
Chapter 3
Radically Elementary Stochastic Integrals

3.1 Martingales and Itô Integrals

For any two processes �; �, the stochastic integral of � with respect to � is the
process

R
�d� defined by

Z s

0

�d� D
Z s

0

�.t/d�.t/ D
X

t<s

�.t/d�.t/

for all s 2 T. Note that d.t/ D tCdt�t D dt for all t 2 Tnf1g, whence for the process
id D .t/t2T we have

R s

0
�d id D R s

0
�.t/d.t/ D R s

0
�.t/dt . (Since the radically

elementary approach to stochastic processes does not use conventional Riemann
integrals, there is no danger of confusion attached to the notation

R s

0
�.t/dt .)

Note that since � and T are finite, the expectation operator E and the finite
integral

R �dt always commute.

Theorem 3.1. Let .Gt /t2T be a filtration. A process m is a .G; P /-martingale if and
only if

R
�dm is a .G; P /-martingale for all G-adapted m.

Proof. The constant deterministic process .1/t2T is clearly adapted and m can be
written as m D R

1dm.
Conversely, suppose m is a martingale and let � be G-adapted. Then for all t 2

T n f1g,
E Œ�.t/dm.t/jGt � D �.t/ E Œdm.t/jGt �„ ƒ‚ …

D0

D 0;

so
R

�dm is indeed a .G; P /-martingale. ut
Stochastic integrals with respect to W are also called Itô integrals. A martingale

with respect to F D .Ft /t2T (the filtration generated by W ) is just an Itô integral of
some adapted process, and vice versa:
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20 3 Radically Elementary Stochastic Integrals

Theorem 3.2 (Martingale representation theorem and converse). A stochastic
process .mt/t2T is an .F; P /-martingale if and only if there exists a unique
F-adapted process � D .�t /t2Tnf1g such that for all s 2 T,

m.s/ D m.0/ C
Z s

0

�.t/dW.t/:

E
h
jm.s/j2

i
is limited for all s 2 T if and only if E

hR 1

0

ˇ
ˇ�.t/2

ˇ
ˇ dt
i

is limited.

Proof. First, let m be a martingale. Let t 2 T n f1g. Since m is F-adapted, dm.t/ is
FtCdt -measurable and therefore, there is some f W Rt=dtC1 ! R such that

dm.t/.!/ D f .dW.0/.!/; : : : ; dW.t/.!//

for all ! 2 �. Therefore, exploiting that W has independent increments, each with

distribution
ıp

dt
Cı�

p
dt

2
, we obtain

E Œdm.t/jFt �

D E
h

f
�

dW.0/; : : : ; dW .t � dt/ ;
p

dt
�

�fdW.t/Dp
dtg
ˇ
ˇ
ˇFt

i

CE
h

f
�

dW.0/; : : : ; dW .t � dt/ ; �p
dt
�

�fdW.t/D�p
dtg
ˇ
ˇ
ˇFt

i

D f
�

dW.0/; : : : ; dW .t � dt/ ;
p

dt
�

P
n
dW.t/ D p

dt
o

Cf
�

dW.0/; : : : ; dW .t � dt/ ; �p
dt
�

P
n
dW.t/ D �p

dt
o

D 1

2
f
�

dW.0/; : : : ; dW .t � dt/ ;
p

dt
�

C1

2
f
�

dW.0/; : : : ; dW .t � dt/ ; �p
dt
�

Since m is a martingale, E Œdm.t/jFt � D 0, hence

f
�

dW.0/; : : : ; dW .t � dt/ ;
p

dt
�

D �f
�

dW.0/; : : : ; dW .t � dt/ ; �p
dt
�

:

Defining

#.t/ D f
�

dW.0/; : : : ; dW .t � dt/ ;
p

dt
�

;
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we get

dm.t/ D f
�

dW.0/; : : : ; dW .t � dt/ ;
p

dt
�

�fdW.t/Dp
dtg

Cf
�

dW.0/; : : : ; dW .t � dt/ ; �p
dt
�

�fdW.t/D�p
dtg

D f
�

dW.0/; : : : ; dW .t � dt/ ;
p

dt
�

�fdW.t/Dp
dtg

�f
�

dW.0/; : : : ; dW .t � dt/ ;
p

dt
�

�fdW.t/D�p
dtg

D #.t/�fdW.t/Dp
dtg � #.t/�fdW.t/D�p

dtg
D #.t/dW.t/=

p
dt :

By definition, #.t/ is Ft -measurable. Hence, if we define �.t/ D #.t/=
p

dt , it is
also Ft -measurable and

dm.t/ D �.t/dW.t/:

Since t was arbitrary, this holds for any t , and yields, after writing m.s/ � m.0/ as
a telescoping sum,

m.s/ D m.0/ C
X

t<s

dm.t/ D m.0/ C
X

t<s

�.t/dW.t/:

If there were another process Q� D � Q�t

�
t2Tnf1g such that

R Q�dW D m D R
�dW ,

then for all t 2 T n f1g,

Q�.t/dW.t/ D dm.t/ D �.t/dW.t/;

whence Q�.t/ D �.t/ since dW.t/ D ˙p
dt ¤ 0, therefore Q� D �, proving the

uniqueness of �.
Conversely, suppose m.s/ D m.0/ C R s

0 �.t/dW.t/ for all s 2 T for some
F-adapted �. The definition of the stochastic integral and the F-adaptedness of W

imply that m is F-adapted. It remains to be shown that E Œdm.t/jFt � D 0 for all
t 2 T n f1g. This is straightforward:

E Œdm.t/jFt � D E Œ�.t/dW.t/jFt � D �.t/E ŒdW.t/jFt � D �.t/ E ŒdW.t/�
„ ƒ‚ …

D0

:

By the Itô isometry (Lemma 3.4), one has

E
h
jm.s/j2

i
D E

�Z s

0

ˇ
ˇ�.t/2

ˇ
ˇ dt

�

;
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and the right-hand side is monotonely increasing in s. Hence, E
h
jm.s/j2

i
is limited

for all s 2 T if and only if E
�R s

0

ˇ
ˇ�.t/2

ˇ
ˇ dt
	

is. ut
Definition 3.3. A stochastic process � D .�.t//t2T is called a normalized martin-
gale (or just normalized) if and only if

8t 2 T n f1g E Œd�.t/jFt � D 0; E
�
.d�.t//2

ˇ
ˇFt

	 D dt:

The Wiener walk W , for example, is normalized.

Lemma 3.4 (Radically elementary Itô isometry). Let m be a normalized mar-
tingale and � be an F-adapted stochastic process. Then for all s; v 2 T with s � v,

E

"ˇ
ˇ
ˇ
ˇ

Z s

v

�.t/dm.t/

ˇ
ˇ
ˇ
ˇ

2
ˇ
ˇ
ˇ
ˇ
ˇ
Fv

#

D E

�Z s

v

�.t/2dt

ˇ
ˇ
ˇ
ˇFv

�

:

Proof.

E

"ˇ
ˇ
ˇ
ˇ

Z s

v

�.t/dm.t/

ˇ
ˇ
ˇ
ˇ

2
ˇ
ˇ
ˇ
ˇ
ˇ
Fv

#

D E

2

4

 
sX

tDv

�.t/dm.t/

!2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
Fv

3

5

D 2
X

v�u<t<s

E Œ�.t/dm.t/�.u/dm.u/jFv� C
X

v�t<s

E
�
�.t/2dm.t/2

ˇ
ˇFv

	

D 2
X

v�u<t<s

E ŒE Œ�.t/dm.t/�.u/dm.u/jFt �jFv�

C
X

v�t<s

E
�
E
�
�.t/2dm.t/2

ˇ
ˇFt

	ˇˇFv

	

D 2
X

v�u<t<s

E Œ�.t/E Œdm.t/jFt � �.u/dm.u/jFv�

C
X

v�t<s

E
�
�.t/2E

�
dm.t/2

ˇ
ˇFt

	ˇˇFv

	

D 0 C
X

v�t<s

E
�
�.t/2dt

ˇ
ˇFv

	 D E

"
X

v�t<s

�.t/2dt

ˇ
ˇ
ˇ
ˇ
ˇ
Fv

#

D E

�Z s

v

�.t/2dt

ˇ
ˇ
ˇ
ˇFv

�

:

ut
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Remark 3.5. Nelson [60, deliberations following Theorem 13.1, p. 55] has shown
that if m is a normalized martingale such that dm.t/ is infinitesimal for all t 2
T n f1g, then m is P -a.s. continuous.

3.2 Radically Elementary Itô Processes

An Itô process is essentially an Itô integral plus an absolutely continuous process.

Definition 3.6. Let NW be a Wiener process, let �.0/ 2 R, and let � D .�.t//t2Tnf1g
and 	 D .	.t//t2Tnf1g be two F-adapted processes. A stochastic process � is called
an Itô process on .�; P / with respect to NW and with drift coefficient �, diffusion
coefficient 	 and initial value �.0/ if and only if

�.s/ D �.0/ C
Z s

0

�.t/dt C
Z s

0

	.t/d NW .t/

for all s 2 T. The equation

8t 2 T n f1g d�.t/ D �.t/dt C 	.t/d NW .t/

is called the stochastic differential equation solved by �.

The representation of an Itô process in the form � D �.0/ C R
�.t/dt CR

	.t/dW.t/ is called Itô decomposition. Under certain assumptions, the Itô decom-
position is essentially unique. We give a proof under fairly restrictive assumptions
(recall that 
 denotes the normalized counting measure on T n fT g):

Theorem 3.7 (Uniqueness of the Itô decomposition). Let �1; �2; 	1; 	2 be F-
adapted processes. Suppose for all t 2 T n f1g, we have

�1.t/dt C 	1.t/dW.t/ D �2.t/dt C 	2.t/dW.t/ C R .t C dt/ .dt/3=2 (3.1)

for some R.t Cdt/ such that E
� R 1

0
R.t Cdt/2dt

	
is limited.1 Assume E

� R 1

0
j�1.t/�

�2.t/j2dt
	

is limited. Then for P -a.e. ! 2 � and 
-a.e. t 2 T n f1g,

	1.t/.!/ ' 	2.t/.!/; �1.t/.!/ ' �2.t/.!/:

Proof. Put � D �1 � �2 and 	 D 	1 � 	2. We need to verify that for P -a.e. ! 2 �

and 
-a.e. t 2 T n f1g, 	.t/.!/ ' 0 ' �.t/.!/.

1We denote this random variable by R .t C dt / rather than R .t/ because it is FtCdt -measurable,
but in general not Ft -measurable.
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For this purpose, first note that by definition of � and 	 and by the assumption
(3.1) in the Theorem, we have for all t 2 T n f1g,

�.t/dt D 	.t/dW.t/ C R .t C dt/ .dt/3=2: (3.2)

Squaring both sides of this equality and afterwards rearranging terms yields
�.t/2.dt/2 � R .t C dt/2 .dt/3 � 2R .t C dt/ .dt/3=2dW.t/ D 	.t/2dt , hence
(dropping nonnegative terms and using the triangle inequality)

E

�Z s

0

	.t/2dt

�

D
Z s

0

E
�
	.t/2

	
dt

D
X

t<s

E
�
�.t/2

	
.dt/2 �

X

t<s

E
�
R.t C dt/2

	
.dt/3

�2
X

t<s

E ŒR .t C dt/ dW.t/� .dt/3=2

�
X

t<s

E
�
�.t/2

	
.dt/2 � 2

X

t<s

E ŒR .t C dt/ dW.t/� .dt/3=2

�
X

t<s

E
�
�.t/2

	
.dt/2

C2
X

t<s

jE ŒR .t C dt/ dW.t/�j .dt/3=2:

However, the last expression can be estimated, due to Jensen’s inequality, as follows:

jE ŒR .t C dt/ dW.t/�j � E
h
R .t C dt/2 dt

i1=2

;

so we actually have shown that

E

�Z s

0

	.t/2dt

�

� E

�Z s

0

�.t/2dt

�

dt (3.3)

C2
X

t<s

�
E
h
R .t C dt/2

i
dt
�1=2

.dt/3=2:

In order to further simplify the right-hand side, we apply Jensen’s inequality again
(this time for the average on T \ Œ0; s/ as expectation operator):

X

t<s

�
E
h
R .t C dt/2

i
dt
�1=2

D card .T \ Œ0; s//
1

card .T \ Œ0; s//

X

t<s

�
E
h
R .t C dt/2

i
dt
�1=2
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� card .T \ Œ0; s//

 
1

card .T \ Œ0; s//

X

t<s

E
h
R .t C dt/2

i
dt

!1=2

D card .T \ Œ0; s//1=2 E

�Z s

0

R .t C dt/2 dt

�1=2

:

Inserting this into Eq. (3.3) and exploiting that card .T \ Œ0; s// D s=dt � 1=dt ,
hence card .T \ Œ0; s//1=2 D .dt/�1=2, we conclude that

E

�Z s

0

	.t/2dt

�

� E

�Z 1

0

�.t/2dt

�

dt C 2E

�Z 1

0

R .t C dt/2 dt

�1=2

dt:

However, by assumption, both E
hR 1

0
R .t C dt/2 dt

i
and E

hR 1

0
�.t/2dt

i
are lim-

ited, whence

E

�Z s

0

	.t/2dt

�

D O.dt/ ' 0:

This entails that for P -a.e. ! 2 � and 
-a.e. t 2 T n f1g, 	.t/.!/ ' 0 (by
Theorem 2.7).

In order to complete the proof, we also need to verify that �.t/.!/ ' 0 for P -a.e.
! 2 � and 
-a.e. t . To achieve this, we first compute (the conditional expectation
of) �.t/dt . Now, according to Eq. (3.2), the latter term is the same as 	.t/dW.t/ C
R .t C dt/ .dt/3=2, hence, using the Ft -linearity of the operator E Œ �jFt �, we get

�.t/dt D E Œ�.t/dt jFt � D 	.t/ E ŒdW.t/jFt �„ ƒ‚ …
D0

CE ŒR .t C dt/jFt � .dt/3=2:

Therefore, �.t/ D E ŒR .t C dt/jFt � .dt/1=2, hence (applying the conditional
Jensen inequality)

�.t/2 D E ŒR .t C dt/jFt �
2 dt

� E
h

R .t C dt/2
ˇ
ˇ
ˇFt

i
dt:

It follows that

E

�Z 1

0

�.t/2dt

�

� E

�Z 1

0

E
h

R .t C dt/2
ˇ
ˇ
ˇFt

i
dt

�

dt

D
Z 1

0

E
h
E
h

R .t C dt/2
ˇ
ˇ
ˇFt

i
dt
i

dt
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D
Z 1

0

E
h
R .t C dt/2 dt

i
dt

D E

�Z 1

0

R .t C dt/2 dt

�

dt:

Since E
hR 1

0
R .tCdt/2 dt

i
was assumed to be limited, we deduce E

hR 1

0
�.t/2dt

i
D

O.dt/ ' 0. This, however, means—again by Theorem 2.7—that �.t/.!/ ' 0 for
P -a.e. ! 2 � and 
-a.e. t 2 T n f1g. ut

For special Itô processes one can prove their a.s. limitedness:

Lemma 3.8. If � is an Itô process with respect to W , with limited initial value �.0/,

with drift coefficient � and diffusion coefficient 	 . Suppose that E
hR 1

0 	.t/2dt
i

is

limited and that � is a.s. limited. Then � is a.s. limited.

Proof. Since � is a.s. limited, it follows that a.s.
R s

0
�.t/dt is limited (because

a.s. maxt2Tnf1g j�.t/j is limited and maxs2T
ˇ
ˇR s

0
�.t/dt

ˇ
ˇ � maxt2Tnf1g j�.t/j), and

hence so is �.0/CR s

0
�.t/dt . What remains to be shown is that

R
	dW is a.s. limited.

However,

E

"ˇ
ˇ
ˇ
ˇ

Z 1

0

	dW

ˇ
ˇ
ˇ
ˇ

2
#

D E

�Z 1

0

	.t/2dt

�

by the Itô isometry (Lemma 3.4), hence by the Cauchy–Schwarz inequality,

E

�ˇˇ
ˇ
ˇ

Z 1

0

	dW

ˇ
ˇ
ˇ
ˇ

�

� E

�Z 1

0

	.t/2dt

�1=2

;

and the right-hand side is limited by assumption. Since
R

	dW is a martingale
(Theorem 3.2), we may apply the corollary to Nelson’s martingale inequality
(Corollary 2.13) and obtain that

R
	dW is a.s. limited. Since we have already seen

that
R

�.t/dt is a.s. limited, we conclude that � is a.s. limited. ut

3.3 A Basic Radically Elementary Itô Formula

A function f W R ! R is said to be uniformly limited if and only if there is some
limited real C such that jf .x/j � C for all x 2 R. f is said to be limited if and
only if f .x/ is limited for all limited x 2 R.

If ! 2 � and � is a stochastic process, then �.!/ will also be called the
!-trajectory of �; a trajectory � W T0 ! R is said to be limited if and only if
�.t/ is limited for all t 2 T0.

Let now p 2 R. A trajectory � W T0 ! R is said to be o ..dt/p/ (limited,
respectively) if and only if maxt2T0 j�.t/j is o ..dt/p/ (limited, respectively).
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The following result, a basic radically elementary version of the Itô–Doeblin
formula, is essentially due to Benoı̂t [10, Proposition 4.6.1]. It allows to calculate
the increment process of a function of a Wiener walk plus linear drift.

Lemma 3.9 (Itô–Doeblin formula for Wiener walks with additive linear drift).
Let L.t/ D �t C 	W.t/ for all t 2 T for limited �; 	 2 R, and let f be a thrice
continuously differentiable function. Then for every s 2 T and every ! such that the
!-trajectories of f 00.L/ and f 000.L/ are o

�
.dt/�1=2

�
,

f .L.s/.!// � f .L.0/.!// '
Z s

0

f 0.L.t/.!//dL.t/.!/ (3.4)

C	2

2

Z s

0

f 00.L.t/.!//dt:

In particular, if f 00 and f 000 are uniformly limited, then the above formula (3.4)
holds for all ! 2 �.

Proof. Let us suppress the argument !. Fix t 2 T n f1g. Then, by the third-order
Taylor formula,

df .L.t// D f 0.L.t//dL.t/ C 1

2
f 00.L.t// .dL.t//2 C 1

6
f 000.�.t// .dL.t//3 ;

for some �.t/ 2 ŒL.t/; L.t C dt/�. By assumption on L,

.dL.t//2 D �2.dt/2 C 2�	dt dW.t/ C 	2dt;

hence
.dL.t//3 D �

�2dt C 2�	dW.t/ C 	2
�3=2

.dt/3=2:

By assumption,

max
t2T\Œ0;s�

ˇ
ˇf 00 .L.t//

ˇ
ˇ _ ˇˇf 000 .L.t//

ˇ
ˇ D o

�
.dt/�1=2

�
;

so

ˇ
ˇ
ˇ
ˇf .L.s// � f .L.0// �

Z s

0

f 0.L.t//dL.t/ � 	2

2

Z s

0

f 00.L.t//dt

ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ
ˇ

X

t<s

df .L.t//f 0.L.t//dL.t/ � 	2

2
f 00.L.t//dt

ˇ
ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ
ˇ

X

t<s



1

2
f 00.L.t//

�
�2.dt/2 C 2�	dt dW.t/

�
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C 1

6
f 000.�.t//

�
�2dt C 2�	dW.t/ C 	2

�3=2
.dt/3=2

�ˇˇ
ˇ
ˇ

� C
X

t<s

1

2

ˇ
ˇ�2.dt/2 C 2�	dt dW.t/

ˇ
ˇ

C1

6

ˇ
ˇ
ˇ
�
�2dt C 2�	dW.t/ C 	2

�3=2
.dt/3=2

ˇ
ˇ
ˇ

� C
s

dt



1

2
�2.dt/2 C j�	 jdt

p
dt C 1

6

�
�2dt C 2j�	 jpdt C 	2

�3=2

.dt/3=2

�

� C s



1

2
�2dt C j�	 jpdt C 1

6

�
�2dt C 2j�	 jpdt C 	2

�3=2 p
dt

�

' 0:

ut
In applications, one will rather often not be able to literally apply this version of

the Itô–Doeblin formula in Lemma 3.9, as it is usually not obvious how to establish
sufficient upper bounds on f 00.L/ of f 000.L/. Nevertheless, the proof idea—i.e. a
third-order Taylor expansion—will usually be applicable even in those settings. An
important example will be studied in Sect. 3.4 of Chap. 3, which is concerned with
a particularly simple class of Itô processes.

3.4 Analytic Excursion: A Radically Elementary Treatment
of Geometric Itô Processes with Monotone Drift

Geometric Itô processes are processes which satisfy a stochastic differential equa-
tion of the form

8t 2 T n f1g d�.t/ D �.t/�.t/dt C �.t/	.t/dW.t/ (3.5)

for some limited �.0/. For limited �; 	 , one can show that �.t/ > 0 for all t 2 T.
(See the proof of Lemma 3.10.) Hence, whenever �.t/ � 0 for all t 2 T or �.t/ � 0

for all t 2 T, the drift coefficient of the Itô process � will be either monotonely
increasing or decreasing in t (for every fixed ! 2 �).

Such processes are of paramount importance in applications of Girsanov’s
theorem, in particular to mathematical finance, and therefore merit to be studied
in some detail. (For instance, the radically elementary analogue of the stock price
process of the classical Black–Scholes [18] model satisfies Eq. (3.5) for constant
limited �; 	 .) However, the main parts of the book—in particular our version of
Girsanov’s theorem—do not depend on the results of this Sect. 3.4.
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Lemma 3.10. Let �; 	 be F-adapted limited processes, let � be the process given
by

8t 2 T n f1g d�.t/ D �.t/�.t/dt C �.t/	.t/dW.t/

for some limited �.0/ 2 R>0. Suppose that either �.t/ � 0 for all t 2 T or �.t/ � 0

for all t 2 T. Then, for all s 2 T, �.s/ is L1.P / with limited second moment.
Moreover, with probability 1, one has �.s/ > 0 for all s 2 T.

The proof uses a radically elementary analogue of the Harnack inequality.

Lemma 3.11 (Harnack inequality). Let ˛; 
 2 R>0 and v W T ! R. If

8s 2 T v.s/ � ˛ C 


Z s

0

v.t/dt;

then
8s 2 T v.s/ � ˛e
s :

Proof of the Harnack inequality. The proof proceeds by induction on s 2 T.
Let C D e
 and suppose v.s/ � ˛C t for all t < s. Then, using that e
 dt DP1

nD0

n.dt /n

nŠ
� 1 C 
 dt , one obtains

v.s/ D ˛ C 


Z s

0

˛C t dt D ˛ C 
˛

s=dt�1X

`D0

C ` dt dt

D ˛ C 
˛
C s � 1

C dt � 1
dt D ˛




1 C 
 dt
e
s � 1

e
 dt � 1

�

� ˛




1 C 
 dt
e
s � 1


 dt

�

D ˛e
s D ˛C s:

ut
Proof of Lemma 3.10. Since �; 	; �.0/ are limited, there must be some limited
C 2 R>0 such that j�.t/j _ j	.t/j _ �.0/ � C for all t 2 T. Combining this
estimate with the fact that Itô integrals are martingales (Theorem 3.2), the Itô
isometry (Lemma 3.4) and the Cauchy–Schwarz inequality, we may calculate for
all s 2 T,
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C
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C
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Note that 1
s

R s

0 �dt defines an expectation operator on T \ Œ0; s/. Applying Jensen’s
inequality, we find for arbitrary � and s 2 T,
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Applying this to � D �� in the above estimates, we obtain
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Now, clearly x1=2 � 1 C x for all x � 0, whence

E
�
�.s/2

	 � 3C 2 C 6C 2 E

�Z s

0

�.t/2dt

�

:

Applying the Harnack inequality (Lemma 3.11) with v W t 7! E
�
�.t/2

	
and suitable

˛ and 
 , we find that E
�
�.s/2

	
is limited (as C is limited). Therefore, �.s/ is L1.P /

by Remark 2.9, and E Œj�.s/j� is limited (by the Cauchy–Schwarz inequality).
Now one can prove that �.t/ > 0 for all t 2 T. Indeed, let ! 2 � be such

that ft 2 T W �.t/.!/ � 0g is nonempty, and let t! C dt be its least element
(which must be � dt , as �.0/ > 0). Then, �.t!/.!/ > 0 while 0 � �.t! C
dt/.!/ D �.t!/.!/ .1 C �.t/.!/dt C 	.t!/.!/dW.t!/.!//, so 1 C �.t/.!/dt C
	.t!/.!/dW.t!/.!/ � 0, hence either 	.t!/.!/ � � .1 C �.t/.!/dt/ =

p
dt (if

dW.t!/.!/ D p
dt) or 	.t!/.!/ � .1 C �.t/.!/dt/ =

p
dt (if dW.t!/.!/D�p

dt).
In either case, 	.t!/.!/ is unlimited (as � is limited and thus 1 C �.t/.!/dt ' 1).
Hence the set of ! such that �.t/.!/ > 0 for all t 2 T is for every limited C 0 > 0 a
superset of the set of all ! 2 � such that j	.t/.!/j � C 0, and for sufficiently large
limited C 0, this set has probability 1, as 	 is a limited process.

Therefore, since �.t/ is either nonpositive for all t2T or nonnegative for all t 2 T,�R s

0
�.t/�.t/dt

�
s2T is either a decreasing or an increasing process. On the other

hand,
R

�	dW is a martingale (by the converse of the martingale representation
theorem, Theorem 3.2) as the recursive definition of � ensures its adaptedness, so
� D �.0/CR �.t/�.t/dtCR �.t/	.t/dW.t/ is a submartingale or a supermartingale.
Therefore, we may apply the corollary to Nelson’s super-/submartingale inequality
(Corollary 2.13), which, combined with the limitedness of �.0/ and E Œj�.s/j� (see
above), yields that � is a.s. limited. ut
Lemma 3.12. Let �; 	 be limited F-adapted stochastic processes, and let � be the
process defined by

d�.t/ D �.t/�.t/ dt C �.t/	.t/ dW.t/
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for all t 2 T n f1g, wherein �.0/ is a limited real number > 0. Suppose that either
�.t/ � 0 for all t 2 T or �.t/ � 0 for all t 2 T. Then, a.s. for all s 2 T,

�.s/ ' �.0/ exp


Z s
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�.t/dt C
Z s

0

	.t/ dW.t/ � 1

2

Z s

0

	.t/2dt

�

: (3.6)

Hence, if �.0/ � 0, then a.s. for all s 2 T, �.s/ � 0.

Proof. Since 1
�.t/

d�.t/ D R s

0 �.t/dt C R s

0 	.t/ dW.t/ (the subtrahend in the
argument of the exponential function in Eq. (3.7)) it is enough to prove that
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1
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Z s
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	.t/2dt;
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�.t/2
.d�.t//2 D �.t/2.dt/2 C2�.t/	.t/dtdW.t/C	2dt D 	.t/2dt CO

�
.dt/3=2

�
;

it is actually enough to show that
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Z s

0

1

�.t/
d�.t/ � 1

2

Z s

0

1

�.t/2
.d�.t//2 : (3.7)

Now, since ln0 W x 7! 1=x, ln00 W x 7! �1=x2, ln000 W x 7! 2=x3, the third-order
Taylor formula yields for every t 2 T
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�.t/2
.d�.t//2 C 1
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for some N�.t/ 2 Œ�.t/; � .t C dt/� [ Œ� .t C dt/ ; �.t/�, hence

ln �.s/ � ln �.0/ D
Z s

0

d .ln �.t// D
Z s

0

1

�.t/
d�.t/ � 1

2

Z s

0

1

�.t/2
.d�.t//2

C1

3

Z s

0

1

N�.t/3
.d�.t//3

for all s 2 T. All we need to prove therefore is that a.s. for all s 2 T,
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0

1

N�.t/3
.d�.t//3 D

Z s

0

�.t/3

N�.t/3
.�.t/dt C 	.t/dW.t//3 ' 0:

However, combining �.t/ > 0 with the fact that N�.t/ 2 Œ�.t/; �.t C dt/� [ Œ�.t C
dt/; �.t/�, one gets the following uniform bound:
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Moreover, �.t/dt C 	.t/dW.t/ D O
�
.dt/1=2

�
, therefore we obtain indeed a.s.
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� ' 0:

ut

3.5 The Radically Elementary Version of Lévy’s
Characterization of Wiener Processes

One of the most remarkable results in Nelson’s Radically elementary probability
theory is a single, unified theorem, called “de Moivre–Laplace–Lindeberg–Feller–
Wiener–Lévy–Doob–Erdős–Kac–Donsker–Prokhorov theorem” by Nelson [60,
Chap. 18], which entails:

• The necessity and sufficiency of the Lindeberg–Feller condition for the central
limit theorem of de Moivre and Laplace.

• Wiener’s result about the a.s. continuity of the trajectories of Wiener processes.
• Donsker’s invariance principle.
• Lévy’s martingale characterization of Wiener processes.

The last item (Lévy’s martingale characterization of Wiener processes) is of great
importance in stochastic analysis and its applications. It means that whenever a
martingale (with respect to the filtration generated by a given Wiener process) has
the same quadratic variation as the Wiener process, it already is the Wiener process;
a related result is the theorem that the only path-continuous and square-integrable
martingale which has stationary and independent increments (i.e. is a Lévy process2)
is a (constant multiple of a) Wiener process.

Keeping in mind that the filtration generated by the Wiener process is a
particularly simple and natural one, Lévy’s martingale characterization informally
asserts that any martingale which has a few desirable properties will already be, up
to multiplicative constants, a Wiener process or the exponential of a Wiener process
plus a linear drift term (a geometric Wiener process). As a consequence, Lévy’s
martingale characterization can be fruitfully applied both within pure mathematics

2For more on Lévy processes—from the perspective of radically elementary probability theory—
see Chap. 9.
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(for instance, in the proof of Girsanov’s theorem, which establishes a relation
between changing the probability measure and adding a linear drift term to the
Wiener process) and in mathematical finance (as a mathematical rationale for the
adequacy of the Samuelson–Black–Scholes model).

Nelson’s unified result, which entails a radically elementary version of Lévy’s
martingale characterization, can be stated as follows:

Remark 3.13. (Cf. Nelson [60, Theorem 18.1, p. 75].) For a normalized martingale
.�.t//t2T with �.0/ D 0, the following three conditions are equivalent:

• � is a Wiener process,
• �.1/ is L2.P / and � is P -a.s. continuous,
• � satisfies the (near) Lindeberg condition, i.e.
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for all " � 0.
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