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Fig. 1 Flow across two points

1 Conservation Laws

1.1 The Scalar Conservation Law

A scalar conservation law in one space dimension is a first order partial differential
equation of the form

us + f(u), =0. (D)

Here u = u(t, x) is called the conserved quantity, while f is the flux. The variable
t denotes time, while x is the one-dimensional space variable. Integrating (1) over a
given interval [a, b] one obtains

b b b
%/ u(t, x) dx:/ u(t,x)dx = —/ f(u(t,x))xdx

f(u(t,a)) — f(u(t.b)) = [inflow at a] — [outflow at b].
@)
According to (2), the quantity u is neither created nor destroyed: the total amount
of u contained inside any given interval [a, b] can change only due to the flow of u
across the two boundary points (Fig. 1).
Using the chain rule, (1) can be written in the quasilinear form

u, +a(uwu, =0, 3)

where a = f” is the derivative of f. For smooth solutions, the two (1) and (3) are
entirely equivalent. However, if u has a jump at a point &, the left hand side of (3)
will contain the product of a discontinuous function a(u) with the distributional
derivative u,, which in this case contains a Dirac mass at the point &. In general,
such a product is not well defined. Hence (3) is meaningful only within a class of
continuous functions. On the other hand, working with the equation in divergence
form (1) allows us to consider discontinuous solutions as well, interpreted in
distributional sense.
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p = density of cars

Fig. 2 The density of cars can be described by a conservation law

A function u = u(¢, x) will be called a weak solution of (1) provided that

// {“¢t +f(u)¢x} dxdt = 0 )

for every continuously differentiable function with compact support ¢ € %.'. Notice
that (4) is meaningful as soon as both u and f(u) are locally integrable in the
t-x plane.

Example 1 (traffic flow). Let p(t, x) be the density of cars on a highway, at the point
x at time 7. For example, # may be the number of cars per kilometer (Fig. 2). In the
classic Lighthill-Witham model [33,43], one assumes that the velocity v of the cars
depends only on their density, say

d
v =v(p), with v .
dp

Given any two points a, b on the highway, the number of cars between a and b
therefore varies according to the law

b d b
/ o (t,x)dx = E/ p(t,x)dx = [inflow ata] — [outflow atb]

b
= (plt.) - pl0.0) ~ ¥(p(0.5) - p(t.) = = [ [ p], .
)

Since (5) holds for all a, b, this leads to the conservation law

pi + [v(p) p], =0,

where p is the conserved quantity and f(p) = v(p)p is the flux function.
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1.2 Strictly Hyperbolic Systems

The main object of our study will be the n x n system of conservation laws

0

a
gul + 5][1(141,...,14”) =0,

(6)

0

d
Eu,, + afn(ul,...,un) = 0.

To shorten notation, it is convenient to write this system also in the form (1).
However, one should keep in mind that now u = (uy,...,u,) is a vector in IR"
while f = (f1,..., fu) is amap from IR" into /R". Calling

duy dxy,
A(u) = Df(u) = ,

ofn fn

T T

the n x n Jacobian matrix of the map f at the point u, the system (6) can be written
in the quasilinear form
u + A(u)u, = 0. (7

A ¢! function u = u(z, x) provides a classical solution to (6) if and only if it solves
(7). In addition, for the conservative system (6) one can also consider weak solutions
ue L,loc in distributional sense, according (4).

In order to achieve the well-posedness of the initial value problem, a basic
algebraic property will now be introduced.

Definition 1 (strictly hyperbolic system). The system of conservation laws (6) is
strictly hyperbolic if, for every u, the Jacobian matrix A(u) = Df(u) has n real,
distinct eigenvalues: A1 (u) < --- < A, ().

If the matrix A (u) has real distinct eigenvalues, one can find bases of left and right
eigenvectors, denoted by /; (), ..., I, (u) and r1 (&), . . ., 7, (u). The left eigenvectors
are regarded as row vectors, while right eigenvectors are column vectors. For every
ue IR"andi = 1,...,n, we thus have

A@)ri(u) = Ai(wri(u), i) A(u) = Ai@l;i(w).
It is convenient to choose dual bases of left and right eigenvectors, so that

1 if Q=]

|r,-|=1, li-rj=
0 if i#].

®)
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Fig. 3 A traveling wave u(0) u(t)
solution to the linear, scalar Lt
Cauchy problem (10)—(11)

Example 2 (gas dynamics). The Euler equations describing the evolution of a non
viscous gas take the form

pr+(pv)y =0 (conservation of mass)
(ov): + (ov> + p)x = 0 (conservation of momentum)
(PE): + (PEv+ pv)xy = 0 (conservation of energy)

Here p is the mass density, v is the velocity while E = e + v?/2 is the energy
density per unit mass. The system is closed by a constitutive relation of the form
p = p(p,e), giving the pressure as a function of the density and the internal energy.
The particular form of p depends on the gas under consideration. Denoting by u =
(ur,up,u3) = (p, pv, pE) the vector of conserved quantities, one checks that for
physically meaningful functions p = p(p, e) the above system is strictly hyperbolic
[26,57].

1.3 Linear Systems

We describe here two elementary cases where the solution of the initial value
problem can be written explicitly.
Consider the initial value problem for a scalar conservation law

u + fu)y = 0, )
u(0, x) = u(x). (10)

In the special case where the flux f is an affine function, say f(u) = Au + c, the
(9) reduces to
u; + Au, = 0. (11)

The Cauchy problem (10)—(11) admits an explicit solution, namely
u(t,x) = u(x — At). (12)

As shown in Fig. 3, this has the form of a traveling wave, with speed A = f'(u). If
it € €', the function u = u(t, x) defined by (12) is a classical solution. On the other
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Fig. 4 The solution to the S
linear hyperbolic system (13) u
is obtained as the

superposition of n traveling

waves

u

TN\
N—

hand, if the initial condition « is not differentiable and we only have u € Llloc’ the
above function u can still be interpreted as a weak solution in distributional sense.
Next, consider the linear homogeneous system with constant coefficients

u, + Au, =0, u(0, x) = u(x), (13)

where A is a n x n hyperbolic matrix, with real eigenvalues A; < --- < A, and right
and left eigenvectors r;, [;, chosen as in (8).

Call u; = I; - u the coordinates of a vector u € IR" w.r.t. the basis of right
eigenvectors {ry, - -+ , 1, }. Multiplying (13) on the left by [y, ..., [, we obtain

(W) +Ai (i) = (Lw) + Ai(hw)x = Liw + 1 Au, = 0,
M,‘(O,X) = liﬁ(x) = Ijl,'(x).

Therefore, (13) decouples into n scalar Cauchy problems, which can be solved
separately in the same way as (10)—(11). The function

w(t.x) = Y ui(x —Ait)r; (14)
i=1
now provides the explicit solution to (13), because
n
w(t.x) = > =Ai(li-iie(x = 4i))rr = — Auy(t.x).
i=1
Observe that in the scalar case (11) the initial profile is shifted with constant

speed A = f”(u). For the system (13), the initial profile is decomposed as a sum of
n waves (Fig. 4), each traveling with one of the characteristic speeds A1, ..., A,.
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u(t)

X

Fig. 5 If the wave propagation speed depends on u, the profile of the solution changes in time,
eventually leading to shock formation at a finite time 7

linear ~ nonlinear

X

Fig. 6 Left: for the linear hyperbolic system (13), the solution is a simple superposition of
traveling waves. Right: For the general non-linear system (6), waves of different families have
nontrivial interactions

1.4 Nonlinear Effects

In the general case where the matrix A depends on the state u, new features will
appear in the solutions.

(a) Since the eigenvalues A; now depend on u, the shape of the various components
in the solution will vary in time (Fig.5). Rarefaction waves will decay, and
compression waves will become steeper, possibly leading to shock formation in
finite time.

(b) Since the eigenvectors r; also depend on u, nontrivial interactions between
different waves will occur (Fig. 6). The strength of the interacting waves may
change, and new waves of different families can be created, as a result of the
interaction.

The strong nonlinearity of the equations and the lack of regularity of solutions,
also due to the absence of second order terms that could provide a smoothing effect,
account for most of the difficulties encountered in a rigorous mathematical analysis
of the system (1). It is well known that the main techniques of abstract functional
analysis do not apply in this context. Solutions cannot be represented as fixed points
of continuous transformations, or in variational form, as critical points of suitable
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functionals. Dealing with vector valued functions, comparison principles based on
upper or lower solutions cannot be used. Moreover, the theory of accretive operators
and contractive nonlinear semigroups works well in the scalar case [25], but does
not apply to systems. For the above reasons, the theory of hyperbolic conservation
laws has largely developed by ad hoc methods, along two main lines.

1. The BV setting, considered by J. Glimm [34]. Solutions are here constructed
within a space of functions with bounded variation, controlling the BV norm by
a wave interaction functional.

2. The L* setting, considered by L. Tartar and R. DiPerna [29], based on weak
convergence and a compensated compactness argument.

Both approaches yield results on the global existence of weak solutions. However,
the method of compensated compactness appears to be suitable only for 2 x 2
systems. Moreover, it is only in the BV setting that the well-posedness of the
Cauchy problem could recently be proved, as well as the stability and convergence
of vanishing viscosity approximations. In these lecture we thus restrict ourselves to
the analysis of BV solutions, referring to [29] or [50,56] for the alternative approach
based on compensated compactness.

1.5 Loss of Regularity

A basic feature of nonlinear systems of the form (1) is that, even for smooth initial
data, the solution of the Cauchy problem may develop discontinuities in finite time.
To achieve a global existence result, it is thus essential to work within a class of
discontinuous functions, interpreting the (1) in their distributional sense (4).

The loss of regularity can be seen already in the solution to a scalar equation with
nonlinear flux. Consider the scalar Cauchy problem

u + fuw)y =0 u(0,x) = ¢(x). (15)
In the case of smooth solutions, the equation can be written in quasilinear form
u + f(wu, = 0. (16)

Geometrically, this means that the directional derivative of u(#, x) in the direction
of the vector (1, f’(u)) vanishes. Hence u is constant on each line of the form

{(l, X); X =xo9+ tf/(u(xo))}. For each x¢ € IR we thus have

u(r, xo+zf’(¢>(xo))) — px0). am

This is indeed the solution to the first order PDE (16) provided by the classical
method of characteristics, see for example [31]. In general, beyond a finite time T,
the map

xo = xo +1 1 (p(x0))
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Fig. 7 Attime T when
characteristics start to t
intersect, a shock is produced

is no longer one-to-one, and the implicit (17) does not define a single valued function
u = u(t,x). Attime T a shock is formed, and the solution can be extended for¢ > T
in the weak sense, as in (4).

Example 3 (shock formation in Burgers’ equation). Consider the scalar conserva-
tion law (inviscid Burgers’ equation)

i R 18
o (3), - "

1
1+ x2
For ¢ > 0 small the solution can be found by the method of characteristics. Indeed,
if u is smooth, (18) is equivalent to

with initial condition
u(0,x) = u(x) =

u; + uu, = 0. (19)

By (19) the directional derivative of the function u = u(, x) along the vector (1, u)
vanishes. Therefore, u must be constant along the characteristic lines in the ¢-x
plane:

_ t
t — (t,x+tu(x)) = (l,x-i—m).

Fort < T = 8/+/27, these lines do not intersect (Fig.7). The solution to our
Cauchy problem is thus given implicitly by

t 1
t, = . 20
M( x+1+x2) 1+ x2 20)

On the other hand, when ¢t > T, the characteristic lines start to intersect. As a result,
the map
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H —
X X+ 12
is not one-to-one and (20) no longer defines a single valued solution of our Cauchy
problem.

An alternative point of view is the following (Fig.5). As time increases, points
on the graph of u(t, -) move horizontally with speed u, equal to their distance from
the x-axis. This determines a change in the profile of the solution. As ¢ approaches
the critical time 7 = 8/ /27, one has

lim {inf ux(t,x)} — oo,
t—T— xelR

and no classical solution exists beyond time 7". The solution can be prolonged for
all times # > 0 only within a class discontinuous functions.

1.6 Wave Interactions

Consider the quasilinear, strictly hyperbolic system
u, = — A(uu,. (21)

If the matrix A is independent of u, then the solution can be obtained as a
superposition of traveling waves. On the other hand, if A depends on u, these
waves can interact with each other, producing additional waves. To understand this
nonlinear effect, define the 7 -th component of the gradient u, as

T T (22)
We regard u’_ as the i -th component of the gradient u, w.r.t. the basis of eigenvectors

{ri(u), ..., r,(u)}. Equivalently, one can also think of #/ as the density of i -waves
in the solution u. From (22) and (8), (21) it follows

Uy = anuiri(u) U = —Zn:/\i(u)uiri(u)

i=1 i=1

Differentiating the first equation w.r.t. ¢ and the second one w.r.t. x, then equating
the results, one obtains a system of evolution equations for the scalar components
u'., namely

G+ Gt = 3Gy = (- s 23)

Jj>k
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See [8] or [42] for details. Notice that the left hand side of (23) is in conservation
form. However, here the total amount of waves can increase in time, due to the
source terms on the right hand side. The source term

Sijk = (Aj —lk)(li : [rjyrk])uiul)(r

describes the amount of i-waves produced by the interaction of j-waves with
k-waves. Here

Aj— Ak [difference in speed]

[rate at whichj — waves andk — waves cross each other]

ul uﬂ‘c = [density of j — waves] x [density ofk — waves]

[rj.rc] = (Dri)rj — (Drj)re  (Lie bracket)
[directional derivative of rx in the direction of r/]
— [directional derivative of r; in the direction of ry].

Finally, the product /; - [r;, ri] gives the i-th component of the Lie bracket [r;, r¢]
along the basis of eigenvectors {ry,...,7,}.

2  Weak Solutions

A basic feature of nonlinear hyperbolic systems is the possible loss of regularity:
solutions which are initially smooth may become discontinuous within finite time. In
order to construct solutions globally in time, we are thus forced to work in a space of
discontinuous functions, and interpret the conservation equations in a distributional
sense.

Definition 2 (weak solution). Let f : [R" + [R" be a smooth vector field.
A measurable function u = u(t, x), defined on an open set £2 € IR x IR and
with values in IR", is a weak solution of the system of conservation laws

u+ f(u)y =0 (24)

if, for every %' function ¢ : 2 + IR with compact support, one has

//9 {ug + f(u) ¢y} dxdt = 0. (25)

Observe that no continuity assumption is made on u. To make sense of the
integral in (25) we only need that u and f(u) be locally integrable in £2. Notice also
that weak solutions are defined up to L! equivalence. A solution is not affected by
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changing its values on a set of measure zero in the #-x plane. An easy consequence
of the above definition is the closure of the set of solutions w.r.t. convergencein L ...

Lemma 1. Let (,)m>1 be a uniformly bounded sequence of distributional solu-
tions of (24). If uy, — w and f(uy) — f(u) in LlloC then the limit function u is also
a weak solution.

Indeed, for every ¢ € (fcl one has

//Q {uge + f(u) ¢} dxdr = mli_l)lloo//Q (¢ + [ () ¢} dxdt = 0,

O

We observe that, in particular, the assumptions of the lemma are satisfied if u,, —
uin L}, and the flux function f is bounded.

In the following, we shall be mainly interested in solutions defined on a strip
[0, T] x IR, with an assigned initial condition

u(0, x) = u(x). (26)

Here it € L] .(IR). To treat the initial value problem, it is convenient to require some
additional regularity w.r.t. time.

Definition 3 (weak solution to the Cauchy problem). A function u : [0, T] %
IR — IR" is a weak solution of the Cauchy problem (24), (26) if u is continuous as
a function from [0, 7] into L{ _, the initial condition (26) holds and the restriction of
u to the open strip |0, 7'[ x IR is a distributional solution of (24).

Remark 1 (classical solutions). Let u be a weak solution of (24). If u is contin-
uously differentiable restricted to an open domain £2 C £2, then at every point
(t,x) € £2, the function u must satisfy the quasilinear system

u + A(wu, =0, (27)
with A(#) = Df(u). Indeed, from (25) an integration by parts yields

// [u: + Auw)uy|pdxdt = 0.

Since this holds for every ¢ € ¢! (5), the identity (27) follows.

2.1 Rankine—Hugoniot Conditions

Next, we look at a discontinuous solution and derive some conditions which must
be satisfied at points of jump. Consider first the simple case of a piecewise constant
function, say
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Fig. 8 Deriving the
Rankine-Hugoniot equations. X e - U= ut
Here the shaded area A of X =\t
describes the support of the S Tl
test function ¢ n- \x
Supp ¢ ". v
nt :
t
,’Q_

Ut x) =" ' ’ (28)

for some u—,ut € IR", A € IR.

Lemma 2. [fthe function U in (2.5) is a weak solution of the system of conservation
laws (2.1), then

A —uT) = fh) = f@). (29)
Proof. Let ¢ = ¢(t, x) be any continuously differentiable function with compact
support. Let £2 be an open disc containing the support of ¢ and consider the two

domains
T =N {x> A}, T =02N{x <At}

as in Fig. 8. Introducing the vector field v = (U¢, fu )¢), and recalling that U is
constant separately on £2_ and on §2, we write the identity (25) as

//mug U¢t+f(U)¢x dxdt = (//m // )dlvvdxdt 0. (30)

We now apply the divergence theorem separately on the two domains 27, 2.
Call n*, n~ the outer unit normals to 27, £27, respectively. Observe that ¢ = 0 on
the boundary 0£2. Therefore, the only portion of the boundaries d§2_, 0§24+ where
v # 0 is the line where x = Az. Denoting by ds the differential of the arc-length,
along the line {x = At} we have

ntds=Q, —1)dt n ds =(—A, 1)dz,

// divvdxdt = / n+-Vds+/ n-vds
2+ue- I+ 90—

/[Au“‘—f(f)]qb(t,kt)dt+/[—Au‘ + fu)] ¢, At)dt.

=
Il
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Therefore, the identity
/ [A(u+ —u)— fuh) + f(u_)] o, At)dt = 0

must hold for every function ¢ € 4. This implies (29). O

The vector equations (29) are the famous Rankine—Hugoniot conditions. They
form a set of n scalar equations relating the right and left states u™, u~ € IR" and
the speed A of the discontinuity, namely:

[speed of the shock] x [jump in the state] = [jump in the flux].

An alternative way of writing these conditions is as follows. Denote by A(u) =
Df (u) the n x n Jacobian matrix of f at u. For any u, v € IR", define the averaged
matrix

1
A(u, v) i/o A(Ov + (1 —6)u) db (31)

and call A; (u,v),i = 1,...,n, its eigenvalues. We observe that A(u,v) = A(v, u)
and A(u,u) = A(u). Equation (29) can now be written in the equivalent form

Awh—u) = fwh)y - fu) = /1 Df(9u+ + (1 —=0)u)- wt —u")do
0
=AW, ut) - (wt —u). (32)

In other words, the Rankine-Hugoniot conditions hold if and only if the jump u™ —
u~ is an eigenvector of the averaged matrix A(u~,u") and the speed A coincides
with the corresponding eigenvalue.

Remark 2. In the scalar case, one arbitrarily assign the left and right states u™, u™ €
IR and determine the shock speed as

_ Sty - f)

ut —u~

A

1 wt
= ——— / f(s)ds. (33)
uT —u" J,~
A geometric interpretation of these identities (see Fig. 9) is that
[speed of the shock] = [slope of secant line through u™, u™ on the graph of f]
= [average of the characteristic speeds between u~ and u™].
We now consider a more general solution u = u(t, x) of (24) and show that the

Rankine-Hugoniot equations are still satisfied at every point (z, §) where u has an
approximate jump, in the following sense [32].
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- X
ut u u

Fig. 10 A point of approximate jump. Looking through a microscope, i.e. rescaling the variables
t, x in a neighborhood of the point (z, §), the function u becomes arbitrarily close (in an integral
sense) to the piecewise constant function U in (28)

Definition 4 (approximate jump). We say that a function u =u(t, x) has an
approximate jump discontinuity at the point (t, £) if there exists vectors u™ # u~
and a speed A such that, defining U as in (28), there holds

1 r r
r—>0+ r —rJ=r

Moreover, we say that u is approximately continuous at the point (z, £) if the above
relations hold with u™ = u™~ (and A arbitrary).

Observe that the above definitions depend only on the L! equivalence class of u.
Indeed, the limit in (34) is unaffected if the values of u are changed on a set .4~ C
IR? of Lebesgue measure zero.

u(t+t, £+ x)—-U(t,x)|dxdt = 0. (34)

Example 4 (a piecewise smooth function). Let g~, g : IR?> — IR" be any two
continuous functions and let x = y(¢) be a smooth curve, with derivative y(t) =
%y(l). Define the function (see Fig. 10)

g (t,x) if x < y(1),

u(t, x) = gt x) if  x>y@).
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At a point (7,§), with § = y(7),call u™ = g~ (7,§€), ut = g™ (¢, &). Ifu™ = u™,
then u is continuous at (7, §), hence also approximately continuous. On the other
hand, if u™ # u~, then u has an approximate jump at (z, £). Indeed, writing y(¢) =

‘2—)[', the limit (34) holds with A = p(7) and U as in (28).

We now prove the Rankine—Hugoniot conditions in the more general case of a
point of approximate jump.

Theorem 1 (Rankine-Hugoniot equations). Let u be a bounded distributional
solution of (24) having an approximate jump at a point (t,£). In other words,
assume that (34) holds, for some states u~,u™ and a speed A, with U as in (28).
Then the Rankine—Hugoniot equations (29) hold.

Proof. For any given 6 > 0, the rescaled function
u?(t,x) = u(r + 01, £ + 0x)

is also a solution to the system of conservation laws. We claim that, as § — 0, the
convergence u’ — U holds in L}, (IR?; IR"). Indeed, for any R > 0 one has

R /R
. 0 _
lim /_R /_R |u’(t,x) = U(t,x)| dxdt

6—0

1

6R  (6R
=1irn—/ / |u(r+t, S+x)—U(t,x)|dxdt=0
=0 0% ) _gr Jor

because of (34). Lemma 1 now implies that U itself is a distributional solution of
(24), hence by Lemma 2 the Rankine—Hugoniot equations (29) hold. |

2.2 Construction of Shock Curves

In this section we consider the following problem. Given uy € IR", find the states
u € IR" which, for some speed A, satisfy the Rankine—Hugoniot equations

AMu—up) = f(u)— f(uo) = Aluo,u)(u—up). (35)

Trivially, the (35) are satisfied by setting u = ug, with A € IR arbitrary. Our aim is
to construct non-trivial solutions with u close to uy, relying on the implicit function
theorem. Since this goal cannot be achieved by looking directly at the system (35),
we adopt an alternative formulation.

Fix i € {1,...,n}. By a classical result in linear algebra, the jump u — uy is a
right i -eigenvector of the averaged matrix A(uo, u) if and only if it is orthogonal to
all left eigenvectors /; (ug, u) of A(uo, u), for every j # i. This means

Vi) = 1j(uo,u) - (u—up) =0 forall j # 1. (36)
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Fig. 11 Parameterization of
the i -th shock curve through a
point ug Yo u = S;(s)(up)

r; (up)

Instead of the system (35) of n equations in the n + 1 variables (u,A) =
(ui, ..., uy, A), we thus look at the system (36), consisting of n — 1 equations for
the n variables (u1, ..., u,).

The point u = uy is of course a solution. Moreover, the definition (31) trivially
implies A(uo,ug) = A(uo), hence I;(uo, uo) = I;(uo) for all j. Linearizing the
system (36) at u = uy we obtain the linear system of n — 1 equations

1 (uo) - (u—up) =0 j#i. (37)

Since the left eigenvectors / (uo) are linearly independent, this has maximum rank.

We can thus apply the implicit function theorem to the nonlinear system (36)
and conclude that, for each i € {l1,...,n}, there exists a curve s +— S;(s)(uo)
of points that satisfy (36). At the point u, this curve has to be perpendicular to all
vectors / (ug), for j # i. Therefore, it must be tangent to the i-th eigenvector r; (uo)
(Fig. 11).

2.3 Admissibility Conditions

To motivate the following discussion, we first observe that the concept of weak
solution is usually not stringent enough to achieve uniqueness for a Cauchy problem.
In some cases, infinitely many weak solutions can be found, all with the same initial
condition.

Example 5 (multiple weak solutions). For Burgers’ equation
U + (u?/2)y =0, (38)
consider the Cauchy problem with initial data

if x>0,

“OD=10 % x<o

As shown in Fig. 12, for every 0 < o < 1, a weak solution is

0 if x <at/2,
ug(t,x) = o if at/2 <x < (1 +a)/2, (39
1 if x> (1 4+a)/2.
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Fig. 12 Forevery a € [0, 1]
one obtains a different weak
solution of Burgers’ equation,

always with the same initial 1
data ot

Indeed, the piecewise constant function u, trivially satisfies the equation outside
the jumps. Moreover, the Rankine—Hugoniot conditions hold along the two lines of
discontinuity {x = «¢/2} and {x = (1 + «)t/2}, forallt > 0.

From the previous example it is clear that, in order to achieve the uniqueness of
solutions and their continuous dependence on the initial data, the notion of weak
solution must be supplemented with further “admissibility conditions”. Three main
approaches can be followed.

I: Singular limits.

Assume that, by physical considerations, the system of conservation laws (24)
can be regarded as an approximation to a more general system, say

up + fu)y = eAu), (40)

for some ¢ > 0 small. Here A(u) is typically a higher order differential operator.
We then say that a weak solution u = u(¢, x) of the system of conservation laws
(24) is “admissible” if there exists a sequence of solutions u® to the perturbed (40)
which converges to u in L,loc, ase — 0+.
A natural choice is to take the diffusion operator A(u) = uy, . This leads to

Admissibility Condition 1 (vanishing viscosity). A weak solution u of (24) is
admissible in the vanishing viscosity sense if there exists a sequence of smooth
solutions u® to

u, + f(u®)y = eul, (4D
which converge to uin L} as ¢ — 0+ .

The main drawback of this approach is that it is very difficult to provide a priori
estimates on general solutions to the higher order system (40), and characterize
the corresponding limits as ¢ — 0+4-. For the vanishing viscosity approximations
(41), this goal has been reached only recently in [7], within the class of solutions
with small total variation. From the above condition, however, one can deduce other
conditions which can be more easily verified in practice.

II: Entropy conditions.

An alternative approach relies on the concept of entropy.

Definition 5 (entropy and entropy flux). A continuously differentiable function
n : IR" — IR is called an entropy for the system of conservation laws (24), with
entropy flux q : IR" — IR, if for all u € IR" there holds
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Dn(u) - Df (u) = Dq(u). (42)

An immediate consequence of (42) is that, if u=u(t,x) is a €' solution of
(24), then

N +q )y = 0. (43)
Indeed,

N +qw)yx = Dnwu, + Dg(wyu, = Dn(u)(—Df (wu) + Dg(uu, = 0.

In other words, for a smooth solution #, not only the quantities uy,...,u, are
conserved but the additional conservation law (43) holds as well. However one
should be aware that, when u is discontinuous, the quantity 7(x#) may not be
conserved.

Example 6. Consider Burgers’ equation (38). Here the flux is f(u) = u?/2. Taking
n(u) = u’ and q(u) = (3/4)u*, one checks that the (42) is satisfied. Hence 7 is an
entropy and ¢ is the corresponding entropy flux. We observe that the function

1 if  x<1/2,

u(0,x) =
{0 if x>1t/2,

is a (discontinuous) weak solution of (38). However, it does not satisfy (43) in
distribution sense. Indeed, calling u= = 1, ut = 0 the left and right states, and
A = 1/2 the speed of the shock, one has

3 1
= a@h) —q) # A[nwh) —nw)] = 3.

We now study how a convex entropy behaves in the presence of a small diffusion
term. Assume 7,q € %2, with n convex. Multiplying both sides of (41) on the left
by Dn(u®) and using (42) one finds

(1), +[a@)], = eDns, = e{[n@)],, — D) (u, ®15)|. (44
Observe that the last term in (44) satisfies

S Pn(ue)  oug ouf
D), ®ul) = Po) uf 0y
Q=

lau,-auj ox dx — ’

because 7 is convex, hence its second derivative at any point ©#® is a positive
semidefinite quadratic form. Multiplying (44) by a nonnegative smooth function
¢ with compact support and integrating by parts, we thus have
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If ¥ — uin L' as ¢ — 0, the previous inequality yields

[/ {nwe + quey} dxdt > 0 (45)

whenever ¢ € %!, ¢ > 0. The above can be restated by saying that n(u), +
q(u)y < 0in distribution sense. The previous analysis leads to:

Admissibility Condition 2 (entropy inequality). A weak solution u of (24) is
entropy-admissible if

nw); +qu)x =0 (46)
in the sense of distributions, for every pair (7, g), where 7 is a convex entropy for
(24) and q is the corresponding entropy flux.

For the piecewise constant function U in (28), an application of the divergence
theorem shows that n(U); + ¢(U), < 0 in distribution if and only if

An@™) = n@)] = qh) —q@). (47)

More generally, let ©« = u(t,x) be a bounded function which satisfies the
conservation law (24). Assume that u has an approximate jump at (z, £), so that
(34) holds with U as in (28). Then, by the rescaling argument used in the proof of
Theorem 1, one can show that the inequality (47) must again hold.

We remark that the above admissibility condition can be useful only if some
nontrivial convex entropy for the system (24) is known. For n x n systems of
conservation laws, the (42) can be regarded as a first order system of n equations for
the two scalar variables 1, g, namely

duy duy
(ﬁ...ﬂ) (Bq Bq)
: X dg .. )
Juy ou,

When n > 3, this system is overdetermined. In general, one should thus expect
to find solutions only in the case n < 2. However, there are important physical
examples of larger systems which admit a nontrivial entropy function.

III: Stability conditions.

Admissibility conditions on shocks can also be derived purely from stability
consideration, without any reference to physical models.

We consider first the scalar case. Let U = U(¢, x) be the piecewise constant
solution introduced in (28), with left and right states u~, u™. Let us slightly perturb
the initial data by inserting an intermediate state u* € [u~,u™], as in Fig. 13. The
original shock is thus split in two smaller shocks, whose speeds are determined by
the Rankine—Hugoniot equations.

To ensure that the L' distance between the original solution and the perturbed
one does not increase in time, we need:

[speed of jump behind] > [speed of jump ahead].
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Fig. 13 In both cases
u= <ut oru™ >ut,the ut 0=
solution is stable if the speed e
of the shock behind is greater - u™
or equal than the speed of the u* .
one ahead — n

uU— u'

X X

Fig. 14 Geometric
interpretation of the stability £
conditions (48). In both cases,

the jump with left state u™ =
and right state 1™ is ’ ‘
admissible w |

By (33), this is the case if and only if

f@) = f@) _ feh) - [

* -+
P — > p— forall u™eu ,u™]. (48)

From (48) we thus obtain the following stability conditions (see Fig. 14).

1. If u= < u™, on the interval [u~,u™] the graph of f should remain above the
secant line.

2. If ut < u~, on the interval [u™, u™] the graph of f should remain below the
secant line.

Next, we seek a generalization of this stability conditions, valid also for n xn
hyperbolic systems. Observe that, still in the scalar case, the condition (48) is
equivalent to

f@) = f@) _ f@) - f)

u*t —u~ - ut —u—

forall u* e [u",u™]. (49)

In other words, the speed of the original shock («~,u™) should be not greater
than the speed of any intermediate shock (u~,u*), where u* € [u™,u™] is any
intermediate state (Fig. 15).

Next, we consider n xn hyperbolic systems. As in Sect. 2.2, we let s +— S; (s)(u™)
describe the i-shock curve through «~. This is the curve of all states u that can be
connected to u~ by a shock of the i-th family (Fig. 16).

Observe that, if u™ = S;(0)(u”) and u* = S;(s)(u~) are two points on the
i-shock curve through u~, in general it is not true that the two states #™ and u* can
be connected by a shock. For this reason, a straightforward generalization of the
condition (48) to systems is not possible. However, the equivalent condition (49)
has a natural extension to the vector valued case, namely:
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- * + ¥ * =
u u u u u u

u = Si(0) (u°)

Fig. 16 The i-shock (1~ ,u™) satisfies the Liu admissibility conditions if its speed satisfies
A, uT) < A;j(u™,u*) for every intermediate state 1™ along the i -shock curve through ™

Admissibility Condition 3 (Liu condition). Let u™ = S;(0)(u™) for some o €
IR. We say that the shock with left and right states u™,u" satisfies the Liu
admissibility condition provided that its speed is less or equal to the speed of every
smaller shock, joining #~ with an intermediate state u* = S;(s)(u™), s € [0, o].

This condition was introduced by T.P. Liu in [45]. Much later, the paper [7]
showed that, among solutions with small total variation, the Liu condition com-
pletely characterizes the ones which can be obtained as vanishing viscosity limits.

We conclude this section by mentioning another admissibility condition, intro-
duced by Lax in [40] and widely used in the literature.

Admissibility Condition 4 (Lax condition). A shock of the i-th family, connect-
ing the states #~,u™ and traveling with speed A = A,;(u™,u™"), satisfies the Lax
admissibility condition if

Ai(u™) = Ai(u, ut)y > i (uh). (50)

To appreciate the geometric meaning of this condition, consider a piecewise
smooth solution, having a discontinuity along the line x = y(#), where the solution
jumps from a left state u~ to a right state u™ (see Fig.17). According to (32),
this discontinuity must travel with a speed A = y = A;(u",u") equal to the
i-eigenvalue of the averaged matrix A(u—,u"), forsomei € {1,...,n}. If we now
look at the i -characteristics, i.e. at the solutions of the O.D.E.

X = Ai(u(t,x)),

we see that the Lax condition requires that these lines run into the shock, from
both sides.
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Fig. 17 Left: a shock admissible not admissible
satisfying the Lax condition. C
As time increases,
characteristics run toward the
shock, from both

sides. Right: a shock
violating this condition

3 The Riemann Problem

In this chapter we construct the solution to the Riemann problem, consisting of the
system of conservation laws

U+ fu)e =0 (51

together with the simple, piecewise constant initial data

- if <0,
w0, ) =) =" 7
ut if x > 0.

(52)
This will provide the basic building block toward the solution of the Cauchy problem
with more general initial data.

This problem was first studied by B. Riemann in [52], in connection with the
2 x 2 system of isentropic gas dynamics. In [40], P. Lax constructed solutions to the
Riemann problem for a wide class of n x n strictly hyperbolic systems. Further
results were provided by T. P. Liu in [44], dealing with systems under generic
assumptions. The paper [6] by S. Bianchini provides a fully general construction,
valid even for systems not in conservation form. In this case, “solutions” are
interpreted as limits of vanishing viscosity approximations.

The central role played by the Riemann problem, within the general theory of
conservation laws, can be explained in terms of symmetries. We observe that, if
u = u(t, x) is a weak solution of (51), then for every # > 0 the rescaled function

ul (1, x) = u(6t, Hx) (53)
provides yet another solution. Among all solutions to a system of conservation laws,

the Riemann problems yield precisely those weak solutions which are invariant
w.r.t. the above rescaling: u’ = u for every # > 0 (see Fig. 18).

3.1 Some Examples

We begin by describing the explicit solution of the Riemann problem (51)-(52)in a
few elementary cases.
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Fig. 18 The solution to a

Riemann problem is constant

along rays through the origin,

in the 7-x plane. Hence it is

invariant w.r.t. the symmetry @
transformation (53)

Fig. 19 A contact
discontinuity. Here the
characteristic speed

f/(u) = A is constant, for all
values of u € [u™,u™]

ut u(t)

-
—~
(=]
=
|
>

I

Fig. 20 The centered
rarefaction wave defined at

G4 E— f(u)t

f'(u) ut u(t)

il

Example 7. Consider a scalar conservation law with linear flux f(u) = Au + c.

As shown in Fig. 19, the solution of the Riemann problem is

u- if X < At,

u(t,x) =
(¢ x) ut if x > At

It consists of a single jump, called a contact discontinuity, traveling with speed A.

Example 8. Consider a scalar conservation law with strictly convex flux, so that
u > f'(u) is strictly increasing. Moreover, assume that u™ > u™.

The solution is then a centered rarefaction wave, obtained by the method of
characteristics (Fig. 20).

u- if X< ' (u),

t

ut,x) =qut if > f'uh), (54)

t

~l=

= f(w) for some w € [u~,u™].



Hyperbolic Conservation Laws: An Illustrated Tutorial 181

u- wt
f(u) At i fu*) - f(u™)

u - u

u+

0 X

Fig. 21 A shock satisfying the admissibility conditions

Since the mapping @ +> f'(w) is strictly increasing, for £ € [f'(u”), f'(u™)]
there exists a unique value w € [u~, u™] such that % = f'(w). The above function
u is thus well defined.

Example 9. Consider again a scalar conservation law with strictly convex flux.
However, we now assume that ut < u~.

The solution consists of a single shock:

u- if X < At,

u(t,x) =
ut if x> M,

(55)

As usual, the shock speed is determined by the Rankine-Hugoniot equations
(33). We observe that this shock satisfies both the Liu and the Lax admissibility
conditions.

Remark 3. The formula (55) defines a weak solution to the Riemann problem
also in Example 8. However, if u~ < u™, this solution does not satisfy the Liu
admissibility condition. The Lax condition fails as well.

On the other hand, if ™ < u~, the formula (54) does not define a single valued
function (Fig. 21). Hence it cannot provide a solution in Example 9.

Example 10. Consider the Riemann problem for a linear system:
u- if x <0,

u, + Au, =0 u(0,x) =
I Wt i x>0,

For linear systems, the general solution to the Cauchy problem was already
constructed in (14).

For this particular initial data, the solution can be obtained as follows. Write the
vector u™ — u~ as a linear combination of eigenvectors of A4, i.e.

n
+ —_E
u —u = er].
j=1
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Fig. 22 Solution to the
Riemann problem for a linear t X/ t=),
system
X/t= }\,1 Xx/t= )\’3
o, )
0= u 3= ut
0 X
Define the intermediate states
a)iiu_-l—Zerj, i=0,...,n.
J<i
The solution then takes the form
wo=u"  for Xx/t <A,
u(t,x) = | w; for A <x/t <Ait1s (56)

w, =ut  for x/t >A,.

Notice that, in this linear case, the general solution to the Riemann problem consists
of n jumps. The i-th jump: w; — w;—; = ¢;r; is parallel to the i-eigenvector of the
matrix A and travels with speed A;, given by the corresponding eigenvalue (Fig. 22).

3.2 A Class of Hyperbolic Systems

We shall consider hyperbolic systems which satisfy the following simplifying
assumption, introduced by P. Lax [40].

(H) Foreachi = 1,...,n, the i-th field is either genuinely nonlinear, so that
DAi(u) - ri(u) > O for all u, or linearly degenerate, with DA; (u) - r;(u) = 0 for
all u.

We recall that DA; denotes the gradient of the scalar function u +— A;(u).
Hence DA;(u) - r; (u) is the directional derivative of A; in the direction of the vector
r;. Notice that, in the genuinely nonlinear case, the i-th eigenvalue A; is strictly
increasing along each integral curve of the corresponding field of eigenvectors r;.
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Fig. 23 Integral curves of the
vector fields r (u), r5(u) R

Ry(0)(u,)

In the linearly degenerate case, on the other hand, the eigenvalue A; is constant along
each such curve (see Fig. 23). With the above assumption (H), we are ruling out the
possibility that, along some integral curve of an eigenvector r;, the corresponding
eigenvalue A; may partly increase and partly decrease, having several local maxima
and minima.

Example 11 (isentropic gas dynamics). Denote by p the density of a gas, by v=p~!

its specific volume and by u its velocity. A simple model for isentropic gas dynamics
(in Lagrangian coordinates) is then provided by the so-called “p-system”

{ vi—uy = 0, 57)
u + p()x = 0.
Here p = p(v) is a function which determines the pressure in terms of of the

specific volume. An appropriate choice is p(v) = kv™7, with | < y < 3.1In the
region where v > 0, the Jacobian matrix of the system is

. 0o -1
A:Df:(p%v) 0)'

The eigenvalues and eigenvectors are found to be

A=—y=p'(v), Ay = /=p'(v), (58)

1 -1
r , Iy = . (59)

V=) V=r')

It is now clear that the system is strictly hyperbolic provided that p’(v) < 0 for all
v > 0. Moreover, observing that

")

2V=p'()

we conclude that both characteristic fields are genuinely nonlinear if p”(v) > 0 for
allv > 0.

Dkl-ﬁ: =DA2-I’2,
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As we shall see in the sequel, if the assumption (H) holds, then the solution
of the Riemann problem has a simple structure consisting of the superposition of n
elementary waves: shocks, rarefactions or contact discontinuities. This considerably
simplifies all further analysis. On the other hand, for strictly hyperbolic systems
that do not satisfy the condition (H), basic existence and stability results can still be
obtained, but at the price of heavier technicalities [44].

3.3 Elementary Waves

Fix a state uy € IR" and an index i € {l,...,n}. As before, let r;(u) be an i-
eigenvector of the Jacobian matrix A(u) = Df(u). The integral curve of the vector
field r; through the point ug is called the i-rarefaction curve through ug. It is
obtained by solving the Cauchy problem in state space:

du
T = (u), u(0) = uo. (60)
o
We shall denote this curve as
o = R;(0)(up). (61)

Clearly, the parametrization depends on the choice of the eigenvectors r;. In
particular, if we impose the normalization \r,- (u)| = 1, then the rarefaction curve
(61) will be parameterized by arc-length. In the genuinely nonlinear case, we always
choose the orientation so that the eigenvalue A;(u) increases as the parameter o
increases along the curve.

Next, for a fixed ug € IR" andi € {l1,...,n}, we consider the i-shock curve
through 1. This is the set of states u which can be connected to u( by an i-shock.
As in Sect. 2.2, this curve will be parameterized as

o = Si(0)(uo). (62)
Using a suitable parametrization (say, by arclength), one can show that the two

curves R;,S; have a second order contact at the point uy (see Fig.24). More
precisely, the following estimates hold.

% Ri(0)(uo) = uo + ori(ug) + (1) - 02, 63)
Si(0)(uo) = uo + i (uo) + (1) - 02,
|Ri(@)(10) = Si(0)(u0)| = £(1) -0, (64)

2 (@), w0) = 2i(w) + 3D (w) - riw) + 6(1) 0% (65)
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Fig. 24 The i-shock curve
and the 7 -rarefaction curve
through a point u

Uy

Here and throughout the following, the Landau symbol &'(1) denotes a quantity
whose absolute value satisfies a uniform bound, depending only on the system (51).

Toward the general solution of the Riemann problem (51)—(52), we first study
three special cases.

1. Centered Rarefaction Waves. Let the i-th field be genuinely nonlinear, and
assume that u* lies on the positive i-rarefaction curve through u~, ie. u™ =
R;(0)(u™) for some o > 0. For each s € [0, ], define the characteristic speed

Ai(s) = Ai(Ri(s)(u)).

Observe that, by genuine nonlinearity, the map s — A;(s) is strictly increasing.
Hence, for every A € [A;(u™), A;(u™)], there is a unique value s € [0, o] such that
A = Ai(s). Fort > 0, we claim that the function

u- if x/t < Ai(u7),
ut. ) = {RG) if  x/t = A(s) € L), L@H]. (66
ut if x/t > Aiwh),

is a piecewise smooth solution of the Riemann problem, continuous for t > 0.
Indeed, from the definition it follows

tim Jutc) — i, = o

Moreover, the (51) is trivially satisfied in the sectors where x < fA;(u™) or x >
tX; (u™), because here u; = u, = 0. Next, assume x = tA; (s) for some s €]0,0].
Since u is constant along each ray through the origin {x/¢ = c}, we have

u(t,x) + éux(t,x) = 0. (67)

We now observe that the definition (66) implies x/t = A; (u(t, x)). By construction,
the vector u, has the same direction as r;(u), hence it is an eigenvector of the
Jacobian matrix A(u) = Df(u) with eigenvalue A;(u). On the sector of the ¢-x
plane where A; (u™) < x/t < A;(u") we thus have
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uy

u® Xopy)

X _ +
7=

\\ “|“.~;§L\

; X X < z -

Fig. 25 A solution to the Riemann problem consisting of centered rarefaction wave. Left: the
profile of the solution at a fixed time ¢, in the x-u space. Right: the values of u in the 7-x plane

u + Awu, = u +Ai(wu, = 0,

proving our claim. As shown in Fig.25, at a fixed time ¢ > 0, the profile x —
u(t, x) is obtained as follows. Consider the rarefaction curve R; joining u~ with
u™, on the hyperplane where x = 0. Move each point of this curve horizontally,
in the amount ¢ A; (). The new curve yields the graph of u(z,-). Notice that the
assumption o > 0 is essential for the validity of this construction. In the opposite
case 0 < 0, the definition (66) would yield a triple-valued function in the region
where x/1 € [A;(u™), A;i(u7)].

2. Shocks. Assume again that the i-th family is genuinely nonlinear and that the
state u™ is connected to the right of ™ by an i-shock, i.e. u™ = S;(0)(u™). Then,
calling A = A; (u™, u™) the Rankine-Hugoniot speed of the shock, the function

u- if X < At,

u(t,x) =
¢ x) ut if X > At,

(68)

(Fig. 26) provides a piecewise constant solution to the Riemann problem. Observe
that, if o < 0, than this solution is entropy admissible in the sense of Lax. Indeed,
since the speed is monotonically increasing along the shock curve, recalling (65) we
have

L) < A ,ut) < Ai@o). (69)

Hence the Lax admissibility conditions (50) hold. In the case o > 0, however, one
has A; (u™) < A;(u™) and the conditions (50) are violated.

3. Contact discontinuities. Assume that the i-th field is linearly degenerate and
that the state u™ lies on the i-th rarefaction curve through u™, i.e. u™ = R; (o) (u™)
for some o. By assumption, the i-th characteristic speed A; is constant along this
curve. Choosing A = A(u™), the piecewise constant function (68) then provides a
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Fig. 26 A solution
consisting of a single shock,
or a contact discontinuity

solution to our Riemann problem. Indeed, the Rankine-Hugoniot conditions hold at
the point of jump:

@) = f@)

/O Df (Ri()@™)) i (Ri(s) (™)) dis

Sy M) r(Ri@)@) ds = A ) - (Re(o) ) = u”).
(70)
In this case, the Lax entropy condition holds regardless of the sign of o. Indeed,

At = L@ ut) = @), (71)

Observe that, according to (70), for linearly degenerate fields the shock and
rarefaction curves actually coincide: S;(0)(ug) = R; (0)(up) forall o.

The above results can be summarized as follows. For a fixed left state ¥~ and
i €{l,...,n} define the mixed curve

o R@@) if azo,
Hlo)) Si(o)y(w™) if o <0. 72)

In the special case where u™ = W;(o)(u~) for some o, the Riemann problem
can then be solved by an elementary wave: a rarefaction, a shock or a contact
discontinuity.

3.4 General Solution of the Riemann Problem

Relying on the previous analysis, the solution of the general Riemann problem (51)-
(52) can now be obtained by finding intermediate states wp = 4™, ®y,..., W, = ut
such that each pair of adjacent states w;—, ®; can be connected by an elementary
wave, i. e.

w; = lI’,‘(O’,‘)(a)i_l) i = 1,...,)1. (73)
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O

Fig. 27 The range of the map (07,0,) = ¥,(02) o ¥ (01)(u" ) covers a whole neighborhood
of u™

Fig. 28 A solution to the Riemann problem, consisting of a I-shock, a 2-contact, and a
3-rarefaction

+

This can be done whenever u™ is sufficiently close to ™. Indeed, consider the map

A0y, ...,00) = W (op) oo (o) (u").

Taking a first order Taylor expansion at the point (o1,...,0,) = (0,...,0) we
obtain the affine map

©1,....0,) = u_ + ZCW’:'(M_)-

i=1

Since {ri,...,r,} is a basis of the space IR", the above map has full rank (it is
one-to-one and surjective). We can thus apply the implicit function theorem and
conclude that the nonlinear mapping A is a continuous bijection of a neighborhood
of the origin in /R" onto a neighborhood of u™ (Fig.27).
Therefore, for u™ sufficiently close to u~, there exist unique wave strengths
o1, ...0, such that
ut = Wy(0y) 0o Wi(on) (). (74)

In turn, these determine the intermediate states w; in (73). The complete solution is
now obtained by piecing together the solutions of the n Riemann problems (Fig. 28)
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Wi —1 lf x <0,

w4 fu) = 0, u(0,x) = (75)

w; if x>0,

on different sectors of the 7-x plane. By construction, each of these problems has
an entropy-admissible solution consisting of a simple wave of the i -th characteristic
family. More precisely:

CASE 1:  The i-th characteristic field is genuinely nonlinear and o; > 0. Then the
solution of (75) consists of a centered rarefaction wave. The i-th characteristic
speeds range over the interval [A;, /\,-+ ], defined as

A7 = Ai(wi-1), A= (o).

CASE 2: Either the i-th characteristic field is genuinely nonlinear and 0; < 0, or
else the i-th characteristic field is linearly degenerate (with o; arbitrary). Then
the solution of (75) consists of an admissible shock or a contact discontinuity,
traveling with Rankine—Hugoniot speed

AT = )Li+ = Ai(wi—1, w;).

The solution to the original problem (51)—(52) can now be constructed by piecing
together the solutions of the » Riemann problems (75), i = 1,...,n. Indeed, for
o1, ..., 0, sufficiently small, the speeds A;, )ki+ introduced above remain close to
the corresponding eigenvalues A; (u~) of the matrix A(u~). By strict hyperbolicity
and continuity, we can thus assume that the intervals [A, Al+] are disjoint, i.e.

AT <A < A5 <A < - <A <At

Therefore, a piecewise smooth solution u : [0, 00) x IR + IR" is well defined by
the assignment

U = wo if  x/t € ]—o0, AT[,
R; (s)(wi-1) if  x/t = Li(Ri(s)(wim) € [A7. A,

u(t,x) =
Wi it x/t e [AF AL [

ut = w, it x/t e [AF, oof.

(76)
Observe that this solution is self-similar, having the form u(¢, x) = ¥ (x/t), with
¥ 1 IR — IR" possibly discontinuous.
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3.5 The Riemann Problem for the p-System

Example 12 (the p-system). Consider again the equations for isentropic gas dynam-
ics (in Lagrangian coordinates)

vi—uy = 0,
77
{ Uz + p(V)x = 0 ( )
Writing U = (v, u), the Riemann problem takes the form
U =W ,u" ] 0,
U0.x) = v—,um) if x< (78)
Ut =0T ut) if x>0.

Here u~, ut are the velocities to the left and to the right of the initial jump, while
v~ vt > 0 are the specific volumes.
By (59), the 1-rarefaction curve through U™ is obtained by solving the Cauchy

problem
du _ _
R ARAE u(v-) =u.

This yields the curve

R, = {(v,u); u—u‘=/vi vV=r'() dy}- (79)

Similarly, the 2-rarefaction curve through the point U™ is

Ry, = {(v, u; u—u = —/_ V=r'(y) dy}- (80)

The shock curves Sy, S, through the left state U ~ are obtained from the Rankine—
Hugoniot conditions

AVv—vT) = —(@—u), Au—u") = p) —p(). (81)

One can use the first equation in (81) to obtain the shock speed A. From the second
equation, the shock curves are then computed as

$i= foun i = =0 = p07), A== <o,
(32)
S, = {(v,u): =i = =) (p0) — p07)), A== >0}.
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Fig. 29 Shocks and
rarefaction curves through the
point U™ = (v ,u")

By (58)—(59) and the assumptions p’(v) < 0, p”(v) > 0, the directional deriva-
tives of the eigenvalues A1, A, in the direction of the corresponding eigenvectors
r1, rp are found to be

(DA = (Diayrs = 220 g, (84)

2y/=p'(v)

Therefore, the Riemann problem (77)—(78) admits a solution in the form of a
centered rarefaction wave provided that Ut € Ry, vt > v7,orelse U € R,,
vt < v™. On the other hand, a shock connecting U~ with U T will be admissible if
either UT € S;and vt < v~ ,orelse UT € S, and vt > v,

Taking the above admissibility conditions into account, we thus obtain four
curves originating from the point U~ = (v~,u~). Namely, the two rarefaction

curves
o= Ri(0), Ry(0) o >0,

and the two shock curves
o+ Si1(0), S2(0) o <0.
In turn, these curves divide a neighborhood of U™ into four regions (Fig. 29):

£2; : bounded by R, S», £2, : bounded by Rj, R»,
£23 : bounded by Sy, 57, £24 : bounded by S|, R;.

For UT = (v*,u") sufficiently close to U~ = (v™,u"), the structure of the
general solution to the Riemann problem is now determined by the location of the
state U T, with respect to the curves R;, S; (Fig. 30).
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Fig. 30 Solution to the S
Riemann problem for the U+ R
p-system. The four different U W Case 1
cases
U+
‘\ R R
U W Case 2
S S
v v Case 3
U+
U, S R
\\ U \/ Case 4
\,

CASE 1: U™ € £2,. The solution consists of a 1-rarefaction wave and a 2-shock.
CASE 2: U™ e £2,. The solution consists of two centered rarefaction waves.
CASE 3: U™ e £25. The solution consists of two shocks.

CASE 4: U™ € £24. The solution consists of a 1-shock and a 2-rarefaction wave.

Remark 4. Consider a 2x2 strictly hyperbolic system of conservation laws. Assume
that the i-th characteristic field is genuinely nonlinear. The relative position of
the i-shock and the i-rarefaction curve through a point uy can be determined as
follows (Fig.24). Let 0 — R;(0) be the i-rarefaction curve, parameterized so that
Ai (Ri (a)) = A;(up) + 0. Assume that, for some constant ¢, the point

Si(0) = Ri(0) + (a0’ + 0(0?))r; (uo) (85)

lies on the i-shock curve through ug, for all 0. Here the Landau symbol o(c?)
denotes a higher order infinitesimal, as 0 — 0. The wedge product of two vectors

in IR? is defined as (Z) A (2) = ad — bc. We then have

¥ (o)
=[Ri @)+ @0 +00*)r; (o) o] A (Ri (0)+ @0 +0(0%) r 10) — ()]
= A(oc)AB(0) = 0.
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Indeed, the Rankine-Hugoniot equations imply that the vectors A(c) and B(c) are
parallel. According to Leibnitz’ rule, the fourth derivative is computed by

d* d* d3 d d? d?

— Y = —A B+4 A A ——B

do? (do4 )A * (d3 )A(do )+6(d 2 )A(daz )
d d3 d*

By the choice of the parametrization, j—ak,- (Ri (a)) = 1. Hence

d d
%f(Ri(O—)) = Ai(Ri(0)) ERi(U),
d? d d?
I 2f(R (U)) d_R (o) + A (R (0)) R (0),
3
dd s f(Ri(0)) = dd Ri(0) + Ai (R (cr)) a R (0).

For convenience, we write r; @ r; = (Dr;)r; to denote the directional derivative of
r; in the direction of r;. At o = 0 we have

d d?
A:B:O’ _Rl: i s —_—
ri (uo) 702

Io R; = (ri o r;)(uo).

Using the above identities and the fact that the wedge product is anti-symmetric, we
conclude

17 4d3R+6 de +6 dzR/\dR—l—)LdzR
_ or LAY
o do3 ™ J do do? do ' a2

d d d3
+4 %Ri A d 2R,+)t do_3Ri+6(x)Ljrj

= 240[()Li —)Lj)(rj /\ri) —2(}“,' OF,') Ari = 0.

d4
do*

The i-shock curve through u is thus traced by points S; (o) at (85), with

_ (riori) Ar;
o 12(/\, — A]‘)(rj AN I‘,‘).

(86)
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The sign of o in (86) gives the position of the i-shock curve, relative to the
i-rarefaction curve, near the point ug. In particular, if (r; ® ;) A r; # 0, it is clear
that these two curves do not coincide.

3.6 Error and Interaction Estimates

In this final section we provide two types of estimates, which will play a key role in
the analysis of front tracking approximations.

Fix a left state u~, a right state ™, and a speed A. If these satisfy the Rankine—
Hugoniot equations, we have

Aut —u) = [fh) = fu)] = 0.

On the other hand, if these values are chosen arbitrarily, the only available
estimate is

At =) = [f@h) = f@)] = Q) [u" —u|. (87)

Here an throughout the sequel, the Landau symbol (1) denotes a quantity which
remains uniformly bounded as all variables u™, ut, do... range on bounded sets.
The next lemma describes by how much the Rankine—Hugoniot equation fail to be
satisfied, if the point u™ lies on the i -rarefaction curve through #~ and we choose A
to be the i-th characteristic speed at the point u™.

Lemma 3 (error estimate). For o > 0 small, one has the estimate
M@ Ri@)@) =] = [ £ (Ri@)w ) = f@)] = 6(1)-0% 89)

Proof. Call E(o) the left hand side of (88). Clearly E(0) = 0. Differentiating
w.r.t. o at the point 0 = 0 and recalling that d Ry /do = ry, we find

dE

Tl = Ak )re(™) = Df (u™)ri(u™) = 0.
o

o=0

Since E varies smoothly with ¥~ and o, the estimate (88) follows by Taylor’s
formula. O

Next, consider a left state i, a middle state ™ and a right state «” (Fig. 31, left).
Assume that the pair (!, u”) is connected by a j-wave of strength o, while the pair
(u™,u") is connected by an i-wave of strength ¢, with i < j. We are interested in
the strength of the waves (071, . .., 0,) in the solution of the Riemann problem where
u~ = u' and u*™ = u’. Roughly speaking, these are the waves determined by the
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Fig. 31 Wave interactions.
Strengths of the incoming and i
outgoing waves

interaction of the ¢’ and ¢”. The next lemma shows that 0; ~ ¢”, 0; ~ ¢’ while
or ~0fork #1i,j.

A different type of interaction is considered in Fig.31, right. Here the pair
(u',u™) is connected by an i-wave of strength o', while the pair (u™, u’) is
connected by a second i-wave, say of strength ¢”. In this case, the strengths
(01,...,0,) of the outgoing waves satisfy 0; ~ ¢’ + o’ while 0, =~ 0 for
k # i. As usual, 0(1) will denote a quantity which remains uniformly bounded
as u—,0’,0” range on bounded sets.

Lemma 4 (interaction estimates). Consider the Riemann problem (51)—(52).

(i) Recalling (72), assume that the right state is given by

ut = W(0") 0 W) (o)) (). (89)
Let the solution consist of waves of size (01, ...,0,), asin (74). Then
loi —o"| + |o; —o'| + Z lox| = O0(1)-lo’c"”|. (90)
k#i,j

(ii) Next, assume that the right state is given by

ut =W (") o (o) (u), oD
Then the waves (o1,...,0,) in the solution of the Riemann problem are
estimated by
joi =o' —a"|+ ) lox| = O()-|o'a”"|(lo’] + |0”]).  (92)
ki

For a proof we refer to [11].
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4 Global Solutions to the Cauchy Problem

In this chapter we study the global existence of weak solutions to the general Cauchy
problem

ur + fu)x = 0, (93)
u(0,x) = u(x). (94)

Here the flux function f : IR" + IR" is smooth, defined on a neighborhood of
the origin. We always assume that the system is strictly hyperbolic, and that the
assumption (H) introduced in the previous chapter holds.

A fundamental result proved by Glimm [34] provides the global existence of an
entropy weak solution, for all initial data with suitably small total variation.

Theorem 2 (Global existence of weak solutions). Assume that the system (93) is
strictly hyperbolic, and that each characteristic field is either linearly degenerate or
genuinely nonlinear.
Then there exists a constant 8y > 0 such that, for every initial condition u €
L'(IR; IR") with
Tot.Var{u} < &, (95)

the Cauchy problem (93)—(94) has a weak solution u = u(t, x) defined for all t > 0.

In addition, one can prove the existence of a global solution satisfying all the
admissibility conditions introduced in Sect. 2.3. A proof of Theorem 2 requires two
main steps:

(a) Construct a sequence of approximate solutions u,,.
(b) Show that a subsequence converges in L}oc to a weak solution u of the Cauchy
problem.

Approximate solutions can be constructed by piecing together solutions to several
Riemann problems. Two techniques have been developed in the literature:

— In the Glimm scheme (Fig.40) one considers a fixed grid of points (f;, xy) =
(j At, k Ax) in the ¢-x plane, and solves a Riemann problem at each node of
the grid.

— In a front tracking approximation, one constructs a piecewise constant approx-
imate solution u = u(t, x), whose jumps are located along a finite number of
segments in the 7-x plane (Fig.33). A new Riemann problem is solved at each
point where two fronts interact. These points depend on the particular solution
being constructed.

Having constructed a sequence of approximate solutions (u,),>; (Fig. 32), one
needs to extract a subsequence converging to some limit # = u(t,x) in L, .. By
Helly’s compactness theorem, this can be achieved by establishing an a priori bound
on the total variation Tot.Var.{u, (¢, -)}, uniformly valid for# > 0 and v > 1.
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uV
u u,

Fig. 32 Without a bound on the total variation, a sequence of approximate solutions may oscillate
more and more, without admitting any convergent subsequence

Fig. 33 An approximate solution obtained by front tracking

4.1 Front Tracking Approximations

In this section we describe the construction of front tracking approximations. This
method was developed in [26, 28], and in [9] respectively for scalar conservation
laws, for 2 x 2 systems, and for general n x n systems satisfying the assumptions
(H). Further versions of this algorithm can also be found in [5,37,55]. An extension
to fully general n x n systems, without the assumptions (H), is provided in [3].

Let the initial condition u be given and fix & > 0. We now describe an algorithm
which produces a piecewise constant approximate solution to the Cauchy problem
(93)—(94). The construction (Fig.33) starts at time + = 0 by taking a piecewise
constant approximation u#(0, -) of &, such that

Tot.Var.{u(0,-)} < Tot.Var{i}, / |u(0,x) —a(x)|dx < & (96)

Let x; < --- < xy be the points where u(0, -) is discontinuous. For each o =
1,..., N, the Riemann problem generated by the jump (1(0,x,—). u(0,xo+)) is
approximately solved on a forward neighborhood of (0, x,) in the ¢-x plane by a
piecewise constant function, according to the following procedure.

Accurate Riemann Solver. Consider the general Riemann problem at a point

(E’ )_C),
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u(t)

Fig. 34 Replacing a centered rarefaction wave by a rarefaction fan

®, X,
o, 2
@)

COO ©3 , [0)

X 0 X

Fig. 35 Left: the exact solution to a Riemann problem. Right: a piecewise constant approximation.
The centered rarefaction wave of the 3-d family has been replaced by a rarefaction fan

_ u- if x <x,
vi + f(v)x =0, v(t,x) = _f B 97)
ut if x> X,
Recalling (72), let wy,...,w, be the intermediate states and oy,...,0, be the
strengths of the waves in the solution, so that

wo=u", wy,=u", w; = ¥ (07)(wi—1) i=1,....n. (98)

If all jumps (w;—;,w;) were shocks or contact discontinuities, then this solution
would be already piecewise constant. In general, the exact solution of (97) is not
piecewise constant, because of the presence of centered rarefaction waves. These
will be approximated by piecewise constant rarefaction fans, inserting additional
states w; ; as follows.

If the i-th characteristic field is genuinely nonlinear and o; > 0, we divide the
centered i-rarefaction into a number p; of smaller i-waves, each with strength
o;/pi. Here we choose the integer p; big enough so that o/p; < e&. For
j=1,..., pi, we now define the intermediate states and wave-fronts (Fig. 34)

w;j = Ri(joi/pi)(wi-1), xij(t) =X+ @ —DAi(wij-1). (99

Replacing each centered rarefaction wave with a rarefaction fan, we thus obtain
a piecewise constant approximate solution to the Riemann problem (Fig. 35).
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Fig. 36 Left: the number of wave fronts can become infinite in finite time. Right: by using the
simplified Riemann solver at two interaction points P and Q, the total number of fronts remains
bounded

We now resume the construction of a front tracking solution to the original
Cauchy problem (93)—(94). Having solved all the Riemann problems at time ¢ = 0,
the approximate solution u can be prolonged until a first time #; is reached, when
two wave-fronts interact (Fig. 33). Since u(#1, -) is still a piecewise constant function,
the corresponding Riemann problems can again be approximately solved within the
class of piecewise constant functions. The solution u is then continued up to a time 7,
where a second interaction takes place, etc... We remark that, by an arbitrary small
change in the speed of one of the wave fronts, it is not restrictive to assume that at
most two incoming fronts collide, at each given time ¢ > 0. This will considerably
simplify all subsequent analysis, since we don’t need to consider the case where
three or more incoming fronts meet together.

The above construction can be continued for all times # > 0, as long as

(a) The total variation Tot.Var.{u(z,-)} remains small enough. This guarantees
that all jumps u(¢, x—), u(t, x+) are small, hence the corresponding Riemann
problems admit a solution.

(b) The total number of fronts remains finite.

Bounds on the total variations will be discussed in the next section. Here we observe
that a naive implementation of the front tracking algorithm can produce an infinite
number of fronts within finite time (Fig. 36).

As shown in [9], this can be avoided by occasionally implementing a Simplified
Riemann Solver, which introduces one single additional front (Fig. 37). In this case,
the solution is continued by means of two outgoing fronts of exactly the same
strength as the incoming one. All other waves resulting from the interaction are
lumped together in a single front, traveling with a constant speed )Ak, strictly larger
than all characteristic speeds.

In the end, for a given ¢ > 0, this modified front tracking algorithm generates a
piecewise constant g-approximate solution # = u(t, x), defined as follows.
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accurate Riemann solver simplified Riemann solver

q_

c’ o’

Fig. 37 Left: the solution to a Riemann problem obtained by the Accurate Riemann Solver
introduces several new wave fronts. Right: the Simplified Riemann solver produces two outgoing
fronts of the same strength as the incoming ones, plus a small Non-Physical front

Definition 6 (front tracking approximate solution). A piecewise constant func-
tion u = u(t, x), defined for t > 0, x € R, is called an e-approximate front tracking
solution to the Cauchy problem (93)—(94) provided that

(i) The initial condition is approximately attained, namely ||u(0, ) — u||;1 < e.
(i) All shock fronts and all contact discontinuities satisfy the Rankine—Hugoniot
equations, as well as the admissibility conditions.
(iii) Each rarefaction front has strength < ¢.
(iv) Ateachtime ¢ > 0, the total strength of all non-physical fronts in u(¢, ) is < €.
(v) The total variation of u(z,-) satisfies a uniform bound, depending only on

Tot. Var.{u}.
— By a shock front we mean a jump whose right and left states satisfy
ut = Si(o)(w™) for some 0 € IR and i € {1,...,n}. This travels with
Rankine—Hugoniot speed A = A; (u~,u") = %

— By a rarefaction front we mean a jump whose right and left states satisfy u™ =
R;(0)(u™) for some o,i. This travels with speed A = A;(u™), i.e. with the
characteristic speed of its right state.

— By a non-physical front we mean a jump whose right and left states u™, u~ are
arbitrary. This travels with a fixed speed A, strictly greater than all characteristic
speeds.

4.2 Bounds on the Total Variation

In this section we derive bounds on the total variation of a front tracking approxi-
mation u(¢, -), uniformly valid for all # > 0. These estimates will be obtained from
Lemma 4, using an interaction functional.

We begin by introducing some notation. At a fixed time #, let x,, ¢ = 1,..., N,
be the locations of the fronts in u(z, ). Moreover, let |0, | be the strength of the
wave-front at x,, say of the family k, € {1,...,n}. Following [34], consider the
two functionals
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Fig. 38 Estimating the

change in the total variation t
at a time where two fronts

interact

V) = V(@) = > lodl. (100)

measuring the rotal strength of waves in u(t, -), and
Q) = Q(u®) = D lowosl. (101)

(a.p)eod

measuring the wave interaction potential. In (101), the summation ranges over the
set <7 of all couples of approaching wave-fronts:

Definition 7 (approaching fronts). Two fronts, located at points x, < xg and
belonging to the characteristic families ko,kg € {l,...,n} respectively, are
approaching it ko, > kg or else if k, = kg and at least one of the wave-fronts
is a shock of a genuinely nonlinear family.

Roughly speaking, two fronts are approaching if the one behind has the larger
speed (and hence it can collide with the other, at some future time).

Now consider the approximate solution # = u(¢, x) constructed by the front
tracking algorithm. It is clear that the quantities V(u(t)), 0 (u(t)) remain constant
except at times where an interaction occurs. At a time T where two fronts of strength
|o’|,]a”| collide, the interaction estimates (90) or (92) yield

AV(r) = V(r+) = V(r—) = O(1)- 0’0", (102)
AQ(r) = Q(t+)—Q(r—) = —lo'0"[+ ) |o'0"|- V(z—).  (103)

Indeed (Fig. 38), after time t the two colliding fronts ¢/, ¢” are no longer approach-
ing. Hence the product |o’c”| is no longer counted within the summation (101).
On the other hand, the new waves emerging from the interaction (having strength
O(1)-]0’0”]) can approach all the other fronts not involved in the interaction (which
have total strength < V(7—)).

If V remains sufficiently small, so that &'(1)-V(t—) < 1/2, from (103) it follows
IO,/O_//|
2

O(t+) - Q0(t—) = — (104)
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By (102) and (104) we can thus choose a constant Cy large enough so that the
quantity
T(@) = V@) +CoQ)

decreases at every interaction time, provided that V' remains sufficiently small.
We now observe that the total strength of waves is an equivalent way of
measuring the total variation. Indeed, for some constant C one has

Tot.Var.{u(t)} < V(u(t)) < C-Tot.Var{u(t)}. (105)

Moreover, the definitions (100)—(101) trivially imply Q < V2. If the total variation
of the initial data u(0, -) is sufficiently small, the previous estimates show that the
quantity V' 4+ CyQ is nonincreasing in time. Therefore

Tot.Var.{u(t)} < V(u(t)) < V(u(O))+C0Q(u(O)). (106)

This provides a uniform bound on the total variation of u(z,-) valid for all times
t>0.

An important consequence of the bound (100) is that, at every time t where two
fronts interact, the corresponding Riemann problem can always be solved. Indeed,
the left and right states differ by the quantity

lut —u~| < Tot.Var.{u(r)},
which remains small.
Another consequence of the bound on the total variation is the continuity of #

u(t,-) as a function with values in L] . More precisely, there exists a Lipschitz
constant L’ such that

o0
/ |u(t,x) —u(’ . x)|dx < L'\t —1'] forall ¢,¢ > 0. (107)
—00

Indeed, if no interaction occurs inside the interval [z, ¢'], the left hand side of (107)
can be estimated simply as

IA

lu() = u@)| i = 1t =11 22, loal 1]

IA

|t — t'| - [total strength of all wave fronts] - [maximum speed]

IA

L' |t —1],

(108)
for some uniform constant L’. The case where one or more interactions take place
within [z, '] is handled in the same way, observing that the map ¢ +— u(t,-) is
continuous across interaction times.
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4.3 Convergence to a Limit Solution

Given any sequence &, — 0+, by the front tracking algorithm we obtain a sequence
of piecewise constant functions u,, where each u,u is an &,-approximate solution to
the Cauchy problem (93)—(94).

By (107) the maps ¢ > u, (¢, -) are uniformly Lipschitz continuous w.r.t. the L!
distance. We can thus apply Helly’s compactness theorem (see Theorem A.1 in the
Appendix) and extract a subsequence which converges to some limit function « in
L;,,. also satisfying (107).

By the second relation in (96), as &, — 0 we have u,(0) — & in L} .. Hence the
initial condition (94) is clearly attained. To prove that u is a weak solution of the
Cauchy problem, it remains to show that, for every ¢ € %! with compact support
contained in the open half plane where # > 0, one has

/OO /00 ¢ (t, x)u(t, x) + ¢ (t, x) f(u(t, x)) dxdt = 0. (109)
0 —00

Since the u,, are uniformly bounded and f is uniformly continuous on bounded sets,
it suffices to prove that

lim /oo /OO {q&f(t,x)uv(t,x)+¢>X(t,x)f(uv(t,x))}dxdt — 0. (110)
0 —00

v—>0

Choose T > 0 such that ¢ (¢, x) = 0 whenever ¢ ¢ [0, T']. For a fixed v, at any time
tcall xi(t) < -+ < xp(t) the points where u, (¢, ) has a jump, and set

AMU(Z, xa) iuv(l‘s xoc+)_’4v(ts xa—),

Af(uv(tv xa)) if(uv(tv xa+))_f(”v(tv xa_))-

Observe that the polygonal lines x = x,(¢) subdivide the strip [0, T'] x IR into
finitely many regions I'; where u, is constant (Fig. 39). Introducing the vector

q)i(gb-uv, ¢'f(“v))a

by the divergence theorem the double integral in (110) can be written as

Zj://rjdivcp(z,x)dzdxzzj:/arjcp-nda. (111)

Here 01} is the oriented boundary of I';, while n denotes an outer normal. Observe
that ndo = +(%,, —1)dt along each polygonal line x = x4 (¢), while ¢(t,x) = 0
along the lines + = 0,7 = T. By (111) the expression within square brackets in
(110) is computed by
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R R S
S
Rl N
NP
R
R = Rarefaction front
S = Shock front
NP = Non—physical front
0

X

Fig. 39 Estimating the error in an approximate solution obtained by front tracking

T
/0Z[xa(z).Auv(z,xa)—Af(uv(z,xa))]¢(z,xa(z))dz. (112)

Here, for each ¢ € [0, T'], the sum ranges over all fronts of u, (¢, -). To estimate the
above integral, let o, be the signed strength of the wave-front at x,,. If this wave is a
shock or or contact discontinuity, by construction the Rankine—Hugoniot equations
are satisfied exactly, i.e.

Y1) - Auy (2, xo) — Af (un(t, x4)) = 0. (113)

On the other hand, if the wave at x,, is a rarefaction front, its strength will satisfy
oy €10, &,[. Therefore, the error estimate (88) yields

)'ca(t)-Auu(t,xa)—Af(u\,(t,xa))‘ = O()-|ou> = O(1)-es]on]. (114)

Finally, if the jump at x, is a non-physical front of strength |oy| = |u,(xq+) —
u,(x4—)|, by (87) we have the estimate

$al) - At %) = Af (1, 50)| = 01 [oul. (115)

Summing over all wave-fronts and recalling that the total strength of waves in u, (¢, -)
satisfies a uniform bound independent of 7, v, we obtain
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lim sup
V—>00

Z I:).Ca(t) < Auy(t,xq) — Af(“v(ta Xa)):l(P(l, xa(t))‘

o

IA

o) Y aloul+ o) Y |oa|§

(max ‘d)(t, x)‘) - lim sup
Lx V—>00
CER aEN P
= 0.
(116)
The limit (110) is now a consequence of (116). This shows that u is a weak solution

to the Cauchy problem. For all details we refer to [11].

5 The Glimm Scheme

The fundamental paper of Glimm [34] contained the first rigorous proof of existence
of global weak solutions to hyperbolic systems of conservation laws. For several
years, the Glimm approximation scheme has provided the foundation for most of
the theoretical results on the subject. We shall now describe this algorithm in a
somewhat simplified setting, for systems where all characteristic speeds remain
inside the interval [0, 1]. This is not a restrictive assumption. Indeed, consider any
hyperbolic system of the form

u; + A(wu, =0,

and assume that all eigenvalues of A remain inside the interval [-M, M ]. Perform-
ing the linear change of independent variables

y:x—i—Ml‘, ‘C:2M[,

we obtain a new system
u + A*(wu, =0 A*(u) = LA(u)-i-ll
‘ e - 2M 2

where all eigenvalues of the matrix A* now lie inside the interval [0, 1].
To construct an approximate solution to the Cauchy problem

Uz + f(”)x = Os M(va) = ﬁ(x), (117)
we start with a grid in the 7-x plane having step size At = Ax, with nodes at the

points
Pji = (tj.x¢) = (jAt, kAx) jkeZ.
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Moreover, we shall need a sequence of real numbers 6y, 6,, 03, ... uniformly
distributed over the interval [0, 1]. This means that, for every A € [0, 1], the
percentage of points 6;, 1 < i < N which fall inside [0, A] should approach A
as N — oo, i.e.:

#i. 1<j <N, 6 cl0,A
i {j: 1<) < i €[0,A]}
N—o00 N

=1 foreach A € [0,1]. (118)

By #I we denote here the cardinality of a set /.

At time t = 0, the Glimm algorithm starts by taking an approximation of the
initial data u, which is constant on each interval of the form ]xk_l, X[, and has
jumps only at the nodal points x; = k Ax. To fix the ideas, we shall take

u(0, x) = u(xy) forall x € [xx, Xp+1][. (119)

For times ¢+ > 0 sufficiently small, the solution is then obtained by solving the
Riemann problems corresponding to the jumps of the initial approximation (0, -)
at the nodes x,. Since by assumption all waves speeds are contained in [0, 1], waves
generated from different nodes remain separated at least until the time #; = At.
The solution can thus be prolonged on the whole time interval [0, A¢[. For bigger
times, waves emerging from different nodes may cross each other, and the solution
would become extremely complicated. To prevent this, a restarting procedure is
adopted. Namely, at time #; = At the function u(#;—, -) is approximated by a new
function u(t,+, -) which is piecewise constant, having jumps exactly at the nodes
X = k Ax. Our approximate solution u can now be constructed on the further time
interval [At, 2At[, again by piecing together the solutions of the various Riemann
problems determined by the jumps at the nodal points x;. At time ©, = 2A¢, this
solution is again approximated by a piecewise constant function, etc. ..

A key aspect of the construction is the restarting procedure. At each time
t; = j At, we need to approximate u(t;—, -) with a a piecewise constant function
u(tj+,-), having jumps precisely at the nodal points x;. This is achieved by a
random sampling technique. More precisely, we look at the number 6; in our
uniformly distributed sequence. On each interval [x;—_;, x¢[, the old value of our
solution at the intermediate point x;' = 6; x 4 (1 —6;)x;—; becomes the new value
over the whole interval:

ulti+, x) = u(tj—, 9jxk+(1—9j)xk_1) for all x € [xg—1, xx[. (120)

An approximate solution constructed in this way is shown in Fig. 40. The asterisks
mark the points where the function is sampled. For sake of illustration, we choose
0 =1/2,6,=1/3.

For a strictly hyperbolic system of conservation laws, satisfying the hypotheses
(H) in Sect. 3, the fundamental results of J. Glimm [34] and T.P. Liu [46] have
established that
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Fig. 40 An approximate
solution constructed by the
Glimm scheme

Fig. 41 Applying the Glimm /
scheme to a solution t /*
consisting of a single shock /*

ALY /x

1. If the initial data u has small total variation, then an approximate solution can
be constructed by the above algorithm for all times # > 0. The total variation of
u(t, -) remains small.

2. Letting the grid size At = Ax tend to zero and using always the same sequence
of numbers ¢; € [0, 1], one obtains a sequence of approximate solutions u,,.
By Helly’s compactness theorem, one can extract a subsequence that converges
to some limit function u = u(¢, x) in Llloc'

3. If the numbers 6; are uniformly distributed over the interval [0, 1], i.e. if (118)
holds, then the limit function u provides a weak solution to the Cauchy problem
(117).

The importance of the sequence 6; being uniformly distributed can be best
appreciated in the following example.

Example 10. Consider a Cauchy problem of the form (117). Assume that the exact
solution consists of exactly one single shock, traveling with speed A € [0, 1], say

o At
Ult.x) = u if X > At,
u- if X < At.

Consider an approximation of this solution obtained by implementing the Glimm
algorithm (Fig.41). By construction, at each time #; = jAt, the position of the
shock in this approximate solution must coincide with one of the nodes of the grid.
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Fig. 42 Approximations

. Uitk
leading to the Godunov
scheme
f(uj, 1) f(uj, k)
Lk
ik

Observe that, passing from ¢;_; to ¢;, the position x(¢) of the shock remains the
same if the j-th sampling point lies on the left, while it moves forward by Ax if the
J-th sampling point lies on the right. In other words,

x(tj_1) if 0 el

(121)
xX(tjio) +Ax if 6, €[0.A].

X(lj) =

Let us fix a time 7 > 0, and take At = T/N. From (121) it now follows
x(T)=#{j: 1<j <N, 0, €[0,A] }-At

_ My 1=i=N 6 el0A])
— o T

It is now clear that the assumption (118) on the uniform distribution of the sequence
{0} =1 is precisely what is needed to guarantee that, as N — oo (equivalently, as
At — 0), the location x(7") of the shock in the approximate solution converges to
the exact value AT .

Remark 7. At each restarting time f; we need to approximate the BV function
u(tj—, -) with a new function which is piecewise constant on each interval
[Xx—1, Xk[. Instead of the sampling procedure (120), an alternative method consists
of taking average values:

[
ulti+, x) = E/ u(ti—, y)dy forall x € [xg—1, xk[.  (122)
Xk—1

Calling u jx the constant value of u(¢;+) on the interval [x;_;, xx[, an applica-
tion of the divergence theorem on the square I, (Fig.42) yields

wjvrke = wig + [ fuje—1) — fur)] (123)

Indeed, all wave speeds are in [0, 1], hence
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M(I,Xk_l) = Uj k-1, M(I,Xk) = Ujk forall ¢t € [lj,lj_H[.

The finite difference scheme (122) is the simplest version of the Godunov (upwind)
scheme. It is very easy to implement numerically, since it does not require the
solution of any Riemann problem. Unfortunately, as shown in [22], in general it is
not possible to obtain a priori bounds on the total variation of solutions constructed
by the Godunov method. Proving the convergence of these approximations remains
an outstanding open problem.

The remaining part of this chapter will be concerned with error bounds, for
solutions generated by the Glimm scheme.

Observe that, at each restarting time ¢; = j At, the replacement of u(z;—) with
the piecewise constant function u(¢;+) produces an error measured by

|utt;+) = u(t;=)| .

As the time step At = T/N approaches zero, the total sum of all these errors
does not converge to zero, in general. This can be easily seen in Example 10, where
we have

%

N N
D utti ) —ut; =) = D lut —u |- Ar-min {(1 - 1), A}
j=1 J=1

= |uwt —u|- T -min{(1-2), A}.

This fact makes it difficult to obtain sharp error estimates for solutions generated
by the Glimm scheme. Roughly speaking, the approximate solutions converge to
the correct one not because the total errors become small, but because, by the
randomness of the sampling choice, small errors eventually cancel each other in
the limit.

Clearly, the speed of convergence of the Glimm approximate solutions as
At, Ax — 0 strongly depends on how well the sequence {6;} approximates a
uniform distribution on the interval [0, 1]. In this connection, let us introduce

Definition 8. Let a sequence of numbers 6; € [0, 1] be given. For fixed integers
0 < m < n, the discrepancy of the set {0,,,, ..., 0,_1} is defined as

#7: <j<mn, 6; €01
Don = sup |A— Uimsj<n 0;€0M}} (124)
2€[0.1] n—m

We now describe a simple method for defining the numbers 6;, so that the
corresponding discrepancies D,, , approach zero as n —m — o0, at a nearly optimal
rate. Write the integer k in decimal digits, then invert the order of the digits and put
a zero in front:
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0, =01, ... , 6;50=0957, ... , O30 =022093, ... (125)
For the sequence (125) one can prove that the discrepancies satisfy

1 4 In(n — m)

n—m

Dy, <C forall n >m >0, (126)

for some constant C. For approximate solutions constructed in terms of the above
sequences (6;), using the restarting procedures (119)—(120), the following estimates
were proved in [18].

Theorem 3 (Error estimates for the Glimm scheme). Given any initial data u €
L' with small total variation, call u™*\(t,-) = S,ii the exact solution of the Cauchy
problem (117). Moreover, let uS"™™ (¢, .) be the approximate solution generated by
the Glimm scheme, in connection with a grid of size At = Ax and a fixed sequence
(0,) >0 satisfying (126). For every fixed time T > 0, letting the grid size tend to
zero, one has the error estimate

i ||uGlimm(T’ ) _ uexact(T’ ) ||L1
Ax—0 VAXx - |In Ax|

In other words, the L! error tends to zero faster then v/Ax - | In Ax|, i.e. just slightly
slower than the square root of the grid size.

To prove Theorem 6, using a fundamental lemma of T.P. Liu [46], one first
constructs a front tracking approximate solution u = u(t, x) that coincides with
uSlmm at the initial time # = 0 and at the terminal time t = 7. The L! distance
between u(7,-) and the exact solution Syu can then be estimated using the error
formula (7). For all details we refer to [18]. See also the recent paper [4] for a more
general result.

= 0. (127)

6 Continuous Dependence on the Initial Data

Consider again the Cauchy problem (93)-(94), for a strictly hyperbolic system
of conservation laws, satisfying the assumptions (H). Given two solutions u, v, in
order to estimate the difference ||u(z) — v(¢)||y1 one could try to follow a standard
approach. Namely, set w = u — v, derive an evolution equation for w, and show that

d
= Il = € Iwll- (128)
By Gronwall’s lemma, this implies

() = vl < e“"[|u(0) = v(0)].
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jumps in u

------- jumps in v

[ORRCIN,

t
X 0 1t2 t

Fig. 43 Left: the solutions u and v differ only in the location of the shocks, and for the time of
interaction. Right: even if u and v are very close, during the short time interval between interaction
times, the distance |lu — v||;1 can increase rapidly

In particular, if u(0) = v(0), then u(¢) = v(¢) for all # > 0, proving the uniqueness
of the solution to the Cauchy problem.

The above approach works well for smooth solutions of the hyperbolic system
(93), but fails in the presence of shocks. Indeed, for two solutions u, v of a hyperbolic
system containing shocks, the L! distance can increase rapidly during short time
intervals (Fig.43).

6.1 Unique Solutions to the Scalar Conservation Law

In the case of a scalar conservation law, the fundamental works of A.I. Volpert [59]
and S. Kruzhkov [39] have established:

Theorem 4 (Well posedness for the scalar Cauchy problem). Ler f : IR — IR
be any smooth flux. Then, for any initial data it € L, the Cauchy problem (93)—(94)
has a unique entropy-admissible weak solution, defined for all times t > O.
The corresponding flow is contractive in the L' distance. Namely, for any two
admissible solutions, one has

lu(®) —vO)llp = [[u(0) =v(O)ll,r  forallt = 0. (129)

For a proof in the one-dimensional case, see [11]. We observe that the L! distance
between two solutions u, v remains constant in time, as long as shocks do not appear.
An intuitive way to understand this fact, shown in Fig. 44, is as follows. Think of
the x-u plane as filled by an incompressible fluid, moving horizontally with speed
(x,i) = (f'(u),0). Consider the fluid particles that at time ¢ = 0 lie in the region
enclosed between the graphs of #(0, -) and v(0, -) (the shaded areas in Fig.44). As
long as these solutions remain continuous, the method of characteristics shows that
at any positive time ¢ these same particles of fluid will have moved to the region
enclosed between the graphs of u(z,-) and v(¢,-). Hence the area of these region
remains constant in time.
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fluid velocity g u(0,x)

v(t,X)

Fig. 44 The L' distance between two continuous solutions remains constant in time

fluid velocity u(0,x)

4 v(0,x)

—_—
—_—

'y
>

Fig. 45 The L' distance decreases when a shock in one solution crosses the graph of the other
solution

On the other hand, if a shock in one of the solutions crosses the graph of the other
solution, then the L' distance ||u — V||t decreases in time (Fig. 45).

6.2 Linear Hyperbolic Systems

We consider here another special case, where the system is linear with constant
coefficients.
u; + Au, = 0 ue IR". (130)

Let {/,...,1,} and {ry,...,r,} be dual bases of left and right eigenvectors of the
matrix A, as in (8). Instead of the norm
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lully = [ ()] dx

where |u| is the Euclidean norm of a vector u = (uy,...,u,) € IR", one can use the
equivalent norm

lula = 3 [ 1wl ax (131)

i=1
By linearity, for any two solutions u, v, the difference w = u — v satisfies still the
same equation:

w, + Aw, = 0.
From the explicit representation (14), it now follows that
[wOlla = [Iw(0)]l4 forall ¢ € IR.

In other words, the flow generated by the linear homogeneous equation (130) is a
group of isometries w.r.t. the distance |u — v|| 4, namely

lu@@) —v(@)lla = [lu(0) —v(0)|4 forall 7 € IR.

6.3 Nonlinear Systems

We always assume that the system (93) is strictly hyperbolic, and satisfies the
hypotheses (H), so that each characteristic field is either linearly degenerate or
genuinely nonlinear. The analysis in the previous chapter has shown the existence
of a global entropy weak solution of the Cauchy problem for every initial data with
sufficiently small total variation. More precisely, recalling the definitions (100)—
(101), consider a domain of the form

9 = cl{u € Ll(IR; IR™); u is piecewise constant, 1 (u) = V(u) + Co- Q(u) < 80},
(132)

where ¢l denotes closure in L'. With a suitable choice of the constants Cy and
8o > 0, for every u € 9, one can construct a sequence of e-approximate front track-
ing solutions converging to a weak solution « taking values inside &. Observe that,
since the proof of convergence relied on a compactness argument, no information
was obtained on the uniqueness of the limit. The main goal of the section is to show
that this limit is unique and depends continuously on the initial data.
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Fig. 46 Estimating the
distance between two
solutions by a homotopy
method

\v(t)

Theorem 5. Foreveryu € 9, as ¢ — 0 every sequence of e-approximate solutions
ue : [0,00[ Z of the Cauchy problem (93)—(94), obtained by the front tracking
method, converges to a unique limit solution u : [0,00[+ 2. The map (u,t) —
u(t,-) = Siu is a uniformly Lipschitz semigroup, i.e.:

Soit = u, S5 (Siut) = S+, (133)
|Sia—Sv|, < L-(la—vllp+]t—s]) forall u,ve 2, s,t >0. (134)

This result was first proved in [14] for 2 x 2 systems, then in [21] for general n x n
systems, using a (lengthy and technical) homotopy method. Here the idea is to
consider a path of initial data yo : 6 + u?(0) connecting u(0) with v(0). Then
one constructs the path y, : @ ~ u®(t), parameterized by 6 € [0, 1], connecting
the corresponding solutions at time 7. By careful estimates on the tangent vector
2(t) = du’(t)/df, one shows that the length of y, can be uniformly bounded in
terms of the length of the initial path y, (Fig. 46).

Relying on ideas introduced by T.P. Liu and T. Yang in [48, 49], the paper [20]
provided a much simpler proof of the continuous dependence result, which will be
described here. An extension of the above result to initial-boundary value problems
for hyperbolic conservation laws has recently appeared in [30]. All of the above
results deal with solutions having small total variation. The existence of solutions,
and the well posedness of the Cauchy problem for large BV data was studied
respectively in [54] and in [41].

To prove the uniqueness of the limit of front tracking approximations, we need
to estimate the distance between any two g-approximate solutions u, v of (93). For
this purpose we introduce a functional @ = @(u,v), uniformly equivalent to the
L! distance, which is “almost decreasing” along pairs of solutions. Recalling the
construction of shock curves at (62), given two piecewise constant functions u, v :
IR — R, we consider the scalar functions ¢; defined implicitly by

v(x) = Su(gn(x)) o -+ o Si(q1(x))(u(x)). (135)
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Fig. 47 Decomposing a

jump (u(x), v(x)) in terms of %
n (possibly non-admissible) ;I Tof—~ v
shocks
I: u
Xg
Remark 5. 1f we wanted to solve the Riemann problem with data u~ = u(x) and

u™ = v(x) only in terms of shock waves (possibly not entropy-admissible), then the
corresponding intermediate states would be

wo(x) = u(). 0 () = Si(gi@) o o Si(@I ) ()  i=1...n.
(136)

Moreover, g1 (x), ..., g, (x) would be the sizes of these shocks (Fig.47). Since
the pair of states (w;—1,w;) is connected by a shock, the corresponding speed
Ai(u—, u™) is well defined. In particular, one can determine whether the 7-shock
¢; located at x is approaching a j-wave located at some other point x’. It is useful
to think of g;(x) as the strength of the i-th component in the jump (u(x), v(x)).
In the linear case (130) we would simply have ¢; = /; - (v — u), and our functional
would eventually reduce to (131).

If the shock curves are parameterized by arc-length, on a compact neighborhood
of the origin one has

V) —u)| = D lai@)] = Cvx) —u)] (137)
i=1
for some constant C. We now consider the functional
n 00
o) = 3 [ Ja| Wi dx. (138)
i=177%

where the weights W; are defined by setting:

Wi (x)

= 14k -[total strength of waves in u and in v which approach the i — wave g; (x)]
+K7 - [wave interaction potentials of u and of v]

1+ k14i(x) + k2[ Q) + Q)] (139)
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Since these weights remain uniformly bounded as u ranges in the domain 2, from
(137)—(139) it follows

Ju—vliy < S@v) < - v —ully (140)

for some constant C; and all u, v € Z. A key estimate proved in [20] shows that, for
any two g-approximate front tracking solutions u, v : [0, T] + 2, there holds

L own. ) = G (141)

for some constant C,.

Relying on this estimate, we now prove Theorem 5. Letu € 2 be given. Consider
any sequence (u,),>1, such that each u, is an &,-approximate front tracking solution
of the Cauchy problem (93)—(94). For every u,v > 1l and ¢ > 0, by (140) and (141)
it now follows

||uﬂ(t) — uu(I)HLl @(uﬂ(t), u\,(t))
@(MM(O), uu(O)) + Gyt -max{e,, &} (142)
Ci Hu,L(O) — u,(0) HL‘ + Gyt - max{e,, &,}.

IATA TA

Since the right hand side of (142) approaches zero as pu,v — oo, the sequence
is Cauchy and converges to a unique limit. The semigroup property (133) is an
immediate consequence of uniqueness. Finally, let #,v € 2 be given. For each
v > 1, let u,, v, be &,-approximate front tracking solutions of the Cauchy problem,
with initial data u and v, respectively. Using again (140) and (141) we deduce
i@ =@ | = @ (ua(0), v.(1))
CD(uV(O), vV(O)) + Cytes,

Ci(0,(0) = @llys + i = Plys + I =, ) + Cote

INIAIA

Letting v — 0o we obtain |[u(r) —v(t) |+ < Ci - [lu — V||y,1 , proving the Lipschitz
continuous dependence w.r.t. the initial data.

7 Uniqueness of Solutions

According to the analysis in the previous chapters, the solution of the Cauchy
problem (93)—(94) obtained as limit of front tracking approximations is unique and
depends Lipschitz continuously on the initial data, in the L! norm. This basic result,
however, leaves open the question whether other weak solutions may exist, possibly
constructed by different approximation algorithms. We will show that this is not the
case: indeed, every entropy admissible solution, satisfying some minimal regularity
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Fig. 48 The exact solution (dotted lines) which, at time 7, coincides with the value of a piecewise
constant front tracking approximation

assumptions, necessarily coincides with the one obtained as limit of front tracking
approximations.

7.1 An Error Estimate for Front Tracking Approximations

As a first step, we estimate the distance between an approximate solution, obtained
by the front tracking method, and the exact solution of the Cauchy problem
(93)—(94), given by the semigroup trajectory ¢ — u(t,-) = S;u. Letu® : [0,T] —~
2 be an g-approximate front tracking solution, according to Definition 6. We claim
that the corresponding error can then be estimated as

|u(T.) = Spia|| 0 = 0(1)-e(1 +T). (143)

To see this, we first estimate the limit

ol @) = Sue @]
h—0+ h

at any time 7 € [0, 7] where no wave-front interaction takes place. Let u°(z, -) have
jumps at points x; < -+ < Xy.

For each «, call w, the self-similar solution of the Riemann problem with data
ut = u(t, xq%) . We observe that, for 4 > 0 small enough, the semigroup
trajectory i +— Sjpu(t) is obtained by piecing together the solutions of these
Riemann problems (Fig.48). Splitting the set of all wave-fronts into shocks,

rarefactions, and non-physical fronts, we estimate
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u(t, X)

Fig. 49 1In a forward neighborhood of a point (z, £) where u has a jump, the admissible solution u
should be asymptotically equivalent to the solution of a Riemannn problem

. | (x + h) = Shur ()] .
h—0+ h

) 1 Xq+p .
Z (h1—1>r(I)I+Z/x iu (€ + 8 x) = oulh x—xa)| dx)

C€ERUSUN P a=pP

YoM eloal+ Y. OM)-lo| = O(1)-e.
wER aEN P
(144)

Here p can be any suitably small positive number. From the bound (144) and the
error formula (7) in the Appendix, we finally obtain

”ME(Tv ')_STﬁHLl < || STME(Ov ) - ST’}”LI + H ME(Ts ) - STME(Ov ) HLI

<L - |u* (0. )i, +Lf dt

Yol
0

h—0+ h

= 0()-e+ 0(1)-eT.

7.2 Characterization of Semigroup Trajectories

In this section, we describe a set of conditions which, among all weak solutions
of the system (93) characterizes precisely the ones obtained as limits of front
tracking approximations. These conditions, introduced in [10], are obtained by
locally comparing a given solution with two types of approximations.

1. Comparison with solutions to a Riemann problem.

Let u = u(t, x) be a weak solution. Fix a point (z, £). Define U = Unt’ as the
solution of the Riemann problem corresponding to the jump at (z, §) (Fig. 49):
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Fig. 50 The solution to a linearized hyperbolic system

ut =u(t.E+) if x> £

wi + f(w) =0, w(e ) = gu_ =u(t,§—) if x<§

We expect that, if u satisfies the admissibility conditions, then u will be
asymptotically equal to U" in a forward neighborhood of the point (t, £). More
precisely, for every A > 0, one should have

1 £+hi
lim —/
h—0+ h f—hi

2. Comparison with solutions to a linear hyperbolic problem.

u(t +h. x) = Ul (T +h. x)| dx = 0. (E1)

Fix again a point (7, &), and choose A>0 larger than all wave speeds. Define
U'=U (bt,g) as the solution of the linear Cauchy problem (Fig. 50)
Wi+ Awy = 0 w(t, x) = u(t, x)

with “frozen” coefficients: A = A(u(t, E)). Then, fora < &€ < band h > 0, we
expect that the difference between these two solutions should be estimated by
| pb—in 2
- u(t+h, x)=U(t+h, x)|dx = 0(1)- (Tot.Var. {u(z,-); la, b[})
h Ja+in

(E2)
A heuristic motivation for the above estimate is as follows. The functions u, w

satisfy

u, = —Au)uy , W = —Awy u(t) = w(r).

Hence

b—Ah
/ lu(r 4 hox)=U"(x + b, x) Au(t, x))uy— A(u(t, £))wy |dxdt,
a+Ah

+h
dx %/ /
T J(t)

(145)
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where J(t) = Ja + (t — r)i , b—(t— r)i [. We now have
/ (|ux(t,x)| + |wx(t,x)|) dx = ﬁ(l)Tot.Var.%u(r,-); la, b[} ,
J()

sup
t<t<t+h, x€J(t)

A(u(t, x)) — A(u(z, E))‘ = ﬁ(l)-Tot.Var.{u(r,-); la, b[}.

Therefore, for each time ¢ € [z, T + &), the integrand on the right hand side of (145)
is of the same order of magnitude as the square of the total variation. This yields
(E2).

It can be proved that all solutions obtained as limits of front tracking approxi-
mations satisfy the estimates (E1)-(E2), for every t, &, a, b. The following theorem,
proved in [10], shows that the estimates (E1)—(E2) completely characterize semi-
group trajectories, among all Lipschitz continuous functions u : [0, T] — L' with
values in the domain & defined at (132) .

Theorem 6 (Characterization of semigroup trajectories). Letu : [0,T] +— 2 be
Lipschitz continuous w.r.t. the L' distance. Then u is a weak solution to the system
of conservation laws

u + f(u)y =0

obtained as limit of front tracking approximations if and only if the estimates
(E1)—(E2) are satisfied for a.e. T € [0, T], at every & € IR.

The proof is based on the fact that the two estimates (E1) and (E2) together
imply that

[u(z + 1) — Spu(r) |l
h—0+ h

=0 for a.e. t. (146)

Hence, by the error formula (7) in the Appendix,

T +h) =S
lu(t) — Siu(0) | < L'/ e PEHD = Sw@lu |

forallt > 0.
In order to prove (146), choose points x; such that Tot.VaI.{u(t) s xio1, X } < &

for every i. For i > 0 small, we split an integral over the entire real line into a sum
of integrals over different intervals, as shown in Fig. 51:
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/\U.(T,X)

t+h

X. X. X
i-1 i

Fig. 51 Proving the asymptotic error estimate (146)
1 o0
il

1 Xi +/A\h
B Xl: h Li _in

1 xi—ih
+[Z E /J‘C,'—l-‘rih{
B Z A + Z B;.
i i

u(t + h, x) — Spu(r)(x)| dx

‘u(r +h,x)— U,-n(‘t + hsx)‘ +

Spu(r)(x) — U ( + h, x)‘} dx

u(t + h,x)—Uib(r + h,x)’—l—’Shu(r)(x)—Uib(r + h,x)‘}dx

The estimate (E1) implies A; — 0 as & — 0, while the estimate (E2) implies
B <e¢- Tot.Var.{u(r); Jxiz1, x; [}, and hence

ZB,- < 8-T0t.Var.{u(r); IR} = 0O(e).

Since ¢ > 0 is arbitrary, this proves (146).

7.3 Uniqueness Theorems

Relying on Theorem 6, there is a natural strategy in order to prove uniqueness of
solutions to the Cauchy problem:

1. Introduce a suitable set of admissibility + regularity assumptions.
2. Show that these assumptions imply the estimates (E1) and (E2).

For sake of clarity, a complete set of assumptions is listed below.

(A1) (Conservation Equations) The function u = u(t,x) is a weak solution
of the Cauchy problem (93)—(94), taking values within the domain Z of a



222 A. Bressan

semigroup S. More precisely, u : [0,7] — & is continuous w.r.t. the L!
distance. The identity u(0, -) = u holds in L!, and moreover

// (up + f(W)py) dxdt =0 (147)

for every ¢! function ¢ with compact support contained inside the open strip
10, T[ xIR.

(A2) (Lax Admissibility Conditions) Let u have an approximate jump discontinu-
ity at some point (7, &) €]0, T[xIR. More precisely, assume that there exists
states u—,ut € IR" and a speed A € IR such that, calling

Ut x) = u- if X < At, (148)
ut if X > At,

there holds

1 roopr
lim —
r—>0+ r2 —rJ=r

By Theorem 1, the piecewise constant function U must be a weak solution to
the system of conservation laws, satisfying the Rankine—Hugoniot equations
(29). In particular, the jump u™ —u~ should be an eigenvector of the averaged
matrix A(u",u™"), say of the i-th family, for some i € {1,...,n}. In this case,
we assume that the following shock admissibility conditions hold:

u(t+1t, §E+x)—=U(t,x)| dxdt = 0. (149)

L) = A = Auh). (150)

(A3) (Tame Oscillation Condition) For some constants C, A the following holds.
For every point x € IR and every ¢, h > 0 one has

lu(t + h,x) —u(t, x)| < C-Tot.VaI.{u(t,-); [x — Ak, x+ih]}. (151)

(A4) (Bounded Variation Condition) There exists § > 0 such that, for every
space-like curve {t =t(x)} with |dt/dx| < § ae., the function x
u(t(x), x) has locally bounded variation.

Remark 6. The condition (A3) restricts the oscillation of the solution. An equiva-
lent, more intuitive formulation is the following (see Fig.52). For some constant
A larger than all characteristic speeds, given any interval [a,b] and ¢ > O, the
oscillation of u on the triangle A = {(s.y) : s >1, a+i(s—t) <y < b—/A\(s—t)},
defined as

Osc{u; A} = sup |u(s, y) —u(s’.y")
(5.3).(s".)")€A

3
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Fig. 52 Illustrating the tame
oscillation and the bounded
variation condition

— @ @
1 L 1
a X b

t+h|
t
[

is bounded by a constant multiple of the total variation of u(¢, ) on [a, b].

The assumption (A4) simply requires that, for some fixed § > 0, the function u
has bounded variation along every space-like curve y which is “almost horizontal”
(Fig.52). Indeed, the condition is imposed only along curves of the form {t =
T(x); x € [a,b]} with

|t(x) —t(x")| =< Slx — x| forall x,x" € [a,b].

One can prove that all of the above assumptions are satisfied by weak solutions
obtained as limits of Glimm or wave-front tracking approximations [11]. The
following result shows that the entropy weak solution of the Cauchy problem (93)—
(94) is unique within the class of functions that satisfy either the additional regularity
condition (A3), or (A4).

Theorem 7. Assume that the function u : [0, T] — 2 is continuous (w.r.t. the L'
distance), taking values in the domain of the semigroup S generated by the system

(93). If (A1), (A2) and (A3) hold, then
u(t,”) = Siii forall t €10,T]. (152)

In particular, the weak solution that satisfies these conditions is unique. The same
conclusion holds if the assumption (A3) is replaced by (A4).

The first part of this theorem was proved in [15], the second part in [17]. Both of
these papers extend the result in [16], where this approach to uniqueness was first
developed.

8 The Vanishing Viscosity Approach

In view of the previous uniqueness and stability results, one expects that the entropy-
admissible weak solutions of the hyperbolic system

u+ fw)y =0 (153)
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Fig. 53 A discontinuous
solution to the hyperbolic
system and a viscous
approximation

should coincide with the unique limits of solutions to the parabolic system
u; + f(u)y = eul, (154)

letting the viscosity coefficient ¢ — 0. For smooth solutions, this convergence
is easy to show. However, one should keep in mind that a weak solution of the
hyperbolic system (153) in general is only a function with bounded variation,
possibly with a countable number of discontinuities. In this case, as the smooth
functions u® approach the discontinuous solution u, near points of jump their
gradients uf tend to infinity (Fig.53), while their second derivatives uf, . become
even more singular. Therefore, establishing the convergence u®° — u is a highly
nontrivial matter. In earlier literature, results in this direction relied on three different
approaches:

1. Comparison principles for parabolic equations. For a scalar conservation
law, the existence, uniqueness and global stability of vanishing viscosity solutions
was first established by Oleinik [51] in one space dimension. The famous paper by
Kruzhkov [39] covers the more general class of L™ solutions and is also valid in
several space dimensions.

2. Singular perturbations. This technique was developed by Goodman and
Xin [36], and covers the case where the limit solution u is piecewise smooth, with a
finite number of non-interacting, entropy admissible shocks. See also [58] and [53],
for further results in this direction.

3. Compensated compactness. With this approach, introduced by Tartar and
DiPerna [29], one first considers a weakly convergent subsequence u®° — u. For
a class of 2 x 2 systems, one can show that this weak limit u actually provides
a distributional solution to the nonlinear system (153). The proof relies on a
compensated compactness argument, based on the representation of the weak limit
in terms of Young measures, which must reduce to a Dirac mass due to the presence
of a large family of entropies.

Since the hyperbolic Cauchy problem is known to be well posed within a
space of functions with small total variation, it is natural to develop a theory of
vanishing viscosity approximations within the same space BV. This was indeed
accomplished in [7], in the more general framework of nonlinear hyperbolic systems
not necessarily in conservation form. The only assumptions needed here are the
strict hyperbolicity of the system and the small total variation of the initial data.

Theorem 8 (BV estimates and convergence of vanishing viscosity approxima-
tions). Consider the Cauchy problem for the hyperbolic system with viscosity

u; + AW u, = cu’,

u®(0, x) = u(x). (155)



Hyperbolic Conservation Laws: An Illustrated Tutorial 225

Assume that the matrices A(u) are strictly hyperbolic (i.e., they have real, distinct
eigenvalues), and depend smoothly on u in a neighborhood of the origin. Then there
exist constants C, L, L’ and § > 0 such that the following holds. If

Tot.Var{iiy < 8, litllzes < 8. (156)

then for each ¢ > 0 the Cauchy problem (155), has a unique solution u®, defined for
allt > 0. Adopting a semigroup notation, this will be written ast +— u®(t,-) = S;u.
In addition, one has:

BY bounds : Tot.Var.{Sfth} < C Tot.Var{u}. (157)

L' stability : ISfa—Sv|, < Llu=v|,.  (158)

[sii—scal, = L/ (I =sl+[Ver = Ves[).  (159)

Convergence: As ¢ — 0+, the solutions u® converge to the trajectories of a
semigroup S such that

|Siit—Sv| 0 < Lillu—=v|p+ L't —s]. (160)

These vanishing viscosity limits can be regarded as the unique vanishing
viscosity solutions of the hyperbolic Cauchy problem

u; + A(wu, = 0, u(0, x) = u(x). (161)

In the conservative case A(u) = Df (u), every vanishing viscosity solution is a
weak solution of

u + f(u)y = 0, u(0,x) = u(x), (162)

satisfying the Liu admissibility conditions.

Assuming, in addition, that each characteristic field is genuinely nonlinear or
linearly degenerate, the vanishing viscosity solutions coincide with the unique limits
of Glimm and front tracking approximations.

In the genuinely nonlinear case, an estimate on the rate of convergence of these
viscous approximations was provided in [19]:

Theorem 9 (Convergence rate). For the strictly hyperbolic system of conservation
laws (162), assume that every characteristic field is genuinely nonlinear. At any time
t > 0, the difference between the corresponding solutions of (155) and (162) can be
estimated as

||u£(t, ) —ult,) “L‘ = O(1)- (1 + t)Ve|Ing| Tot.Var{i}.
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In the following sections we outline the main ideas of the proof of Theorem 8.
For details, see [7] or the lecture notes [12].

8.1 Local Decomposition by Traveling Waves

As a preliminary, observe that #° is a solution of (155) if and only if the rescaled
function u(¢, x) = u®(et, ex) is a solution of the parabolic system with unit viscosity

u + AWy = tyy, (163)

with initial data (0, x) = u(ex). Clearly, the stretching of the space variable has
no effect on the total variation. Notice however that the values of u® on a fixed
time interval [0, 7] correspond to the values of u on the much longer time interval
[0, T'/e]. To obtain the desired BV bounds for the viscous solutions u*, it suffices to
study solutions of (163). However, we need estimates uniformly valid for all times
t > 0, depending only on the total variation of the initial data u.

To provide a uniform estimate on Tot.Var.{u(¢, )} = ||ux(, )|, we decompose
the gradient u, along a basis of unit vectors 7y, ..., 7, say

we = Y vifi. (164)
i

We then derive an evolution equation for these gradient components, of the form
vie + Aivi)e — Vi = i=1,...,n, (165)
Since the left hand side of (165) is in conservation form, we have
n t
MOEDNIRITEDS (nv,- Ol + [ 165 ds) .~ (166)
i=1 i 0

A crucial point in the entire analysis is the choice of the unit vectors 7;. A natural
guess would be to take 7; = r;(u), the i-th eigenvector of the hyperbolic matrix
A(u). This was indeed the decomposition used in Sect. 1.6. As in (22), we thus
write

Uy = Zu;ri uo =1y, (167)
so that (163) takes the form

wo= — Y Aubri+ Y (Wri)s. (168)
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u(0) u(t)

X

Fig. 54 For a viscous traveling wave, the source terms ¢; are usually not integrable

Differentiating the first equation in (167) w.r.t. ¢ and the equation in (168)
w.r.t. x, and equating the results, we obtain an evolution equation for the gradient
components u' , namely

)+ M) — () ex = Gyl ) = LY AelrieoryJulul
Jj<k

H 192> (reer) ) ut + ) (” e(rperj)—(reery)e ’j)“.{;“i“i
jk jkt

(169)

Here r; @ r; = (Dr;)r; denotes the directional derivative of r; along r;, while

[re. ;] = (Drj)ri — (Dry)r; is the Lie bracket of the two vector fields. Relying on

the above formula, in order to achieve BV bounds uniformly valid for ¢ € [0, co[, we
o0

would need / / |¢i| dxdt < oo. Unfortunately this does not hold, in general.

Indeed, for a typical solution having the form of a traveling wave u(¢, x) = u(x —
At), as in Fig. 54, the source terms do not vanish identically: ¢; # 0. Therefore

/0 /|¢i(r,X)|dxdr = t'/|¢i(0,X)|dx — 00 as { — 00

To readdress this situation, a key idea is to decompose u, not along the
eigenvectors ry, ..., r, of A(u), butalong abasis {7, .. .7, } of gradients of viscous
traveling waves.

We recall that a traveling wave solution of the viscous hyperbolic system (163)
is a solution of the form

u(t,x) = U(x —ot). (170)

Here the constant 0 = —U,/ U is the speed of the wave. Inserting (170) in (163),
we see that the function U should satisfy the second order O.D.E.

U" = (AWU)—0)U". (171)

As shown in Fig. 55, we wish to decompose u, = ) ; U/ locally as sum of
gradients of traveling waves. More precisely, given (u, uy, Uy, ) at a point x, we seek
traveling wave profiles Uy, . .., U, such that
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Fig. 55 Decomposing the
function u as the
superposition of two viscous
traveling profiles, in a
neighborhood of a point x

U/ = (AU) o))/, Ui(x) = u(x) i=1....n,
(172)
D U(x) = ue(x), Y UMX) = ug(x). (173)

Observe that, having fixed u(x), the system (172)—(173) yields

* 1 4 n scalar equations.

* n? + n free parameters: the vectors U[(x),...,U,(x) € IR", describing the
first derivatives of the traveling waves, and the scalars o1, . . ., 0,, describing the
speeds.

For n > 1, the system is under-determined. To achieve a unique decomposition,
further restrictions must thus be imposed on the choice of the traveling wave
profiles. Indeed, for each given state # € IR" andi = 1,...,n, we should select
a two-parameter family of traveling waves through u. This is done using the center
manifold theorem [13].

To begin with, we replace the second order O.D.E. (171) describing traveling
waves with an equivalent first order system:

=-
|

|
o~ <

’ (u) —O’)v, (174)

Q<
I

This consists of n +n + 1 O.D.E’s. Notice that the last equation simply says that
the speed o is a constant. Fix a state u* € IR". Linearizing (171) at the equilibrium
point P* = (u*, 0, A; (u*)), one obtains the system

i 0 I 0\ (u
v = 04w —A@HI0]||v] e R (175)

o 0 0 0/ \o
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Fig. 56 The linear subspace L iiegmeeeee. M.

; and the center manifold /K——//’ ‘\\ i

/; tangent to ./4; at the
equilibrium point P*

Recalling that A(u*) is a n x n matrix with real and distinct eigenvalues, one
checks that the center subspace .4} for the (2n + 1) x (2n + 1) matrix in (175) (i.e.,
the invariant subspace corresponding to all generalized eigenvalues with zero real
part) has dimension n + 2.

By the center manifold theorem, for each i = 1,...,n, the nonlinear system
(174) has a center manifold .#; of dimension n + 2, tangent to the center subspace
A at P* (Fig.56).

A more detailed analysis shows that on .#; we can choose coordinates
(u,v',0;) € IR"T'*! Here V' is the signed strength of the traveling wave profile
through u, and o; is its speed. In other words, at any given point X, for every
(u,v',07) in a neighborhood of (u*,0, A;(u*)), there exists a unique solution to
(171) such that

Ui) =u,  U'=AU) -0V, UE =VF
for some unit vector 7; = 7; (u, V', 0;).
The previous construction in terms of center manifold trajectories provides a
decomposition of u, along a basis of generalized eigenvectors: r; (u,v', 0;). These
are unit vectors, close to the usual eigenvectors r; (1) of the matrix A(u), which

depend on two additional parameters.
Defining the corresponding generalized eigenvalues in terms of a scalar product:

L' o) = (F . AWF),
one can prove the key identity
(A@W) — )i = vV (Fiufi + Fro(hi — 07)). (176)
This replaces the standard identity
(Aw) = A)ri =0 177)
satisfied by the eigenvectors and eigenvalues of A(u). The additional terms on the
right hand side of (176) play a crucial role, achieving a cancellation in the source

terms ¢; in (165). Eventually, this allows us to prove that these source terms are
globally integrable, in ¢ and x.
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8.2 Evolution of Gradient Components

Let (u, uy, uyy) € IR be given, in a neighborhood of the origin. For convenience,
instead of the decomposition (172)—(173), it is convenient to set i, = uy, — A(u)uy
and seek a decomposition of the form
Uy = Zvil’i(u,vi,(fi) W
with o0; ~ 7

Uy = Zwifi(u,vi,cri)

After a lengthy computation, one finds that these components satisfy a system of
evolution equations of the form

wp + Aw) —wi = ¥

{ Vi + (V) =V = #i (178)
A detailed analysis of the right hand sides of (178) shows that these source terms
can be estimated as

bis Yi = 00)- 3, [w +0,07] (lv/wjl + Wi+ |w§|) (wrong speed)
+0()-3; lwlivl — vl | (change in speed, linear)

. i 2
+0()-Y° j )v/ (‘:—]]) V) (change in speed, quadratic)

+O(1) - 3 (W] 4+ I+ v k] o]+ )
(interaction of waves of different families)

See [7] for detailed computations. Here we can only give an intuitive motivation
for how these source terms arise. If u is precisely a j-traveling wave profile on the
center manifold .#;, say u(t,x) = U;(x — o,t), then by the key identity (176)
it follows that all source terms vanish identically (Fig.57). In essence, the size of
these source terms is determined by how much the second order jet (u, iy, uyy) in
our solution u differs from the jet of a traveling wave profile (Fig. 58).

Wrong speed. In a traveling wave profile u(¢, x) = U(t — ot), the speed is the
constant value 0 = —U,/U,. However, near a point xo where u, = 0, the speed of
a traveling wave would be 0 = —u,/u, — o0o. Since we want o; ~ A;(u*), i.e.,
close to the i-th characteristic speed, a cut-off function must be used. These source
terms describe by how much the identity o; = —w' /)’ is violated.

Change in wave speed. These terms account for local interactions of waves of
the same family. Think of the viscous traveling j-wave that best approximates u at a
point x, and at a nearby point x’. In general, these two profiles will not be the same,
hence some local interaction between them will occur. A measure of how much the
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Fig. 57 1If u coincides with a U,
traveling wave profile, say of 7.0
the j-th family, then all
source terms vanish

identically

X X
Fig. 58 Source terms arise Uk -
because of (1) Interactions of o _el

J-waves with k-waves, (2)
Interactions between waves
of the same j -th family, if
their speed varies with x, (3)
Points x, where the
decomposition in traveling
profiles cannot be performed :
exactly X X X0

Jj -traveling profile changes, as the point x varies, is provided by the change in speed:
(Uj )x

Assuming that the speed satisfies o; = —w/ /v/, one has

. |w,];v7 —v,];w7|
a v/ 2

‘(aj)x

The terms related to change in wave speeds can thus be written as products:
[strength of the wave]® x [rate of change of the speed]®

with @ = 1, 2. More precisely,

2

o) > VP07

J=1

+ o) PG
j=1

Transversal wave interactions. In general, at a given point x, waves of
distinct families j # k are present. These terms model interactions between these
different waves.

8.3 Lyapunov Functionals

We seek uniform bounds on the norms ||[v (¢)||.1, [[w' (¢) ||y, independent of time.
Since the left hand sides of (178) are in conservation form, it suffices to show that
all source terms are uniformly integrable in both variables ¢, x. To prove that
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Fig. 59 Interaction of two
viscous waves of different N T

families

[ 1@l ar < oo, [Tl de < o,

we construct suitable Lyapunov functionals ¥ () > 0 such that

d
i Ol Vi@l = — Ell’(u(t))
In other words, at each time 7, the L! norm of source terms should be controlled
by the rate of decrease of the functional. A summary of the basic estimates is as
follows:

Wrong speed —>  Parabolic energy estimates
Change in wave speed, linear —>  Area functional
Change in wave speed, quadratic —>  Curve length functional
Interaction of waves of different families —>  Wave interaction potential

In the remainder of this section we describe the main ideas involved in the
construction of these functionals.

1. Lyapunov functionals for a pair of linear parabolic equations.

Consider the system of two linear, scalar parabolic equations

z + [/\(Z,X)Z]x —Zxx = 0,
7+ [/\*(t,x) z*]x —-z5. = 0.

Assume that the propagation speeds A and A* are strictly different:

itnf)k*(t,x)—sup)k(t,x) >c¢ > 0.
X t,x

It is useful to think of z(-) as the density of waves with slow speed A, while z*(-) is
the density of waves with fast speed A*. The instantaneous amount of interaction
between z and z* is defined as (Fig. 59)

10 = [ fae0] [0 d
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Fig. 60 The interaction
kernel K defined at (180) 1/c

K(s)

In order to bound the total amount of interaction, we introduce a potential for
transversal wave interactions with :

0(7) = / K(x — ) [o0)| |2ty dxdy . (179)
with (Fig. 60)
. 1/c if s >0,
K = 180
©) {e”/z/c if s<O. (150)

Computing the distributional derivatives of the kernel K, one checks that cK'—2 K"
is precisely the Dirac distribution, i.e. a unit mass at the origin. We now compute

d

d
45 060.F0) = 4 [ Ko=)z [0 dxdy

~[[xe-» {(zxx —(2)x)sgnz () 00| + |20 (- (AF2), )sens? (y% dxdy

<[] K= [F | - 2o [ ) vy
+[ K" (x —y){yz(x)y )] + ]2(0)] yzﬁ(y)|} dxdy
< —// (cK/_ZK//)|z(x)| |zﬁ(y)|dxdy = _/ \z(x)\ ‘Zn(x)|dx
Therefore, since Q > 0, for every 7' > 0 we have

0 (2(0),2%(0)) — O (x(T),ZH(T))
e 2O [ 2O -

Jo [ |2t 0)] [t )| dxdt

IA TA

Using functionals of the form (179), one can control the source terms

o) - Z [|vjvk| + VK| 4 [ wE| 4 ik |+ ijwk|]
j#k

accounting for interaction of waves of different families.
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u(©) u(t)

X

Fig. 61 Ast — +o0, the solution to a scalar viscous conservation law is expected to approach a
traveling wave profile

a b ¢« d u
Fig. 62 Left: the graph of a function u = u(x). Right: the corresponding curve x — y(x) =

(). fux) = ()

2. Lyapunov functionals for a scalar viscous conservation law
Consider a scalar conservation law with viscosity:

ur + f(u)y = yy. (181)

We seek functionals that decrease in time, along every solution of (181). As
t — 4+ oo, we expect that the solution will approach a viscous traveling wave
profile. One could thus look for a Lyapunov functional describing how far u is from
a viscous traveling wave profile (Fig. 61).

For this purpose, it is convenient to adopt a variable transformation. Given a
scalar function u = u(x), consider the curve (Fig. 62)

N u [ conserved quantity
= () = (700) 5

Observe that u(-) is a traveling wave profile if and only if the corresponding curve y
is a segment. Indeed

U _ S W)y — uxx

Ux Ux

= constant = [wave speed]

if and only if

%[f(u) — uxi| = [f(u) — ux} . ML = constant.



Hyperbolic Conservation Laws: An Illustrated Tutorial 235

Fig. 63 Defining the area

functional Yx(x)

7 )
v(0)

If now u = u(¢, x) provides a solution to the viscous conservation law (181), the
corresponding curve y in (182) evolves according to the vector equation

Ve + f/@yx = Yax. (183)

Recalling that

N u o vY . oux
V= (f(u)—ux)’ = (w) = (—) (159

we find two functionals associated with (183). One is
Curve Length: L(y) = /lyxldx = / V2 +wrdx. (185)

Indeed, a direct computation yields

2

i oo |
d
it o) = _/ TR

Using functionals of this type, one controls the source terms

(wi
% X

The second functional is (see Fig. 63)

2

o) - (change in wave speed, quadratic).

dx dy (186)

1
Area functional: O(y) = 3 / / Ya(X) Ayx(¥)
x<y

If y evolves in the direction of curvature, then Q controls the area swept by
the curve: |dA| < —dQ. This can best be understood thinking of polygonal
approximations (Fig.64). If y is a polygonal with sides v;, the double integral in
(186) is computed by a finite sum:
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Fig. 64 The decrease in the

area functional bounds the

area swept by the curve in its

motion i

1
0(y) = EZ [vi A vj. (187)

i<j
If we now replace two consecutive edges vj,, v, by a single segment, the area of the
corresponding triangle is

|dA| = %|Vh /\Vk| <—dQ

Indeed, the term %|vh AV | is now missing from the sum in (187), while the sum of
all other terms remains the same, or decreases.
Recalling (183)—(184), we now compute

_49Q |44
dt — | dt

- /mAmdx - /|yxxwx|dx - /|vxw—vwx|dx.

As a consequence, the integral over time of the right hand side can be estimated by

o0 o0 d
/0 /|vxw—vwx|dxdr < /0 EQ(W})) di < 0(y(0)

Using functionals of this type, one can control the source terms

oq)- |v§wj —y/ w{;l (change in wave speed, linear).

8.4 Continuous Dependence on the Initial Data

The techniques described in the previous section provide uniform estimates on the
total variation of a solution u to the system (163). Similar techniques can also be
used to estimate the size of first order perturbations.

Indeed, let u be solution of (163) and assume that, for each ¢ > 0, the function

u®(t,x) = u(t,x)+ez(t,x) + o(e)
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is also a solution, with o(¢) denoting an infinitesimal of higher order w.r.t. &.
Inserting the above expansion in (163) and collecting terms of order ¢, one finds
that the function z must satisfy the the linearized variational equation

Zr + [DA(M) : Z]Mx + A(U)zx = Zyx- (183)
Assuming that the total variation of u remains small, one can prove the estimate
lz@. )| = Lz00.9)], forall 1 >0, (189)

for a uniform constant L. The above estimate is valid for every solution u of (163)
having small total variation and every L! solution of the corresponding system
(188).

Relying on (189), a standard homotopy argument yields the Lipschitz continuity
of the flow of (163) w.r.t. the initial data, uniformly in time. Indeed, let any two
solutions u, v of (163) be given (Fig.46). We can connect them by a smooth path of
solutions u?, whose initial data satisfy

u?(0,x) = 0u(0,x) + (1 — 6)v(0, x) 6 €0, 1].
The distance ||u(t, ) —(t,) HL‘ at any later time ¢ > 0 is clearly bounded by
the length of the path 6 +— u?(¢). In turn, this can be computed by integrating the

norm of a tangent vector. Calling z¥ = du”/d6, each vector 7’ is a solution of the
corresponding (188), with u replaced by u’. Using (190) we thus obtain

[

1
L/O 12| 46 = L [u(0,) —v(0.)] .. (190)

d
d_QM (t)

1
Jutt. ). a0 = [ |l do

L!

IA

8.5 The Semigroup of Vanishing Viscosity Limit Solutions

The estimates on the total variation and on the continuous dependence on the initial
data, obtained in the previous sections were valid for solutions of the system (163)
with unit viscosity matrix. By the simple rescaling of coordinates ¢ — ¢f, x — &x,
all of the above estimates remain valid for solutions u#® of the system (155),. In this
way one obtains the a priori bounds (157) and (158).
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As soon as the global BV bounds are established, by a compactness argument
one obtains the existence of a strong limit u*» — u in L] ., for some sequence
em — 0. In the conservative case where A = Df, by Lemma 1 in Sect. 2 this limit
u = u(t, x) provides a weak solution to the Cauchy problem (162).

At this stage, it only remains to prove that the limit is unique, i.e. it does not
depend on the choice of the sequence ¢,, — 0. For a system in conservative form,
and with the standard assumption (H) that each field is either genuinely nonlinear
or linearly degenerate, we can apply Theorem 7 in Sect.7, and conclude that the
limit of vanishing viscosity approximations is unique and coincides with the limit
of Glimm and of front tracking approximations.

To handle the general non-conservative case, some additional work is required.
Relying on the analysis in [6], one first considers Riemann initial data and shows that
in this special case the vanishing viscosity solution is unique and can be accurately
described. In a second step, one proves that any weak solution obtained as limit
vanishing viscosity approximations is also a “viscosity solution”, i.e. it satisfies
the local integral estimates (E1)—(E2) in Sect.7.2, where U? is now the unique
solution of a Riemann problem obtained as limit of viscous approximations [6]. By
an argument introduced in [10], a Lipschitz semigroup is completely determined
as soon as one specifies its local behavior for piecewise constant initial data.
Characterizing its trajectories as ‘“‘viscosity solutions” one thus establishes the
uniqueness of the semigroup of vanishing viscosity limits.

9 Extensions and Open Problems

With the papers [7,20,34], the well-posedness of the Cauchy problem for hyperbolic
conservation laws in one space dimension has been essentially settled, within the
class of solutions with small total variation. Extensions of these well-posedness
results to the initial-boundary value problem and to balance laws with source terms
can be found in [30] and in [1], respectively.

A major remaining open problem concerns the solutions with large total vari-
ation. Results in this direction can be found in [23] and [35]. As proved by
M. Lewicka [41], for a large class of hyperbolic systems the solutions are unique
and depend continuously on the initial data, as long as their total variation remains
bounded. The key question is whether the total variation can blow up in finite time,
if the initial data is sufficiently large. An example constructed by K. Jenssen [38]
shows that this can indeed happen, for some strictly hyperbolic system. One should
remark, however, that the 3 x 3 system considered in [38] does not come from any
realistic physical model. In particular, it does not admit any strictly convex entropy.
One may thus conjecture that the presence of a strictly convex entropy restricts
the possibility of a finite time blow up. More specifically, it is an important open
problem to understand whether finite blow up in the total variation norm can occur
for solutions to the Euler equations of gas dynamics.

We remark that, since hyperbolic conservation laws are a class of nonlinear
evolution equations, one might expect to observe some rich dynamics: periodic
orbits, bifurcation, chaotic behavior, etc... However, the present theory does not
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include any of this. The reason is that, as long as one considers only solutions with
small total variation, the dynamics is mostly trivial. As proved by T.P. Liu [47],
letting time ¢ — 4o0, every solution with small total variation converges
asymptotically to the solution of a Riemann problem. It is only for large BV
solutions that some interesting dynamics will likely be observed—provided that
some global existence theorem can be established.

In connection with vanishing viscosity approximations, uniform BV bounds for
systems of balance laws with dissipative sources were established in [24]. Viscous
approximations to the initial-boundary value problem, with suitable boundary
conditions, have been studied by Ancona and Bianchini [2].

Up to now, all results on a priori BV bounds, stability and convergence of viscous
approximations have dealt with “artificial viscosity”, assuming that the diffusion
coefficient is independent of the state #. A more realistic model would be

ur + f(“)x = (B(wuy)y (191)

where B is a positive definite viscosity matrix, possibly depending on the state u. It
remains an outstanding open problem to establish similar results in connection with
the more general system (191).

Appendix

We collect here some results of mathematical analysis, which were used in previous
sections.

9.1 Compactness Theorems

Let £2 be an open subset of R". We denote by L/, .(£2; IR") the space of locally
integrable functions on 2. This is the space of all functions u : §2 — IR" whose
restriction to every compact subset K C 2 is integrable. The space L], is not
a normed space. However, it is a Fréchet space: for every compact K C §2, the
mapping

u > / lu(x)| dx
K

is a seminormon L] .
Next, consider a (possibly unbounded) interval / € IR and amap u : J — IR".
The total variation of u is defined as

N
Tot.Var.{u} = sup Z |u(x;) —u(x;—1)| ¢ ()

J=1
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where the supremum is taken over all N > 1 and all (N +1)-tuples of points x; € J
such that xo < x; < --+ < xy. If the right hand side of (1) is bounded, we say that
u has bounded variation, and write u € BV'.

Lemma A.1 (properties of functions with bounded variation). Let u :]a,b[—
IR" have bounded variation. Then, for every x €la, b[, the left and right limits

u(x—) = yEgl_ u(y), u(x+) = VEI«‘ICI‘I' u)

are well defined. Moreover, u has at most countably many points of discontinuity.

By the above lemma, if u has bounded variation, we can redefine the value of u at
each point of jump by setting u(x) = u(x+). In particular, if we are only interested
in the L'-equivalence class of a BV function u, by possibly changing the values of
u at countably many points we can assume that « is right continuous.

We state below a version of Helly’s compactness theorem, which provides the
basic tool in the proof of existence of weak solutions. For a proof, see [11].

Theorem A.1 (Compactness for a family of BV functions). Consider a sequence
of functions u,, : [0, oo[ X IR + IR" with the following properties.

Tot.Van{uu(I,-)} < C, |uu(t,x)‘ <M forall t,x, 2)

o0
/ |uy (1. x) — uy(s,x)|dx < L|t —s| forall t,s >0, (3)

for some constants C, M, L. Then there exists a subsequence u,, which converges to
some function u in Llloc([O, o0) X IR; IR”). This limit function satisfies

o0
/ |u(t,x) —u(s,x)|dx < Lt —s| forall t,s > 0. 4)

The point values of the limit function u can be uniquely determined by requiring that

u(t,x) =u(t,x+) = 1im+ u(t,y) forall t,x. (&)
y—>x

In this case, one has

Tot.Var.{u(t,-)} < C, |u(t,x)| <M forall t,x. (6)

9.2 An Elementary Error Estimate

Let Z be a closed subset of a Banach space E and consider a Lipschitz continuous
semigroup S : Z x [0, co[ > Z. More precisely, assume that
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Fig. 65 Comparing the
approximate solution w with
the trajectory of the
semigroup having the same
initial data

(i) Sou = u, SySiu = Syqu.
(i) [[Su— S| < L-Jlu—v|+L" -]t —s|.

Given a Lipschitz continuous map w : [0,7] +— 2, the following theorem
estimates the difference between w and the trajectory of the semigroup S starting at
w(0). For the proof we again refer to [11].

Theorem A.2 (Error estimate for a Lipschitz flow). Let S : 2 x [0, 00[+— Z be
a continuous flow satisfying the properties (i)—(ii). For every Lipschitz continuous
map w : [0, T] — 2 one then has the estimate

|w(T) =S, w(O)] <L /0 T{liminf it = SO {4, )

h—0+ h

Remark 9. The integrand in (7) can be regarded as the instantaneous error rate for w
at time 7. Since the flow is uniformly Lipschitz continuous, during the time interval
[t, T] this error is amplified at most by a factor L (see Fig. 65).

9.3 The Center Manifold Theorem

Let A be an n x n matrix and consider the Cauchy problem for a linear system of
0O.D.E’s with constant coefficients

X = Ax, x(0) = x. (8)
The explicit solution can be written as

o0
- A 1k 4k
X, et=N —
k!
k=0

x(t) = e

We say that a subspace V' C IR" is invariant for the flow of (8) if x € V implies
e4’x € V forall t € IR. A natural way to decompose the space IR" as the sum of
three invariant subspaces is now described. Consider the eigenvalues of A, i.e. the
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Fig. 66 The center subspace
V¢ and the center manifold
A, tangent to V¢ at the
origin

zeroes of the polynomial p(¢) = det({I — A). These are finitely many points in the
complex plane.

The space IR" can then be decomposed as the sum of a stable, an unstable
and a center subspace, respectively spanned by the (generalized) eigenvectors
corresponding to eigenvalues with negative, positive and zero real part. We thus
have

R'"=V'@V'®V*

with continuous projections
7w, IR" — V¥, m, IR" — V", . IR" — V°,

X = X + WX + m,X.

These projections commute with 4 and hence with the exponential e as well:

meed = ety et =eln,, meet = ey,

In particular, these subspaces are invariant for the flow of (8).
Next, consider the nonlinear system

X = f(x). (€))

Assume that f(0) = 0 and Df(0) = A, so that (8) provides a first order Taylor
approximation to (9). According to the center manifold theorem, the nonlinear
system (9) admits an invariant manifold .#, which at the origin is tangent to the
center subspace V¢, as shown in Fig. 66. In the following theorem, the solution of
(9) with initial data x (0) = x will be denoted by ¢ > x (¢, x¢). For a proof we refer
to [13].

Theorem A.3 (Existence and properties of center manifold). Ler f : IR" —
IR" be a vector field in €' (here k > 1), with f(0) = 0. Consider the matrix
A = Df(0), and let V°, V", V¢ be the corresponding stable, unstable, and center
subspaces. Then there exists 6 > 0 and a local center manifold .# with the
following properties.
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(i) There exists a €~ function ¢ : V¢ +— IR" with w. ¢(x.) = X, such that

M = {(;S(xc); X eV, |x <5}.

(ii) The manifold A is locally invariant for the flow of (9), i.e. xo € A implies

x(t,x0) € A, for all t sufficiently close to zero.

(iii) A is tangent to V at the origin.
(iv) Every globally bounded orbit remaining in a suitably small neighborhood of

the origin is entirely contained inside # .

(v) Given any trajectory such that x(t) — 0 ast — 400, there exists n > 0 and

a trajectory t + y(t) € . on the center manifold such that

e |x(0) —y@)] -0 as t— +oo.
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