Chapter 2
Algorithms and Complexity

If to do were as easy as to know what were good to do. ..
WILLIAM SHAKESPEARE

In Theorem 1.3.1 we gave a characterization for Eulerian graphs: a graph G
is Eulerian if and only if each vertex of G has even degree. This condition is
easy to verify for any given graph. But how can we really find an Euler tour
in an Eulerian graph? The proof of Theorem 1.3.1 not only guarantees that
such a tour exists, but actually contains a hint how to construct such a tour.
We want to convert this hint into a general method for constructing an Euler
tour in any given Eulerian graph; in short, into an algorithm. In this book
we generally look at problems from the algorithmic point of view: we want
more than just theorems about existence or structure. As Liineburg once said
[Lue82], it is important in the end that we can compute the objects we are
working with. However, we will not go as far as giving concrete programs,
but describe our algorithms in a less formal way. Our main goal is to give an
overview of the basic methods used in a very large area of mathematics; we
can achieve this (without exceeding the limits of this book) only by omitting
the details of programming techniques. Readers interested in concrete pro-
grams are referred to [SysDK83] and [NijWi78], where programs in PASCAL
and FORTRAN, respectively, can be found.

Although many algorithms will occur throughout this book, we will not
try to give a formal definition of the concept of algorithms. Such a definition
belongs to both mathematical logic and theoretical computer science and
is given, for instance, in automata theory or in complexity theory; we refer
the reader to [HopUl79] and [GarJo79]. For a general treatment, we also
recommend the books [AhoHU74, AhoHUS83] and, in particular, [CorLRS09],
one of the standard text books on algorithms.

In this chapter, we will try to show in an intuitive way what an algorithm
is and to develop a way to measure the quality of algorithms. In particular,
we will consider some basic aspects of graph theoretic algorithms such as,
for example, the problem of how to represent a graph. Moreover, we need a
way to formulate the algorithms we deal with. We shall illustrate and study
these concepts quite thoroughly using two specific examples, namely Euler

D. Jungnickel, Graphs, Networks and Algorithms, 35
Algorithms and Computation in Mathematics 5,
DOI 10.1007/978-3-642-32278-5_2, © Springer-Verlag Berlin Heidelberg 2013

http://dx.doi.org/10.1007/978-3-642-32278-5_2

36 2 Algorithms and Complexity

tours and acyclic digraphs. At the end of the chapter we introduce a class of
problems (the so-called NP-complete problems) which plays a central role in
complexity theory; we will meet this type of problem over and over again in
this book.

2.1 Algorithms

First we want to develop an intuitive idea what an algorithm is. Algorithms
are techniques for solving problems. Here the term problem is used in a very
general sense: a problem class comprises infinitely many instances having a
common structure. For example, the problem class ET (FEuler tour) consists
of the task to decide—for any given graph G—whether it is Eulerian and,
if this is the case, to construct an Euler tour for G. Thus each graph is an
instance of ET. In general, an algorithm is a technique which can be used to
solve each instance of a given problem class.

According to [BauWo82], an algorithm should have the following proper-
ties:

(1) Finiteness of description: The technique can be described by a finite text.

(2) Effectiveness: Each step of the technique has to be feasible (mechanically)
in practice.

(3) Termination: The technique has to stop for each instance after a finite
number of steps.

(4) Determinism: The sequence of steps has to be uniquely determined for
each instance.?

Of course, an algorithm should also be correct, that is, it should indeed solve
the problem correctly for each instance. Moreover, an algorithm should be
efficient, which means it should work as fast and economically as possible.
We will discuss this requirement in detail in Sects. 2.5 and 2.7.

Note that—like [BauWo82]—we make a difference between an algorithm
and a program: an algorithm is a general technique for solving a problem
(that is, it is problem-oriented), whereas a program is the concrete formula-
tion of an algorithm as it is needed for being executed by a computer (and
is therefore machine-oriented). Thus, the algorithm may be viewed as the
essence of the program. A very detailed study of algorithmic language and
program development can be found in [BauWo82]; see also [Wir76].

1t is probably because of this aspect of mechanical practicability that some people doubt if
algorithms are really a part of mathematics. I think this is a misunderstanding: performing
an algorithm in practice does not belong to mathematics, but development and analysis
of algorithms—including the translation into a program—do. Like Liineburg, I am of the
opinion that treating a problem algorithmically means understanding it more thoroughly.

2In most cases, we will not require this property.

2.1 Algorithms 37

Now let us look at a specific problem class, namely ET. The following
example gives a simple technique for solving this problem for an arbitrary
instance, that is, for any given graph.

Example 2.1.1 Let G be a graph. Carry out the following steps:

(1) If G is not connected® or if G' contains a vertex of odd degree, STOP:
the problem has no solution.

(2) (We now know that G is connected and that all vertices of G have even
degree.) Choose an edge e;, consider each permutation (e, ..., e,,) of the
remaining edges and check whether (e1,...,e,,) is an Euler tour, until
such a tour is found.

This algorithm is correct by Theorem 1.3.1, but there is still a lot to be said
against it. First, it is not really an algorithm in the strict sense, because it does
not specify how the permutations of the edges are found and in which order
they are examined; of course, this is merely a technical problem which could
be dealt with.* More importantly, it is clear that examining up to (m — 1)!
permutations is probably not the most intelligent way of solving the problem.
Analyzing the proof of Theorem 1.3.1 (compare also the directed case in 1.6.1)
suggests the following alternative technique going back to Hierholzer [Hie73].

Ezxample 2.1.2 Let G be a graph. Carry out the following steps:

(1) If G is not connected or if G contains a vertex of odd degree, STOP: the
problem has no solution.

(2) Choose a vertex vy and construct a closed trail Co = (e,...,ex) as fol-
lows: for the end vertex v; of the edge e; choose an arbitrary edge e;11
incident with v; and different from eq,...,e;, as long as this is possible.

(3) If the closed trail C; constructed is an Euler tour: STOP.

(4) Choose a vertex w; on C; incident with some edge in E \ C;. Construct a
closed trail Z; as in (2) (with start and end vertex w;) in the connected
component of w; in G\ C;.

(5) Form a closed trail C;41 by taking the closed trail C; with start and end
vertex w; and appending the closed trail Z;. Continue with (3).

This technique yields a correct solution: as each vertex of G has even degree,
for any vertex v; reached in (2), there is an edge not yet used which leaves v;,
except perhaps if v; = vg. Thus step (2) really constructs a closed trail. In (4),
the existence of the vertex w; follows from the connectedness of GG. The above
technique is not yet deterministic, but that can be helped by numbering the

3We can check whether a graph is connected with the BFS technique presented in Sect. 3.3.

4The problem of generating permutations of a given set can be formulated in a graph
theoretic way, see Exercise 2.1.3. Algorithms for this are given in [NijWi78] and [Eve73].

38 2 Algorithms and Complexity

vertices and edges and—whenever something is to be chosen—always choos-
ing the vertex or edge having the smallest number. In the future, we will not
explicitly state how to make such choices deterministically. The steps in 2.1.2
are still rather big; in the first few chapters we will present more detailed
versions of the algorithms. Later in the book—when the reader is more used
to our way of stating algorithms—we will often give rather concise versions
of algorithms. A more detailed version of the algorithm in Example 2.1.2 will
be presented in Sect. 2.3.

Exercise 2.1.3 A frequent problem is to order all permutations of a given set
in such a way that two subsequent permutations differ by only a transposition.
Show that this problem leads to the question whether a certain graph is
Hamiltonian. Draw the graph for the case n = 3.

Exercise 2.1.4 We want to find out in which cases the closed trail Cy con-
structed in Example 2.1.2 (2) is already necessarily Eulerian. An Eulerian
graph is called arbitrarily traceable from vy if each maximal trail beginning
in vy is an Euler tour; here mazimal means that all edges incident with the
end vertex of the trail occur in the trail. Prove the following results due to
Ore (who introduced the concept of arbitrarily traceable graphs [Ore51]) and
to [Baeb3] and [ChaWh70].

(a) G is arbitrarily traceable from vy if and only if G \ vg is acyclic.

(b) If G is arbitrarily traceable from wvg, then vy is a vertex of maximal
degree.

(¢) If G is arbitrarily traceable from at least three different vertices, then G
is a cycle.

(d) There exist graphs which are arbitrarily traceable from exactly two ver-
tices; one may also prescribe the degree of these vertices.

2.2 Representing Graphs

If we want to execute some algorithm for graphs in practice (which usually
means on a computer), we have to think first about how to represent a graph.
We do this now for digraphs; an undirected graph can then be treated by
looking at its complete orientation.® Thus let G be a digraph, for example
the one shown in Fig. 2.1. We have labelled the vertices 1,...,6; it is common
practice to use {1,...,n} as the vertex set of a graph with n vertices. The
easiest method to represent G is to list its edges.

5This statement refers only to the representation of graphs in algorithms in general. For
each concrete algorithm, we still have to check whether this substitution makes sense. For
example, we always get directed cycles by this approach.

2.2 Representing Graphs 39

Fig. 2.1 A digraph G

Definition 2.2.1 (Edge lists) A directed multigraph G on the vertex set
{1,...,n} is specified by:

(1) its number of vertices n;
(ii) the list of its edges, given as a sequence of ordered pairs (a;,b;), that is,
€; = ((Li, bl)

The digraph G of Fig. 2.1 may then be given as follows.

(i) n=6;
(i) 12,23,34,15,52,65,46,64,41,63,25,13,

where we write simply ij instead of (i,7). The ordering of the edges was
chosen arbitrarily.

A list of m edges can, for example, be implemented by two arrays [1...m]
(named head and tail) of type integer; in PASCAL we could also define a
type edge as a record of two components of type integer and then use an
array[l...m] of edge to store the list of edges.

Lists of edges need little space in memory (2m places for m edges), but
they are not convenient to work with. For example, if we need all the vertices
adjacent to a given vertex, we have to search through the entire list which
takes a lot of time. We can avoid this disadvantage either by ordering the
edges in a clever way or by using adjacency lists.

Definition 2.2.2 (Incidence lists) A directed multigraph G on the vertex
set {1,...,n} is specified by:

(1) the number of vertices n;

(2) n lists Aq,...,A,, where A; contains the edges beginning in vertex i.
Here an edge e =j is recorded by listing its name and its head j, that
is, as the pair (e, j).

The digraph of Fig. 2.1 may then be represented as follows:

40 2 Algorithms and Complexity

(1) n=6;
(2) A1 :(1,2),(4,5),(12,3); As:(2,3),(11,5); Asz: (3,4); Ay:(7,6),(9,1);
As:(5,2); Ag: (6,5),(8,4),(10,3),

where we have numbered the edges in the same order as in Definition 2.2.1.

Note that incidence lists are basically the same as edge lists, given in a
different ordering and split up into n separate lists. Of course, in the undi-
rected case, each edge occurs now in two of the incidence lists, whereas it
would have been sufficient to put it in the edge list just once. But working
with incidence lists is much easier, especially for finding all edges incident
with a given vertex. If G is a digraph or a graph (so that there are no parallel
edges), it is not necessary to label the edges, and we can use adjacency lists
instead of incidence lists.

Definition 2.2.3 (Adjacency lists) A digraph with vertex set {1,...,n} is
specified by:

(1) the number of vertices n;
(2) nlists Ay,..., A,, where A; contains all vertices j for which G contains
an edge (4,7).

The digraph of Fig. 2.1 may be represented by adjacency lists as follows:

(1) n=6;
(2) A1:2,3,5; A2:3,5; As:4; Ay:1,6; As:2; Ag:3,4,5.

In the directed case, we sometimes need all edges with a given end vertex
as well as all edges with a given start vertex; then it can be useful to store
backward adjacency lists, where the end vertices are given, as well. For im-
plementation, it is common to use ordinary or doubly linked lists. Then it
is easy to work on all edges in a list consecutively, and to insert or remove
edges.

Finally, we give one further method for representing digraphs.

Definition 2.2.4 (Adjacency matrices) A digraph G with vertex set
{1,...,n} is specified by an (n x n)-matrix A = (a;;), where a;; =1 if and
only if (¢,) is an edge of G, and a;; = 0 otherwise. A is called the adjacency
matriz of G. For the digraph of Fig. 2.1 we have

[l i e B e B an)
O = OO O
_ O O O = =
— OO R OO
= O O O
OO O OO

2.3 The Algorithm of Hierholzer 41

Adjacency matrices can be implemented simply as an array [1...n,1...n].
As they need a lot of space in memory (n? places), they should only be
used (if at all) to represent digraphs having many edges. Though adjacency
matrices are of little practical interest, they are an important theoretical tool
for studying digraphs.

Unless stated otherwise, we always represent (directed) multigraphs by
incidence or adjacency lists. We will not consider procedures for input or
output, or algorithms for treating lists (for operations such as inserting or
removing elements, or reordering or searching a list). These techniques are
not only used in graph theory but belong to the basic algorithms (searching
and sorting algorithms, fundamental data structures) used in many areas.
We refer the reader to the literature, for instance, [AhoHU83, Mch84], and
[CorLRS09]. We close this section with two exercises about adjacency matri-
ces.

Exercise 2.2.5 Let G be a graph with adjacency matrix A. Show that the
(i, k)-entry of the matrix A" is the number of walks of length h beginning
at vertex ¢ and ending at k. Also prove an analogous result for digraphs and
directed walks.

Exercise 2.2.6 Let G be a strongly regular graph with adjacency matrix A.
Give a quadratic equation for A. Hint: Use Exercise 2.2.5 with h = 2.

Examining the adjacency matrix A—and, in particular, the eigenvalues
of A—is one of the main tools for studying strongly regular graphs; see
[CamLi91]. In general, the eigenvalues of the adjacency matrix of a graph are
important in algebraic graph theory; see [Big93] and [SchwW78] for an intro-
duction and [CveDS80, CveDGTS87] for a more extensive treatment. Eigen-
values have many noteworthy applications in combinatorial optimization as
well; the reader might want to consult the interesting survey [MohPo093].

2.3 The Algorithm of Hierholzer

In this section, we study in more detail the algorithm sketched in Exam-
ple 2.1.2; specifically, we formulate the algorithm of Hierholzer [Hie73] which
is able to find an Euler tour in an Eulerian multigraph, respectively a directed
Euler tour in a directed Eulerian multigraph. We skip the straightforward
checking of the condition on the degrees.

Throughout this book, we will use the symbol < for assigning values:
T < y means that value y is assigned to variable xz. Boolean variables can
have values true and false.

42 2 Algorithms and Complexity

Algorithm 2.3.1 Let G = (V,E) be a connected Eulerian multigraph, di-
rected or not, with V' = {1,...,n}. Moreover, let s be a vertex of G. We
construct an Euler tour K (which will be directed if G is) with start ver-
tex s.

1. Data structures needed

(a) incidence lists Ay, ..., A,; for each edge e, we denote the end vertex by
end(e);

(b) lists K and C for storing sequences of edges forming a closed trail. We
use doubly linked lists; that is, each element in the list is linked to its
predecessor and its successor, so that these can be found easily;

(c) a Boolean mapping used on the vertex set, where used(v) has value true
if v occurs in K and value false otherwise, and a list L containing all
vertices v for which used(v) = true holds;

(d) for each vertex v, a pointer e(v) which is undefined at the start of the
algorithm and later points to an edge in K beginning in v;

(e) a Boolean mapping new on the edge set, where new(e) has value true if
e is not yet contained in the closed trail;

(f) variables u,v for vertices and e for edges.

2. Procedure TRACE(v,new;C)
The following procedure constructs a closed trail C' consisting of edges not
yet used, beginning at a given vertex v.

(1) If A, =0, then return.

(2) (Now we are sure that A, # 0).) Find the first edge e in A, and delete e
from A,.

(3) If new(e) = false, go to (1).

(4) (We know that new(e) = true.) Append e to C.

(5) If e(v) is undefined, assign to e(v) the position where e occurs in C.

(6) Assign new(e) + false and v < end(e).

(7) If used(v) = false, append v to the list L and set used(v) < true.

(8) Go to (1).

Here return means that the procedure is aborted: one jumps to the end of
the procedure, and the execution of the program continues with the procedure
which called TRACE. As in the proof of Theorem 1.6.1, the reader may check
that the above procedure indeed constructs a closed trail C' beginning at v.

3. Procedure EULER(G, s; K).

1) K,L <0, used(v) « false for all v € V, new(e) < true for all e € E.
(2) used(s) « true, append s to L.

(3) TRACE(s, new; K);

(4) If L is empty, return.

(5) Let u be the last element of L. Delete u from L.

(6) C <+ 0.

(7) TRACE(u, new; C).

2.3 The Algorithm of Hierholzer 43

(8) Inmsert C' in front of e(u) in K.
(9) Go to (4).

In step (3), a maximal closed trail K beginning at s is constructed and all
vertices occurring in K are stored in L. In steps (5) to (8) we then try,
beginning at the last vertex u of L, to construct a detour C' consisting of
edges that were not yet used (that is, which have new(e) = true), and to
insert this detour into K. Of course, the detour C' might be empty. As G is
connected, the algorithm ends only if we have used(v) = true for each vertex
v of G so that no further detours are possible. If G is a directed multigraph,
the algorithm works without the function new; we can then just delete each
edge from the incidence list after it has been used.

We close this section with a somewhat lengthy exercise; this requires a few
definitions. Let S be a given set of s elements, a so-called alphabet. Then
any finite sequence of elements from S is called a word over S. A word of
length N = s™ is called a de Bruijn sequence if, for each word w of length n,
there exists an index i such that w = a;a;41 . . . a;4n—1, where indices are taken
modulo N. For example, 00011101 is a de Bruijn sequence for s =2 and n = 3.
These sequences take their name from [deB46]. They are closely related to
shift register sequences of order n, and are, particularly for s =2, important
in coding theory and cryptography; see, for instance, [Gol67, MacS177], and
[Rue86]; an extensive chapter on shift register sequences can also be found
in [Jun93]. We now show how the theorem of Euler for directed multigraphs
can be used to construct de Bruijn sequences for all s and n. However, we
have to admit loops (a,a) as edges here; the reader should convince himself
that Theorem 1.6.1 still holds.

Exercise 2.3.2 Define a digraph G ,, having the s"~! words of length n — 1
over an s-element alphabet S as vertices and the s™ words of length n (over
the same alphabet) as edges. The edge aj ...a, has the word a;...a,-1 as
tail and the word as...a, as head. Show that the de Bruijn sequences of
length s™ over S correspond to the Euler tours of G, and thus prove the
existence of de Bruijn sequences for all s and n.

Exercise 2.3.3 Draw the digraph Gs3 with S = {0,1,2} and use Algo-
rithm 2.3.1 to find an Euler tour beginning at the vertex 00; where there
is a choice, always choose the smallest edge (smallest when interpreted as a
number). Finally, write down the corresponding de Bruijn sequence.

The digraphs G, may also be used to determine the number of de Bruijn
sequences for given s and n; see Sect. 4.8. Algorithms for constructing de
Bruijn sequences can be found in [Ral81] and [Etz86].

44 2 Algorithms and Complexity
2.4 How to Write Down Algorithms

In this section, we introduce some rules for how algorithms are to be de-
scribed. Looking again at Algorithm 2.3.1, we see that the structure of the
algorithm is not easy to recognize. This is mainly due to the jump com-
mands which hide the loops and conditional ramifications of the algorithm.
Here the comments of Jensen and Wirth [JenWi85] about PASCAL should
be used as a guideline: “A good rule is to avoid the use of jumps to express
regular iterations and conditional execution of statements, for such jumps
destroy the reflection of the structure of computation in the textual (static)
structures of the program.” This motivates us to borrow some notation from
PASCAL—even if this language is by now more or less outdated—which is
used often in the literature and which will help us to display the structure
of an algorithm more clearly. In particular, these conventions emphasize the
loops and ramifications of an algorithm. Throughout this book, we shall use
the following notation.

Notation 2.4.1 (Ramifications)

if B then P;;P;...;P else Q1;Q2;...;Q; fi

is to be interpreted as follows. If condition B is true, the operations P, ..., Py
are executed; and if B is false, the operations Q1,...,Q; are executed. Here
the alternative is optional so that we might also have

if B then P;;P;...;P fi

In this case, no operation is executed if condition B is not satisfied.

Notation 2.4.2 (Loops)
for i=1 to n do Pi;....,P. od

specifies that the operations Py, ..., P, are executed for each of the (integer)
values the control variable i takes, namely for i =1,i=2,...,7=n. One may
also decrement the values of ¢ by writing

for i=n downto 1 do Pi;...;P od.

bl

Notation 2.4.3 (Iterations)
while B do Pi;...;P. od

has the following meaning. If the condition B holds (that is, if B has Boolean
value true), the operations Pi,..., Py are executed, and this is repeated as
long as B holds. In contrast,

repeat Pi;...;P. until B

requires first of all to execute the operations Py, ..., P, and then, if condition
B is not yet satisfied, to repeat these operations until finally condition B

2.4 How to Write Down Algorithms 45

holds. The main difference between these two ways of describing iterations is
that a repeat is executed at least once, whereas the operations in a while
loop are possibly not executed at all, namely if B is not satisfied. Finally,

for s€S do Pi;...;P. od

means that the operations Py, ..., Py are executed |S| times, once for each
element s in S. Here the order of the elements, and hence of the iterations,
is not specified.

Moreover, we write and for the Boolean operation and and or for the
Boolean operation or (not the exclusive or). As before, we shall use « for
assigning values. The blocks of an algorithm arising from ramifications, loops
and iterations will be shown by indentations. As an example, we translate
the algorithm of Hierholzer into our new notation.

While we need a few more lines than in Algorithm 2.3.1 to write down the
algorithm, the new notation reflects its structure in a much better way. Of
course, this is mainly useful if one uses a structured language (like PASCAL or
C) for programming, but even for programming in a language which depends
on jump commands it helps first to understand the structure of the algorithm.

Ezxample 2.4.4 Let G be a connected Eulerian multigraph, directed or not,
having vertex set {1,...,n}. Moreover, let s be a vertex of G. We construct
an Euler tour K (which will be directed if G is) with start vertex s. The data
structures used are as in Algorithm 2.3.1. Again, we have two procedures.

Procedure TRACE(v,new;C)

delete the first edge e from A,;
if new(e) = true
then append e at the end of C;
if e(v) is undefined
then assign the position where e occurs in C to e(v)
fi
new(e) false, v + end(e);
if used(v) = false
then append v to L; used(v) < true
fi

W

fi
od

Procedure EULER(G, s; K)

(1) K<« 0, L+« 0
(2) for v €V do used(v) + false od
(3) for e € E do new(e) < true od

S
SN

2 Algorithms and Complexity

W

used(s) < true, append s to L;
TRACE(s,new;K);
while L # 0 do
let w be the last element of L;
delete u from L;
C + 0
TRACE(u, new; C);
insert C' in front of e(u) in K

A,.\,.\
== =~ o~~~ o~ —~
D= O O 0o~ O Ut

ool o2

od

We will look at a further example in detail in Sect. 2.6. First, we shall
consider the question of how one might judge the quality of algorithms.

2.5 The Complexity of Algorithms

Complexity theory studies the time and memory space an algorithm needs as
a function of on the size of the input data; this approach is used to compare
different algorithms for solving the same problem. To do this in a formally
correct way, we would have to be more precise about what an algorithm is; we
would also have to make clear how input data and the time and space needed
by the algorithm are measured. This could be done using Turing machines
which were first introduced in [Tur36], but that would lead us too far away
from our original intent.

Thus, we will be less formal and simply use the number of vertices or edges
of the relevant (directed) multigraph for measuring the size of the input data.
The time complexity of an algorithm A is the function f, where f(n) is the
maximal number of steps A needs to solve a problem instance having input
data of length n. The space complexity is defined analogously for the memory
space needed. We do not specify what a step really is, but count the usual
arithmetic operations, access to arrays, comparisons, etc. each as one step.
This does only make sense if the numbers in the problem do not become
really big, which is the case for graph-theoretic problems in practice (but
usually not for arithmetic algorithms).

Note that the complexity is always measured for the worst possible case for
a given length of the input data. This is not always realistic; for example, most
variants of the simplex algorithm in linear programming are known to have
exponential complexity although the algorithm works very fast in practice.
Thus it might often be better to use some sort of average complexity. But then
we would have to set up a probability distribution for the input data, and
the whole treatment becomes much more difficult. Therefore, it is common
practice to look at the complexity for the worst case.

SHow difficult it really is to deal with such a distribution can be seen in the probabilistic
analysis of the simplex algorithm, cf. [Bor87].

2.5 The Complexity of Algorithms 47

In most cases it is impossible to calculate the complexity f(n) of an algo-
rithm exactly. We are then content with an estimate of how fast f(n) grows.
We shall use the following notation. Let f and g be two mappings from N
to RT. We write

o f(n)=0(g(n)), if there is a constant ¢ > 0 such that f(n) <cg(n) for all
sufficiently large n;

e f(n)=12(g(n)), if there is a constant ¢ > 0 such that f(n) > cg(n) for all
sufficiently large n;

o f(n)=06(g(n)), if f(n) =0(g(n)) and f(n) = 2(g(n)).

If f(n)=06(g(n)), we say that f has rate of growth g(n). If f(n)=0(g(n))
or f(n)=9(g(n)), then f has at most or at least rate of growth g(n), re-
spectively. If the time or space complexity of an algorithm is O(g(n)), we say
that the algorithm has complexity O(g(n)).

We will usually consider the time complexity only and just talk of the
complexity. Note that the space complexity is at most as large as the time
complexity, because the data taking up memory space in the algorithm have
to be read first.

Example 2.5.1 For a graph G we obviously have |E| = O(|V|?); if G is con-
nected, Theorem 1.2.6 implies that |E| = 2(|V]). Graphs with |E| = O(|V|?)
are often called dense, while graphs with |E| = ©O(|V|) are called sparse.
Corollary 1.5.4 tells us that the connected planar graphs are sparse. Note
that O(log|E|) and O(log|V|) are the same for connected graphs, because
the logarithms differ only by a constant factor.

Ezample 2.5.2 Algorithm 2.3.1 has complexity O(|F|), because each edge is
treated at least once and at most twice during the procedure TRACE; each
such examination of an edge is done in a number of steps bounded by a
constant, and constants can be disregarded in the notation we use. Note that
|V'| does not appear because of |E| = 2(|V]), as G is connected.

If, for a problem P, there exists an algorithm having complexity O(f(n)),
we say that P has complexity at most O(f(n)). If each algorithm for P has
complexity 2(g(n)), we say that P has complexity at least 2(g(n)). If, in
addition, there is an algorithm for P with complexity O(g(n)), then P has
complexity O(g(n)).

Ezample 2.5.3 The problem of finding Euler tours has complexity O(|E|):
we have provided an algorithm with this complexity, and obviously each
algorithm for this problem has to consider all the edges to be able to put
them into a sequence forming an Euler tour.

Unfortunately, in most cases it is much more difficult to find lower bounds
for the complexity of a problem than to find upper bounds, because it is

48 2 Algorithms and Complexity

Table 2.1 Rates of growth

f(n) n=10 n =20 n =30 n =50 n =100

n 10 20 30 50 100

n? 100 400 900 2,500 10,000

n3 1,000 8,000 27,000 125,000 1,000,000
nt 10,000 160,000 810,000 6,250,000 100,000,000
on 1,024 1,048,576 ~109 ~1015 ~1030

5 9,765,625 ~1014 ~1021 ~1035 ~1070

hard to say something non-trivial about all possible algorithms for a problem.
Another problem with the above conventions for the complexity of algorithms
lies in disregarding constants, as this means that the rates of growth are only
asymptotically significant—that is, for very large n. For example, if we know
that the rate of growth is linear—that is O(n)—but the constant is ¢ =
1,000,000, this would not tell us anything about the common practical cases
involving relatively small n. In fact, the asymptotically fastest algorithms for
integer multiplication are only interesting in practice if the numbers treated
are quite large; see, for instance, [AhoHU74]. However, for the algorithms we
are going to look at, the constants will always be small (mostly < 10).

In practice, the polynomial algorithms—that is, the algorithms of complex-
ity O(n*) for some k—have proved to be the most useful. Such algorithms
are also called efficient or—following Edmonds [Edm65b]—good. Problems
for which a polynomial algorithm exists are also called easy, whereas problems
for which no polynomial algorithm can exist are called intractable or hard.
This terminology may be motivated by considering the difference between
polynomial and exponential rates of growth. This difference is illustrated in
Table 2.1 and becomes even more obvious by thinking about the consequences
of improved technology. Suppose we can at present—in some fixed amount
of time, say an hour—solve an instance of size N on a computer, at rate of
growth f(n). What effect does a 1000-fold increase in computer speed then
have on the size of instances we are able to solve? If f(n) is polynomial,
say n*, we will be able to solve an instance of size ¢N, where ¢ = 103/%; for
example, if k = 3, this still means a factor of ¢ =10. If the rate of growth is
exponential, say a®, there is only an improvement of constant size: we will be
able to solve instances of size N + ¢, where a® = 1000. For example, if a = 2,
we have ¢~ 9.97; for a =5, c~4.29.

We see that, from a practical point of view, it makes sense to consider
a problem well solved only when we have found a polynomial algorithm for
it. Moreover, if there is a polynomial algorithm, in many cases there is even
an algorithm of rate of growth n* with k& < 3. Unfortunately, there is a very
large class of problems, the so-called NP-complete problems, for which not
only is no polynomial algorithm known, but there is good reason to believe
that such an algorithm cannot exist. These questions are investigated more

2.6 Directed Acyclic Graphs 49

thoroughly in complexity theory; see [GarJo79, Pap94, Sip06] or [AroBa09].
Most algorithms we study in this book are polynomial. Nevertheless, we will
explain in Sect. 2.7 what NP-completeness is, and show in Sect. 2.8 that de-
termining a Hamiltonian cycle and the TSP are such problems. In Chap. 15,
we will develop strategies for solving such problems (for example, approx-
imation or complete enumeration) using the TSP as an example; actually,
the TSP is often used as the standard example for NP-complete problems.
We will encounter quite a few NP-complete problems in various parts of this
book.

It has to be admitted that most problems arising from practice tend to be
NP-complete. It is indeed rare to be able to solve a practical problem just
by applying one of the polynomial algorithms we shall treat in this book.
Nevertheless, these algorithms are very important, since they are regularly
used as sub-routines for solving more involved problems.

2.6 Directed Acyclic Graphs

In this section, we provide another illustration for the definitions and nota-
tion introduced in the previous sections by considering an algorithm which
deals with directed acyclic graphs, that is, digraphs which do not contain
directed closed trails. This sort of graph occurs in many applications, for ex-
ample in the planning of projects (see 3.7) or for representing the structure of
arithmetic expressions having common parts, see [AhoHUS83|. First we give
a mathematical application.

Ezample 2.6.1 Let (M, =) be a partially ordered set, for short, a poset. This
is a set M together with a reflexive, antisymmetric and transitive relation <.
Note that M corresponds to a directed graph G having vertex set M and the
pairs (z,y) with <y as edges; because of transitivity, G is acyclic.

A common problem is to check whether a given directed graph is acyclic
and, if this is the case, to find a topological sorting of its vertices. That is, we
require an enumeration of the vertices of G (labelling them with the numbers
1,...,n, say) such that i < j holds for each edge ij. Using the following
lemma, we shall show that such a sorting exists for every directed acyclic
graph.

Lemma 2.6.2 Let G be a directed acyclic graph. Then G contains at least
one vertex with di,(v) = 0.

Proof Choose a vertex vg. If d;,, (vg) = 0, there is nothing to show. Otherwise,
there is an edge vivg. If din(v1) =0, we are done. Otherwise, there exists
an edge vouy. As G is acyclic, vy # vg. Continuing this procedure, we get a

50 2 Algorithms and Complexity

sequence of distinct vertices vg,v1,...,Vk,.... As G has only finitely many
vertices, this sequence has to terminate, so that we reach a vertex v with
din (’U) =0. O

Theorem 2.6.3 FEvery directed acyclic graph admits a topological sorting.

Proof By Lemma 2.6.2, we may choose a vertex v with d;,(v) =0. Consider
the directed graph H = G \ v. Obviously, H is acyclic as well and thus can
be sorted topologically, using induction on the number of vertices, say by la-
belling the vertices as va, ..., v,. Then (v,va,...,v,) is the desired topological
sorting of G. O

Corollary 2.6.4 Fach partially ordered set may be embedded into a linearly
ordered set.

Proof Let (v1,...,v,) be a topological sorting of the corresponding directed
acyclic graph. Then v; < v; always implies ¢ < j, so that v; <--- < v, is a
complete linear ordering. O

Next we present an algorithm which decides whether a given digraph is
acyclic and, if this is the case, finds a topological sorting. We use the same
technique as in the proof of Theorem 2.6.3, that is, we successively delete
vertices with d;,(v) = 0. To make the algorithm more efficient, we use a list
of the indegrees d;,(v) and bring it up to date whenever a vertex is deleted;
in this way, we do not have to search the entire graph to find vertices with
indegree 0. Moreover, we keep a list of all the vertices having di, (v) = 0. The
following algorithm is due to Kahn [Kah62].

Algorithm 2.6.5 Let G be a directed graph with vertex set {1,...,n}. The
algorithm checks whether G is acyclic; in this case, it also determines a topo-
logical sorting.

Data structures needed

(a) adjacency lists Ay,..., Ay;

(b) a function ind, where ind(v) = d;, (v);

(c) a function topnr, where topnr(v) gives the index of vertex v in the topo-
logical sorting;

(d) alist L of the vertices v having ind(v) = 0;

(e) a Boolean variable acyclic and an integer variable N (for counting).

Procedure TOPSORT (G} topnr,acyclic)

(1) N« 1, L« 0;
(2) for i=1 to n do ind(i) + 0 od
(3) for i=1ton do

2.6 Directed Acyclic Graphs 51

W

for j € A; do ind(j) + ind(j) + 1 od
od
for i =1 to n do if ind(i) =0 then append i to L fi od
while L # 0 do
delete the first vertex v from L;
topnr(v) + N; N+ N +1;
for we A, do
ind(w) + ind(w) — 1;
if ind(w) =0 then append w to L fi
od
od
if N=n+1 then acyclic < true else acyclic + false fi

P N e N e N e

= = e o~ o~ o~ o~ —
W N~ O O oo~ O ot

NSNS NI NN AN N N

Ut

Theorem 2.6.6 Algorithm 2.6.5 determines whether G is acyclic and con-
structs a topological sorting if this is the case; the complezity is O(|E|) pro-
vided that G is connected.

Proof The discussion above shows that the algorithm is correct. As G is
connected, we have |E| = 2(|V]), so that initializing the function ind and the
list L in step (2) and (6), respectively, does not take more than O(|E|) steps.
Each edge is treated exactly once in step (4) and at most once in step (10)
which shows that the complexity is O(|E|). O

When checking whether a directed graph is acyclic, each edge has to be
treated at least once. This observation immediately implies the following
result.

Corollary 2.6.7 The problem of checking whether a given connected digraph
is acyclic or not has complexity O(|E|).

Exercise 2.6.8 Show that any algorithm which checks whether a digraph
given in terms of its adjacency matrix is acyclic or not has complexity at

least 2(|V]?).

The above exercise shows that the complexity of an algorithm might de-
pend considerably upon the chosen representation for the directed multi-
graph.

Exercise 2.6.9 Apply Algorithm 2.6.5 to the digraph G in Fig. 2.2, and give
an alternative drawing for G which reflects the topological ordering.

In the remainder of this book, we will present algorithms in less detail.
In particular, we will not explain the data structures used explicitly if they
are clear from the context. Unless stated otherwise, all multigraphs will be
represented by incidence or adjacency lists.

52 2 Algorithms and Complexity

Fig. 2.2 A digraph

2.7 An Introduction to NP-completeness

Up to now, we have encountered only polynomial algorithms; problems which
can be solved by such an algorithm are called polynomial or—as in Sect. 2.5—
easy. Now we turn our attention to another class of problems. To do so, we
restrict ourselves to decision problems, that is, to problems whose solution is
either yes or no. The following problem HC is such a problem; other decision
problems which we have solved already are the question whether a given
multigraph (directed or not) is Eulerian, and the problem whether a given
digraph is acyclic.

Problem 2.7.1 (Hamiltonian cycle, HC) Let G be a given connected graph.
Does G have a Hamiltonian cycle?

We will see that Problem 2.7.1 is just as difficult as the TSP defined in
Problem 1.4.9. To do so, we have to make an excursion into complexity theory.
The following problem is arguably the most important decision problem.

Problem 2.7.2 (Satisfiability, SAT) Let x1,...,2, be Boolean variables:
they take values true or false. We consider formulae in x,...,x, in con-
junctive normal form, namely terms C1Cj5...C,,, where each of the C; has
the form] + 2 + -+ with x} =x; or ; =7;; in other words, each C; is a
disjunction of some, possibly negated, variables.” The problem requires de-
ciding whether any of the possible combinations of values for the x; gives
the entire term C;...C,, the value true. In the special case where each of

TWe write B for the negation of the logical variable p, p+ g for the disjunction p or g, and
pq for the conjunction p and q. The z} are called literals, the C; are clauses.

2.7 An Introduction to NP-completeness 53

the C; consists of exactly three literals, the problem is called 3-satisfiability
(3-SAT).

Most of the problems of interest to us are not decision problems but opti-
mization problems: among all possible structures of a given kind (for example,
for the TSP considered in Sect. 1.4, among all possible tours), we look for the
optimal one with respect to a certain criterion (for example, for the shortest
tour). We shall solve many such problems: finding shortest paths, minimal
spanning trees, maximal flows, maximal matchings, etc.

Note that each optimization problem gives rise to a decision problem in-
volving an additional parameter; we illustrate this using the TSP. For a given
matrix W = (w;;) and every positive integer M, the associated decision prob-
lem is the question whether there exists a tour 7 such that w(w) < M. There
is a further class of problems lying in between decision problems and opti-
mization problems, namely evaluation problems; here one asks for the value
of an optimal solution without requiring the explicit solution itself. For ex-
ample, for the TSP we may ask for the length of an optimal tour without
demanding to be shown this tour. Clearly, every algorithm for an optimiza-
tion problem solves the corresponding evaluation problem as well; similarly,
solving an evaluation problems also gives a solution for the associated decision
problem. It is not so clear whether the converse of these statements is true.
But surely an optimization problem is at least as hard as the corresponding
decision problem, which is all we will need to know.?

We denote the class of all polynomial decision problems by P (for poly-
nomial).” The class of decision problems for which a positive answer can be
verified in polynomial time is denoted by NP (for non-deterministic polyno-
mial). That is, for an NP-problem, in addition to the answer yes or no we
require the specification of a certificate enabling us to verify the correctness
of a positive answer in polynomial time. We explain this concept by consid-
ering two examples, first using the TSP. If a possible solution—for the TSP,
a tour—is presented, it has to be possible to check in polynomial time

e whether the candidate has the required structure (namely, whether it is
really a tour, and not, say, just a permutation with several cycles)

8We may solve an evaluation problem quite efficiently by repeated calls of the associated
decision problem, if we use a binary search. But in general, we do not know how to find an
optimal solution just from its value. However, in problems from graph theory, it is often
sufficient to know that the value of an optimal solution can be determined polynomially.
For example, for the TSP we would check in polynomial time whether there is an optimal
solution not containing a given edge. In this way we can find an optimal tour by sequentially
using the algorithm for the evaluation problem a linear number of times.

9To be formally correct, we would have to state how an instance of a problem is coded
(so that the length of the input data could be measured) and what an algorithm is. This
can be done by using the concept of a Turing machine introduced by [Tur36]. For detailed
expositions of complexity theory, we refer to [GarJo79, LewPa81], and [Pap94].

54 2 Algorithms and Complexity

e and whether the candidate satisfies the condition imposed (that is, whether
the tour has length w(w) < M, where M is the given bound).

Our second example is the question whether a given connected graph is not
Eulerian. A positive answer can be verified by giving a vertex of odd degree.'®
We emphasize that the definition of NP does not demand that a negative
answer can be verified in polynomial time. The class of decision problems for
which a negative answer can be verified in polynomial time is denoted by
Co-NP.!!

Obviously, P € NP N Co-NP, as any polynomial algorithm for a decision
problem even provides the correct answer in polynomial time. On the other
hand, it is not clear whether every problem from NP is necessarily in P or
in Co-NP. For example, we do not know any polynomial algorithm for the
TSP. Nevertheless, we can verify a positive answer in polynomial time by
checking whether the certificate 7 is a cyclic permutation of the vertices,
calculating w(7), and comparing w(w) with M. However, we do not know
any polynomial algorithm which could check a negative answer for the TSP,
namely the assertion that no tour of length < M exists (for an arbitrary M).
In fact, the questions whether P = NP or NP = Co-NP are the outstanding
questions of complexity theory. As we will see, there are good reasons to
believe that the conjecture P # NP (and NP # Co-NP) is true. To this end,
we consider a special class of problems within NP.

A problem is called NP-complete if it is in NP and if the polynomial
solvability of this problem would imply that all other problems in NP are
solvable in polynomial time as well. More precisely, we require that any given
problem in NP can be transformed in polynomial time to the specific problem
such that a solution of this NP-complete problem also gives a solution of the
other, arbitrary problem in NP. We will soon see some examples of such
transformations. Note that NP-completeness is a very strong condition: if
we could find a polynomial algorithm for such a problem, we would prove
P =NP. Of course, there is no obvious reason why any NP-complete problems
should exist. The following celebrated theorem due to Cook [Coo71] provides
a positive answer to this question; for the rather technical and lengthy proof,
we refer to [GarJo79, PapSt82] or [KorVy12]. A nice introductory discussion
of NP-completeness including a sketch of proof for Cook’s theorem can also
be found in [CorLRS09).

Result 2.7.3 (Cook’s theorem) SAT and 3-SAT are NP-complete.

10Note that no analogous certificate is known for the question whether a graph is not
Hamiltonian.

U Thus, for NP as well as for Co-NP, we look at a kind of oracle which presents some
(positive or negative) answer to us; and this answer has to be verifiable in polynomial
time.

2.7 An Introduction to NP-completeness 55

Once a first NP-complete problem (such as 3-SAT) has been found, other
problems can be shown to be NP-complete by transforming the known NP-
complete problem in polynomial time to these problems. Thus it has to be
shown that a polynomial algorithm for the new problem implies that the given
NP-complete problem is polynomially solvable as well. As a major example,
we shall present a (quite involved) polynomial transformation of 3-SAT to
HC in Sect. 2.8. This will prove the following result of Karp [Kar72] which
we shall use right now to provide a rather simple example for the method of
transforming problems.

Theorem 2.7.4 HC is NP-complete.
Theorem 2.7.5 TSP is NP-complete.

Proof We have already seen that TSP is in NP. Now assume the existence
of a polynomial algorithm for TSP. We use this hypothetical algorithm to
construct a polynomial algorithm for HC as follows. Let G = (V,E) be a
given connected graph, where V ={1,...,n}, and let K, be the complete
graph on V with weights

)1 forijeE,
Wii =1 2 otherwise.

Obviously, G has a Hamiltonian cycle if and only if there exists a tour 7
of weight w(w) <mn (and then, of course, w(w) =n) in K,. Thus the given
polynomial algorithm for TSP allows us to decide HC in polynomial time;
hence Theorem 2.7.4 shows that TSP is NP-complete. O

Exercise 2.7.6 (Directed Hamiltonian cycle, DHC) Show that it is NP-
complete to decide whether a directed graph G contains a directed Hamilto-
nian cycle.

Exercise 2.7.7 (Hamiltonian path, HP) Show that it is NP-complete to
decide whether a given graph G contains a Hamiltonian path (that is, a path
containing each vertex of G).

Exercise 2.7.8 (Longest path) Show that it is NP-complete to decide
whether a given graph G contains a path consisting of at least k edges.
Prove that this also holds when we are allowed to specify the end vertices of
the path. Also find an analogous results concerning longest cycles.

Hundreds of problems have been recognized as NP-complete, including
many which have been studied for decades and which are important in prac-
tice. Detailed lists can be found in [GarJo79] or [Pap94]. For none of these
problems a polynomial algorithm could be found in spite of enormous efforts,

56 2 Algorithms and Complexity

which gives some support for the conjecture P # NP.!2 In spite of some theo-
retical progress, this important problem remains open, but at least it has led
to the development of structural complexity theory; see, for instance, [Boo94]
for a survey. Anyway, proving that NP-complete problems are indeed hard
would not remove the necessity of dealing with these problems in practice.
Some possibilities how this might be done will be discussed in Chap. 15.

Unfortunately, even well-solved problems admitting an efficient (perhaps
even a linear time) algorithm can become NP-complete as soon as one adds
further restrictions—which is often necessary in practical applications. We
shall see several examples for this phenomenon when we consider spanning
trees of restricted type in Sect. 4.7. On the positive side, NP-complete prob-
lems like the TSP can become polynomial in interesting special cases; we
refer the reader to the surveys [Bur97] and [BurDDW9S8] for this topic.

Finally, we introduce one further notion. A problem which is not necessar-
ily in NP, but whose polynomial solvability would nevertheless imply P = NP
is called NP-hard. In particular, any optimization problem corresponding to
an NP-complete decision problem is an NP-hard problem.

2.8 Five NP-complete Problems

In this section (which is somewhat more technical and may be skipped dur-
ing the first reading) we discuss five important graph theoretical problems
and show that they are all NP-complete. In particular, we will prove Theo-
rem 2.7.4 and establish the NP-completeness of HC (the problem of decid-
ing whether or not a given graph contains a Hamiltonian circuit). Following
[GarJoT9], our proof of this result makes a detour via another very impor-
tant NP-complete graph theoretical problem, namely “vertex cover (VC)”; a
proof which transforms 3-SAT directly to HC can be found in [PapSt82]. The
other three problems to be discussed are closely related to VC. We begin by
defining the relevant graph theoretic concepts.

Definition 2.8.1 Let G = (V, E) be a graph. A vertex cover of G is a subset
W of V such that each edge of G is incident with at least one vertex in W.
A dominating set for G is a is a subset D of V such that each vertex is in
D or adjacent to some vertex in D. Finally, an independent set (or a stable
set) is a subset S of V' such that no two vertices in U are adjacent, whereas
a clique is a subset C' of V' such that all pairs of vertices in C' are adjacent.

Problem 2.8.2 (Vertex cover, VC) Let G = (V,E) be a graph and k a
positive integer. Does G admit a vertex cover W with |[W| <k?

12Thus we can presumably read NP also as non-polynomial. However, one also finds the
opposite conjecture P = NP (along with some incorrect attempts at proving this claim)
and the suggestion that the problem might be undecidable.

2.8 Five NP-complete Problems 57

Obviously, the problem VC is in NP. We prove a further important result
of Karp [Kar72] and show that VC is NP-complete by transforming 3-SAT
polynomially to VC and applying Result 2.7.3. The technique we employ is
used often for this kind of proof: we construct, for each instance of 3-SAT,
a graph consisting of special-purpose components combined in an elaborate
way. This strategy should become clear during the proofs of Theorem 2.8.3
and Theorem 2.7.4.

Theorem 2.8.3 V(' is NP-complete.

Proof We want to transform 3-SAT polynomially to VC. Thus let C;...Cy,
be an instance of 3-SAT, and let x1,...,x, be the variables occurring in
C4,...,Cpy. For each z;, we form a copy of the complete graph Ks:

T,=(Vi,E;) where V;, ={x;,7;} and E; = {x;7;}.

The purpose of these truth-setting components is to determine the Boolean
value of ;. Similarly, for each clause C; (j =1,...,m), we form a copy
Sj=(V],E%) of K3:

! !
‘/j = {Clj,CQj,C?,j} and Ej = {CleQj,Cle;),j,CQngj}.

The purpose of these satisfaction-testing components is to check the Boolean
value of the clauses. The m+n graphs constructed in this way are the special-
purpose components of the graph G which we will associate with Cy ... C,;
note that they merely depend on n and m, but not on the specific structure
of Cy...C,,. We now come to the only part of the construction of G which
uses the specific structure, namely connecting the S; and the 7; by further
edges, the communication edges. For each clause Cj, we let u;, v;, and w; be
the three literals occurring in C; and define the following set of edges:

/!
EY = {c1juy, 205, c35w;}.

Finally, we define G = (V, E) as the union of all these vertices and edges:

V::LHJVZ-U ij’ and E::OEZ-U OE;U GE;/.
=1 Jj=1 =1 Jj=1 Jj=1

Clearly, the construction of G can be performed in polynomial time in n
and m. Figure 2.3 shows, as an example, the graph corresponding to the
instance

(1 + T3+ T2) (T + 22 + Tq)

of 3-SAT. We now claim that G has a vertex cover W with |W|<k=n+2m
if and only if there is a combination of Boolean values for x1,...,z, such
that C...C,, has value true.

58 2 Algorithms and Complexity

T1 T T2 T2 I3 T3 T4 T4
L J [
C21
C22
C11 C31 C12 C32

Fig. 2.3 An instance of VC

First, let W be such a vertex cover. Obviously, each vertex cover of G
has to contain at least one of the two vertices in V; (for each i) and at least
two of the three vertices in V] (for each j), since we have formed complete
subgraphs on these vertex sets. Thus W contain at least n + 2m = k vertices,
and hence actually |WW| = k. But then W has to contain exactly one of the
two vertices x; and ¥; and exactly two of the three vertices in S, for each
i and for each j. This fact allows us to use W to define a combination w of
Boolean values for the variables x4, ..., z, as follows. If W contains z;, we set
w(x;) = true; otherwise W has to contain the vertex T;, and we set w(z;) =
false.

Now consider an arbitrary clause C;. As W contains exactly two of the
three vertices in Vj’ , these two vertices are incident with exactly two of the
three edges in E;’ . As W is a vertex cover, it has to contain a vertex incident
with the third edge, say c3;w;, and hence W contains the corresponding
vertex in one of the V;—here the vertex corresponding to the literal w;, that
is, to either z; or T;. By our definition of the truth assignment w, this literal
has the value true, making the clause C; true. As this holds for all j, the
formula Cy ...C,, also takes the Boolean value true under w.

Conversely, let w be an assignment of Boolean values for the variables
T1,...,&y such that Cy ... C,, takes the value true. We define a subset W C V
as follows. If w(z;) = true, W contains the vertex z;, otherwise W contains
T; (for i=1,...,n). Then all edges in F; are covered. Moreover, at least one
edge e; of £ is covered (for each j=1,...,m), since the clause C; takes the
value true under w. Adding the end vertices in S; of the other two edges of
EY to W, we cover all edges of EY and of £} so that W is indeed a vertex
cover of cardinality k. O

Exercise 2.8.4 Prove that the following two problems are NP-complete by
relating them to the problem VC.

2.8 Five NP-complete Problems 59

(a) Independent set (IS). Does a given graph G contain an independent
set of cardinality > k7
(b) Clique. Does a given graph G contain a clique of cardinality > k?

While the solution of Exercise 2.8.4 is very simple, dominating sets re-
quire a bit more thought. Let us first give a formal definition of the relevant
problem.

Problem 2.8.5 (Dominating set, DS) Let G = (V, E) be a graph and k a
positive integer. Does G admit a dominating set D with |D| < k?

The following result and the subsequent exercise are mentioned in
[GarJo79]. We present the standard proof found in many sources, for in-
stance, in the nice lecture notes of Khuller [Khul2].

Theorem 2.8.6 DS is NP-complete.

Proof Obviously, the problem DS is in NP. We show that DS is NP-complete
by transforming VC polynomially to DS and applying Theorem 2.8.3. Thus
let G be a given graph and k a specified integer; we have to decide if G has
a vertex cover W of size at most k. Clearly, G may be assumed to have no
isolated vertices, as otherwise no vertex cover exists—and this can be checked
in linear time (if G is given via adjacency lists).

We now define a new graph H which arises from G by replacing each edge
of G with a triangle. Formally, for each edge e = uwv of G, we introduce a
new vertex z. and add the two new edges ux. and vzx.. Clearly, this is a
polynomial transformation of G to H. It now suffices to check that G has a
vertex cover W of size at most k if and only if H has a dominating set D of
size at most k.

We first note that any vertex cover W of G is also a dominating set for H.
To see this, consider an arbitrary vertex of H; there are two cases. If we deal
with a vertex u already contained in G, it is not isolated by our first remark.
Thus there exists an edge e =wv in G, and W has to contain at least one of
the two vertices u and v. For a new vertex x., the associated edge e of G has
to have at least one of its two end vertices in W, and z. is adjacent to both
of these by construction.

Conversely, let D be any dominating set for H. If D consists of vertices
in G only, it is also a vertex cover for G: for any edge uv of G, u ¢ D forces
v € D, by the definition of a dominating set. Thus assume that D contains
some new vertex x., and let e =wv. As x. is adjacent only to v and v in H,
we may replace x, by either u or v and obtain a new dominating set, without
increasing the size of the set (it might even decrease, if u or v was already
in D). Continuing in this way, we can construct from D a dominating set D’
which consists of vertices in G only, and hence D’ is a vertex cover for G of
size at most |D)|. O

60 2 Algorithms and Complexity

Fig. 2.4 Cover-testing (u,e,1) (v,e,1)

component Y T
(u,e,2) ® ® (1}767 2)
(u,e,S) (U767 3)
(u,e,4) (U7674)
(u,e,5) ® ® (v,¢e,5)
(u,e,6) (v,€,6)

Exercise 2.8.7 (Connected dominating set, CDS) Let G = (V, E) be a graph
and k a positive integer. Does G admit a dominating set D with |D| < k such
that the induced subgraph G|D is connected? Prove that this variation of DS
is likewise NP-complete.

Hint: Modify the argument given in the proof of Theorem 2.8.6 by intro-
ducing suitable additional edges in H.

In Appendix A, we will present a short list of NP-complete problems,
restricting ourselves to problems which either were mentioned—or are closely
related to subjects treated—in this book. A much more extensive list can be
found in Garey and Johnson [GarJo79).

We conclude this section with the promised proof of Theorem 2.7.4 via a
reduction to Theorem 2.8.3. That is, we transform VC polynomially to HC
and thus establish the NP-completeness of HC; again, we follow [GarJo79].
Let G = (V,E) be a given instance of VC, and k a positive integer. We
have to construct a graph G’ = (V/, E’) in polynomial time such that G’ is
Hamiltonian if and only if G has a vertex cover of cardinality at most k. Again,
we first define some special-purpose components. There are k special vertices
ai,...,ar called selector vertices, as they will be used to select k vertices
from V. For each edge e = uv € E, we define a subgraph T, = (V/, E!) with
12 vertices and 14 edges as follows (see Fig. 2.4):

V! i={(u,e,i):i=1,....,6} U{(v,e,i):i=1,...,6};
El:={{(u,e,i),(u,e,i+1)}:i=1,...,5}
U{{(v,e,i),(v,e,i+1)}:i=1,...,5}
U{{(me), (v.e,3)} {(we.3), (v.e. 1)}
U {{(u,e,4), (v.e,6)},{(u,e,6),(v,e,4)} }.

2.8 Five NP-complete Problems 61

Fig. 2.5 Traversing a cover-testing component

This cover-testing component T, will make sure that the vertex set W C V
determined by the selectors ai,...,a; contains at least one of the vertices
incident with e. Only the outer vertices (u,e, 1), (u,¢€,6),(v,e,1) and (v,e,6)
of T, will be incident with further edges of G’; this forces each Hamiltonian
cycle of G’ to run through each of the subgraphs T, using one of the paths
shown in Fig. 2.5, as the reader can (and should) easily check.

Now we describe the remaining edges of G’. For each vertex v € V, we
label the edges incident with v as evy,...,ev4eg» and connect the degv cor-
responding graphs T, by the following edges:

E = {{(v,ev;,6), (v,evit1,1)} ri=1,...,degv — 1}.

These edges create a path in G’ which contains precisely the vertices (z,y, z)
with x = v, see Fig. 2.6.

Finally, we connect the start and end vertices of all these paths to each of
the selectors a;:

E":={{a;,(v,ev1,1)} :j=1,... .k} U{{a;, (v,evdeg0,6)} : i =1,...,k}.

Then G' = (V’, E’) is the union of all these vertices and edges:

V'i={ay,...,ax} U U V! and FE' := U ElU U E,UE".

ecl ecE veV

Obviously, G’ can be constructed from G in polynomial time. Now suppose
that G’ contains a Hamiltonian cycle K. Let P be a trail contained in K
beginning at a selector a; and not containing any further selector. It is easy
to see that P runs through exactly those T, which correspond to all the edges

62 2 Algorithms and Complexity

\\\‘(’U7 €Vdeg v>» 1)

~,

(v7 €Vdeg v 6)

Fig. 2.6 The path associated with the vertex v

incident with a certain vertex v € V' (in the order given in Fig. 2.6). Each of
the T, appears in one of the ways shown in Fig. 2.5, and no vertices from
other cover-testing components T; (not corresponding to edges f incident
with v) can occur. Thus the k selectors divide the Hamiltonian cycle K into
k trails Pp,..., Py, each corresponding to a vertex v € V. As K contains all
the vertices of G’ and as the vertices of an arbitrary cover-testing component
Ty can only occur in K by occurring in a trail corresponding to one of the

2.8 Five NP-complete Problems 63

vertices incident with f, the k vertices of V' determined by the trails P, ..., Py
form a vertex cover W of G.

Conversely, let W be a vertex cover of G, where |W| < k. We may assume
|[W| =k (because W remains a vertex cover if arbitrary vertices are added to
it). Write W = {v1,...,v}. The edge set of the desired Hamiltonian cycle K
is determined as follows. For each edge e = uv of G we choose the thick edges
in T, drawn in one of the three graphs of Fig. 2.5, where our choice depends
on the intersection of W with e as follows:

e if WNe={u}, we choose the edges of the graph on the left;
e if WnNe={v}, we choose the edges of the graph on the right;
o if WnNe={u,v}, we choose the edges of the graph in the middle.

Moreover, K contains all edges in E;, (fori=1,...,k) and the edges

{az, (vl, (evi)1, 1)} fori=1,...,k;
{az_ﬂ, (vz, (evz)degv1,6)} fori=1,...,k—1; and
{(117 (Uk7 e'Uk; degvu)}

The reader may check that K is indeed a Hamiltonian cycle for G'.

2 Springer
http://www.springer.com/978-3-642-32277-8

Graphs, Networks and Algorithms
Jungnickel, D.

2013, XX, 676 p., Hardcowver
ISBN: 978-3-642-32277-8

	Chapter 2: Algorithms and Complexity
	2.1 Algorithms
	2.2 Representing Graphs
	2.3 The Algorithm of Hierholzer
	2.4 How to Write Down Algorithms
	2.5 The Complexity of Algorithms
	2.6 Directed Acyclic Graphs
	2.7 An Introduction to NP-completeness
	2.8 Five NP-complete Problems

