best appreciated
by viewing it as an animation.8

The solution is characterized by multiple sheets of intense magnetic field, of
thickness once again ∝ R−1/2

m . The magnetic field exhibits spatial intermittency, in
the sense that if one were to randomly choose a location somewhere in the [x, y]
plane, chances are good that only a weakish magnetic field would be found. In
high-Rm solutions, strong fields are concentrated in small regions of the domain; in
other words, their filling factor is small. This can be quantified by computing the
probability density function (hereafter PDF) of the magnetic field strength, f (|Bz|).
This involves measuring Bz at every (x, y) mesh point in the solution domain, and
simply counting how many mesh points have |Bz| between values B and B + dB.
The result of such a procedure is shown in histogram form on Fig. 2.19. The PDF
shows a power-law tail at high field strengths,

f (|Bz|) ∝ |Bz |−γ , |Bz| � 10−5 , (2.81)

8 Which you can do, of course, on the course’s web page, and for a few Rm values, moreover...
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Fig. 2.18 Snapshot of the z-component of the magnetic field in the [x, y] plane, for a CP flow
solution with Rm = 2000 and k = 0.57, in the asymptotic regime t 
 τc. The color scale codes
the real part of the z-component of b(x, y, t) (gray-to-blue is negative, gray-to-red positive). The
green straight lines indicate the separatrix surfaces of the underlying pattern of flow cells, and are
no longer fixed in space due to the precession of the flow cells (see Eqs. (2.78)–(2.80)). This is a
strongly time-dependent solution, exhibiting overall exponential growth of the magnetic field.

spanning over four orders of magnitude in field strength, and with γ � 0.75 here.
This indicates that strong fields are still far more likely to be detected than if the
magnetic field was simply a normally-distributed random variable (for example).
The fact that the power law index γ is smaller than unity means that the largest
local field strength found in the domain will always dominate the computation of the
spatially-averaged field strength.

The CP flow dynamo solutions also exhibit temporal intermittency; if one sits at
one specific point (x, y) in the domain and measures Bz at subsequent time steps,
a weak Bz is measured most of the time, and only occasionally are large values
detected. Once again the PDF shows a power-law tail with slope flatter than −1
indicating that a temporal average of Bz at one location will always be dominated
by the largest Bz measured to date.

Unlike in the Roberts cell, the range of k yielding dynamo action does not shift
significantly to higher k as Rm is increased, and in the high Rm regime the corre-
sponding maximum growth rate kmax does not decrease with increasing Rm (as it
does in Fig. 2.16). In the CP flow considered here (A = C = √

3/2, ω = 1, ε = 1),
kmax � 0.57, with s(kmax) � 0.3 for Rm � 102, as shown on Fig. 2.20 (solid line).
Figure 2.20 indicates that the CP flow operates as a fast dynamo.
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Fig. 2.19 Probability density
function for the (unsigned)
strength of the z-component
of the magnetic field, for a
Rm = 103, k = 0.57 CP
flow dynamo. The peak field
strength has been normalized
to a value of unity. Note
the power-law tail at large
field strength (straight line in
this log-log plot, with slope
∼ − 0.75).

Fig. 2.20 Growth rate of
k = 0.57 CP flow dynamo
solutions, plotted as a function
of the magnetic Reynolds
number (solid line). The
constancy of the growth rate in
the high-Rm regime suggests
(but does not strictly prove)
that this dynamo is fast.

2.6.2 Fast Dynamo Action and Chaotic Trajectories

Fast dynamo action in the CP flow turns out to be intimately tied to the presence
of chaotic trajectories in the flow. Their presence (or absence) in a given flow can
be quantified in a number of ways, the most straightforward (in principle) being the
calculations of the flow’s Lyapunov exponents. This is another fancy name for a
rather simple concept: the rate of exponential divergence of two neighbouring fluid
element located at x1, x2 at t = 0 somewhere in the flow. The Lyapunov exponent
λL can be (somewhat loosely) defined via

�(t) = �(0) exp(λL t) , (2.82)

where � ≡ ‖x2 − x1‖ is the length of the tangent vector between the two fluid
elements. Because there are three independent possible directions in 3D space, one
can compute three distinct Lyapunov exponents at any given point in the flow, and it
can be shown that for an incompressible flow their sum is zero. Now, recalling the
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Fig. 2.21 Poincaré section for the CP flow, for ε = 1, ω = 1, and A = C = √
3/2. The plot is

constructed by repeatedly “launching” particles at z = 0, t = 0, following their trajectories in time,
and plotting their (projected) position (modulo 2π) in the [x, y] plane at interval Δt = 2π. The
flow is chaotic within the featureless “salt-and-pepper” regions, and integrable in regions threaded
by closed curves.

simple flux tube stretching example of Sect. 2.2, exponential divergence of two points
located in the same fieldline within the tube clearly implies exponential increase in
the tube’s length, and therefore, via Eq. (2.19), exponential increase of the magnetic
field strength. Theorems have been proven, demonstrating that

1. A smooth flow cannot be a fast dynamo if λL = 0, so that λL > 0, or, equivalently,
the existence of chaotic regions in the flow is a necessary (although not sufficient)
condition for fast dynamo action;

2. In the limit Rm → ∞, the largest Lyapunov exponent of the flow is an upper
bound on the dynamo growth rate.

Proofs of these theorems need not concern us here (if curious see bibliography), but
they once again allow us to rule out fast dynamo action in many classes of flows.

Calculating a Poincaré section, as plotted on Fig. 2.21 for our CP flow, is another
very useful way to check for chaotic trajectories in a flow. It is constructed by launch-
ing tracer particles at z = 0 (and t = 0), and following their trajectories as they are
carried by the flow. At every 2π time interval, the position of each particle is plotted
in the [x, y] plane (modulo 2π in x and y, since most particles leave the original
2π-domain within which they were released as a consequence of cell precession).
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Some particles never venture too far away from their starting position in the [x, y]
plane. They end up tracing closed curves which, however distorted they may end up
looking, identify regions of space where trajectories are integrable. Other particles,
on the other hand, never return to their starting position. If one waited long enough,
one such particle would eventually come arbitrarily close to all points in the [x, y]
plane outside of the integrable regions. The corresponding particle trajectory is said
to be space filling, and the associated particle motion chaotic. The region of the [x, y]
plane defined by the starting positions of all particles with space filling trajectories
is called the chaotic region of the flow.

2.6.3 Magnetic Flux Versus Magnetic Energy

With the CP flow, we definitely have a pretty good dynamo on our hands. But how are
those dynamo solutions to be related to the sun (or other astrophysical bodies)? So
far we have concentrated on the magnetic energy as a measure of dynamo action, but
in the astrophysical context magnetic flux is also important. Consider the following
two (related) measures of magnetic flux:

Φ = |〈B〉| , F = 〈|B|〉 , (2.83)

where the angular brackets indicate some sort of suitable spatial average over the
whole computational domain. The quantity Φ is nothing but the average magnetic
flux, while F is the average unsigned flux. Under this notation the magnetic energy
can be written as EB = 〈B2〉.

Consider now the scaling of the two following ratios as a function of the magnetic
Reynolds number:

R1 = EB

Φ2 ∝ Rn
m , (2.84)

R2 = F2

Φ2 ∝ Rκ
m . (2.85)

A little reflection will reveal that a large value of R1 indicates that the magnetic field
is concentrated in a small total fractional area of the domain, i.e., the filling factor
is much smaller than unity.9 The ratio R2, on the other hand, is indicative of the
dynamo’s ability to generate a net signed flux. The exponent κ measures the level
of folding in the solution; large values of κ indicate that while the dynamo may be
vigorously producing magnetic flux on small spatial scales, it does so in a manner
such that very little net flux is being generated on the spatial scale of the computational
domain. Figure 2.22 shows the variations with Rm of the two ratios defined above.

9 If you can’t figure it out try this: take a magnetic field of strength B1 crossing a surface area A1;
now consider a more intense magnetic field, of strength B2 = 4B1, concentrated in one quarter of
the area A1; calculate EB , Φ, and R1... get it?
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Fig. 2.22 Variations with
Rm of the two ratios defined
in Eqs. (2.84)–(2.85). Least
squares fits (solid lines) yield
power law exponents n = 0.34
and κ = 0.12.

Least squares fits to the curves yields n = 0.34 and κ = 0.12. Positive values for
the exponents κ and n indicate that the CP flow dynamo is relatively inefficient at
producing magnetic flux in the high Rm regime, and even less efficient at producing
net signed flux. While other flows yielding fast dynamo action lead to different values
for these exponents, in general they seem to always turn out positive, with κ < n, so
that the (relative) inability to produce net signed flux seems to be a generic property
of fast dynamos in the high-Rm regime.

2.6.4 Fast Dynamo Action in the Nonlinear Regime

We conclude this section by a brief discussion of fast dynamo action in the nonlinear
regime. Evidently the exponential growth of the magnetic field will be arrested once
the Lorentz force becomes large enough to alter the original CP flow. What might
the nature of the backreaction on u look like?

Naively, one might think that the Lorentz force will simply reduce the ampli-
tude of the flow components, leaving the overall geometry of the flow more or less
unaffected. That this cannot be the case becomes obvious upon recalling that in
the high Rm regimes the eigenfunction is characterized by magnetic structures of
typical thickness ∝ R−1/2

m , while the flow has a typical length scale ∼ 2π in our
dimensionless units. The extreme disparity between these two length scales in the
high-Rm regime suggests that the saturation of the dynamo-generated magnetic field
will involve alterations of the flow field on small spatial scales, so that a flow very
much different from the original CP flow is likely to develop in the nonlinear regime.

That this is indeed what happens was nicely demonstrated some years ago by F.
Cattaneo and collaborators (see references in the bibliography), who computed sim-
plified nonlinear solutions of dynamo action in a suitably forced CP flow. They could
show that
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1. the r.m.s. flow velocity in the nonlinearly saturated regime is comparable to that
in the original CP flow;

2. magnetic dissipation actually decreases in the nonlinear regime;
3. dynamo action is suppressed by the disappearance of chaotic trajectories in the

nonlinearly modified flow.

2.7 Dynamo Action in Turbulent Flows

The Roberts cell and CP flow are arguably more akin to malfunctioning washing
machines than any sensible astrophysical object. Nonetheless many things we have
learned throughout this chapter do carry over to more realistic circumstances, and in
particular to turbulent, thermally-driven convective fluid motions.

As support for this grand sweeping claim, consider Fig. 2.23 herein. It is a snapshot
of a numerical simulation of dynamo action in a stratified, thermally-driven turbulent
fluid being heated from below and spatially periodic in the horizontal directions. The
fluid is contained in a rectangular box of aspect ratio x : y : z = 10 : 10 : 1, and we
are here looking at the top layer of the simulation box, with the color scale encoding
the vertical magnetic field component Bz(x, y). Such thermally-driven turbulent
flows in a stratified background have long been known to be characterized by cells of
broad upwellings of warm fluid. These cells have a horizontal size set by, among other
things, the density scale height within the box. On the other hand, the downwelling of
cold fluid needed to satisfy mass conservation end up being concentrated in a network
of narrow lanes at the boundaries between adjacent upwelling cells. This asymmetry
is due to the vertical pressure and density gradient in the box: rising fluid expands
laterally into the lower density layers above, and descending fluid is compressed
laterally in the higher density layers below. Near the top of the simulation box, this
leads to the concentration of magnetic structures in the downwelling lanes, as they
are continuously being swept horizontally away from the centers of upwelling cells,
through a form of flux expulsion in fact.

This convectively-driven turbulent flow acts as a vigorous nonlinear fast dynamo,
with a ratio of magnetic to kinetic energy of about 20%. This dynamo, much like

that arising in the CP flow, produces

1. magnetic fields that are highly intermittent, both spatially and temporally;
2. flux concentrations on scales ∝ R−1/2

m ;
3. little or no mean-field, i.e., signed magnetic flux on a spatial scale comparable to

the size of the system.

The fundamental physical link between turbulent convection and the CP flow is
the presence of chaotic trajectories in both flows, which leads to the expectation that
dynamo action should be possible in convection zones of the sun and stars. Time to
move on, then, to the solar magnetic field and its underlying dynamo mechanism(s).
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Fig. 2.23 Closeup on a snapshot of the top “horizontal” [x, y]plane of a MHD numerical simulation
of thermally-driven stratified turbulent convection in a box of aspect ratio x : y : z = 10 : 10 : 1, at
a viscous Reynolds number of 245 and Rm = 1225. The simulation uses a pseudo-spectral spatial
discretization scheme, with 1024 collocation points in the x and y directions, and 97 in z. The color
scale encodes the vertical (z) component of the magnetic field (orange-to-yellow is positive Bz ,
orange-to-blue negative). Numerical simulation results kindly provided by F. Cattaneo, University
of Chicago.
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