Chapter 3
Radically Elementary Stochastic Integrals

3.1 Martingales and It6 Integrals

For any two processes &, 1, the stochastic integral of n with respect to & is the
process [ ndé defined by

[ nae = [ oz = s

1<s

forall s € T. Note thatd(¢) =t +df—¢t =dt forall t € T\{1}, whence for the process
id = (t),er we have [ ndid = [ n(t)d(t) = [, n(r)dt. (Since the radically
elementary approach to stochastic processes does not use conventional Riemann
integrals, there is no danger of confusion attached to the notation fos n(t)de.)

Note that since 2 and T are finite, the expectation operator E and the finite
integral [ -dr always commute.

Theorem 3.1. Let (G;),crp be afiltration. A process m is a (G, P)-martingale if and
only if [ ndm is a (G, P)-martingale for all 5-adapted m.

Proof. The constant deterministic process (1);er is clearly adapted and m can be
written as m = [ 1dm.
Conversely, suppose m is a martingale and let  be G-adapted. Then for all ¢ €
T\ {1},
E [n(1)dm()| §;] = n(@) E [dm(1)| 5] = 0,
———

=0
so [ ndm is indeed a (G, P)-martingale. ]
Stochastic integrals with respect to W are also called 116 integrals. A martingale

with respect to I = (J;), ¢y (the filtration generated by W) is just an It integral of
some adapted process, and vice versa:
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20 3 Radically Elementary Stochastic Integrals

Theorem 3.2 (Martingale representation theorem and converse). A stochastic
process (m;),cr is an (F, P)-martingale if and only if there exists a unique
F-adapted process ¢ = (¢1),er\q1y Such that for all s € T,

m(s) = m(0) +/O ¢ (t)dW(t).

E ||m(s) 2\ is limited forall s € T ifand only if E ! (t)?| dt | is limited.
[Im )| | if and only if E [ [y |6

Proof. First, let m be a martingale. Let r € T \ {1}. Since m is F-adapted, dm () is
F; +4:-measurable and therefore, there is some f : R’ /dt+1 _5 R such that

dm(t)(w) = f(@dW(0)(w),...,dW(t)(w))

for all w € Q2. Therefore, exploiting that W has independent increments, each with

8@4%3_@
2

distribution , we obtain

E [dm(1)] 5]
= E[/ (aW(O).....dW (t = d1) VT ) gy i)

7]

VE [f (AWO). ... dW (¢ = dr), ~Ar) st gt

7]

— 7 (dW(O), AW —dp), JE) P {dW(r) - JE}
+f (dW(O), AW —dp), —JE) P {dW(r) - —JE}
- %f (dW(O),...,dW(z—dz),«/E)
+%f (dW(O), L dW (e —dp), —«/E)
Since m is a martingale, E [dm(r)| %] = 0, hence
f (dW(O), AW —dp), JE)
——f (dW(O),...,dW(z—dr),—«/E).

Defining
9() = f (dW(O),...,dW (t —dr), \/E) :
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we get

dm(t) = f (dW(O), o AW = dn) VAT Ay i)
+f (dW(O), AW —dr), —«/5) Xtawio=—a)
= £ (aW().....dW (¢ = 1), V) xgaprm vy
—f (dW(O), o dW (= d0) VA K= vy

= 0O X awiy=varr — VO X fawiy=—ar}
= 9(1)dW(r)/dt.

By definition, 9 (¢) is F,-measurable. Hence, if we define ¢ (1) = 9 (r)/~/dt, it is
also F,-measurable and
dm(t) = ¢ ()dW(1).

Since ¢ was arbitrary, this holds for any ¢, and yields, after writing m(s) — m(0) as
a telescoping sum,

m(s) = m(0) + Y _dm(r) = m(0) + Y _ p()dW(1).

t<s t<s

If there were another process ¢ = (¢) such that [ ¢dW = m = [¢dW,

then forallz € T \ {1},

teT\{1}

P()AW (1) = dm(t) = $(t)dW(t),

whence ¢(1) = ¢(¢) since dW(r) = +£+/dt # 0, therefore ¢ = ¢, proving the
uniqueness of ¢.

Conversely, suppose m(s) = m(0) + [, ¢(1)dW(t) for all s € T for some
JF-adapted ¢. The definition of the stochastic integral and the F-adaptedness of W
imply that m is F-adapted. It remains to be shown that E [dm(¢)|F,] = O for all
t € T\ {1}. This is straightforward:

Eldm()|F] = E[¢@)dW ()| F:] = ¢ E[dW ()| Fi] = ¢(1) E[dW(@)].

=0

By the It6 isometry (Lemma 3.4), one has

E [|m(s)|2] =E UO ¢(1)?| dt} :
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and the right-hand side is monotonely increasing in s. Hence, E [|m(s) |2] is limited
forall s € Tif and only if E [ [ |¢(1)?| dz] is. O

Definition 3.3. A stochastic process § = (§(t)),cr is called a normalized martin-
gale (or just normalized) if and only if

vieT\{l}  E[d®)|F]=0.  E[WE0)’|F]=dr

The Wiener walk W, for example, is normalized.

Lemma 3.4 (Radically elementary Ito isometry). Let m be a normalized mar-
tingale and n be an F-adapted stochastic process. Then for all s,v € T with s > v,

2 s
E[ :ﬂ} =E U n(t)>de 5’0]

s 2
/ p(0)dm (1)

n(t)dm(z)

Proof.

N 2
E [ CFU} =E (Z n(t)dm(t)) Fy

=2 Y E@dm@On@dm@)|F,]+ Y E[n@)dm)*|F,]

=2 Y E[E[n@)dm()n(udmw)| F,]| F.]

+ > E[E[n@)dm)*| 5] F.]

VI<s

=2 Y E[nE [dm(t)| ] nw)dm )| F,)

v=u<t<s

+ Y E[n@)E [dm()*|F.]| 5]

v=<t<s
=0+ Y E[n@)’d|F,] = E[ > 0 s—z}
v<t<s v<t<s

=E U n(t)*dt

7]
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Remark 3.5. Nelson [60, deliberations following Theorem 13.1, p. 55] has shown
that if m is a normalized martingale such that dm(¢) is infinitesimal for all ¢ €
T\ {1}, then m is P-a.s. continuous.

3.2 Radically Elementary It6 Processes

An Itd process is essentially an It6 integral plus an absolutely continuous process.

Definition 3.6. Let W be a Wiener process, let £(0) € R, and let . = (W) rer\i1y
and o = (0(7)),er\(13 be two F-adapted processes. A stochastic process § is called

an Ité process on (2, P) with respect to W and with drift coefficient i, diffusion
coefficient o and initial value £ (0) if and only if

60 = €0+ [ par+ [ awaive
forall s € T. The equation
VieT\ {1} d&@t) = u(t)dt +o(t)dW (1)

is called the stochastic differential equation solved by &.

The representation of an Itd process in the form § = £(0) + [ u(r)dr +
[ o(t)dW(r) is called It6 decomposition. Under certain assumptions, the Itd decom-
position is essentially unique. We give a proof under fairly restrictive assumptions
(recall that v denotes the normalized counting measure on T \ {7'}):

Theorem 3.7 (Uniqueness of the Ito decomposition). Let i, 1, 01,0, be F-
adapted processes. Suppose for allt € T \ {1}, we have

wi()dr + oy (AW () = pa(r)dr + o2(t)dW(t) + R (t +dr) (d0)*?  (3.1)

for some R(t +dt) suchthat E [ fol R(t +dt)2dt] is limited." Assume E[ fol |1 (t)—
,uz(t)|2dt] is limited. Then for P-a.e. w € Q andv-a.e.t € T \ {1},

o1()(@) = o) (@),  m@) (@) = p(r) ().

Proof. Put u = 1 — 1y and 0 = o] — 0. We need to verify that for P-a.e. v € Q
andv-a.e.t € T\ {1},0(t)(w) ~ 0 >~ u(t)(w).

'We denote this random variable by R (¢ + dt) rather than R (¢) because it is Jt4:-measurable,
but in general not J;-measurable.
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For this purpose, first note that by definition of © and o and by the assumption
(3.1) in the Theorem, we have forall ¢ € T \ {1},

wu()dr = o(t)dW(t) + R (t +dr) (dr)*/%. (3.2)

Squaring both sides of this equality and afterwards rearranging terms yields
w(®)2(dr)> — R(t +dr)* (dr)® — 2R (t +dr) (dr)>2dW(r) = o(t)2dr, hence
(dropping nonnegative terms and using the triangle inequality)

* 2 _ * 2
E [/O o(t) dt:| _/O E[o(t)*]de

=Y E[u@®)?] @) =) E[R(t +dr)*] (dt)’

1<s 1<s

—2) E[R(t + dt) dW(1)] (dr)*/?

r<s

< D E[p@)?] (@) =2 E[R(t + dr) dW ()] (dr)*?
< Y E[u®)?] @)’

1<s

+2) |E[R (1 + dt) dW(@)]| (de)*/.

r<s

However, the last expression can be estimated, due to Jensen’s inequality, as follows:

172
|E[R(t +dr)dW()]| < E [R (t + dt)zdt] :

so we actually have shown that

E [/Oso(t)zdt:| <E [/0 ,u(t)zdt:| dt (3.3)

+2)° (E [R  + dt)z] dz)l/2 ()2,

t<s

In order to further simplify the right-hand side, we apply Jensen’s inequality again
(this time for the average on T N [0, 5) as expectation operator):

3 (E [R ¢+ dt)z] dz)l/2

1<s

— card (T N [0, 5)) Wln[os)) 3 (E [R  + dz)z] dt) 2

t<s
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12
< card (T n [O,S)) (m ZE [R (t + dt)z] df)

1<s

s 1/2
= card (T N [0,5))"/? E [/ R (1 +dr)? dt} )
0
Inserting this into Eq.(3.3) and exploiting that card (T N [0,5)) = s/df < 1/dt,
hence card (T N [0, 5))"/? = (dr)~"/2, we conclude that

1/2

E [/Osa(t)zdt:| <E Uol ,u(t)zdt:| dt +2E Uol R (t 4 dr)* dt:| dr.

However, by assumption, both £ [ fol R(t + dr)? dt] and E [ fol ,u(t)zdt] are lim-
ited, whence

N 2 _ N
E UO o) dt:| = O(dr) ~ 0.

This entails that for P-ae. o € Q and v-ae. t € T\ {1}, o(¢t)(w) >~ O (by
Theorem 2.7).

In order to complete the proof, we also need to verify that p(¢)(w) =~ 0 for P-a.e.
o € Q and v-a.e. . To achieve this, we first compute (the conditional expectation
of) p(t)dt. Now, according to Eq. (3.2), the latter term is the same as o (#)dW(¢) +
R (t + dt) (dt)*/?, hence, using the F;-linearity of the operator E [-| ], we get

u()de = E[pu(0)dt| F;] = o(t) E [dW(1)| Fi]
=0

+E[R(t +dr)|F,] (dr)*>.

Therefore, u(t) = E[R(t+ dt)|F;](dt)"/?, hence (applying the conditional
Jensen inequality)

w()? = E[R (@t +dn)|F)* dr
<E [R(z +dt)2‘iﬂ] dr.

It follows that

E |:/l,u(t)2dti| <E [/IE[R(t —i—dt)z)iﬂ]dt} dr
0 0

1
:/0 E[E[RG+d0p?|5]ar] ar
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1
- / E [R (t + dr)? dt] dr
0

_ ‘ 2 }
_E[/O R(t +dtr)~de | dr.

Since E [fol R (14dt)? dt] was assumed to be limited, we deduce E [fol ,u(t)zdt] =

O(dt) >~ 0. This, however, means—again by Theorem 2.7—that p(¢)(w) ~ 0 for
P-ae.we Qandv-ae.t €T\ {1}. O

For special It6 processes one can prove their a.s. limitedness:

Lemma 3.8. If§ is an Ito process with respect to W, with limited initial value & (0),
with drift coefficient | and diffusion coefficient o. Suppose that E [fol cr(t)zdt] is
limited and that [ is a.s. limited. Then & is a.s. limited.

Proof. Since p is a.s. limited, it follows that a.s. fos u(t)de is limited (because
a.s. max,er\ {1} |4 (?)| is limited and max,er UOS u(t)dt| < max;em\{13 |1 (¢)]), and
hence sois £(0)+ fos u(r)dt. What remains to be shown is that [ odW is a.s. limited.

However,
R 2 1
/odW =E[/ cr(t)zdt}
|10 0

by the It6 isometry (Lemma 3.4), hence by the Cauchy—Schwarz inequality,

E

1 - 1 5 :|1/2
E|:/0crdWH_E|:/O o(t)-de ,

and the right-hand side is limited by assumption. Since [odW is a martingale
(Theorem 3.2), we may apply the corollary to Nelson’s martingale inequality
(Corollary 2.13) and obtain that [ odW is a.s. limited. Since we have already seen
that [ p(¢)dt is a.s. limited, we conclude that £ is a.s. limited. O

3.3 A Basic Radically Elementary It6 Formula

A function f : R — R is said to be uniformly limited if and only if there is some
limited real C such that | f(x)| < C for all x € R. f is said to be limited if and
only if f(x) is limited for all limited x € R.

If o € Q and & is a stochastic process, then &(w) will also be called the
w-trajectory of §; a trajectory A : T — R is said to be limited if and only if
A(t) is limited for all t € T'.

Let now p € R. A trajectory A : T — R is said to be o ((df)?) (limited,
respectively) if and only if max,er |A(?)] is 0 ((d?)?) (limited, respectively).
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The following result, a basic radically elementary version of the It6—Doeblin
formula, is essentially due to Benoit [10, Proposition 4.6.1]. It allows to calculate
the increment process of a function of a Wiener walk plus linear drift.

Lemma 3.9 (Ito—Doeblin formula for Wiener walks with additive linear drift).
Let L(t) = ut + aW(t) forallt € T for limited 1,0 € R, and let f be a thrice
continuously differentiable function. Then for every s € T and every w such that the
w-trajectories of f"(L) and f"(L) are o ((d)~"/?),

F(L(s)(@)) = f(L(O)(@)) ~ /0 FIL@)(@)dL () (@) (34

02 3 "
+?/0 F(L()(w))dt.

In particular;, if " and f" are uniformly limited, then the above formula (3.4)
holds for all w € 2.

Proof. Let us suppress the argument w. Fix ¢ € T \ {1}. Then, by the third-order
Taylor formula,

df(L(1) = f'(L@)dL(t) + %f”(L(t)) dL(1))* + éf”’(é“(t)) @L(0))*.
for some ¢(t) € [L(¢), L(¢ + dt)]. By assumption on L,
(dL())* = p2(dt)* 4 2pode dW(r) + o>dt,

hence i
(AL(1))} = (12t + 2uodW () + 02)* (dr)¥2.

By assumption,

max | f"(L@)] v [ 7 (L@)] = o (@) ~7?).

teTN[0,s]

SO

s 2 K
'f(L(s))—f(L(O))— /0 FeanaLe - % /0 FU(L@)dr

2
S L) (LE)ALE) = 7 f (L)

t<s

> (%f (L)) (#*(dt)? + 2podt dW(1))

t<s
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+ o EO) (20 + 200000 + 0%) @02

<Cy % |1 (dr)? + 2podt dW ()|

r<s

3/2

1
+< ‘(/ﬁdt +2ucdW(t) + o) (dt)3/2‘

1 1 3/2
< Cé (Euz(dt)2 + |po|dr Vdr + 3 (uzdt + 2|po|Vdr + 02) (dt)3/2)

1 1 3/2
<Cs (E,uzdt+ I;wlx/d_t+6<u2dt+2|,ua|«/a+02> «/5)
~ 0.

O

In applications, one will rather often not be able to literally apply this version of
the Ito—Doeblin formula in Lemma 3.9, as it is usually not obvious how to establish
sufficient upper bounds on f”(L) of f”’(L). Nevertheless, the proof idea—i.e. a
third-order Taylor expansion—will usually be applicable even in those settings. An
important example will be studied in Sect. 3.4 of Chap. 3, which is concerned with
a particularly simple class of Itd processes.

3.4 Analytic Excursion: A Radically Elementary Treatment
of Geometric Ito Processes with Monotone Drift

Geometric It6 processes are processes which satisfy a stochastic differential equa-
tion of the form

VeeT\{l}  d§(1) = §()u@)dr +&@)o()dW () (3.5)

for some limited £(0). For limited y, o, one can show that £(¢) > O forall# € T.
(See the proof of Lemma 3.10.) Hence, whenever () > Oforallz € Tor u(t) <0
for all t € T, the drift coefficient of the Itd process £ will be either monotonely
increasing or decreasing in ¢ (for every fixed w € Q).

Such processes are of paramount importance in applications of Girsanov’s
theorem, in particular to mathematical finance, and therefore merit to be studied
in some detail. (For instance, the radically elementary analogue of the stock price
process of the classical Black—Scholes [18] model satisfies Eq. (3.5) for constant
limited w,o0.) However, the main parts of the book—in particular our version of
Girsanov’s theorem—do not depend on the results of this Sect. 3.4.
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Lemma 3.10. Let i, 0 be F-adapted limited processes, let £ be the process given
by
Vie T\{1}  d§@) = §()u@)dr + E(0)o()dW ()

for some limited £ (0) € R. Suppose that either ju(t) > 0 forallt € T or u(t) <0
for all t €T. Then, for all s € T, £(s) is L'(P) with limited second moment.
Moreover, with probability 1, one has £(s) > 0 forall s € T.

The proof uses a radically elementary analogue of the Harnack inequality.

Lemma 3.11 (Harnack inequality). Leto,y € R.gandv : T — R If

Vs eT v(s) <a+ )// v(t)dt,
0
then
Vs eT v(s) < ae”’.

Proof of the Harnack inequality. The proof proceeds by induction on s € T.
Let C = e’ and suppose v(s) < aC’ for all t < s. Then, using that e’ =
>0 U > 1+ y dt, one obtains

s/dr—1

v(s):ot—f—y/ aCldt = o + ya Z ctdyqr
0 =0
= o a1 ya L
—a+yoccdt_1 =all+y a1

<af1+ a1
o

< ydt—o
= we” =alC’.

|

Proof of Lemma 3.10. Since u,o,£(0) are limited, there must be some limited
C € R, such that |u(t)| Vv |o(¢)| v £(0) < C for all t+ € T. Combining this
estimate with the fact that It6 integrals are martingales (Theorem 3.2), the Itd

isometry (Lemma 3.4) and the Cauchy—Schwarz inequality, we may calculate for
alls €T,

E[£(s)%]

— 0P +260) | E [ /0 | s(zm(z)dr} L E [ /0 | s(z)o(ndW(r)}

=0
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s 2 s 2
+E U/O E()p(t)de ]+EU/O £(t)o(1)dW (1) }
+2E[( /0 s(rmo)dt) ( /0 sawmmn)}
2:|1/2
2 s

]+EU E(t)zcr(t)zdt:|
0
2 1/2 s
} EU/O £(t)o (1)dW (1)
2:|1/2
2 s
]+EU E(t)zcr(t)zdt:|
0
2 1/2 s 1/2
} EU ’;‘(t)zcr(t)zdt:| .
0

Note that % fg -d¢ defines an expectation operator on T N [0, 5). Applying Jensen’s
inequality, we find for arbitrary n and s € T,

1 /¢ 1 [°

1 N s
< sz—/ n(t)*dt = s/ n(t)dt
s Jo 0

<[ .

Applying this to n = £ in the above estimates, we obtain

< £(0) +2(0) E U /0 (O

+E[

12F U/O () p(r)de

/0 £ (o)

2:| 1/2

<£(0) +2(0) E U /0 e

+E[

12F U/O () (r)de

/0 £ (o)

2

2
:sZ

s 1/2
E[£(s)’] < £(0)* +2£(0) E [/0 5(1)2M(f)2df}

VE [/0 g(t)z,u(t)zdt:| Y E [/0 g(t)za(t)zdt}



3.4 A Radically Elementary Treatment of Geometric Itd Processes with Monotone Drift 31

s 1/2 K 1/2
+2F [ / S(t)z,u(t)zdt:| E [ / g(t)zo(t)zdt}
0 0

s 1/2
< C2+2C2E[/ é(z)zdz}
0
2 ' 2 2 : 2
+C E[/O E(1) dt}—i—C E[/O £(1) dt}
s 1/2 s 1/2
2 2 2
+2C EUO E(1) dt} E[/O £(1) dt}

s 1/2 s
<C*+2C*E [/ g(t)zdt:| +4C*E [/ g(t)zdt} .
0 0
Now, clearly xY2 <1+ x forall x > 0, whence
E[£(s)*] <3C*+6C*E [/ é(z)zdt} .
0

Applying the Harnack inequality (Lemma 3.11) withv : ¢ = E [E (t)z] and suitable
a and y, we find that £ [5 (s)z] is limited (as C is limited). Therefore, £(s) is L' (P)
by Remark 2.9, and E [|£(s)|] is limited (by the Cauchy—Schwarz inequality).

Now one can prove that £(z) > O for all # € T. Indeed, let ® € Q2 be such
that {t € T : £(t)(w) < 0} is nonempty, and let 7, + dr be its least element
(which must be > df, as £(0) > 0). Then, £(¢,)(®w) > 0 while 0 > &(z, +
di)(w) = §(to)(@) (1 + p@)(@)dr + 0 (1) (@)dW (1) (@), so 1 + pu(t)(w)dr +
0 (t,)(@)dW(t,)(w) < 0, hence either o(f,)(w) < — (1 + u(t)(w)dr) //dt (if
AW (1) (@) = ~/dD) or o (t,) (@) = (1 + p(0) (@)dr) /At GE AW (1) (@) =—/d0).
In either case, o (f,)(w) is unlimited (as p is limited and thus 1 + p(¢)(w)dt >~ 1).
Hence the set of w such that £ (¢)(w) > 0 forall 1 € T is for every limited C’ > 0 a
superset of the set of all w € Q such that |0 (¢)(w)| < C’, and for sufficiently large
limited C’, this set has probability 1, as ¢ is a limited process.

Therefore, since p(¢) is either nonpositive for all €T or nonnegative forall t € T,
( f(; & (t),u(t)dt)s oy 1s either a decreasing or an increasing process. On the other
hand, [§odW is a martingale (by the converse of the martingale representation
theorem, Theorem 3.2) as the recursive definition of & ensures its adaptedness, so
€ = E(0)+ [ E@)pu(r)dt+ [ E(1)o(1)dW(t) is a submartingale or a supermartingale.
Therefore, we may apply the corollary to Nelson’s super-/submartingale inequality
(Corollary 2.13), which, combined with the limitedness of £(0) and E [|£(s)]] (see
above), yields that £ is a.s. limited. O

Lemma 3.12. Let u, o be limited F-adapted stochastic processes, and let & be the
process defined by

dé(t) = E()p(r) dr + E(r)o(r) AW (1)
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forallt € T\ {1}, wherein £(0) is a limited real number > 0. Suppose that either
u() > O0forallt € Toru(t) <0forallt €T. Then, a.s. forall s € T,

£(s) ~ £(0)exp (/OS u(t)de + /OS o(t)dwW(t) — %/OS U(Z)zdt) . (3.6)

Hence, if £(0) > 0, then a.s. forall s € T, £(s) > 0.

Proof. Since %dé(l) = [y w(@)dt + [;o(t) dW(r) (the subtrahend in the
argument of the exponential function in Eq. (3.7)) it is enough to prove that

InE(s) — €O ~ [ —— s<>——/ o (1)1,

o (1)
and since
: (1)2 (dE(1)* = p(0)*(d)*+2u ()0 (1)dtdW (1) +02dr = o(1)*dr + 0 ((dr)¥?)
it is actually enough to show that
Ing(s) —In§(0) ~ % dé(r) - /0 s(t)2( O (3.7)

Now, since In" : x — 1/x,In” : x = —1/x%, In" : x — 2/x3, the third-order
Taylor formula yields for every t € T

d(lné(l))—m dé(r) — 25(1)2( £(1) +§g( 7

@)
for some £(1) € [£(r), & (t +df)] U [£ (t + dr), £(1)], hence
(o) -0 = [ameon = [ saeo -3 [ o e

5 /0 | O

forall s € T. All we need to prove therefore is that a.s. for all s € T,

Sl 3 SE(r)? 3
/0 f @07 = [ 25 i s owaway’ ~ o

However, combining £(f) > 0 with the fact that £(r) € [£(r), £(r +df)] U [E(r +
dt), £(¢)], one gets the following uniform bound:
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& < L <1lv ! ~1K2
Er)| T E@QANE@+d) T 14 p@)dt +o(0)dW() — ’
N——
=£()+dE(1) =0

Moreover, ju(t)dt + o (1)dW(t) = O ((dr)'/?), therefore we obtain indeed a.s.

SE@)?

) E0)y (()dt + o ()dW (1))’ = O ((dr)'/?) ~ 0.

=0((d)3/?)

3.5 The Radically Elementary Version of Lévy’s
Characterization of Wiener Processes

One of the most remarkable results in Nelson’s Radically elementary probability
theory is a single, unified theorem, called “de Moivre-Laplace-Lindeberg—Feller—
Wiener—Lévy—Doob-Erdés—Kac—Donsker—Prokhorov theorem” by Nelson [60,
Chap. 18], which entails:

* The necessity and sufficiency of the Lindeberg—Feller condition for the central
limit theorem of de Moivre and Laplace.

e Wiener’s result about the a.s. continuity of the trajectories of Wiener processes.

* Donsker’s invariance principle.

¢ Lévy’s martingale characterization of Wiener processes.

The last item (Lévy’s martingale characterization of Wiener processes) is of great
importance in stochastic analysis and its applications. It means that whenever a
martingale (with respect to the filtration generated by a given Wiener process) has
the same quadratic variation as the Wiener process, it already is the Wiener process;
a related result is the theorem that the only path-continuous and square-integrable
martingale which has stationary and independent increments (i.e. is a Lévy process®)
is a (constant multiple of a) Wiener process.

Keeping in mind that the filtration generated by the Wiener process is a
particularly simple and natural one, Lévy’s martingale characterization informally
asserts that any martingale which has a few desirable properties will already be, up
to multiplicative constants, a Wiener process or the exponential of a Wiener process
plus a linear drift term (a geometric Wiener process). As a consequence, Lévy’s
martingale characterization can be fruitfully applied both within pure mathematics

2For more on Lévy processes—from the perspective of radically elementary probability theory—
see Chap. 9.



34 3 Radically Elementary Stochastic Integrals

(for instance, in the proof of Girsanov’s theorem, which establishes a relation
between changing the probability measure and adding a linear drift term to the
Wiener process) and in mathematical finance (as a mathematical rationale for the
adequacy of the Samuelson—Black—Scholes model).

Nelson’s unified result, which entails a radically elementary version of Lévy’s
martingale characterization, can be stated as follows:

Remark 3.13. (Cf. Nelson [60, Theorem 18.1, p. 75].) For a normalized martingale
((1)),er with £(0) = 0, the following three conditions are equivalent:

e £ is a Wiener process,
o £(1)is L>(P) and £ is P-a.s. continuous,
o £ satisfies the (near) Lindeberg condition, i.e.

El Y @R | ~E Y (@0 xeoi=)’

reT\{1} teT\{1}

forall e > 0.
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