Chapter 1
Introduction to Stochastic Models in Biology

Susanne Ditlevsen and Adeline Samson

1.1 Introduction

This chapter is concerned with continuous time processes, which are often modeled
as a system of ordinary differential equations (ODEs). These models assume that the
observed dynamics are driven exclusively by internal, deterministic mechanisms.
However, real biological systems will always be exposed to influences that are
not completely understood or not feasible to model explicitly. Ignoring these
phenomena in the modeling may affect the analysis of the studied biological
systems. Therefore there is an increasing need to extend the deterministic models to
models that embrace more complex variations in the dynamics. A way of modeling
these elements is by including stochastic influences or noise. A natural extension of
a deterministic differential equations model is a system of stochastic differential
equations (SDEs), where relevant parameters are modeled as suitable stochastic
processes, or stochastic processes are added to the driving system equations. This
approach assumes that the dynamics are partly driven by noise.

All biological dynamical systems evolve under stochastic forces, if we define
stochasticity as the parts of the dynamics that we either cannot predict or understand
or that we choose not to include in the explicit modeling. To be realistic, models
of biological systems should include random influences, since they are concerned
with subsystems of the real world that cannot be sufficiently isolated from effects
external to the model. The physiological justification to include erratic behaviors
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in a model can be found in the many factors that cannot be controlled, such as
hormonal oscillations, blood pressure variations, respiration, variable neural control
of muscle activity, enzymatic processes, energy requirements, cellular metabolism,
sympathetic nerve activity, or individual characteristics like body mass index, genes,
smoking, stress impacts, etc. Also to be considered are external influences, such
as small differences in the experimental procedure, temperature, differences in
preparation and administration of drugs (if this is included in the experiment).
In addition, experimental runs may be conducted by different experimentalists
who inevitably will exhibit small differences in procedures within the protocols.
Different sources of errors will require different modeling of the noise, and these
factors should be considered as carefully as the modeling of the deterministic part,
in order to make the model predictions and parameter values possible to interpret.

It is therefore essential to understand and investigate the influence of noise
in the dynamics. In many cases the noise simply blurs the underlying dynamics
without qualitatively affecting it, as is the case with measurement noise or in many
linear systems. However, in nonlinear dynamical systems with system noise, the
noise will often drastically change the corresponding deterministic dynamics. In
general, stochastic effects influence the dynamics, and may enhance, diminish or
even completely change the dynamic behavior of the system.

1.2 Markov Chains and Discrete-Time Processes

A sequence of stochastic variables {X,,n = 0, 1, ...} is called a stochastic process.
It could for example be measurements every 5 min of the level of blood glucose for
a diabetic patient. The simplest type of stochastic process is one where the random
variables are assumed independent, but this is often too simple to capture important
features of the data. For example if the blood glucose is high, we would also expect
it to be high 5min later. The simplest type of stochastic process incorporating
dependence between observations is a Markov process.

Definition 1.1 (Markov chain). A stochastic process {X,,n = 0,1,...} which
can take values in the state space [ is called a discrete-time Markov chain if for
eachn =0,1,...,

P(Xy+1 = int1 | Xo =io,.... Xy = 1y) = P(Xyt1 = int1 | Xy = i)

for all possible values of iy, ..., i,4+1 € I, whenever both sides are well-defined.

This means that conditionally on the present state of the system, its future and past
are independent.

A classical example of a stochastic process in discrete time is a random walk.
Consider the random migration of a molecule or a small particle arising from motion
due to thermal energy. The particle starts at the origin at time 0. At each time unit
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the particle moves one distance unit up with probability p or one distance unit down
with probability 1 — p, independent of past movements. The random variable X,
then denotes the position of the particle at time n: X, = X,—; & 1. This random
process { X, }nen, is a discrete-time Markov chain which has state space the integers.
Now let p = 1/2 and assume that we accelerate the process, so that displacements
occur every § units of time. At the same time, displacements decreases to € units of
distance. What happens in the limit of continuous time and space, i.e. when § — 0
and € — 0? Denote X (¢) the position of the particle at time ¢, and assume X (0) = 0.
Let K denote the number of upward jumps made after a total of n jumps. Then the
position of the particle after n§ units of time is given by

X(né)=(K-1+(n—K)-(—1))e = 2K —n)e.

Since displacements occur independent of one another, the random variable K has
a binomial distribution with parameters n and 1/2. Thus,

E(X(né)) = QE(K)—n)e = (2n/2—n)e =0,

Var (X (n8)) = 4€*Var (K) = 462% (1 — %) n=en.

Now let § — 0 to obtain a continuous time process. Then
Var (X(1)),_,; = €’n = €*t /8.

We see that unless § and € go to 0 while keeping €2 proportional to §, then the
variance will be either O or infinite—both cases rather uninteresting! Thus, we put
€2 = 02§ for some constant o > 0, and obtain a continuous time and space process
with E (X (t)) = 0 and Var (X(¢)) = o>t for all + > 0. With a little extra work
and evoking the central limit theorem, one can show that the limiting process has a
Gaussian distribution with zero mean and variance o>¢. This process is called the

Wiener process (Fig. 1.1).

1.3 The Wiener Process (or Brownian Motion)

The most important stochastic process in continuous time is the Wiener process,
also called Brownian Motion. It is used as a building block in more elaborate
models. In 1828 the Scottish botanist Robert Brown observed that pollen grains
suspended in water moved in an apparently random way, changing direction
continuously. In 1905, Einstein explained this by the pollen grains being bombarded
by water molecules, and Brown only contributed to the theory with his name.
The precise mathematical formulation of this phenomenon was given by Norbert
Wiener in 1923.
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Fig. 1.1 Random walks over b
the time interval [0, 1] with
decreasing time steps ¢ and
jump sizes € = .

(@): 6 =0.1. (b): 6 = 0.01.
(¢): 6 = 0.001. (d):

8 = 0.0001. The random
walk approaches a Wiener
process for decreasing step
size

The Wiener process can be seen as the limit of a random walk when the time
steps and the jump sizes go to 0 in a suitable way (see Sect. 1.2) and can formally
be defined as follows.

Definition 1.2 (Wiener process). A stochastic process {W(?)};>o is called a
Wiener process or a Brownian motion if

1. W(0) = 0.
2. {W(t)};>o has independent increments, i.e.

u/flvu/fz_u/flv"'vu/fk_u/fk71

are independent random variables forall 0 < ¢} < £, < -+ < .
3. Wt +s)—W(s) ~A4(0,t) forall ¢t >0.

Here, .4 (i, 0%) denotes the normal distribution with mean . and variance 0.

Thus, the Wiener process is a Gaussian process: a stochastic process X is called
a Gaussian process if for any finite set of indices 74, ..., # the vector of random
variables (X(t1), ..., X(#)) follows a k-dimensional normal distribution. In fact, it
can be shown that any continuous time stochastic process with independent incre-
ments and finite second moments: E(X?(¢)) < oo for all ¢, is a Gaussian process
provided that X(fy) is Gaussian for some #y. The Wiener process is continuous
with mean zero and variance proportional to the elapsed time: E(W(¢)) = 0 and
Var(W(t)) = t. If {X(t)}:>0 is a stationary stochastic process, then {X(¢)},>0 has
the same distribution as { X (t /) };>¢ forall & > 0. Thus, the Wiener process cannot
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be stationary since the variance increases with . The autocovariance function is
given by Cov(W;, W;) = min(s, ). The sample paths of a Wiener process behave
“wildly” in that they are nowhere differentiable. To see what that means define the
total variation of a real-valued function f on an interval [a, b] C R by the quantity

V2(f) =sup Y [f(t) = f ()]
k=1

where the supremum is taken over all finite partitions a < ) < -+ < 1, <
b of [a,b]. When V?(f) < oo and f is right-continuous we say that f is
of bounded variation on [a, b]. Functions that behave sufficiently “nice” are of
bounded variation, if for example f is differentiable it is of bounded variation.
It turns out that the Wiener process is everywhere of unbounded variation. This
happens because the increments W (¢ + At) — W(t) is on the order of /At instead
of At since the variance is A¢. Heuristically,

n

VIW) = sup > [W(te) — W(tx—y)|
k=1
> W(a+§(b—a))—w(a+(k_l)(b—a))‘

fim, 2
k=1
[l .

zngngc; ~(b—a) = ngngo,/n(b—a) = o0

for any interval [a, b]. Trying to differentiate we see how this affects the limit

W@+ Ar) — W(2)| . VAL
lim ~ lim —— = o©
At—0 At At—0 At

Now define the quadratic variation of a real-valued function f on [a, b] C R by

L1 = sup > "(f(tr) = f(tx-1))?

k=1

where the supremum is taken as before. For continuous functions of bounded
variation the quadratic variation is always 0, and thus, if [ f]° > 0 then V/(f) = cc.
The quadratic variation of a Wiener process over an interval [s, ¢] equals ¢ — s, and
in the limit we therefore expect

AltimO(W(t + At) — W(1))* ~ At. (1.1)
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1.4 Stochastic Differential Equations

Assume that the ODE

% =a(x,t) (1.2)

describes a one-dimensional dynamical system. Assume that a(-) fulfills conditions
such that a unique solution exists, thus x () = x(¢; xo, #o) is a solution satisfying the
initial condition x (¢9) = x¢. Given the initial condition, we know how the system
behaves at all times ¢, even if we cannot find a solution analytically. We can always
solve it numerically up to any desired precision. In many biological systems this
is not realistic, and a more realistic model can be obtained if we allow for some
randomness in the description.

A natural extension of a deterministic ODE model is given by an SDE model,
where relevant parameters are randomized or modeled as random processes of some
suitable form, or simply by adding a noise term to the driving equations of the
system. This approach assumes that some degree of noise is present in the dynamics
of the process. Here we will use the Wiener process. It leads to a mixed system with
both a deterministic and a stochastic part in the following way [21,24]:

dX, = u(X;,0)dt + o(X,,1)dW, (1.3)

where {X; = X(¢)};>0 is a stochastic process, not a deterministic function like
in (1.2). This is indicated by the capital letter. Here {W;, = W(¢)},>0 is a Wiener
process and since it is nowhere differentiable, we need to define what the differential
means. It turns out that it is useful to write d W; = §&,dt, where {£},5¢ is a white
noise process, defined as being normally distributed for any fixed ¢ and uncorrelated:
E(&&) = 0if s # t. Strictly speaking, the white noise process {&;},>0 does not
exist as a conventional function of 7, but could be interpreted as the generalized
derivative of a Wiener process.

The functions () and o (-) can be nonlinear, i (-) is called the drift coefficient
or the deterministic component, and o (:) is called the diffusion coefficient or the
stochastic component (system noise), that may depend on the state of the system,
X;. If pu(-) and o(-) do not depend on ¢ the process is called time-homogeneous.
Equation (1.3) should be interpreted in the following way:

X[=X0+/
fo

where X is a random variable independent of the Wiener process. It could simply
be a constant. The first integral on the right hand side can be interpreted as an
ordinary integral, but what is the second integral? The Wiener process is nowhere
differentiable, so how do we give meaning to this differential?

Let us try the usual tricks from ordinary calculus, where we define the integral
for a simple class of functions, and then extend by some approximation procedure
to a larger class of functions. We want to define

t t

W(X,.s)ds + / o(X,.5)dW, (1.4)

fo
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/ f(s)dW;. (1.5)

If f(r) = o is constant we would expect the integral (1.5) to equal o(W, — W,)).
Note that this is a random variable with expectation 0 since the increments of a
Wiener process has expectation 0. Assume that f(¢) is a non-random step function
of the form f(s) =ojont; <s <tjyiforj =1,2,...,nwheretgo =1, <t, <
-++ < ty41 = t. Then we define

[ r©aw =30, 0, ~wi).
1o ]=l

It is natural to approximate a given function f(¢) by a step function. Now f(¢) can
be random, but we will only consider functions that are measurable with respect to
the o-algebra generated by the random variables { W, },<,. The concepts of o-algebra
and measurable space will be defined in Chap.?2, for now they are not needed.
Intuitively it means that the value of f(¢) can be determined from the values of
W; for s < t. For example, we could take f(t) = W,, but not f(t) = W,. We
cannot look into the future! Moreover, we require that If| ft[t) f(s)?ds] < oo. For the
rest of this chapter we will always assume these conditions on the integrands.

Define a partition [T, of the interval [tp, 1] by to = t; < th < -+ < ly4] = 1
where |IT,| = max{|tj41 —¢t;| : j = 1,...,n} is the norm of the partition, and
approximate

f(t) ~ f(lj*) for 1, <t <tj41

where the point t]’f‘ belongs to the interval [¢;,¢;11]. Then we define

|11,|—0

/ f(s)dW; = lim Z f(t]*) (Wt,/+1 - Wt/)
) j=1

When f(¢) is stochastic it turns out that—unlike ordinary integrals—it makes a
difference how t;‘ is chosen! To see this consider f(f) = W, and define two
approximations: t;‘ = 1;, the left end point, and t;.“ = 1;+1, the right end point.
Taking expectations we see that the two choices yield different results:

n n
0 Z Wi, (Wl‘j+1 - Wf./‘) = ZE [Wt./‘ (Wl‘j+1 - Wl‘/)]
j=1 i=1

= ZE[Wf/‘]E[W’j+1 - ij] =0
=1
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because the Wiener process has independent increments with mean 0. On the other
hand,

n

I Z ij+1 (Wtj+1 - Wtj) = ZE[(I/ij+1 - I/th)z:l

Jj=1 Jj=1

n

=Z(fj+1—’j)=’—fo

Jj=1

where we have subtracted £ [Z}}=1 W, : (W,j 2 : )] = 0 and rearranged in the

first equality sign, and the second equality sign is the variance of the Wiener process.
Two useful and common choices are the following:

* The It6 integral: 1 = 1, the left end point.
» The Stratonovich integral: t;‘ = (¢t; + tj+1)/2, the mid point.

There are arguments for using either one or the other, most of them rather technical
and we will not enter in this discussion here. Fortunately, though, the difference
between the two is an ordinary integral and it is possible to calculate one integral
from the other. Here we only use the It6 integral, and we call a process given by an
equation of the form (1.3) an Itd process.

Properties of the Ito integral The usual linearity properties are also valid for Itd
integrals,

t t* t
[ roaw= [ roraw [ reaw
to to r*
forty < t* < t,and

‘/wﬂﬂ+@0ﬂﬂﬁ=a/f@dm+b/gmdm

where a and b are constants. Note that the terms are random variables. Moreover,

E[/ttf(s)dWy} =0.

Finally, we have It6’s isometry: Given the properties of the Wiener process, the
variance of the stochastic process { ft; f(s)d W} is equal to

Var (/,Ot f(s)dWS) = /tor]E[fz(s)] ds.

A very important property is that solutions to (1.3) are Markov processes.
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Some important examples of [td processes are the following.

Wiener process with drift Imagine a particle suspended in water which is being
bombarded by water molecules. The temperature of the water will influence the
force of the bombardment, and thus we need a parameter o to characterize this.
Moreover, there is a water current which drives the particle in a certain direction,
and we will assume a parameter u to characterize the drift. To describe the
displacements of the particle, the Wiener process can be generalized to the process

dX, = pdt +odW,

which has solution
Xi=xotput+oW,

for Xo = xp. It is thus normally distributed with mean x( + ¢ and variance o’t, as
follows from the properties of the standard Wiener process. This process has been
proposed as a simplified model for the membrane potential evolution in a neuron,
see Chap. 5, Sect. 5.3.2.

Geometric Brownian motion Imagine a drug is supplied as a bolus to the blood
stream and that the average metabolic process of the drug can be described by an
exponential decay through the deterministic equation x’ = —ax, where x is the
concentration of the drug in plasma and «a is the decay rate. The prime ' denotes
derivative with respect to time. Assume now that the decay rate fluctuates randomly
due to the complex working of the enzymatic machinery involved in the breakdown
of the drug. That could be described by letting a vary randomly as a = u + o&,,
where {§};>0 is a Gaussian white noise process. Then & dt can be written as the
differential of a Wiener process, d W;. This leads to the model

It is shown below (Example 1.2, Sect. 1.6) that the explicit solution is

1
X, = Xoexp ((u — 502) t+ UWt) .

The process only takes positive values and X, conditional on X, follows a log-
normal distribution with parameters log(Xo) + (1 — 0%/2)t and ot.

Ornstein—-Uhlenbeck process Imagine a process subject to a restoring force,
i.e. the process is attracted to some constant level but is continuously perturbed by
noise. An example is given by the membrane potential of a neuron that is constantly
being perturbed by electrical impulses from the surrounding network, and at the
same time is attracted to an equilibrium value depending on the resting potentials for
various ions present at different concentrations inside the cell and in the interstitium,
see Chap. 5, Sect. 5.3.5. This leads to the model
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X _
dX,:_( i a)dt—i-odW,, (1.6)
T

with 7,0 > 0. Here t has units time, and is the typical time constant of the system.
The autocorrelation is given by corr(X;, X;4,) = e~%/7, and thus the autocorrelation
has decreased with a factor of 1/e after ¢ units of time. It has the explicit solution
(due to (1.9) below)

t
X, = Xoe " +a(l—e ) + e"”/ e tad W, (1.7)
0

and X; conditional on Xy is normally distributed with mean E(X;) = Xoe™ T 4
a(1—e~"/7) and variance Var(X,) = o2t(1—e~2!/7)/2.1f X,y is normally distributed
with mean « and variance azr/ 2, then so is X; for all ¢. Thus, contrary to the
processes above, the Ornstein—Uhlenbeck process has a stationary solution.

Square-root process In many applications an unrestricted state space is unrealistic,
and the variance is often observed to decrease with decreasing distance to some
lower level. For example, the hyper-polarization caused by inhibitory reversal
potentials in neuron membranes is smaller if the membrane potential is closer to
the inhibitory reversal potential, see Chap. 5, Sect. 5.3.6. For simplicity we assume
this lower limit in the state space equal to 0. This leads to the model

X _
dX,:—( ! a)dt—ko\/X,dW,. (1.8)

T

The process is also called the Cox-Ingersoll-Ross process in the financial literature
[6], or the Feller process in the neuronal literature, because [16] proposed it as
a model for population growth. If 2a/(z6?) > 1 the process stays positive, (see
Chap. 2, Example 2.3), and admits a stationary distribution. The transition density
is a non-central chi-square distribution with conditional mean and variance

E(X|Xo) = a + (Xo — a)e™"/*

2
Var(X,| Xo) = a%(l eV 4 Xoro(1 — et/ T)e T

The asymptotic stationary distribution is a gamma distribution with shape parameter
2a/(t0?) and scale parameter 702 /2.

When the diffusion term does not depend on the state variable X; as in the Wiener
process with drift and the Ornstein—Uhlenbeck process, we say that it has additive
noise. In this case the It6 and the Stratonovich integrals yield the same process, so
it does not matter which calculus we choose. In the case of Geometric Brownian
motion or the square root process we say that it has multiplicative noise. The four
processes are simulated in Fig. 1.2.
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=

Fig. 1.2 Sample paths from (a): a Wiener process with drift, (b): a Geometric Brownian motion,
(¢): an Ornstein—Uhlenbeck process, and (d): a square-root process. Note how the amplitude of the
noise does not change over time for the Wiener and the Ornstein—Uhlenbeck process (a and c),
whereas for Geometric Brownian motion and the square-root process (b and d), the amplitude of
the noise depends on the state variable

1.5 Existence and Uniqueness

To ensure the existence of a solution to (1.3) for 0 < ¢t < T where T is fixed, the
following is sufficient:

Iz, )| 4+ lo (. x)| = C(1 + |x])

for some constant C [22,24]. This ensures that {X,},>0 does not explode, i.e that
{IX:|}:>0 does not tend to oo in finite time. To ensure uniqueness of a solution the
Lipschitz condition is sufficient:

(e, x) — pu(t, y)| + ot x) —o(t, y)| < Dlx —y|

for some constant D. Note that only sufficient conditions are stated, and in many
biological applications these are too strict, and weaker conditions can be found. We
will not treat these here, though. In Chap.2 conditions on the functions p and o
to ensure that the process stays away from the boundaries without assuming the



14 S. Ditlevsen and A. Samson

Lipschitz condition are discussed in detail. Note also that the above conditions are
fulfilled for three of the processes described above. The square root process does not
fulfill the Lipschitz condition at 0 and is treated in Chap. 2, Example 2.3. In general,
many realistic biological models do not fulfill the Lipschitz condition, and the more
advanced tools of Chap. 2 are necessary to check if the model is well behaved.

1.6 Ito’s Formula

Stochastic differentials do not obey the ordinary chain rule as we know it from
classical calculus [24,34]. An additional term appears because (d W;)? behaves like
dt, see (1.1). We have

Theorem 1.1 (It6’s formula). Let {X,};>0 be an It6 process given by
dXt = lu“(t’ Xt)dt + G(tv Xt) dm

and let f(t,x) be a twice continuously differentiable function in x and once
continuously differentiable function in t. Then

Yi = f(t. Xy)
is also an Ito process, and

of of Lo v &
dY, = E(t,X[)dt + a(l,Xt)dXt + Ea (z, X1) 9x2

(t, X;)dt. (1.9)

The first two terms on the right hand side correspond to the chain rule we know
from classical calculus, but an extra term appears in stochastic calculus because the
Wiener process is of unbounded variation, and thus the quadratic variation comes
into play.

Example 1.1. Let us calculate the integral

t
/ Wd Ws.
0

From classical calculus we expect a term like %Wtz in the solution. Thus, we choose
ft,x) = %xz and X; = W; and apply It&’s formula to
15
Y= [0 W) = S0

We obtain

2
dY, = %(I, W)dt + %(I, W,)d W, + 1020, W,)u(t, W;)dt
ot 0x 2 0x?

1
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because o2(¢, W;) = 1. Hence

1 ! 1 [ ! 1
Y,:—W,z:/WSdWS—i——/ ds:/WSdWer—t
2 0 2 Jo 0 2

and finally
! 1 1
/ W dW, = —W? — ~t.
0 2 2

Example 1.2. Let us find the solution { X, };>¢ to the Geometric Brownian motion
dX; = pX,dt +oX; dW,.

Rewrite the equation as

dX
L= pdt+odW,.
t
Thus, we have
" dX
=put+oW, (1.10)
0 Xs
which suggests to apply Itd’s formula on f(z, x) = log x. We obtain
0 a 1 0?
dY[ == d(lOgX[) == —f(Z,Xf)dt + l(t, Xt)dX[ + —UZ(Z,X[)_f(t, Xt)dt
ot dx 2 dx2
1 1 1 dx, 1
=0+ —dX; + -0’ X} | ——5 | dt = — — ~o?dt
Ty TR f(xf) x,  2°
and thus
dX 1
L= d(log X;) + Eozalz. (1.11)
t

Integrating (1.11) and using (1.10) we finally obtain

X tdX, 1, I,
log — = — =0t = put W, — —o°t
ogXO /0 X, 20 ut+o W 20

and so

1
X,:Xoexp%(u—zoz)l—}-th}.

Note that it is simply the exponential of a Wiener process with drift.

The solution (1.7) of the Ornstein—Uhlenbeck process can be found by multiplying
both sides of (1.6) with e~"/* and then apply Itd’s formula to e ~*/* X;. We will not
do that here.
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1.7 Monte Carlo Simulations

The solution of an It6 process is rarely explicit. When no explicit solution is
available we can approximate different characteristics of the process by simulation,
such as sample paths, moments, qualitative behavior etc. Usually such simulation
methods are based on discrete approximations of the continuous solution to an
SDE [19, 22]. Different schemes are available depending on how good we want
the approximation to be, which comes at a price of computer time. Assume we
want to approximate a solution to (1.3) in the time interval [0, T']. Consider the time
discretization
O=to<n<--<tj<--<ty=T

and denote the time steps by A; = #;11 — ¢; and the increments of the Wiener
process by AW; = W;, ., — W,;. Then AW; ~ 4(0, A;), which we can use to
construct approximations by drawing normally distributed numbers from a random
number generator. For simplicity assume that the process is time-homogenous.

1.7.1 The Euler-Maruyama Scheme

The simplest scheme, referred to as the Euler-Maruyama scheme, is the stochastic
analogue of the deterministic Euler scheme. Approximate the process X; at the
discrete time-points f;, 1 < j < N by the recursion

Yo = Y, + p(Y)A; + oY) AW, ; Y, = x (1.12)

where AW; = \/A_] -Z;, with Z; being standard normal variables with mean 0 and
variance 1 for all j. This procedure approximates the drift and diffusion functions by
constants between time steps, so obviously the approximation improves for smaller
time steps. To evaluate the convergence things are more complicated for stochastic
processes, and we operate with two criteria of optimality: the strong and the weak
orders of convergence [2,3,19,22].

Consider the expectation of the absolute error at the final time instant 7" of the
Euler—-Maruyama scheme. It can be shown that there exist constants K > 0 and
8o > 0 such that

E(| X7 - Y, |) < K83

for any time discretization with maximum step size § € (0, 8p). We say that the
approximating process Y converges in the strong sense with order 0.5. This is
similar to how approximations are evaluated in deterministic systems, only here
we take expectations, since X7 and Y;, are random variables. Compare with the
Euler scheme for an ODE which has order of convergence 1. Sometimes we do not
need a close pathwise approximation, but only some function of the value at a given
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final time 7', e.g. E(X7), ]E(X%) or generally IE(g(X7)). In this case we have that
there exist constants K > 0 and §p > 0 such that for any polynomial g

IE(g(X7) —E((Yy))| = Ké

for any time discretization with maximum step size § € (0,8p). We say that the
approximating process Y converges in the weak sense with order 1.

1.7.2 The Milstein Scheme

To improve the accuracy of the approximation we add a second-order term that
appears from It6’s formula. Approximate X, by

1
Yip =Yy + p(Y)A; +0(Y)) AW, +50(Y,)o' (Y, )(AW))* = A)) (1.13)

Euler-Maruyama

Milstein

where the prime ’ denotes derivative. It is not obvious exactly how this term appears,
but it can be derived through stochastic Taylor expansions. The Milstein scheme
converges in the strong sense with order 1, and could thus be regarded as the proper
generalization of the deterministic Euler-scheme.

If o(X;) does not depend on {X,},>0 the Euler—Maruyama and the Milstein
schemes coincide.

1.8 Inference

Estimation of parameters of an It process is a key issue in applications. Estimation
in continuously observed Itd processes has been widely studied [23,27]. However,
biological processes are normally observed at discrete times. Parametric inference
for discretely observed Itd processes can be complicated depending on the model
considered and on the presence of measurement noise. The transition densities are
only known for a few specific Itd processes (Wiener process with drift, Ornstein—
Uhlenbeck process, Square-root process). Likelihood functions of data sampled
from these processes have then an explicit form, and the maximum likelihood
estimator (MLE) of the parameters can thus be computed. These estimators have
nice statistical properties like consistency and asymptotic normality [7]. Consis-
tency means that when the number of observations go to infinity, the estimator will
converge in probability to the true value. Asymptotic normality means that the large
sample distribution of the estimator will be close to normal, which is useful for
constructing confidence intervals.
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When the transition densities are not available, the likelihood function cannot be
directly computed. Several estimation methods have been proposed to circumvent
this difficulty: methods based on an approximation of the transition density by Her-
mite expansions [1], simulation based methods, also called Monte Carlo methods
[13, 25], martingale estimating functions [4], see also [19,23,27] and references
therein.

Estimation is more difficult when the process is observed with measurement
noise. The likelihood function is explicit in some few specific cases for which
filtering techniques can be applied [15]. Otherwise, methods based on simulations
or on the Expectation-Maximization algorithm have been developed [10]. The
Bayesian approach, which is an alternative to the maximum likelihood approach,
can be applied to a large variety of problems when it is combined with sample path
simulations or Euler—-Maruyama approximations [11].

We present below some of these methods.

1.8.1 Maximum Likelihood

Observations of an It6 process without measurement noise Consider discrete
observations Xy, ..., xy attime points 0 =y < f; < ... <{f; <... <ty =T of
an Itd process X which depends on an unknown parameter vector 6,

dX, = u(t. X;:0)dt + o(t, X;:0) dW,. (1.14)

The vector of observations is denoted xo.y = (Xo, ..., Xy ). Bayes’ rule combined
with the Markovian nature of the process X, which the discrete data inherit, imply
that the likelihood function of 6 is simply the product of transition densities,

N
L0, xo:n) = p(xo; 0) [ | px;1x-150), (1.15)

j=1

where p(x¢; 0) is the density of the initial variable X and p(x/|xy;60),s < ¢ is
the transition density of X, i.e. the conditional density of X, at time 7, given that it
was at Xy = X, at an earlier time 5. We will normally ignore the asymptotically
unimportant distribution of Xy by setting p(xo;60) = 1. The vector of partial
derivatives of the log-likelihood function with respect to the coordinates of 0 is
called the score function,

9 Yo
U®) = %logL(G,xO;N) = Z %logp(xﬂxj_l; 0), (1.16)

i=1

which under mild regularity conditions is a martingale under Py.
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Definition 1.3 (Martingale). A stochastic process {X,,,n = 1,2,...} is called a
martingale if foralln = 1,2,...,

E(|Xa]) < o0
EXpi1| X1v..., Xp) = X,

i.e., the conditional expected value of the next observation, given all the past
observations, is equal to the last observation.

The MLE usually solves the estimating equation U(6) = 0. Under mild regularity
conditions it is consistent and asymptotically normally distributed [7].

Example 1.3. Let us calculate the likelihood function of an Ornstein—Uhlenbeck
process (1.6). The unknown parameter to be estimated is 6§ = (z, «, 0). Denote the
length of the observation time intervals by A; = ¢; —t;_, for j = 1,...,N.
Equation (1.7) provides an explicit expression of X;; as a function of X;, , and 6:

2
Xy, = Xy e a(l=e ™) gy~ (0, 5 (1=e ), (1L17)

The likelihood (1.15) is thus explicit and equal to

al 4; 4\ ot 24
L(0, xo:n) = p(x0;0) ]—[ @ (xj:x,-—le‘f +a (l—e‘r) 5 (1—e‘ g )) .
j=1

where ¢(x: u,0?) denotes the density of a Gaussian variable with mean p and
variance o2. The unique maximum of the likelihood function provides the MLE
0 = (z,4,6%). When A; = A is constant the MLE is given by the equations

Z’;:l(Xj _Xj—le_A/%)
l’l(l —e—A/?)
e AT = ZZ:l(X/ —&)(Xj—1 — &)
Yo (X1 —a)? ’
6% = 22’;=1(X/ —a— (X — Q)e /)2

n(l —e28/%)z

a =

)

It requires that Z};’=1 (X; —a)(X;j—; — &) > 0. Otherwise there is no solution.

When the transition density function p(-) is unknown, the likelihood is not
explicit. A simple approximation to the likelihood function is obtained by approxi-
mating the transition density by a Gaussian density with the correct first and second
conditional moments,

(x]y;0) ~ q(x|y; 0) = 1 ex _(y—F(A,x;@))z
PRRRT) = 0 = V2rg (A, x;0) P 2¢(A, x;0)
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where F(A, x;0) = Eg(Xa|Xo = x) and ¢p(A, x;0) = Varg(X4|Xo = x). In this
way we obtain the quasi-likelihood

N
L(0) ~ QL) = [ ] ¢(X;-11X;:6).
j=1
By differentiation with respect to the parameter, we obtain the quasi-score function

a
N —F(A,Xj_l;G)

9 B 06
S5 102 OL(9) = ; $(A.X,1:0)

[Xj—F(A,Xj_l;e)] (118)

0
39 (4. Xj1:0)

T (A X, 07

[(X;—F(A. X;—1:0)*~¢(A, X;-1:0)] .

which is clearly a martingale under Py. It is a particular case of a quadratic
martingale estimating function considered by [4, 5].

Another approach is to compute an approximation to p(-) based on the Euler—
Maruyama (1.12) or the Milstein (1.13) schemes. In general, this approximation will
converge to p(-) as A — 0. More precisely, the Euler—Maruyama approximation
of (1.15) consists in replacing p(-) by the Gaussian density of the Euler—Maruyama
scheme:

N

L(8. xon) &~ p(x0.0) [ [ @(xjixj1+ Ajputj—1,xj-1.60). A;0” (1. x;-1.6)).
j=1

When the interval lengths (A ;) are fixed and large, the Euler—-Maruyama scheme
provides a poor approximation to the diffusion. An alternative is to approximate the
transition density via simulation of finer sample paths. A set of auxiliary latent data
points are introduced between each pair of observations. Along these auxiliary latent
data points, the process can be finely sampled and the likelihood function is then
approximated via numerical integration (also called Monte Carlo method) [13,25].
We detail the approximation of the transition density p(x;|x;_;;6) on the interval
[tj—1.t;] for a fixed j € {1,...,N}. The time interval [¢;,_;,¢;] is discretized in
K sub-intervals 7, = 1\ <t < ... <) < ... < <) = 1;. The transition
density p(x;|x;—1;6) can be written as

p(xjlxj-1:0) = p (xr;plxr(g.f»@) = / p (xr;perg;, .- -’Xr;f%xrgn’")
Xp(X Y. GIES (,-);Q)dX G --dX
TK—1 7 Ty TK—1 7

=E[p(r,l X0 :0).
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where the expectation is taken under the distribution p(X DI , X L0 | X ()3 0).
1 0

By simulating M independent sample paths (x”} MR x - /))m_ 1....m under this

distribution, the transition density p(x;|x;—1;0) can be approxunated by

M

<[ -

p(M)(lexj—lse) p(lex:}j) 7"'7x:’5j)s-xj—l;9) (119)
K—1 1

m=1

5 (09)

E |

By the law of large numbers, the approximating transition density p™) (x ilxi—1:60)
converges to p(x;|x;_i;6). For a given j, the simulation of the sample paths

x" KRS L X . /))m—l _____ .m can be performed using the Euler—Maruyama or Milstein
TK—1
schemes with the initial condition x; ;. The densities of the right side of (1.19) are

then explicit Gaussian densities. The Euler—Maruyama approximation gives
PEM (x, 1xj-1:6)

M
1 m ( ( (
M Z |:90 (xj;xH((j)l + Alé)lu“(t}(j)l’x ) se)sAIé)UZ(TK])l’x ) .0)
=1 -

with A,((]) = t,ij) — T]ij—)l'

However, this approach can have poor convergence properties as the simula-
tions are based on unconditional distributions, especially the variance resulting
from the Monte Carlo integration can be large. A more appropriate strategy to
reduce the variance consists in importance sampling: instead of simulating the
sample paths using the Euler—-Maruyama or the Milstein schemes, the trajectories

(x5, X ") )m=1...m are generated using Brownian bridges, conditioning the
o TK—1
proposed bridge on the events x;_; and x; [12]. More precisely, for k =

, (K — 1), x";, is simulated with:
‘L'k'

Xt X —m
T D ) + B, (1.20)

m

X' =Xt +
) ti—

T/ij j—1 t' t—l

where B is a standard Brownian bridge on [¢;_1, ;] equal to zero for t = ¢;_; and
t = t;, which can be easily simulated.
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Observations of an It6 process with measurement noise Consider that the Itd
process is discretely observed with measurement noise. Let yo.y = (yo,.--, YN)
denote the vector of noisy observations:

y; =X +vey, (1.21)

where X is defined by (1.14), the ¢;’s are the measurement error random variables
assumed to be independent, identically distributed with a centered normal distribu-
tion with unit variance and independent of { X, },>0, and y is the measurement noise
level. The observed process is no longer Markov. The likelihood function of the data
Yyo:n§ can be computed by recursive conditioning:

N
L6, yon) = p(yo: 0) [ | P 150:j-1:6),
j=1
where yo.; = (¥o,...,y;) is the vector of observations until time #;. It is thus

sufficient to compute the distribution of y; given yo.; 1 which can be written

P Yoy 0) = / (11X 0)p(Xs |y 0)d X,

This conditional distribution is rarely explicit, though for the Ornstein—Uhlenbeck
process it is. Since the innovation noise n; of the discretization of the Ornstein—
Uhlenbeck process (1.17) and the observation noise &; are Gaussian variables,
the law of y; given y(.;—; can be obtained by elementary computations on
Gaussian laws if we know the mean and covariance of the conditional distribu-
tion of X, given yo:;—1. This conditional distribution can be exactly computed
using Kalman recursions as proposed by [15, 26]. The Kalman filter is an iter-
ative procedure which computes recursively the following conditional quantities:
X7(6) = E(X, 1yo,j-1:0), V7 (6) = B((X,, —X7)%6), X;(6) = E(X,, |yo.;: ),
V;i(0) =E((X;, — Xj)z; ). The exact likelihood of y.y is then equal to

al = X7(0))>
L(stO:N)ZH ! p( lu). (1.22)

jb 2r 0, @+ \ 207 @+

When the unobserved diffusion is not an Ornstein—Uhlenbeck process, Monte Carlo
methods can be used similarly to the case without measurement noise.

1.8.2 Bayesian Approach

Bayesian estimation is an alternative to the MLE, which takes advantage of prior
knowledge of parameter values. For example, biologists may know that the decay
rate of a drug elimination is most probably close to some pre-specified value. This is
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incorporated into the model by assuming a prior distribution for the parameters. The
Bayesian approach consists in estimating the posterior distribution of the parameter
6 given the observations and the prior distribution.

Denote p(6) the prior distribution (6 is thus a random variable). When the 1t6
process is observed without measurement noise, the posterior distribution given the
observations xg:y is

p(O.x0.n) _ plxon|6)p(0)

pOlxon) = pxov)  plxon)

where p(xo.n|0) is the likelihood function, and p(xo.y) = f p(0, x0:n)dO is
the marginal distribution of the data xp.y. In general, the posterior distribution
has no closed form because p(xo.n) is not explicit. Classical Bayesian estima-
tors propose to approximate the posterior distribution via simulation of samples
(0™)1<m<m using Markov Chain Monte Carlo (MCMC) techniques. The aim is
to simulate a Markov Chain with the target distribution p(€|xo.x) as stationary
distribution. Usual MCMC techniques are the Metropolis—Hastings and the Gibbs
algorithms [28]. The Metropolis—Hastings algorithm, an accept-reject algorithm,
requires an explicit expression of p(xo.x|0) for the computation of the acceptance
probability. This is rarely the case for Itd processes and approaches similar to
the MLE framework can be used: p(6, xo.x) can be approximated via the Euler—
Maruyama scheme by a Gaussian density [14], and Brownian bridges can be used
to reduce the variance of the MCMC integration [14,29].

When the diffusion is observed with measurement noise (1.21), the posterior
distribution given the observations yo.y is

p(9|y01N):/p(evxl‘ov”-,XIN|y0:N)dXto...dXtN

/ p(yo;N|9, Xtov e ey X[N)p(e, Xtoa ey XtN)
p(yo:n)

dX, ...dX,,.

Simulations of (8, Xy, ..., X;,) under p(6, Xy, ..., X;y | yo:n) provide samples of
6 under the posterior distribution. Similarly to the case without measurement noise,
the MCMC approach combined with Gaussian approximations are used to simulate
samples under this target distribution.

1.8.3 Martingale Estimating Functions

The score function (1.16) can be approximated by means of martingales of a
similar form. Suppose we have a collection of real valued functions /;(x, y,;0),
j =1,..., N satistying

/hj(x,y; ) p(y|x:0)dy =0 (1.23)
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for all x and 6. Consider estimating functions of the form

Gy (6) = ) a(Xi—1.O)h(Xi—1. X;:6), (1.24)

i=1

where i = (hy,...,hy)T, and the p x N weight matrix a(x, 6) is a function of x
such that (1.24) is Py-integrable. It follows from (1.23) that G, () is a martingale
under Py for all . An estimating function with this property is called a martingale
estimating function. The matrix a determines how much weight is given to each
of the /;’s in the estimation procedure. This weight matrix can be chosen in an
optimal way using the theory of optimal estimating functions. We will not treat this
here, see [4, 5,31, 32] for details.

Example 1.4. The martingale estimating function (1.18) is of the type (1.24) with
N =2, hi(x,y:0) = y — F(A,x:0) and hy(x,y;0) = (y — F(A,x;0))> —
¢(A, x, 0). The weight matrix is

o F(A,x:0)  09p(A,x:0)
( $(A.x:0) 2¢2(A,x;9)A)'

Example 1.5. A generally applicable quadratic martingale estimating function for
model (1.14) is

" 0 Xi_ ;9
Gy (0) = Z%;zﬂ((){i—_llﬂ))[xi — F(Xi—1;0)] (1.25)
i=1 ’
3902 (Xi-1:0)

204 (X, 1 0)A [(Xi — F(Xi—1:0))" —¢(Xi—1:0)]¢ .

For the square-root process (1.8) the quadratic martingale estimating function
(1.25) is

=

1
X

[X,' — X,'_le_A/T — Ol(l — E_A/I)]
1

i

[X,' — X,'_le_A/T —Ol(l — E_A/T)]

-

1

1

1
Xi—1
—o?t{(a/2 = Xi—1) e 4T — (@ — X;—)e 4 + a/Z}]

-

|:(X, — Xi_le_A/t —06(1 — E_A/T))z
1

1
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1.9 Biological Applications

To end this chapter, we will give a few examples of the use of stochastic models in
biology. Examples of applications in neuroscience can be found in Chaps. 5-8.

1.9.1 Oncology

This work has been realized by Benjamin Favetto, Adeline Samson, Daniel Balvay,
Isabelle Thomassin, Valentine Genon-Catalot, Charles-André Cuenod and Yves
Rozenholc.

In anti-cancer therapy, it is of importance to assess tumor aggressiveness as well
as to follow and monitor the in vivo effects of treatments [17, 30]. This can be
performed via dynamic contrast enhanced imaging (DCEI) by studying the tissue
microvascularisation and angiogenesis. This facilitates a better treatment monitoring
by optimizing in vivo the therapeutic strategy.

The DCEI experiment consists in injecting a contrast agent to the patient and
recording a medical images sequence, which measures the evolution of the contrast
agent concentration along time. The pharmacokinetics of the contrast agent is
modeled by a bidimensional differential system. In this pharmacokinetic model,
the contrast agent within a voxel of tissue is assumed to be either in the plasma
compartment or inside the interstitial compartment. We assume that exchanges
inside a voxel are (1) from the arteries (input) into the blood plasma; (2) from
the blood plasma into the veins (output) and (3) between blood plasma and
interstitial space. The quantities of contrast agent in a single unit voxel at time 7 are
denoted AIF(t), Qp(t) and Q/(¢) for artery, plasma and interstitial compartments,
respectively. The biological parameters and constraints are as follows: Fr > 0 is
the tissue blood perfusion flow per unit volume of tissue (in ml-min~!-100ml1™!),
Vi, > 0 is the part of whole blood volume (in %), V, > 0 is the part of extravascular
extracellular space fractional volume (in %), and PS > 0 is the permeability
surface area product per unit volume of tissue (in ml-min~!-100mI~'). We have
that Vj, + V, < 100. The hematocrit is the proportion of blood volume consisting of
red blood cells and assumed to be # = 0.4. The delay with which the contrast agent
arrives from the arteries to the plasma is denoted §. Both ¢ and § are measured in
seconds.

The contrast agent kinetics can be modeled by the following ODE model:

dop(t)  Fr PS PS Fr
dt - 1_hAIF(Z—S)_mQP([)+YQI(I)_mQP(I)

do,t) _ PS PS
AT LA A (1.26)
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We assume that no contrast agent exists inside the body before the acquisition and
hence the initial conditions are Qp(t)) = Q;(ty) = AIF(t)) = 0. Note that
AIF(t) is a given function for all ¢, controlled by the experimentalist.

However, this deterministic model is unable to capture the random fluctuations
observed along time. For example, it fails to capture the contrast agent dosing and
sampling errors, the measurement errors in the arterial input function, or the random
fluctuations along time in the plasma/interstitial permeability. These variations are
unpredictable. Our main hypothesis is that a more realistic model can be obtained by
a stochastic approach. We introduce an SDE model by adding random components:

Fr
40r®) = (5 AIFU=9) = -2 00 0)+ 0101205 00 0)) dt

+o1d W, (1.27)

1010) = (412 Qr )= 2010 ) di + 2d W

where th and sz are two independent Wiener processes, and o, 0, are the
standard deviations of the random perturbations. The initial conditions are the same
as above. This Itd process is a bidimensional Ornstein Uhlenbeck process.

In our biological context, only the sum S(t) = Qp(¢) + Q;(¢) can be measured.
Noisy and discrete measurements (y;,i = 0, ..., N) of S(¢) are performed at times
to=0<1t; <...<ty = T.The observation model is thus:

yi = S(ti) —+ YE&i, Ej ~ JV(O, 1)

where (g;);=o.... y are assumed to be independent, and y is the unknown standard
deviation of the Gaussian noise. The model parameters are denoted 6°°F =
(Fr,Vy, PS,V,,8,y%) and 0°°® = (Fr,V;, PS,V,,8,01,0,,y?) for the ODE and
SDE models, respectively.

MLEs 6 of the model parameters are obtained by applying the standard least
squares method for the ODE model and the Kalman filter approach for the SDE
model. Predictions of both models are computed as the solution of the differential
system (1.26) computed in 6°PE for the ODE model and as the conditional
expectation of O p and Q; given the whole data (y¢.y) for the SDE model.

The ODE and SDE models were applied to two signals to estimate the parameters
gore and 65PF . their standard deviations and the associated predictions Qp, O
and S. The ODE and SDE residuals were computed as the difference between
the observations yo:.y and the predictions S of the corresponding model. Signal 1
results are summarized in Table 1.1 and Fig. 1.3. For this signal, the ODE and SDE
estimates and the predictions of the quantity of contrast agent are identical.

For signal 2, the ODE and SDE estimates were different. The SDE predicted
quantity of contrast agent in the interstitial compartment QA§DE (t) was always null
(QA§DE (t) =0 Vi) while the ODE prediction Q?DE (t) was not (Fig. 1.4). The ODE
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Table 1.1 Estimated

Parameters  ODE model =~ SDE model
parameters for oncology

signal 1 data, using the ODE Fr 48.7 48.7
and the SDE models vy 40.5 40.5
PS 13.3 13.3
V., 29.4 29.4
) 6.0 6.0
v 8.02 7.86
0] - < 10_3
(o) - < 1073

600 600
500 500
400 400
300 300
200 200
100 100
0 it i e

0 50 100 150 200 250 300 0 50 100 150 200 250 300
Fig. 1.3 Predictions for signal 1 data, obtained with the ODE model (left) and the SDE model
(right): black stars (*) are the tissue observations (y;), the AIF observations are represented by

the red line, crosses (X) are the residuals. The plain blue, dashed pink and dash-dotted green lines
are the predictions for S(¢), Q p(¢) and Q/ (¢), respectively

model detected exchanges inside the voxel between the two compartments. The
ODE residuals were correlated, especially between times 1 = 40 and t = 75,
contrary to the SDE residuals. Parameter estimates obtained by the ODE and
the SDE models are different (Table 1.2). The SDE estimated blood volume
(I7bSDE = 53.5) is larger than the ODE estimate (I7b°DE = 41.3). The SDE estimated

permeability surface (ﬁSDE = 0.81) is much less than the ODE estimate (ﬁODE =
2.96). As VbODE + I7eODE = 100, the ODE estimation has stopped at a boundary of
the optimization domain. This suggests a more careful look. We removed the 2 (and
then the 5) last times of observations. While the SDE estimation remained stable
when removing observations (up to changes in the last digits), the ODE estimation
changed totally showing its poor stability. This variability induces even an inversion
in the prediction of the quantity of the contrast agent in the two compartments. The
results with the 2 or 5 last observations removed are added in Table 1.2, only for the
ODE estimation. Figure 1.4 illustrates these results by zooming in on the predictions
for each estimation.
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Fig. 1.4 Top figures: predictions for oncology signal 2 data, obtained with the ODE model (left)
and the SDE model (right): black stars (*x) are the tissue observations (y;), crosses (X) are the
residuals. The plain blue, dashed pink and dash-dotted green lines are respectively the predictions
for S(¢), Qp(t) and Q;(¢). For the SDE model, each prediction curve is surrounded by its 95%
confidence intervals. Bottom figures: predictions obtained with the ODE model removing the last
2 observations (/eft) and the last 5 observations (right)

Table 1.2 Estimated parameters for oncology signal 2 data, using the ODE model, the SDE model
and using the ODE model after removing the last 2 and the last 5 observations

ODE without ODE without
Parameters ODE model SDE model* 3 last times 5 last times
Fr 24.6 20.0 324 20.3
Vy 41.3 53.5 6.6 52.9
PS 2.96 0.81 432 0.04
Ve 58.7 0.04 27.9 0.002
) 10.5 9.68 9.5 7.49
y 7.55 6.51 8.4 8.19
o) 1.22
07 0.02

“The results were exactly the same after dropping the last 2 or 5 observations
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In conclusion, the use of a stochastic version of the two-compartment model
avoids the instability sometimes observed with the classical two-compartment
model. The SDE approach provides a more robust parameter estimation, adding
reliability to the two-compartment models.

1.9.2 Agronomy

This work has been realized by Sophie Donnet, Jean-Louis Foulley and Adeline
Samson [11].

Growth curve data consist of repeated measurements of a growth process
over time among a population of individuals. In agronomy, growth data allow
differentiating animal or vegetal phenotypes by characterizing the dynamics of
the underlying biological process. In gynaecology or pediatrics, height and weight
of children are regularly recorded to control their development. The parametric
statistical approach used to analyze these data is a parametric growth function,
such as the Gompertz, logistic, Richards or Weibull functions [35], which prescribe
monotone increasing growth, whatever the parameter values. These models have
proved their efficiency in animal genetics [18,20] and in pediatrics [33]. However, as
pointed out by [8], the used function may not capture the exact process, as responses
for some individuals may display some local fluctuations such as weight decreases
or growth slow-down. These phenomena are not due to measurement errors but
are induced by an underlying biological process that is still unknown today. In
animal genetics, a wrong modeling of these curves could affect the genetic analysis.
In fetal growth, the detection of growth slow-down is a crucial indicator of fetal
development problems. Thus, we propose to model these variations in growth curves
by an It6 process. The parameter estimation is based on a Bayesian approach.

We focus on the modeling of chicken growth. Data y are noisy weight measure-
ments of chickens at weeks t = 0, 4, 6, 8, 12, 16, 20, 24, 28, 32, 36, 40 after birth
(Fig. 1.5). These data are classically analyzed with a Gompertz function:

t

x(t) = Ae B (1.28)

which depends on the three parameters A, B, C and verifies the following ODE
x'(t) = BCe™C'x(r), x(0) = Ae 5. (1.29)
A heteroscedastic error model is usually required to obtain satisfactory results. For
simplicity we model the logarithm of the data y with the logarithm of the Gompertz

function (1.28) and add a measurement error with constant variance:

logy; :10gA—Be—Ct/' +yej, & ~iia A(0,1), Vj=0,...,n;. (1.30)
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Fig. 1.5 Growth curves of
the 50 chickens and mean
growth curve in dashed bold
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The log-parametrization for A and C was used to ensure that parameters are pos-
itive. We estimate the posterior distribution of the parameters (log 4, B,log C, y?)
of this ODE model.

The SDE model is deduced from the Gompertz equation (1.29):

dX, = BCe C'X,dt + oX,dW,, X,= Ae B, (1.31)

where the diffusion coefficient is set equal to oX, given the heteroscedasticity
of the process. This means that the standard error of the random perturbations
of the growth rate is proportional to the weight. This Itd process belongs to the
family of Geometric Brownian motions with time inhomogeneous drift. The It6
process (1.31) has an explicit solution. Indeed, set Z; = log(X;). By 1to6’s formula
(1.9), the conditional distribution of Z,; given (Z;), s <t,h > Ois:

1
Zisnl(Zs)s<t ~ N (Zy —Be Cl(e " — 1) — Eazh, o’h), Zy =log(A) — B.

_p,—Ct _1_.2 _ .
Thus, X, = Ae B¢ e7297toW and X, = Ae 8. As a consequence, X, is a

multiplicative random perturbation of the solution of the Gompertz model. Due to
the assumption of the non-negativity of A, X, is almost surely non-negative, which

is a natural constraint to model weight records.
We then discretize the SDE:

. L C(ti—1+ 1
Zi\Ziyy ~ N (th—l — Be €U (e €W — 1) — 5020/’ —tj—1).0%( _’j—l))~
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Table 1.3 Posterior distributions for the ODE and SDE models on chicken growth data: average
of estimated parameters and their 95% credibility intervals (95% CI)

ODE SDE

Average 95% CI Average 95% CI
log A 7.77 [7.70; 7.84] 7.75 [7.67;7.83 ]
B 4.17 [4.11;4.23] 4.15 [4.08; 4.22]
log C 2.75 [2.70; 2.81] 2.78 [2.71;2.84]
y 2 225.5 [197.4; 255.5] 630.2 [463.8; 797.9]
o? 0.09 [0.07; 0.12]

The SDE model on the logarithm of data is thus defined as:

(log yo,log y1,...,log yN)T = (log(A) - B. Z;,.... Z,N)T + ye,
&~iid. N (0,Iyy1)
(Ziyr- o Ziy)T = (log(A) — Be™C"1, ... log(A) — Be=™)"

—o2 (t1,. .., tn)" 4,
n~iia N (0y,0%1)

t = (min(t;,t;7)i<j.j’<n (1.32)

where T denotes transposition. By a Bayesian approach we estimate the posterior
distribution of the parameters (log A, B, log C, 02, y?). We consider Gaussian prior
distributions for (log A, B,1og C), an inverse Gamma prior distribution for o2 as
suggested by [9] for hierarchical models, and an inverse Gamma prior distribution
for y2. The posterior distribution is approximated with an MCMC algorithm.

Posterior expectations of the parameters are presented in Table 1.3. The estimate
of o2 is strictly positive and its confidence interval is far away from zero. This
implies that the dynamical process that most likely represents the growth is an
Itd process with non-negligible noise. Diagnostic tools to validate the models
are applied to both ODE and SDE models. Figure 1.6 presents the posterior
predictive distributions of both models computed for each time point. Centered
and symmetrical posterior predictive distributions correspond to a “good” model.
There is a clear improvement in the posterior predictive distributions from the
ODE to the SDE model for the whole population, both at early and late ages. The
predictive abilities of the two models can be compared on the posterior expectation
of the squared errors using cross-validation techniques. New data sets denoted y_;
are constructed by dropping the jth measurement. The error is then:

rk = B[ log") —logy 21y~ |. k=12
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Fig. 1.6 Posterior predictive distributions for the ODE and SDE models on chicken growth data

with y " * drawn from the predictive distribution pO;r Ky 7). Averaging in rj? is

with respect to the posterior uncertainty in the parameters of the model. We per-
formed that comparison for the last observation j = 12, which is especially critical
with respect to the growth pattern studied here. These quantities are r{’ge =0.56 and
r‘fg‘? = 0.48, resulting in a reduction of the squared errors of prediction of 14% when
using SDE vs ODE. Figure 1.7 reports, for four subjects, the observed weights,
the ODE prediction, the empirical mean of the last 1,000 simulated trajectories
of the SDE (1.32) generated during the estimation algorithm, their empirical 95%
confidence limits (from the 2.5th percentile to the 97.5th percentile) and one
simulated trajectory. Subjects 4 and 13 are examples of subjects with no growth
slow-down. Both ODE and SDE models satisfactorily fit the observations. Subject
14 has a small observed weight decrease. For subject 1, the weight decrease is more
important. For both subjects, the ODE model fails to capture this phenomenon while
the SDE model does.

In conclusion, on the presented data set, the introduction of this SDE model leads
to a clear validation of the model (Fig. 1.6) which was not the case in the standard
model, justifying the introduction of the new stochastic component.
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Fig. 1.7 Observations (circles), predictions obtained with the ODE model (long dashed line),
mean SDE prediction (smooth solid line), 95% credibility interval obtained with the SDE model
(dotted line) and one SDE realization (solid line), for subjects 1, 4, 13 and 14
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