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Abstract ESPRESSO is a package for Molecular Dynamics (MD) simulations of
coarse-grained models. We present the most recent version 3.1 of our software,
highlighting some recent algorithmic extensions to version 1.0 presented in a
previous paper (Limbach et al. Comput Phys Commun 174:704–727, 2006). A
major strength of our package is the multitude of implemented methods for
calculating Coulomb and dipolar interactions in periodic and partially periodic
geometries. Here we present some more recent additions which include methods
for systems with dielectric contrasts that frequently occur in coarse-grained models
of charged systems with implicit water models, and an alternative, completely local
electrostatic solver that is based on the electrodynamic equations. We also describe
our approach to rigid body dynamics that uses MD particles with fixed relative posi-
tions. ESPRESSO now gained the ability to add bonds during the integration, which
allows to study e.g. agglomeration. For hydrodynamic interactions, a thermalized
lattice Boltzmann solver has been built into ESPRESSO, which can be coupled
to the MD particles. This computationally expensive algorithm can be greatly
accelerated by using Graphics Processing Units. For the analysis of time series
spanning many orders of magnitude in time scales, we implemented a hierarchical
generic correlation algorithm for user-configurable observables.
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1 Introduction

Nowadays, computer simulations are a well established tool in theoretical physics.
Here we intend to give an introduction to our Molecular Dynamics package
ESPRESSO [6, 26]; ESPRESSO is an acronym for Extensible Simulation Package
for Research on Soft matter systems.

The term soft matter, or complex fluids, as they are called in the American
literature, describes a large class of materials, such as polymers, colloids, liquid
crystals, glasses, hydrogels and dipolar fluids; familiar examples of such materials
are glues, paints, soaps or baby diapers. Also most biological materials are soft
matter – DNA, membranes, filaments and other proteins belong to this class. Soft
matter research has experienced an increased interest in the last two decades due
to its potentially high usefulness in many areas such as technology, biophysics, and
nanoscience.

Many properties of soft matter materials emerge on the molecular rather than
the atomistic level: the elasticity of rubber is the result of entropy of the long
polymer molecules, and the superabsorbing materials used in modern diapers store
water inside a polyelectrolyte network. To reproduce these physical effects on
the atomistic level in computer simulations, one would have to incorporate many
millions of atoms and simulate them for time scales of up to seconds in some cases,
which is not possible even with the most powerful modern computers. However,
in many cases a much simpler description of the material is sufficient. Polymers
such as polyelectrolytes or rubber often can be modeled by simple bead-spring
models, i.e. (charged) spheres connected by springs, where each of the spheres
represents a whole group of atoms, sometimes a complete monomer or even larger
compounds. Although these models hide most of the chemical properties, they are
quite successful in the description of polymers and other soft matter systems. The
process of removing degrees of freedom (here the atomistic description) from a
system to obtain a simpler model is called coarse-graining.

Computer simulations of such coarse-grained models sometimes still require
the incorporation of several thousands of beads and springs, and many time steps
(in case of MD) for data acquisition, and therefore one still is in the need of an
efficient simulation software. Furthermore, the generation of sufficient amounts
of uncorrelated data might still require the usage of non-standard algorithms (i.e.
Gibbs ensemble, expanded ensemble techniques, AdResS [22] just to name a
few) which in some cases even have been developed especially for a specific
model. Therefore it is necessary that the simulation software is much more flexible
than standard atomistic simulation packages (as for example GROMACS [18]1 or
NAMD [35]2). ESPRESSO was designed and implemented specifically to address

1http://www.gromacs.org
2http://www.ks.uiuc.edu/Research/namd/
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the requirements of simulating such coarse-grained models, and it has a number of
unique characteristics that distinguish it from any other simulation package that we
know of.

One should be aware that the flexibility of ESPRESSO also costs some per-
formance: compared to highly optimized MD programs such as GROMACS,
ESPRESSO is slower by a factor of about 2. However, one should keep in mind
that most of the problems, that we designed ESPRESSO for, can normally not be
treated without massive changes to the simulation engines of these fast codes.

ESPRESSO is not a self-contained package but relies on other open source
packages. Most prominent is the use of the Tcl scripting language interpreter for
the simulation control, which is required to run ESPRESSO. Other packages are
optional. If ESPRESSO is to be executed in parallel, an implementation of the MPI
standard [32] is required. The P3M algorithm for electrostatic interactions relies on
the FFTW package.3 The development process is supported heavily by the use of the
git version control system,4 which allows several developers to work simultaneously
on the code, LATEX and doxygen5 for the documentation, and the GNU Autotools6

for compilation.
In the following Sect. 2, we will detail the unique characteristics of the

ESPRESSO simulation software, while in Sect. 3 we will give an overview of the
various algorithms and methods implemented in the software. The subsequent
Sects. 4–8 will describe the recent algorithmic developments in ESPRESSO. We
conclude with an outlook on future plans for our software in Sect. 9.

2 Characteristics

Optimized for coarse-grained models ESPRESSO was explicitly designed for
simulating coarse-grained models. On the one hand, this means that the software
has a few characteristics that are otherwise uncommon to most simulation
software, such as the fact that the software is controlled by a scripting language
or that it is extensible (see below). On the other hand, the software implements
a number of special methods that only make sense in the context of coarse-
grained models, such as the possibilities to create rigid bodies (see Sect. 5), to
dynamically generate new bonds during the simulation (see Sect. 6), or to couple
the many-particle simulation to a Lattice Boltzmann (LB) fluid (see Sect. 7), to
name just a few.

3http://fftw.org
4http://git-scm.com
5http://doxygen.org
6http://ftp.gnu.org/gnu/automake/

http://fftw.org
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http://doxygen.org
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Also note that the software does not enforce any specific length, energy or time
unit system, as such units are often inappropriate for coarse-grained models.
Instead, the values can be given in any consistent unit system.

Controlled by a scripting language The software uses the scripting language Tcl7

to control the simulations. However, as the Tcl language is mostly outdated
nowadays, we are currently working on a new interface to the scripting language
Python8 for one of the next versions of ESPRESSO.
The simulation control script determines all simulation parameters such as the
number and type of particles, the type of interactions between these particles,
and how the system is propagated; most of the parameters can be changed even
during runtime of the simulation. By that, one can perform highly complex
simulation procedures, such as adapting the interaction parameters to the current
configuration during the simulation, applying or removing spatial constraints,
or even complex schemes like parallel tempering or hybrid Monte Carlo. This
flexibility is unmatched by any other simulation package that we know of.

Extensible Users can read and modify the code to meet their own needs. Through-
out the source code of ESPRESSO, readability is preferred over code opti-
mizations. This allows users to extend the code with more ease. Furthermore,
we have defined a number of interfaces that allow to implement extensions to
the core code (e.g. new potentials, new thermostats or new analysis routines).
The extensibility allows researchers to easily incorporate new methods and
algorithms into the software, so that ESPRESSO can be used both as a production
platform to generate simulation data as well as a research platform to test new
algorithms.

Free and open source ESPRESSO is an open-source program that is published
under the GNU public license. Both the source code of release versions of the
software as well as the bleeding-edge development code, are available through
our web page9 and the GNU Savannah project page.10

Parallelized ESPRESSO is parallelized, allowing for simulations of millions of
particles on hundreds of CPUs. ESPRESSO scales well, it can achieve an
efficiency of about 70 % on 512 Power4C processors, and even better values
on the more recent BlueGene/P or Cray XT6 systems. Since it contains some of
the fastest currently available simulation algorithms, it also scales well with the
number of particles, allowing for the simulation of large systems.

Portable The code kernel is written in simple ANSI C, therefore it can be
compiled on a wide variety of hardware platforms like desktop workstations,
convenience clusters and high performance supercomputers based on POSIX
operating systems (for example all variants of Unix that we know of, including
GNU/Linux).

7http://www.tcl.tk
8http://www.python.org
9http://espressomd.org
10http://savannah.nongnu.org/projects/espressomd/
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3 Methods and Algorithms

In the following, we will give an overview of the algorithms and methods that
ESPRESSO provides. Some of these are standard algorithms, like they are described
in, e.g., the book Understanding Molecular Simulation [15].

Ensembles The software can perform MD simulations in a number of different
physical ensembles, using the Velocity-Verlet integration scheme. Besides the
microcanonical (NVE) ensemble, it is possible to simulate the canonical (NVT)
ensemble via the Langevin thermostat and the NPT (constant pressure) ensemble
via a barostat algorithm by Kolb and Dünweg [24]. The constant chemical
potential ensemble (�VT) can be realized by hybrid Molecular Dynamics/Monte
Carlo on the script language level.

Nonbonded potentials For nonbonded interactions between different particle
species, a number of different potentials are implemented, for example the
Lennard-Jones, Morse and Buckingham potentials. In addition, it is possible to
use tabulated potentials of arbitrary form.

Bonded potentials ESPRESSO provides a number of interactions between two or
more specific particles, including the FENE and harmonic bond potentials, bond
angle and dihedral interactions. As in the nonbonded case, potentials in arbitrary
form can be specified via tables.

Anisotropic interactions Besides the standard integrator, the software also has
a quaternion integrator [30] where particles have an orientation represented
by a quaternion and rotational degrees of freedom. Therefore, particles cannot
only represent isotropic spheres, but also objects that interact via anisotropic
interactions such as Gay-Berne ellipsoids [16].

Electro- and Magnetostatics The package implements a number of fast parallel
state-of-the-art algorithms for electrostatic and magnetostatic interactions that
can handle full or partial periodicity, and that even allow to treat systems with
dielectric contrast. The methods are detailed in Sect. 4.

Constraints ESPRESSO has the ability to fix some or all coordinates of a particle,
or to apply an arbitrary external force on each particle. In addition, various
spatial constraints, such as spherical or cubic compartments, can be used. These
constraints interact with the particles by any nonbonded interaction.

Rigid bodies Since version 3.0, it is possible to form rigid bodies out of several
particles. This feature allows for arbitrarily complex extended objects in the
model, and is described in Sect. 5.

Dynamic bonding Agglomeration can be modeled by dynamically adding bonds
during the simulation when particles collide. This special feature is described in
Sect. 6.

Hydrodynamics Hydrodynamic interactions can be modeled via a thermal Lattice
Boltzmann method (see Sect. 7) that can be coupled to the particles. To accelerate
the algorithm, it is possible to run it on a graphics processor (GPU). Alternatively,
particles can use Dissipative Particle Dynamics (DPD) [14, 40] to simulate
hydrodynamic effects.
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Analysis All analysis routines are available in the simulation engine, allowing
for both online analysis (during the simulation) as well as offline analysis.
ESPRESSO can measure various observables of the system, such as the energy
and (isotropic) pressure, or the forces acting on particles or spatial constraints.
There are routines to determine particle distributions and structure factors, and
some polymer-specific measures such as the end-to-end distance or the radius
of gyration. For visualization, ESPRESSO can output files that can be read by
visualization software such as VMD11 [20]. It is simple for users to add their own
observables. To allow for measuring correlations in timeseries (such as the mean-
square displacement of particles), ESPRESSO contains a generic implementation
of correlators, which is detailed in Sect. 8.

AdResS ESPRESSO contains an implementation of the Adaptive Resolution
Scheme (AdResS) that allows to simulate systems that contain areas with
different levels of coarse-graining [22].

4 Advanced Electrostatics

Coulomb interactions cannot be calculated by the same straightforward neighbor-
hood strategies as short-ranged interactions, due to the slow decay of the Coulomb
potential. Especially in conjunction with periodic (or partially periodic) boundary
conditions, one needs special algorithms that are adapted to the particular periodic
structure. For systems with three periodic dimensions, which is the most common
case as it is used for investigating bulk systems, ESPRESSO offers the P3M [10,11]
and MEMD algorithms [28, 34]. P3M is also able to treat dipolar systems, such
as ferrofluids [9]. For systems with only two periodic dimensions and a third
dimension with finite extension, which are commonly used to investigate thin
films or surfaces, ESPRESSO features the MMM2D [3] and ELC methods [5],
and for rod-like systems, such as nanotubes or pores, only one periodic and two
nonperiodic dimensions are required. For these systems, ESPRESSO offers the
MMM1D algorithm [4].

Since the last publication on ESPRESSO [26], the electrostatics algorithms have
been considerably enhanced. The P3M implementation allows now to use arbitrary
simulation box dimensions, i.e. not just cubic boxes. Still, our implementation
features full error control and automatic parameter tuning, as described by Deserno
et al. [11]. Other extensions that are to our knowledge unique to ESPRESSO will
be described in this section. First, we will discuss extensions to the MMM2D
and ELC methods, which allow to take into account the presence of planar
dielectric interfaces. Next, we will introduce the ICC? method, which allows to

11http://www.ks.uiuc.edu/Research/vmd/
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take into account arbitrarily shaped dielectric interfaces. Finally, we will discuss
the MEMD electrostatics algorithm, a local approach to electrostatics, based on the
electrodynamic equations that use an appropriately adapted speed of light.

4.1 Dielectric Contrasts

In coarse-grained systems with only partially periodic boundaries and implicit water
models, where the water is modeled as a dielectric continuum with a relative
dielectric constant, the dielectric contrasts between the embedding medium and
the outside can be quite considerable. For example, the relative dielectric constant
for bulk water at room temperature is 80, whereas it has a value of �1 in the
surrounding air. When studying ions in front of a metallic electrode, the latter even
has an infinite dielectric constant. Due to the different dielectric media, polarization
occurs, which has a non-negligible influence on the charges in these systems. For
example, Messina [31] has shown that image charges due to polarization may
lead to considerable reduction in the degree of polyelectrolyte adsorption onto an
oppositely charged surface and by that inhibit charge inversion of the substrate.

In computational studies, these polarization effects need to be taken into account.
At present, ESPRESSO supports this by extensions to the ELC and MMM2D
algorithms, or by the novel ICC? algorithm, as described below. The first extensions
reach a higher precision and are faster, but less flexible than the ICC? method
and can handle only two planar, parallel dielectric interfaces that can have,
however, arbitrary dielectric contrast. These need to be parallel to the two periodic
dimensions, which is sufficient to model both the two interfaces surrounding a thin
film, or the single dielectric jump at a wall. The dielectric boundary conditions are
taken into account by the method of image charges [39]. We assume a system, where
the charges are embedded in a medium characterized by a dielectric constant "m

which is confined from above by a medium of dielectric constant "t and from below
by a medium of dielectric constant "b, compare Fig. 1. In case only a single interface
should be considered, this can be achieved by choosing "t D "m or "b D "m.

In the general case of two dielectric boundaries, an infinite number of image
charges arises for each single physical charge, compare Fig. 1. For example, a charge
q at a position z gives rise to an image charge of �bq at �z in the lower dielectric
layer and an image charge of �tq at .2lz �z/ in the upper dielectric layer. The image
charge �bq gives rise to another image charge �t�bq in the top dielectric domain.
Similarly �t q gives rise to an image charge �b�t q in the bottom dielectric domain,
and so on. Here, the prefactors �b and �t are defined as

�b D "m � "b

"m C "b

; and �t D "m � "t

"m C "t

:

These polarization image charges constitute simple, but infinite geometric series
that can be taken into account analytically by the far formula of the MMM2D
method [3]. This formula gives a simple expression for the interaction energy
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Fig. 1 Image charges generated by dielectric contrasts. The dielectric interfaces are characterized
by the planar "t –"m and "m–"b boundaries. Polarization leads to an infinite number of image
charges along the z-direction due to multiple reflections. Additionally, periodic boundary con-
ditions apply in x and y directions. The dotted lines are only provided to visualize the positioning
of the image charges

or force between a charge and a periodic array of charges. Since this formula
is also at the heart of the ELC method, both MMM2D and ELC can take
these additional image charges into account by prefactors to the already present
far formula implementations. These prefactors can be conveniently derived from
analytic summations of the geometric sums [42, 43].

MMM2D and ELC allow to specify �b and �t directly instead of specifying
the three dielectric constants. By choosing these values as ˙1, one can obtain
effectively infinite dielectric constants inside or outside. Finally, note that the
method of image charges describes only the correct electrostatic potential inside
the dielectric slab; therefore, particles need to be constrained to the area between
the two dielectric surfaces.

4.2 MEMD

The MEMD algorithm (Maxwell Equations Molecular Dynamics) is a rather un-
common way to compute electrostatic interactions, based on the full electrodynamic
Maxwell equations. Of course, simulating with actual realistic electrodynamics is by
far too time consuming, but it can be made more effective with some adaptions. Most
notably, the speed of light needs to be reduced to become comparable to the other
degrees of freedom, that is, the speed of the atoms and molecules in the simulation.

Algorithm

The algorithm starts with a regular discretization of the Maxwell equations. To
overcome the problem of the large value for the light speed, A. Maggs has
shown [28] that the speed of light can be tuned to very small values, as long as
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it stays well above the speed of the charges. In this case, the full dynamics of the
theory (i.e. for the magnetic fields) can be unrealistic while the electrostatic limit is
still valid. In MD simulations, the speed of light can be chosen by about an order of
magnitude larger than typical particle velocities, which however are small compared
to the actual speed of light.

Another very important adaptation is, that this method actually consists of two
different combined methods: initially, a solution of the Poisson equation for the
system is computed with a numerical relaxation scheme. Afterwards the correct
solution can be obtained by only applying temporal updates every time step. The
time derivative and some physical arguments as laid out in Ref. [34] lead to
the following very simple constraint that can be applied to the propagation of
the system:

@

@t
D C j � 1

c2
r � B D 0

with the electric field D, the current j and a magnetic field component B that is
propagating in dual space.

This constraint is now ensured by interpolating the charges (or to be more
specific, the electric currents) onto a regular lattice. Then the magnetic fields that
are created from the current are propagated on the lattice. From these magnetic-type
fields, temporal updates for the electric fields on the lattice can be deducted and
backinterpolated to the charges for the force calculation.

This algorithm is not used as widely as many other well known electrostatics
algorithms, such as the various particle-mesh approaches [12]. But it comes with
some benefits that have become very interesting over the past few years. Since the
Maxwell Equations for electrodynamics are intrinsically local and require no global
information on the system, one gains two main advantages:

• First, unlike for all Ewald-based algorithms, the parallelization for such a local
system of equations is trivial. And the scaling of the algorithm is only dependent
on the lattice mesh size and does therefore scale linearly O.N / for a fixed particle
density. This is a very intriguing feature in a time where massively parallel grid
computing and systems in the order of 109 charges need to be considered.

• Second, a periodic box geometry can be dealt with very naturally by math-
ematically connecting each boundary to its oppositely placed boundary and
propagating the fields accordingly. Another welcomed feature is that because
of its locality the method allows for arbitrary changes of the dielectric properties
within the system.

Performance and Precision

As expected from an intrinsically local algorithm, MEMD scales linearly with the
mesh size, even to high particle numbers. For homogeneously distributed charges in
a dense system (e.g. a molten salt), it outperforms P3M for a comparable precision
at about 5,000 and more charges. However, the MEMD algorithm cannot be tuned
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Fig. 2 The two error sources of the algorithm. This graph shows two things: for once, the error
cannot be tuned to arbitrarily small values, but only to about 1 %. One can also observe that the
method error increases for finer lattice spacings and therefore a smaller field propagation speed.
On the other hand, the interpolation error increases if the mesh becomes too coarse

to a given precision, although some statements can be made on the systematic
errors. The two main systematic errors stem from the speed of light parameter not
being infinite (which would mean perfect electrostatic limit) and from the charge
interpolation on the lattice.

The first error is of algorithmic origin and is merely the difference between
electrodynamics and the static limit. As can be seen e.g. in Ref. [21], this error scales
with 1=c2, where c is the speed of light. The second error is larger in comparison and
diverges for very fine meshes, since only next neighbor interpolation is performed.
It scales with 1=a3, where a is the lattice spacing. Since the speed of light (i.e.
the propagation speed of the magnetic fields) also directly depends on the lattice
spacing, these two errors can be combined to find the best suited mesh for the system
(see Fig. 2).

In conclusion one can see that for dense systems or at high particle numbers, the
MEMD algorithm provides a very flexible and fast alternative method to calculate
Coulomb interactions.

4.3 The ICC? Algorithm for Dielectric Interfaces

Taking into account dielectric interfaces of arbitrary shape in coarse grained
simulations is a challenging task. The ICC? algorithm [23, 44] allows to do so with
acceptable extra cost and inherent consistency with the desired periodic boundary
conditions. At dielectric interfaces the normal component of the electric field has a
discontinuity of the following form:

"1E 1 � n D "2E 2 � n; (1)

where n is the normal vector pointing from regions 2 to 1. This discontinuity can
also be interpreted as an effective charge distribution on the surface: the induced
charge. For the induced charge density the following equation has to hold:
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�ind D "1

2�

"1 � "2

"1 C "2

E � n: (2)

The idea of the ICC? algorithm is to self-consistently determine this charge
distribution in every MD step. The points of a discretized boundary play the role
of usual particles, except they are fixed in space. A simple relaxation scheme is
applied, where a new guess of the charge density on every boundary element is
calculated from

�i
ind D .1 � �/ �i�1

ind C �

�
"1

2�

"1 � "2

"1 C "2

E � n

�
; (3)

where � is a relaxation parameter, that is typically chosen in the range between 0.5
and 0.9 and E denotes the electric field caused by all other charges. This iteration
usually takes only a few steps, because the position of the charged particles in the
system changes only slightly.

In many cases just one update per MD steps yields sufficient accuracy. In this
case, the extra computational cost of taking into account the dielectric boundary
forces is only due to the increased number of charges in the system stemming from
the surface discretization. In a system with an intrinsic surface charge, i.e. due to
dissociation of surface groups, this process is computationally for free, because the
electrostatic field created by the surface charges needs to be calculated anyways.

To create dielectric interfaces ESPRESSO offers a set of commands that create
an almost equidistant discretization of geometric primitives. This allows to create
objects of a very complex geometry. We also plan to combine the algorithm with
the concept of rigid bodies as described in Sect. 5. This would allow also to study
moving dielectric objects, which is of interest e.g. in colloidal electrophoresis.

5 Rigid Bodies

We have added the ability to simulate rigid bodies built up from particles to
ESPRESSO. This is useful to model clusters of particles that move as a whole,
to build extended bodies which interact with a fluid (like the raspberry model for
colloidal particles [27]), and to construct “non-sliding“ bonds, which, for instance,
attach polymer chains to specific spots on the surface of a colloidal particle. Some
of these cases have traditionally been handled by constraint solvers or by very stiff
bond potentials. However, our rigid bodies have a smaller computational overhead,
and allow for larger aggregates.

The simulation of rigid bodies is implemented in ESPRESSO using the concept of
virtual sites. These are usual MD particles with the one exception that their position,
orientation, and velocity is not obtained from the integration of Newton’s equations
of motion. Instead, they are calculated from the position and orientation of another
particle in the simulation. This non-virtual particle should be located in the center of
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Fig. 3 Illustration of the rigid body implementation. The position xv of the virtual particle is
calculated from the position of the center particle, xc , its current orientation, Oc , and the virtual
particle’s relative position in the body frame, rvOvez. A force F v acting on the virtual site induces
the force F c and the torque T c

mass of the rigid body and should carry the mass and inertial tensor of the complete
body. The position and orientation of this center particle are obtained from the
integration of Newton’s equation, just as any other normal MD particle. The virtual
sites, that give the shape and interactions of the rigid body, are placed relative to
the position and orientation of the center particle, and forces acting on them are
translated back to forces and torques acting on the center particle. Orientation in this
case here refers not just to a director, but to a full local three dimensional reference
frame, in which the virtual sites can be placed.

The virtual sites making up the rigid body are placed according to the following
rules (compare Fig. 3). The position of a virtual site xv is obtained from

xv D xc C rvOcOvez; (4)

where xc is the position of the center particle. Oc is the rotation operator that
relates the particle-fixed, co-rotating coordinate system of the center particle to
the lab frame and represents the orientation of the rigid body. xc and Oc are the
two quantities that are integrated using Newton’s equations of motion. The relative
position of the virtual site, is represented by Ov , which is the rotation operator which
rotates the ez unit vector such that it becomes co-aligned with the vector connecting
the center particle with the virtual site, and by rv , which is the distance between the
virtual particle and the center of mass. In the ESPRESSO package, the rotations Oc

and Ov are represented as quaternions.
Accordingly, the velocity of the virtual site is given by

vv D !c � .xv � xc/; (5)

where !c is the rotational velocity of the center particle.
The force on the center of mass due to the force F v acting on a virtual site is

given by
Fc D F v; (6)
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so that the total force on the center particle j is

F total
j D

X
i virtual site of j

F i : (7)

The torque generated on the center of mass by a force F v acting on a virtual site is

T c D .xv � xc/ � F v; (8)

so that the total torque acting on the center particle j is

T total
j D

X
i virtual site of j

.xi � xj / � F i : (9)

In other words, the force acting on the virtual site is copied to the center particle. In
addition, the component of the force which is orthogonal to the vector connecting
center of mass and virtual site creates a torque on the center of mass.

Combining these formulas, the force calculation proceeds as follows:

1. Place all the particles of the rigid body as virtual sites according to the position
and orientation of the center of mass particle (Eqs. (4) and (5)).

2. Calculate the forces in the system. This includes forces between parts of the rigid
body (i.e., the virtual sites) and the rest of the system.

3. Collect the forces which have accumulated on the virtual sites and convert them
to a force and a torque acting on the center of mass particle (Eqs. (6) and (8)).

Using these forces and torques, the Newton’s equations can be integrated for the
center of mass of the rigid bodies along with those for all the other non-virtual
particles in the system.

6 Dynamic Bonding

For the study of reaction kinetics and irreversible agglomeration, it is necessary
that bonds can be created dynamically during the simulation, for example, when
particles come closer than a given bonding distance. For this purpose, a collision
detection feature has been introduced in ESPRESSO. Breakable bonds, that would
be required for studying reaction kinetics of weaker bonds, are at present not
implemented, but planned for a future release. Using dynamic bonds is com-
putationally cheaper than using e.g. reactive potentials [8, 17], since one does
not need many body potentials, but it is also less natural in terms of atomistic
dynamics. For example, our present method does not allow to differentiate between
single or double bonds. However, the main aim of ESPRESSO are coarse-grained
simulations, where large macromolecules such as soot particles agglomerate. On the
size of these particles, the attractive interactions are very short ranged, but strong,
which is modeled well by such a discrete on-off bonding, while it is unclear how
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particle A particle B

virtual sites

Fig. 4 Construction of the non-sliding bond. Virtual particles are constructed at the point of
collision and connected by a zero length bond. The two colliding particles are also directly bound
at collision distance

to parametrize e.g. a Tersoff-like potential for macromolecules. Also, our dynamic
bonding optionally allows to fix the internal frames of particles against each other,
so that the positions of the contacts remains fixed. Again, this makes little sense in
terms of atomistic simulations, but is realistic for soot particles, where the sticking
is due to permanent deformation of the particles.

When dynamic bonding is turned on, particles that during the simulation come
closer than a specified distance get connected by bonds, which at present cannot
break again. Therefore, larger and larger clusters are formed. In the simplest case,
particles are bonded by a distance-dependent potential like a harmonic or FENE
bond. In this case, the particles in the cluster can slide around each other. If the
particles do not have a strong repulsive interaction, this might lead to the formation
of further bonds within the cluster, resulting in a rather bulky agglomerate.
A snapshot of such a cluster can be seen in the left part of Fig. 5. The cluster
clearly has a branched structure, which we found to be stable for half a million
MD time steps, but the branches are at least three particle diameters wide. For the
snapshots, we performed MD simulations of thousand Weeks-Chandler-Andersen
(purely repulsive Lennard-Jones) beads in the NVT ensemble, for a total of a million
MD steps.

This sliding of connected particles, however, is not desirable in many appli-
cations. When, for instance, larger particles collide and stick together due to
local surface effects, the particles should always be connected at the particular
point where they initially touched. This is achieved by using the rigid body
implementation described in Sect. 5: when two particles collide, two virtual sites
are created at the point of collision. Each of them is rigidly connected to one of
the colliding particles, while these two virtual sites are bound together by a bond
potential with an equilibrium distance equal to zero. In addition, a normal bond
is formed between the two colliding particles directly (compare Fig. 4). While the
bond between the virtual sites prevents the particles from sliding around each other,
the bond between the centers of the colliding particle prevents significant motion
around the point of collision. The resulting agglomerates (shown in Fig. 5 on the
right) have a much more fine and branched structure, with connections as thin as
single particles. The depicted picture was stable for also more than 500,000 MD
time steps, and initial conditions were the same as for the conventional bonding
strategy. Therefore, the finer structure is clearly only due to the non-sliding bonds.

While the current implementation works only on a single CPU, the method
is in principle scalable, because at no point information about the complete
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Fig. 5 Snapshots of
agglomerates generated by
dynamic bonding with
harmonic bonds (left) and
with non-sliding bonds
(right). The structures formed
by the non-sliding bonding
are finer and more branched,
visible by the high amount of
voids

agglomerating cluster is necessary on a single processor, and with time, agglom-
eration becomes a less and less likely event. We plan to extend the implementation
for parallel computing in the near future.

7 Lattice Boltzmann

After 20 years of development the Lattice Boltzmann Method (LBM) has proven to
be a powerful tool to investigate dynamics in soft matter systems. In coarse grained
simulations it allows to replace the solvent by a mesoscopic fluid, whose dynamics
are computed on a discrete lattice. On large length and timescales the LBM leads to
a hydrodynamic flow field that satisfies the Navier-Stokes equation. The relaxation
of fluid degrees of freedom in liquid systems is much faster than the transport of
particles. This separation of timescales allows to neglect the microscopic details of
the fluid and is the very reason why different mesoscopic solvent models, such as
DPD [19], SRD [29] and the LBM produce equivalent results.

Due to restricted amount of space we only state the properties of the implemen-
tation in ESPRESSO and suggest to read the review by Dünweg and Ladd [13]
as well as other literature [7, 25, 41, 46]. In ESPRESSO we have implemented a
three-dimensional LB model, where velocity space is discretized in 19 velocities
(D3Q19). This is sufficient for isothermal flow, as present in almost all soft
matter applications. The collision step is performed after a transformation of the
populations into mode space as this is necessary for a consistent thermalization
[1,38]. This means, that ESPResSo implements the multiple relaxation time (MRT)
LB concept [25]. It also allows to use different relaxation times for different modes,
thus to adjust the bulk and shear viscosity of the fluid separately.

As long time scales of fluid relaxation and particle transport are well separated,
it is possible to execute the update of the LB fluid less often than the MD
steps. Typically one lattice update per five MD steps is sufficient, however, this
may depend on other parameters of the system. Besides the update rate, the user
conveniently specifies the grid resolution, the dynamic viscosity as well as the
density in the usual MD unit system. Additionally an external force density can
be applied on the fluid, corresponding to pressure gradients or the effect of gravity.
Particles are treated as point particles and are coupled to the LB fluid via a friction
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term [2] with an adjustable friction constant � . Note that the particle mobility is
not simply the inverse of � , but due to the feedback from the moving fluid, it also
depends on the viscosity � and the lattice constant of the LB lattice. It was shown in
[2, 45] that it is well described by

	 D 1

�
C 1

g�a
: (10)

where g is a numerical factor that was determined to be �25 and a is the grid
spacing. LB reproduces hydrodynamics reasonably well independent of the grid
spacing a. However, there are essentially no hydrodynamic interactions between
two particles interacting with the same LB cell, therefore one typically chooses a of
the order of the size of the particles.

Boundaries with zero velocity are incorporated easily into the LBM with the link
bounce back rule introduced in [47]. Boundaries can also have a nonzero velocity.
This is achieved by adding an appropriate bias to the reflected population [41].
Compared to other implementations of the LBM, this boundary method is less
sophisticated and there are methods that produce hydrodynamic boundaries with
higher accuracy and larger robustness. However as ESPRESSO users usually focus
on particle dynamics, this is acceptable. The LBM interface offers simple geometric
shapes (spheres, cylinders, rhomboids, : : :) that can be combined to surfaces of
arbitrary complexity. It is fully consistent with the constraint concept, that creates
extended objects that act as obstacles or also attractive surfaces for MD particles,
thus the geometry can easily be made consistent for particles and the fluid. Also the
creation of charged or dielectric boundaries (see Sect. 4.3) is consistent.

The computational effort for the LBM scales linearly with the system size. This
allows sizes far beyond the possibilities of traditional methods for hydrodynamic
interactions in MD simulations, such as Brownian or Stokesian dynamics with the
Oseen- or Rotne-Prager-based mobility matrix. The computational effort is consid-
erable, but the local and lattice-based character of the method allows to optimally
exploit the computational possibilities of parallel computing and general-purpose
graphics processing unit (GPGPU) programming. As very different programming
concepts for massive parallel computers and graphics processing units are necessary,
the core implementation is separate for both architectures: The implementation for
conventional parallel computer applies the MPI communication interface like the
rest of ESPRESSO, while the GPU implementation uses the CUDA programming
model and language.

As most available LBM implementations use MPI, we only give a brief descrip-
tion of the GPU implementation here, which uses NVIDIA’s CUDA framework [33].
GPU computing is based on the idea of executing the same code massively parallel
but with different data, i.e. the Single Instruction Multiple Data (SIMD) paradigm.
Both steps of the LBM are optimally suited for this scheme, as identical instructions
without conditionals are executed on every node. These instructions are performed
in many parallel threads on the Streaming Multiprocessors (SM) of the GPU. The
LB fluid resides in the video ram of the GPU. The MD code itself is not altered and
still running on the CPU. Only in appropriate intervals the particle positions and
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Fig. 6 Scaling of the LB speed with the number of CPU cores (solid lines), compared to a single
NVIDIA Tesla C2050 GPU for three different lattice sizes (dashed lines). The speed is measured
in million lattice node updates per second (MLUps). The dotted line marks the ideal linear scaling
of the speed with the number of cores

velocities are transferred to the GPU to calculate the interaction with the LB fluid,
and the resulting forces are transferred back. Due to the dynamic execution order of
the threads, schemes like the double buffering method or using atomic operations
are essential to avoid race conditions between concurrently running threads.

A comparison of the computing time of the fluctuating LB fluid on a single
NVIDIA Tesla C2050 GPU and an AMD CPU cluster with 1.9 GHz Opteron
processors is shown in Fig. 6. The size of the GPU memory of 3 GB limits the
maximum lattice size to 2403. For large lattices and few processors the CPU code
scales nearly ideally with the system size, while small lattices and many processors
result in a large communication overhead, and therefore longer computational times.
The speedup of using a state-of-the-art GPU is however striking: For all lattices that
are small enough to fit into the GPU memory, the performance of a single NVIDIA
GPU can not be reached with the AMD Opteron CPU cluster, no matter how
many CPUs are used. The reason is the communication overhead, which becomes
dominating at a performance that is a factor of 5–20 below the single GPU, while
using more than 50 cores of recent processors.

8 Correlator

Time correlation functions are ubiquitous in statistical mechanics and molecular
simulations when dynamical properties of many-body systems are concerned. The
velocity autocorrelation function, hv.t/ � v.t C 
/i which is used in the Green-Kubo
relations is a typical example. In general, time correlation functions are of the form

C.
/ D hA .t/ ˝ B .t C 
/i ; (11)

where t is time, 
 is the lag time between the measurements of the (vector)
observables A and B , and ˝ is an operator which produces the vector quantity
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C from A and B . The ensemble average h�i is taken over all time origins t .
Correlation functions describing dynamics of large and complex molecules such
as polymers span many orders of magnitude, ranging from MD time step up to the
total simulation time.

It is trivial to compute a correlation function which spans a short time scale,
say less than three decades. In this case storing the configurations in a file and
using an external analysis tool is common. However, computation of correlation
functions which span many decades raises technical problems, namely: (1) A trivial
algorithm which correlates all possible pairs of samples scales quadratically with
the maximum correlation time and it easily becomes more time-consuming than
the actual simulation; (2) Storing configurations too often (each few time steps)
produces significant read/write overhead both at the simulation time and post-
processing and requires enormous storage space; (3) Specifically for ESPRESSO,
storing configurations can only be done at the script level and produces additional
overhead when performed too often. Problem 1 can be resolved by using an efficient
correlation algorithm; problems 2 and 3 can be resolved by correlating on the
fly, without storing configurations too often and passing control to the scripting
interface and back. An apparent drawback is that the post-processing of data is no
longer possible and the simulation has to be re-done if a new correlation should
be computed. However, repeating the simulation is often less computationally
expensive than reading the positions of the particles from disk again, due to the
large amounts of data.

Since version 3.1 ESPRESSO features an interface for efficient computation
of time correlation functions. First, the user has to define an observable at the
script level, which creates the corresponding variable in the kernel and makes it
available to the correlator. In the next step, he defines which observables shall be
correlated, what is the correlation operation, sampling rate (minimum lag time)
and the maximum lag time. Optionally, the correlation estimates (and the respective
observables) can be updated automatically without the need for an explicit update
call at the script level. Furthermore, parameters of the correlation algorithm can
be chosen as described below, which influence the effort needed to compute the
correlations as well as the statistical quality of the result. In addition, the correlator
can also process data input from the scripting interface or from a file, which enables
ESPRESSO to be used as an efficient correlator for data produced by other programs.

Algorithm: Multiple Tau Correlator

Here we briefly sketch the multiple tau correlator which is implemented in
ESPRESSO. For a more detailed description and discussion of the properties of the
algorithm concerning parameter values, statistical and systematic errors, we refer
the reader to a recent excellent paper by Ramı́rez et al. [36]. This type of correlator
has been used for years in dynamic light scattering [37]. As a special case, its
application to the velocity autocorrelation function is described in detail in the
textbook of Frenkel and Smit [15]. Nevertheless, despite its obvious advantages,
it has been used scarcely by the simulation community.
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Fig. 7 Schematic representation of the correlator algorithm. Values of i indicate the time of the
measurement. Dashed lines show values which are correlated and the corresponding lag times.
Solid lines show values which are merged together in one compression step. At the lowest level, all
possible pairs of entries are correlated. At higher levels, only entries separated by more than p=2

values are correlated. This is indicated by the gray shaded background

The algorithm of the multiple tau correlator is schematically shown in Fig. 7.
Index i in the figure denotes an observable which was measured at time i
min where

min is the sampling interval. We further drop 
min to simplify the notation. The main
idea of the multiple tau correlator is to correlate all possible pairs of observables
within the relatively short interval of lag times, Œ0 W .p � 1/�, which we refer to as
compression level 0. For lag times greater than p � 1, we first apply a compression
to the original data in order to produce compression level 1. In the compression
step, one value which goes to the higher level is produced from two values in the
lower level, e.g. by taking an average of the two or by discarding one of them. In
compression level 1, data with lag times Œp W 2.p � 1/� are correlated. Data with
lag times Œ2p W 4.p � 1/� are correlated in compression level 2 and so on. The
number of correlated values at each level is constant but the lag time and the time
span of the level increases by a factor of 2. Hence the computational effort increases
only logarithmically with the maximum lag time. Thus adding one decade in the
lag times increases the effort by a constant amount. The same holds for the amount
of memory required to store the compressed history. In the implementation, each
compression level is a buffer with .p C 1/ entries. When a new value arrives to the
full buffer, two values are pushed to the higher level.

There are several relevant parameters which influence the performance of the
correlation algorithm. Their influence on statistical quality of the data has been
critically examined in the paper by Ramı́rez et al. [36]. Here we just state the main
points. The following parameters are most important:

Sampling interval, 
min. When set to MD time step, it produces a noticeable
overhead in computational time. When set to more than ten MD steps, the
overhead becomes negligible.
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Maximum lag time of the correlation, 
max. With a choice of p � 
max=
min, it is
possible to set 
max to the total simulation time without producing a significant
overhead.

Number of values in 0-th level, p, critically influences the algorithm performance.
Small p makes worse quality of the result, big p makes the algorithm
utterly slow. A reasonable compromise is p D 16 (see also Ref. [36]). Using
p D 
max=
min, reduces the algorithm to the trivial correlator.

Correlation operation. Defines what the operator in Eq. 11 does with the observ-
ables A and B . An example could be scalar product, vector product, distance in
3d, . . .

Compression function. Discarding one of the values and keeping the other is safe
for all correlation operations but reduces the statistical quality at long lag times.
Taking an average of the values improves statistics but produces a systematic
error which can be anything between negligible and disastrous, depending on
the physical properties of the correlation function and other parameters of the
algorithm.

With this algorithm we have been able to compute on the fly correlations
spanning eight decades in the lag times. The overhead in computer time produced
by the correlations was up to a factor of 2 when many correlations were computed
simultaneously with 
min equal to MD time step and p D 16. The overhead was
caused mainly by frequent updates of the observables based on system configuration
and could be largely reduced by taking a longer sampling interval.

9 Conclusions and Outlook

To summarize our contribution, we have described some recent additions to our
ESPRESSO software package, Version 3.1. Compared to the last version that
was published in [26], a number of new features have been added which make
ESPRESSO a unique software for coarse-grained simulations. It can now treat
systems with varying dielectric media, and has the first implementation of the scal-
able MEMD algorithm for electrostatic interactions. We have included rigid bodies
and dynamic bond formation for studying agglomeration. Also, the hydrodynamic
interactions of a coarse-grained particle within an implicit solvent can be handled
via the Lattice Boltzmann method.

Our LB solver can use the computing power of GPUs, of which a single card
is in most cases sufficient to replace a compute cluster. We plan to make this
impressive speedup available for other time-consuming parts of the simulation,
namely the electrostatic algorithms P3M and ELC. Also, GPUs finally provide
enough computational power to allow for solving the Poisson-Boltzmann equations
on the fly, which makes it possible to study electrokinetic effects even in complex
multi-particle systems on realistic time scales.
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Unfortunately, the Tcl scripting language that provides the user interface for
ESPRESSO has come to age and is slow when it comes to numerical computation.
Although most of the ESPRESSO core is written in C, this affects many users, who
implement their own analysis routines or other computations in Tcl. Therefore, we
have decided to switch ESPRESSO’s user interface from Tcl to Python in one of the
upcoming versions of the software. The more modern scripting language Python12

has drawn a lot of attention to itself over the last decade and is widely embraced
by the scientific community.13 It provides many useful packages, for example for
scientific computing, for two- and three dimensional plotting, for statistical analysis,
for visualization, etc., which will then be easily available to the ESPRESSO users.

In addition, we and several other groups contributing to ESPRESSO are planning
many more improvements in the future, and we hope to attract more users to actively
contribute to the code. The current status of the package and the latest code can
be found on our web site http://espressomd.org, which serves as our collaborative
development platform.
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