.
The Basic Concepts Chapter 2

Now we take a little closer look at Petri nets, that is, at their
structure of places, transitions and arcs, the fundamental data
structure of multisets, the structure of markings and steps and
lastly the reachable markings and the final markings. We explain
this with the help of the (slightly modified) cookie vending ma-
chine.

2.1 A Variant of the Cookie Vending
Machine

Figure 2.1 shows a modified version of the cookie vending
machine previously shown in Fig. 1.10 (the denotations A
...H of the places and a ...e of the transitions make the no-
tation easier). In addition to the five rectangular cookie packets,

Figure 2.1  Two kinds of packets and giving out two packets at once

two kinds of tokens:
two round packets are now in the storage H. The customer re- [
ceives two cookie packets for one euro. The machine decides
non-deterministically whether those packets are rectangular or
round. Bought packets are dropped into the compartment C. The
customer can remove one packet at a time (via the cold transi-

W. Reisig, Understanding Petri Nets, 13
DOI 10.1007/978-3-642-33278-4_2, (©) Springer-Verlag Berlin Heidelberg 2013
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tion d). The net in Fig 2.1 will be used as an example throughout
Chap. 2.

2.2 Components of a Net

The example of the cookie vending machine shows all the kinds
of components that can occur in a Petri net.! We will look at
them again individually and explain their roles in the model of
the system.

Places

A Petri net is a structure with two kinds of elements. One kind of
element is places. Graphically, a place is represented by a circle
or ellipse. A place p always models a passive component: p can
store, accumulate or show things. A place has discrete states.

Transitions

The second kind of elements of a Petri netare transitions.
Graphically, a transition is represented by a square or rect-
angle. A transition ¢ always models an active component: ¢ can
produce things, consume, transport or change them.

Arcs

Places and transitions are connected to each other by directed
arcs. Graphically, an arc is represented by an arrow. An arc never
models a system component, but an abstract, sometimes only no-
tional relation between components such as logical connections,
access rights, spatial proximities or immediate linkings.

In the example of the cookie vending machine, it is striking
that an arc never connects two places or two transitions. An arc
rather runs from a place to a transition or vice versa from a tran-
sition to a place. This is neither coincidental nor arbitrary, but

! The literature gives a multitude of extensions and generalizations,
which are not covered here.
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inevitably follows if nets are used correctly to model systems,
that is, if passive and active components are properly separated.

Net Structure

It is customary to denote the sets of places, transitions and arcs b t

with P, T and F, respectively, and to regard arcs as pairs, that O D arc (p, 1)

is, F as arelation F C (P x T) U (T x P). Then ¢ o

[0 actp

N = (P.T,F)

is a net structure. The places and transitions are the elements of
N . F is the flow relation of N . Figure 2.2 shows the net structure

net structure?

of the cookie vending machine as shown in Figs. 1.10, 1.11 and place
2.1. transition
arc

Figure 2.2 The net structure of the cookie vending machine t t

If a given context unambiguously identifies a net N, the pre-
set *x and post-set x* of an element x are defined as *t te

X =g {y | yFx} and

x® =qer {y | XFy}. pre-set *x  post-set x*®

Two elements x, y of N form a loop if x € ®*y and y € *x.  loop
For instance, a and E in Fig. 2.2 form a loop.

Markings

A marking is a distribution of tokens across places. A marking
can be represented graphically by symbols serving as tokens in

2 A highlighted term in the margin, like this one, refers to a definition
in the ‘Formal Framework’ (see p. 213).
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tokens in places:

ACED

HGES=

c©

E@

labelings of arcs:

®

labeling

labeling of a transition:

e
{x-z

the respective circles and ellipses. For a system with an initial
state, the initial marking is often depicted in this way. The sym-
bolic tokens (for instance, @, [, 7) generally denote elements of
the real world. This correlation is so strong that we do not distin-
guish between the symbolic representation and the real elements
that they denote.

Next to symbolic tokens, abstract black tokens often occur,
for instance, in the places D and G in Fig. 2.1. Such a token often
indicates that a certain condition (modeled as a place) is met. It
is also possible, and common, to represent concrete elements not
by symbolic but by abstract black tokens. Elementary nets only
utilize black tokens.

Labelings of Arcs and Transitions

Arcs and transitions can be labeled with expressions. Next to
elements of the real world, which have occurred in markings
before, functions (for instance, a subtraction) and variables (for
instance, x and y) can occur in such expressions. These expres-
sions have a central property: if all variables in an expression
are replaced by elements, it becomes possible to evaluate the ex-
pression in order to obtain yet another element. It is convenient
to write the labeling of an arc (p,t) or (¢, p) as

prorip (1)

respectively. Statement (1) describes the tokens that “flow
through the arc” at the occurrence of 7.

The variables in these expressions are parameters describing
different instances (“modes”) of a transition. Such a transition
can only occur if its labeling evaluates to the logical value “true”.
The rest of this chapter describes this correlation in more detail.

2.3 The Data Structure for Petri Nets:
Multisets

In a Petri net, the tokens of a place often represent objects that
we usually do not want to distinguish. For instance, we are only
interested in the number of coins in the cash box (although we
could, for instance, distinguish them by their date of coining).
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In general, examples of different kinds of tokens are mixed in
aplace, e.g., rectangular and round cookie packets in the storage
H. They form a multiset a, formally a mapping

a:U — N

that maps every kind u of a universe U to the number of its
occurrences in a.

We always assume a “sufficiently large” universe U that con-
tains all examined kinds of tokens. We write the set of all multi-
sets over U as

M(U) or M for short

if the context unambiguously identifies the universe U.

The universe U can contain an infinite number of elements,
for instance, all natural numbers. A multiset a over U can map
the value a(u) = 0 to almost all u € U. That means that u does
not occur in a. Thus, a is finite if

a(u) # 0 for only a finite number of u € U.

We write a finite multiset a with its multiple elements in square
brackets [...]. Consequently, the empry multiset is denoted by

[]:
[](w) =0 foreach u € U.

Multisets a, b € M can be added: for each u € U, let

(a + b)(u) =qer a(u) + b(u).

They can be compared:
a <b iffforeach u € U :a(u) < b(u),
and b can be subtracted from aif b < a:

(@ —b)(u) =ger a(u) — b(u).

With these notations, we describe dynamic behavior.

The tokens of a place p usually belong to a fype, that is, to
a (small) subset of the universe U. In Fig. 2.1, for instance, only
coins lie in the places A and F, only black tokens in D and G, only
cookie packets in H and C and only numbers in E. If a place p
only holds tokens of type 7, the type t is assigned to the place

p.

multiset

QGTE=>

multiset a of H:

a@ = 3
a&) = 2
a(u) = 0, forany otheru

set M(U) of all multisets
the universe of the cookie vending
machine:

0,62,@,0,1,2,3,4,5,6,7, ¢

finite multiset

finite multiset a:

[0.0.0.8.91]
a(D) =3,a() =2

empty multiset [ |

sum of multisets

order on multisets

subtraction on multisets

arithmetic operations on multisets:
(0, 2]1+[0]=[0.0,9]
[0.2]1=[0,0,]

a<a

[(0.8.9]-[]=[0.]

a—a=]
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marking
Initial marking Mo of Fig. 2.1:

MoH) = [0,0.0,0,0, =, ]
Mo(A) = Mo(B) = Mo(C) =[]

Mo(D) = Mo(G) =[e]

Mo(E) = [7]

pt= (]

tis enabled

the first step of the cookie vending
machine:

2.4 Markings as Multisets

Now we can precisely define the term marking: A marking M
of a net structure (P, T, F') is a mapping

M. P — M.

That means that M maps every place p to a multiset M(p). As
explained in Sect. 2.2, a marking M describes a state of the mod-
eled system. Given the significance of a system’s initial state, the
initial marking (usually denoted M) is often drawn into the re-
spective net structure.

2.5 Steps with Constant Arc Labelings

Let us now examine the special case in which the arcs around
a transition ¢ are labeled with individual elements of a universe.
This applies to the arcs around the transitions ¢ and e in Fig. 2.1.
In general, however, an arc is labeled with more than one ele-
ment. Formally, this is a multiset, whose brackets [ and ] are not
written in order to save space. Thus, with the notation of (1), for
each arc (p, t) or (¢, p) the following holds:

pte M and p € M.

We technically expand this notation for all places p and transi-
tions ¢ by

pt =[] and 1p =[]

if no arc (p, t) or (¢, p) exists, respectively.

A transition ¢ can occur in a marking M if the related pre-
conditions are met, that is if M enables the transition ¢.

As in many other system models, we separate the enabling of
t from the effect of the occurrence of t. Whether a marking M
enables a transition ¢ depends on the labelings of the arcs ending
int. M enables t if and only if

M(p) > pt

for each arc (p, t). Thus, the initial marking of the cookie vend-
ing machine only enables the transition c.
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If a marking M enables a transition ¢, it results in the step
M5 M
in which the marking M’ of each place p is defined as

M'(p) =4t M(p) — pt + 1p.

2.6 Steps with Variable Arc Labelings

An arc or a transition can be labeled with an expression a that
contains variables. By assigning values to the variables in a, the
expression a can be evaluated. If a is written onto an arc, the
result is a multiset. If ¢ is written into a transition, the result
is either “true” or “false”. In order to calculate these values,
the labelings of all arcs that end or start at a transition (the arcs
around t) have to be taken into account simultaneously.

Put a little more technically: Let xy, ..., x, be the variables
of the arc labelings around a transition ¢. Let uy, ..., u, be ele-
ments of the universe. Then

B:(x1=uU, X3 =Up,...,Xp = Uy)
is a mode of t. In Fig. 2.1, for instance, the variables y and z
occur in the arc labelings around the transition b. Thus, §; :
(y = [0,z = &) is a mode of b. The transition b has three ad-
ditional modes: B, : (y = ,z=0), B3 : (y =z = ) and
B4 : (y =z =[0). Amode 8 of a transition ¢ creates for each arc
(p.t) or (t, p) a multiset (p,t) or B(t, p), respectively. Thus,
in Fig. 2.1, B1(H,b) = B>(H,b) = [, &J]. Another example is
B : (x = 7), amode of the transition ¢ in Fig. 2.1, and it holds:
B(a.E) =[7-2] =[5].
If pt does not contain any variables, then obviously

B(p.1) = pt.

A transition ¢ can itself have a labeling that contains vari-
ables. An example is the labeling x > 2 of transition a in Fig. 2.1.
For such a labeling i, a mode B of ¢ creates a logical value, B(7).
For instance, for the labeling x > 2 of a, the mode B : (x = 7)
creates the logical value 81 (x > 2) = [7 > 2] = true.

formaly:

My - M,
Mi(D)=[].Mi(A)=[®]
Mi(p) = Mo(p).

for any other place p

expression

transition condition
arc labeling

mode of a transition

mode f of the transitions a and b:

B(x)=5.8y) =0.8(2) =

results in the constant arc labelings

0s
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step

M enables ¢ in mode f

for B(x) = 7:
condition X > 2 is met!

Thus, a mode B of ¢ creates multisets at the arcs around .
A step of t in the mode B is then defined as described in the
previous section. Additionally, the labeling a of ¢ has to evaluate
to B(a) = true. For a step from M to M’ via t in the mode §,
we write
LB,
M — M.
The symbol S for the mode is often omitted and we write, for
instance
x = 5 instead of 8 : (x = 5).

Put in a formal context, a marking M enables a transition ¢ in
the mode B of ¢ if for each arc in the form (p, ):

M(p) = B(p.1)
and for the labeling i of ¢:

B@i) = true.

This then results in the step M 2P, M’ in which M’ for each
place p is defined by

M'(p) = M(p) — B(p.1) + B(t. p).

Again, let B(p,t) =[] and B(z, p) = []if noarc (p, 1) or (, p)
exists in V, respectively.

. ax=7
Figure 2.3 Step M1 — M>

Consider the cookie vending machine in Fig. 2.1: After the

c
step My —> M, the marking M enables the transition a in the
mode x = 7, and in no other mode. Figure 2.3 shows the effect

that the step

ax=7
Ml —> MZ
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has on the surroundings of the transition a. The marking M5,
which is then reached, enables the transition b, because now val-
ues can be assigned to the variables y and z. Every assignment
of [] or &3 to these variables enables b. Thus, there exists a se-
lection of four modes and hence four steps in M5, as outlined in
Fig. 2.4.

Figure 2.4 M5 enables b in four modes

2.7 System Nets

We have now assembled the principal notations that enable us
to describe a discrete, dynamic system, as for instance a cookie
vending machine. According to the principles in Section 2.2, we
use an appropriately labeled, finite net structure, N, to do this.
A central term is that of a marking of N, thatis, a distribution of
tokens (multisets) across the places of N. Typically, the initial
marking of N is denoted by My and is explicitly drawn into N.
M describes the initial state of the modeled system. A transition
t can be labeled with a condition and the arcs around ¢ with
expressions. These labelings show the various situations (modes)
in which 7 is enabled, and the respective effects at the occurrence
of t. Lastly, every transition is either hot or cold, where cold
transitions are indicated by “¢”.

A net structure together with an initial marking, transition
conditions, arc labelings and cold transitions form a system net.

System nets are used to model real, discretely changeable
systems. Each place of a system net models a state component
of the system and each currently existing token in a place models
a currently given, but changeable, characteristic of that compo-
nent. Each transition of a system net represents an action of the
system. The occurrence of a transition describes the occurrence

N

¢ has only one mode

cold transition

system net
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reachable marking

marking graph

of the respective action. If, in doing so, a token reaches or leaves
a place, the action respectively creates or terminates the corre-
sponding characteristic of the state component.

2.8 Marking Graph

For a system net N and an initial marking My, a marking M of
N is reachable if there exists a sequence of steps

11,81 2,82 tn:Bn
My — My — ... — M,

with M, = M. In general, infinitely many markings of N are
reachable. The reachable markings and steps of a system net
N can be compiled into the marking graph of N . Its nodes are

dy=0

Figure 2.5 Initial part of the marking graph for the system net in
Fig. 2.1

the reachable markings, its edges the steps between the reach-
able markings of N. The initial marking My of N is specifically
highlighted. The marking graph is also often called the reach-
ability graph. Figure 2.5 shows an initial part of the marking
graph for the system net in Fig. 2.1. The complete marking graph
has approximately 100 nodes. In contrast to the system net in
Fig. 2.1, it would be extremely laborious and counterintuitive to
use the marking graph as a model for the cookie vending ma-
chine. In principle, the marking graph of a system net is a suit-
able starting point for its (automated) analysis, as long as only
a finite number of markings are reachable.
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2.9 Final Markings

A system has reached a final state if it can remain in this state final marking
forever. The marking of the system net in Fig. 1.9 models such
a state, in contrast to Fig. 1.10 and Fig. 1.11. A final state of )
. . a final marking:

a system corresponds to a final marking. In such a marking, no -

. } . . () O
hot transitions are enabled. For instance, in the system net in
Fig. 2.1, the initial marking is, at the same time, also a final =~ nota final marking:

marking (it only enables the cold transition c). @ L] 'O
Exercises

1. The system net in Fig. 2.6 expands the cookie vending machine in Fig. 2.1 by a transition f. In
your own words, describe the effect and the function of f inside the cookie vending machine.

Figure 2.6  Expansion of the cookie vending machine in Fig. 2.1 by a transition f

2. Which of the markings My, ..., Mg in the marking graph in Fig. 2.5 are final markings?

Further Reading

In the first two chapters of this book, we break with tradition in introducing the field of Petri nets.
Usually, one begins with the technically simple case of a single kind of “black” token, a case we will
not cover until the next chapter. Instead we have immediately introduced “individual” tokens, be-
cause they are intuitively more comprehensible, more realistic and more accurate. The price for this
is a complex step rule. For such nets, the literature gives many more, ultimately equally expressive,
representations. Widely used is a version of Petri nets called colored nets [38]. They emphasize the
semantics of functions over multisets. Girault and Valk [29] also use such nets.
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As is often traditional in mathematics, we do not always distinguish objects and functions from
their symbolic representations in expressions, equations, etc. Our distinction between hot and cold
transitions is found only sporadically in the literature on Petri nets. Damm and Harel used it in Live
Sequence Charts [35] as a very apt way of expressing system specifications.

In the historical development, Genrich and Lautenbach [28] introduced nets with individual to-
kens as predicate/transition nets and in doing so emphasized the connection with logic.

A Universal, Expandable Architecture

In his dissertation, Petri designed a universal computer architecture that can be expanded an
arbitrary number of times. We will explain this idea using the example of a finite, but infinitely
expandable stack. It consists of a sequence Ay . .. A, of modules, where each module A; (i =
0,...,n) has an idle state that stores either a value or — e.g., initially — a “dummy” L. The net

(X1,%0)

ap (xox0) a4
push QJ>
X0

e idle state4

b4

shows the module A with its interface to the environment: The transition push accepts a value
from the environment via the variable x,, which may hold any value. The variable x, holds
the previously stored value, which is passed on to the module A; via the transition a,. The
transition pop extracts the value stored in idle state. Via b, the module then receives the value
stored in 4. The net

EN
(X ,X) (X ,X) (X ,X) (X ,X) (X ,X) (X ,X) (X ,X) (X ,X)
pUSh'1O()1O'21 2132()32'43()43'

25
idle statey

bo by by bs bs

combines four modules to form a stack. Each module A; behaves according to the pattern
described for Ay. Each occurrence of push or pop triggers a wave that moves from left to
right through the stack. It ends in A4 by popping out the previously stored value or pushing in
a “dummy” L respectively. The transitions a, and b, are the extension points where another
module A5 can be attached.
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