Chapter 1
Introduction

In the last 3 decades, there has been significant progress in 3-dimensional topology,
due in large part to the application of new techniques from other areas of mathemat-
ics and from physics. On the one hand, ideas from geometry have led to geometric
decompositions of 3-manifolds and to invariants such as the A-polynomial and
hyperbolic volume. On the other hand, ideas from quantum physics have led to
the development of invariants such as the Jones polynomial and colored Jones
polynomials. While ideas generated by these invariants have helped to resolve
several problems in knot theory, their relationships to each other, and to classical
knot topology, are still poorly understood. Topological quantum field theory predicts
that these invariants are in fact tightly related, as does mounting computer evidence.
However, at this writing, several outstanding conjectures and open problems have
been verified for only a handful of examples.

In this monograph, we initiate a systematic study of relations between quantum
knot invariants and geometries of knot complements. We develop the setting and
machinery that allows us to establish direct and concrete relations between colored
Jones knot polynomials and geometric knot invariants. In several instances, our
results provide deeper and more intrinsic explanations for the connections between
geometry and quantum topology that have been observed in special cases in the past.
In addition, this work leads to some surprising new relations between the two areas,
and offers a promising environment for further exploring such connections.

We begin with some history and background on the problems under considera-
tion, then give an overview of the work contained in this manuscript, including some
of the results mentioned above.

1.1 History and Motivation

W. Thurston’s ground-breaking work in the late 1970s established the ubiquity
and importance of hyperbolic geometry in three-dimensional topology. In fact,
hyperbolic 3-manifolds had been studied since the beginning of the twentieth
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century as a subfield of complex analysis. In the 1960s and 1970s, Andreev
[7, 8], Riley [86, 87], and Jgrgensen [51] found several families of hyperbolic
3-manifolds with increasingly complex topology. In particular, Riley constructed
the first examples of hyperbolic structures on complements of knots in the 3-sphere.
In a different direction, Jaco and Shalen [47] and Johannson [48] found a canonical
way to decompose a 3-manifold along surfaces of small genus (this is now called
the JSJ decomposition or torus decomposition). In particular, they observed that
simple 3-manifolds, i.e. ones that do not contain homotopically essential spheres,
disks, tori or annuli, have fundamental groups that share similar properties with
the groups of hyperbolic 3-manifolds. Thurston’s major insight was that the pieces
of the JSJ decomposition should admit locally homogeneous geometric structures,
and furthermore that the simple pieces should admit complete hyperbolic structures.
This insight was formalized in the celebrated geometrization conjecture. Thurston
proved the conjecture for 3-manifolds with non-empty boundary [93], among others.
In 2003, Perelman proved the general conjecture [69,79, 80].

A special case of Thurston’s theorem [93] is that link complements in the
3-sphere satisfy the geometrization conjecture. In particular, the complement of
any non-torus, non-satellite knot must admit a complete hyperbolic metric. By
Mostow—Prasad rigidity [71, 82], this hyperbolic structure is unique up to isometry.
As a result, geometric information about a hyperbolic knot complement, such as
its volume, gives topological knot invariants. For arbitrary knots, one can obtain
a similar invariant, called the simplicial volume, by considering the sum of the
volumes of the hyperbolic components in the JSJ decomposition. The simplicial
volume is a constant multiple of the Gromov norm of the knot complement [44].

Since the mid-1980s, low-dimensional topology has also been invigorated by
ideas from quantum physics, which have led to powerful and subtle invariants.
The first major invariant along these lines is the celebrated Jones polynomial, first
formulated by Jones in 1985 using operator algebras [49]. Soon after, Kauffman
described a direct construction of the polynomial using the combinatorics of link
projections [55], and several authors generalized it to links and trivalent graphs
[28,50, 56, 84]. Witten showed that the Jones polynomial of links in the 3-sphere
has an interpretation in terms of a 2 4+ 1 dimensional fopological quantum field
theory (TQFT). At the same time, he introduced new invariants for links in arbitrary
3-manifolds, as well as invariants of 3-manifolds [96, 97]. The resulting theory,
although defined only at the physical level of rigor, predicted that the Jones-type
invariants and their generalizations are intimately connected to geometric structures
of 3-manifolds, and particularly to hyperbolic geometry [96, p. 77]. As explained
by Atiyah [10], the TQFT proposed by Witten is completely characterized by
certain “gluing axioms.” In the late 1980s, Reshetikhin and Turaev gave the first
mathematically rigorous construction of a TQFT that fit this axiomatic description
[85]. Unlike that of [97], which is intrinsically 3-dimensional, the constructions of
[85], as well as those of [55,84], relied on combinatorial descriptions of 3-manifolds
and the representation theory of quantum groups. This approach makes it harder to
establish connections with the geometry of 3-manifolds.
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In the 1990s, Kashaev defined an infinite family of complex valued invariants of
links in 3-manifolds, using the combinatorics of triangulations and the quantum
dilogarithm function [52]. For links in the 3-sphere, these invariants can also
be formulated in terms of tangles and R-matrices [53]. Kashaev’s invariants
are parametrized by the positive integers; there is an invariant for each n € N.
He conjectured that the large-n asymptotics of these invariants determine the
volume of hyperbolic knots [54]. Building on these works, H. Murakami and
J. Murakami were able to recover Kashaev’s invariants as special values of the
colored Jones polynomials: an infinite family of polynomials, closely related to the
Jones polynomial, also parametrized by n € N [73]. As a result, Kashaev’s original
conjecture has been reformulated into the volume conjecture, which asserts that
the volume of a hyperbolic knot is determined by the large-n asymptotics of the
colored Jones polynomials. Furthermore, Murakami and Murakami generalized the
conjecture to all knots in S3 by replacing the hyperbolic volume with the simplicial
volume [73]. The volume conjecture fits into a more general, conjectural framework
relating hyperbolic geometry and quantum topology; for details, see the survey
papers [25, 72] and references therein. Despite compelling experimental evidence,
the aforementioned conjectures are currently known for only a few examples of
hyperbolic knots.

At the same time, a growing body of evidence points to strong relations between
the coefficients of the Jones and colored Jones polynomials and the volume of
hyperbolic links. One such form of evidence consists of numerical computations,
for example those by Champanerkar, Kofman, and Paterson [18]. A second form
of evidence consists of theorems proved for several classes of links, for example
alternating links by Dasbach and Lin [23]. The authors of this monograph have
extended those results to closed 3-braids [34], highly twisted links [32], and certain
sums of alternating tangles [33]. The approach in all of these results is somewhat
indirect, in that they relate hyperbolic volume to the Jones polynomial by estimating
both quantities in terms of the twist number of a link diagram. To mention two
examples, for alternating links the result follows from Lackenby’s volume estimate
in terms of the twist number in any alternating projections [58] and the relation of
the twist number to the colored Jones polynomial observed by Dasbach and Lin
[23]. For highly twisted links, our argument works as follows. First, we proved an
effective version of Gromov and Thurston’s 27r-theorem and applied it to estimate
the hyperbolic link volume in terms of the twist number of any highly twisted
projection. Second, we relied on the combinatorial properties of Turaev surfaces, as
studied in [21], to relate the twist numbers to the coefficients of Jones polynomials.
However, for general links, twist numbers have a highly imperfect relationship to
hyperbolic volume [35]. This limits the applicability of these methods to special
families of knots and links.

In this monograph, we modify our approach to these problems, focusing on
the topology of incompressible surfaces in knot complements and their relations
to the colored Jones knot polynomials. Our motivation for the project has been
twofold. On the one hand, certain spanning surfaces of knots have been shown to
carry information on colored Jones polynomials [21]. On the other hand, essential
surfaces also shed light on volumes of manifolds [6] and additional geometry
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Fig. 1.1 A- and B-resolutions at a crossing of D

and topology (e.g. [2, 65, 68]). With these ideas in mind, we develop a machine
that allows us to establish relationships between colored Jones polynomials and
topological/geometric invariants.

For example, under mild diagrammatic hypotheses that arise naturally in the
study of Jones-type polynomials, we show that the growth of the degree of the
colored Jones polynomials is a boundary slope of an essential surface in the knot
complement, as predicted by Garoufalidis [42]. Furthermore, certain coefficients
of the polynomials measure how far this surface is from being a fiber in the knot
complement. Our work leads to direct and detailed relations between hyperbolic
geometry and Jones-type polynomials: for certain families of links, coefficients of
the Jones and colored Jones polynomials determine the hyperbolic volume to within
a factor of 4. Compared to previous arguments, which were all somewhat indirect,
the way in which our machine produces volume inequalities gives a clearer and
deeper conceptual explanation for why the hyperbolic volume should be related to
particular coefficients of the Jones polynomial.

A survey of this monograph, in which the main theorems are illustrated by a
running example, is given in [37].

1.2 State Graphs, and State Surfaces Far from Fibers

We begin with some terminology and conventions. Throughout this manuscript,
D = D(K) will denote a link diagram, in the equatorial 2-sphere of S3. It is worth
pointing out two conventions. First, we always assume (without explicit mention)
that link diagrams are connected. Second, we abuse notation by referring to the
projection 2-sphere using the common term projection plane. In particular, D(K)
cuts the projection “plane” into compact regions.

Let D(K) be a (connected) diagram of a link K, as above, and let x be a crossing
of D. Associated to D and x are two link diagrams, each with one fewer crossing
than D, called the A-resolution and B-resolution of the crossing.

Definition 1.1. A state o is a choice of A- or B-resolution at each crossing of D.
Resolving every crossing, as in Fig. 1.1, gives rise to a crossing-free diagram s, (D),
which is a collection of disjoint circles in the projection plane. Thus one obtains a
state graph G, whose vertices correspond to circles of s, and whose edges corre-
spond to former crossings. For a given state o, the reduced state graph G, is the
graph obtained from G, by removing all multiple edges between pairs of vertices.
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The notion of states on link diagrams was first considered by Kauffman [55]
during his construction of the bracket polynomial that provided a new construction
and interpretation of the Jones polynomial.

Our primary focus is on the all-A and all-B states. The crossing-free diagram
s4(D) is obtained by applying the A-resolution to each crossing of D. Its state
graphis denoted G 4 or G 4(D), and its reduced state graph G/, or G/, (D). Similarly,
for the all-B state sp(D), the state graph is denoted Gp, and the reduced state
graph G';.

To a state o, we associate a state surface S, as follows. The state circles of o
bound disjoint disks in the 3-ball below the projection plane; these disks can be
connected to one another by half-twisted bands at the crossings. The surface S, will
have S, = K. A special case of this construction is the Seifert surface constructed
from the diagram D(K), where the state o is determined by an orientation on K.

When o is the all-A or all-B state, the surfaces S, hold significance for both
geometric topology and quantum topology. The graph G 4 canonically embeds as a
spine of the surface S4. On the quantum side, the combinatorics of this embedding
can be used to recover the colored Jones polynomials Jg(¢) [21,23]. On the
geometric side, as we will see below, the combinatorics of G4 dictates a geometric
decomposition of the 3-manifold M 4 obtained by cutting the link complement along
the surface S4. Because every statement has a B-state counterpart (by taking a
mirror of the diagram), we will mainly discuss the all-A state for ease of exposition.

Definition 1.2. Let M = S3 \ K denote the 3-manifold with torus boundary
component(s) obtained by removing a tubular neighborhood of K from S3. Let S4
be the all-A state surface, as above, and let M \\ S denote the path-metric closure
of M \ S,4. Note that (§*\ K)\\S, is homeomorphic to the 3-manifold S*\\S4
obtained by removing a regular neighborhood of S 4 from S3. We will usually write
S3\\ S4 for short, and denote this manifold with boundary by M 4.

We will refer to P = dM 4 N dM as the parabolic locus of M 4. This parabolic
locus consists of annuli. The remaining, non-parabolic boundary M 4 \ dM is the
unit normal bundle of Sy4.

Definition 1.3. Let M be an orientable 3-manifold and S C M a properly
embedded surface. We say that S is essential in M if the boundary of a regular
neighborhood of S, denoted S, is incompressible and boundary-incompressible. If
S is orientable, then S consists of two copies of S, and the definition is equivalent
to the standard notion of “incompressible and boundary-incompressible.” If S is
non-orientable, this is equivalent to mrj-injectivity of S, the stronger of two possible
senses of incompressibility.

In the se;gt/ing of Definition 1.2, the surface S, is often non-orientable. In this
case, S3\\ Sy is the disjoint union of M, = S*\\S, and a twisted /-bundle over
S4. Since we are interested in the topology of M, it is appropriate to look at the
incompressibility of Sy4.

Guided by the combinatorial structure of the state graph G4, we construct a
decomposition of My into topological balls. The connectivity properties of G4
govern the behavior of this decomposition; in particular, if G4 has no loop edges,
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we obtain a decomposition of M4 into checkerboard ideal polyhedra with 4-valent
vertices (Theorem 3.12). This decomposition generalizes Menasco’s decomposition
of alternating link complements, which has been used frequently in the literature
[64]. As a first application of our machinery, we use normal surface theory with
respect to our polyhedral decomposition to give a new proof of the following
theorem of Ozawa [76].

Theorem 3.19 (Ozawa). Let D(K) be a diagram of a link K. Then the all-A
state surface S 4 is essential in S3 \ K if and only if G 4 contains no 1-edge loops.
Similarly, the surface Sp is essential in S\ K if and only if G g contains no 1-edge
loops.

Our polyhedral decomposition is designed to provide much more detailed
information about the topology and geometry of M4 = S3\\S4. In particular, we
can characterize exactly when the surface S is a fiber of the link complement.

Theorem 5.11. Let D(K) be any link diagram, and let S 4 be the spanning surface
determined by the all- A state of this diagram. Then the following are equivalent:

(1) The reduced graph G/, is a tree.
(2) S3\ K fibers over S', with fiber S 4.
(3) My = S*\\Sy is an I-bundle over S 4.

It is remarkable to note that the state graph connectivity conditions that ensure
incompressibility of the state surfaces first arose in the study of Jones-type knot
polynomials. The following definition, formulated by Lickorish and Thistlethwaite
[61,92], captures exactly the class of link diagrams whose polynomial invariants are
especially well-behaved.

Definition 1.4. A link diagram D(K) is called A-adequate (resp. B-adequate) if
G4 (resp. Gp) has no 1-edge loops. If both conditions hold for a diagram D(K),
then D(K) and K are called adequate. If D(K) is either A- or B-adequate, then
D(K) and K are called semi-adequate. As we will discuss in the next section, the
hypothesis of semi-adequacy is rather mild.

Building on Theorem 5.11, we start with an A-adequate diagram D and strive
to understand the geometric and topological complexity of S*\\S4. In Chap.2,
we will see that the 3-manifold M, = S3\\Sy is in fact a handlebody, and thus
atoroidal. The annulus version of the JSJ decomposition theory [47, 48] provides
a way to cut M4 along annuli (disjoint from the parabolic locus) into three types
of pieces: I-bundles over sub-surfaces of S, Seifert fibered spaces, and the guts,
which is the portion that admits a hyperbolic metric with totally geodesic boundary.
The Seifert fibered components are solid tori. Thus y(guts(M,)) = 0 precisely
when guts(M4) = @ and M, is a union of /-bundles and solid tori. In this case,
My is called a book of I-bundles and Sy is called a fibroid [20]. The guts are
the complex, interesting pieces of the geometric decomposition of M 4. Because
hyperbolic surfaces, and guts, have negative Euler characteristic, it is convenient to
work with the following definition.
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Definition 1.5. Let Y be a compact cell complex, whose connected components are
Y1, ....Y,. Then the Euler characteristic of ¥ can be split into positive and negative
parts:

2 (V) =) max{x(¥), 0}, x-(¥) =) max{—x(¥), 0}.

i=1 i=1

It follows immediately that y(Y) = y4+(Y) — x—(Y). This notation is borrowed
from the Thurston norm [94]. By convention, when ¥ = @, the above sums have no
terms, hence y+(9) = x—(9) = 0.

The negative Euler characteristic y_(guts(M,)) serves as a useful measurement
of how far S4 is from being a fiber or a fibroid in S°* \ K. In fact, y_(guts) is
a key measurement of complexity in Agol’s virtual fibering criterion [5], which is
needed in the proof of the virtual fibering conjecture for hyperbolic 3-manifolds
[4]. The Euler characteristic of guts also has a direct connection to hyperbolic
geometry. Agol, Storm, and Thurston have shown that for any essential surface S
in a hyperbolic 3-manifold M, a constant times y_(guts(M)) gives a lower bound
for vol(M) [6]. This is applied below, in Sect. 1.5. On the other hand, the Euler
characteristic y(G/,) of the reduced graph G/, first arose in the study of Jones-type
polynomials [23,90], and in fact expresses one of their coefficients. This is explored
in Sect. 1.4.

One of our main results is a diagrammatic formula for the guts of state surfaces
for all A-adequate diagrams. In relating guts to reduced state graphs, it provides a
bridge between hyperbolic geometry and quantum topology.

Theorem 5.14. Let D(K) be an A-adequate diagram, and let S 4 be the essential
spanning surface determined by this diagram. Then

x-(guts(S\\S4)) = 1 (G) — | Ec|l,
where ||E.|| > 0 is a diagrammatic quantity defined in Definition 5.9.

In many cases, the correction term || E.|| vanishes. For example, this happens for
alternating links [58], as well as for most Montesinos links. See Theorem 8.6, stated
on p. 15 and Corollary 5.19 on p. 88. In each of these cases, Theorem 5.14 says that
a geometric quantity, y—(guts(My)), is equal to y—(G’,), which, as shown in [23],
expresses a coefficient of the Jones polynomial.

1.3 Which Links are Semi-adequate?

We will be considering semi-adequate links throughout this manuscript. (After
taking a mirror if necessary, such a link is A-adequate.) Before we continue with the
description of our results, it is worth making some remarks about the class of semi-
adequate links. It turns out that the class is very broad, and that the condition that
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a knot be semi-adequate seems to be rather mild. For example, with the exception
of two 11-crossing knots that we will discuss below, and a handful of 12-crossings
knots, all knots with at most 12 crossings are semi-adequate. Furthermore, every
minimal crossing diagram for each of these semi-adequate knots is semi-adequate
[90, 92]. Thus, apart from a few exceptions, our results in this monograph apply
directly to the diagrams in the knot tables up to 12 crossings. The situation is
similar with the larger tabulated knots: Stoimenow has computed that among the
253,293 prime knots with 15 crossings tabulated in [46], at least 249,649 are semi-
adequate [91].

Several well-studied families of links are semi-adequate. These include alter-
nating links, positive or negative closed braids, all closed 3-braids, all Montesinos
links, and planar cables of all of the above. We refer the reader to [61,91, 92] for
more discussion and examples.

Nevertheless, there exist knots and links that are not semi-adequate. Before
discussing examples, we recall that the Jones polynomial can be used to detect
semi-adequacy. Indeed, the last coefficient of an A-adequate link must be +£1.
Similarly, the first coefficient of an B-adequate link must be £1 [92]. With the
notation of Knotinfo [17], the knot K = 11ngs has Jones polynomial equal to
J(t) = 2t — 363 4+ 5t* — 61> + 61° — 5t7 + 413 — 2¢°. Hence, K is not
semi-adequate; this is the first such knot in the knot tables. An infinite family
of non semi-adequate knots, detected by the extreme coefficients of their Jones
polynomial, can be obtained by [63, Theorem 5]. However, as we discuss below,
the extreme coefficients of the Jones polynomial are not a complete obstruction to
semi-adequacy.

Thistlethwaite [92] showed that certain coefficients of the 2-variable Kauffman
polynomial [56] provide the obstruction to semi-adequacy. Building on Thistleth-
waite’s results, Stoimenow obtained a set of semi-adequacy criteria and applied
them to several knots whose adequacy could not be determined by the Jones
polynomial. For example, he showed that the knot K’ =1lnj;g is not semi-
adequate. Note that in this case, the last coefficient of the Jones polynomial,
Jir(t) = 262 — 2% + 3t* — 415 + 41% =317 + 218 — 1%, is —1.

Ozawa has considered link diagrams and Kauffman states o that are adequate
(meaning G, has no 1-edge loops) and homogeneous (meaning G, contains a set
of cut vertices that decompose it into a collection of all-A and all-B state graphs)
[76]. See Definition 2.22 for more details. Semi-adequate diagrams clearly have this
property, but the class of [76] is broader. As an example, consider the 12-crossing
knot K” = 12n0706. This is not semi-adequate since both the extreme coefficients
of the Jones polynomial are equal to 2. Indeed Jx~(t) = 2t™* — 473 + 6172 —
8t~ +9—8¢ + 61> — 41>+ 2t*. However K” can be written as a 5-string braid that
is homogeneous in the sense of Cromwell [19]. Thus the Seifert state of this closed
braid diagram is homogeneous and adequate.

Ozawa proved that the state surface S, corresponding to a o-adequate,
o-homogeneous diagram is always essential in S* \ K. In [29], Futer gave a
direct proof of a slightly weaker version of Theorem 5.11, and also generalized
it to o-adequate, o-homogeneous link diagrams. It turns out that many properties
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of the polyhedral decompositions that we develop below, as well as a number of
results proved using the polyhedral decomposition, also extend to all adequate,
homogeneous states. See Sects. 2.4, 3.4, 4.5, 5.6 where, in particular, we obtain
analogues of Theorems 3.19, 5.11 and 5.14 in this generalized setting. Our study of
the geometry of such links is continued in [31].

1.4 Essential Surfaces and Colored Jones Polynomials

The Jones and colored Jones polynomials have many known connections to the state
graphs of diagrams. To specify notation, let

JR(t) = apt™ + But™ 4 Bl

denote the n-th colored Jones polynomial of a link K. Recall that JZ (¢) is the usual
Jones polynomial. Consider the sequences

. dm, Cw r,
jSK:{7n>O} and ]SK:{?H>O}

Garoufalidis’ slope conjecture predicts that for each knot K, every cluster point
(i.e., every limit of a subsequence) of jsg or js¥ is a boundary slope of K [42], i.e.
a fraction p/q such that the homology class pu + gA occurs as the boundary of an
essential surface in S3 \ K.

For a given diagram D(K), there is a lower bound for r,, in terms of data about the
state graph G 4(D), and this bound is sharp when D(K) is A-adequate. Similarly,
there is an upper bound on m, in terms of Gp that is realized when D(K) is
B-adequate [60]. In [36], building on these properties and using Theorem 3.19, we
relate the extreme degree of J¢(¢) to the boundary slope of Sy, as predicted by the
slope conjecture.

Theorem 1.6 ([36]). Let D(K) be an A-adequate diagram of a knot K and let
b(S4) € Z denote the boundary slope of the essential surface S 4. Then

4r,
lim 2 = p(S,),

n—o0 n2

where r, is the lowest degree of J (t).
Similarly, if D(K) is a B-adequate diagram of a knot K, let b(Sp) € Z denote

the boundary slope of the essential surface Sp. Then

4m,
lim 2 — h(Sp).

n—oo n2

where m,, is the highest degree of J{ (¢).
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Work of Garoufalidis and Le [41, 43] implies that each coefficient of Jg ()
satisfies linear recursive relations in n. For adequate links, these relations manifest
themselves in a very strong form: Dasbach and Lin showed that if K is A-adequate,
then the absolute values |f/| and |« | are independent of n > 1 [23]. In fact,
lop| = 1 and |B)| = 1 — x(G')), where G/, is the reduced graph. Similarly, if
D is B-adequate, then |a,| = 1 and |B,] = 1 — x(G’;). Thus we can define the
stable values

By == |Bi| = 1—x(G)), and  Bx = |Bul = 1 - x(Gp).

The main results of this monograph explore the idea that the stable coefficient
B’ does an excellent job of measuring the geometric and topological complexity
of the manifold M, = S3\\S4. (Similarly, Bx measures the complexity of
Mg = S3\\Mp.) For instance, it follows from Theorem 5.11 that B is exactly
the obstruction to S4 being a fiber.

Corollary 9.16. For an A-adequate link K, the following are equivalent:

(1) By =0.

(2) For every A-adequate diagram of D(K), S3 \ K fibers over S' with fiber the
corresponding state surface Sy = S4(D).

(3) For some A-adequate diagram D(K), My = S3\\Sy is an I-bundle over
S4(D).

Similarly, ,B/K‘ = 1 precisely when S4 is a fibroid of a particular type.

Theorem 9.18. For an A-adequate link K, the following are equivalent:

(1) By = 1.

(2) For every A-adequate diagram of K, the corresponding 3-manifold M4 is a
book of I -bundles, with y(M ) = x(G4)— x(G,), and is not a trivial I -bundle
over the state surface S 4.

(3) For some A-adequate diagram of K, the corresponding 3-manifold M 4 is a
book of I-bundles, with x(M4) = x(G4) — x(G/)).

In general, the geometric decomposition of M, contains some non-trivial
hyperbolic pieces, namely guts. In this case, ,3’K| measures the complexity of the
guts together with certain complicated parts of the maximal /-bundle of M 4. To
state our result we need the following definition.

Definition 1.7. A link diagram D is called prime if any simple closed curve that
meets the diagram transversely in two points bounds a region of the projection plane
without any crossings.

Two crossings in D are defined to be twist equivalent if there is a simple closed
curve in the projection plane that meets D at exactly those two crossings. The
diagram is called rwist reduced if every equivalence class of crossings is a twist
region (a chain of crossings between two strands of K). The number of equivalence
classes is denoted (D), the twist number of D.
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Theorem 9.20. Suppose K is an A-adequate link whose stable colored Jones
coefficient is By # 0. Then, for every A-adequate diagram D(K),

x-(guts(M)) + || Ecll = [Bk| -1,

where as above ||E.|| > 0 is the diagrammatic quantity of Definition 5.9.
Furthermore, if D is prime and every 2-edge loop in G4 has edges belonging to
the same twist region, then ||E.|| = 0 and

x—(guts(M ) = [Bi| -1

To briefly discuss the meaning of the correction term || E.||, recall that the
non-hyperbolic components of the JSJ decomposition of M, are [-bundles and
solid tori. In Chap. 4, we show that the /-bundle components with negative Euler
characteristic are spanned by essential product disks (EPDs): properly embedded
essential disks in M 4 whose boundary meets the parabolic locus twice. These disks
come in two types: those corresponding to (strings of) complementary regions of
G4 with just two sides, and certain “complicated” ones, which we call complex.
(See Definition 5.2 on p. 74.) The minimal number of complex EPDs in a spanning
set is denoted || E||; this is exactly the correction term of Theorems 5.14 and 9.20.

It is an open question whether every A-adequate link admits a diagram for which
[|E.|| = 0: see Question 10.2 on p. 156. For instance, Lackenby showed that this is
the case for prime alternating links [58]. By Theorem 9.20, || E.|| = 0 when every
2-edge loop of G 4 has edges belonging to the same twist region. This is also the case
for most Montesinos links (the reader is referred to Chap. 8 for the terminology).

Corollary 9.21. Suppose K is a Montesinos link with a reduced admissible
diagram D(K) that contains at least three tangles of positive slope. Then

x-(guts(My)) = [By| - 1.
Similarly, if D(K) contains at least three tangles of negative slope, then

x—(guts(Mp)) = |Bk|—1.

When ||E.|| = 0, Theorem 9.20 offers striking evidence that coefficients of
the colored Jones polynomials measure something quite geometric: when | ,3’K|
is large, the link complement S \ K contains essential spanning surfaces that
are correspondingly far from being a fiber. Whereas the Alexander polynomial
and its generalization in Heegaard Floer homology are known to have many
connections to the geometric topology of spanning surfaces of a knot [75,77, 78],
the geometric meaning of Jones-type polynomials has traditionally been a mystery.
Theorems 9.16, 9.18, and 9.20 establish some of the first detailed connections
between surface topology and the Jones polynomial.
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1.5 Volume Bounds from Topology and Combinatorics

Recall that by the work of Agol, Storm, and Thurston [6], any computation of, or
lower bound on, y_(guts) of an essential surface S C §*\ K leads to a proportional
lower bound on vol(53\ K). For instance, Lackenby’s diagrammatic lower bound on
the volumes of alternating knots and links came as a result of computing the guts of
checkerboard surfaces [58]. However, computing y_(guts) has typically been quite
hard: apart from alternating knots and links, there are very few infinite families of
manifolds for which there are known computations of the guts of essential surface
[3,57].

The results of this manuscript greatly expand the list of manifolds for which such
computations exist. In Chap. 9, we combine [6] with our results in Theorems 5.14
and 9.20, as well as some of their specializations, to give lower bounds on hyperbolic
volume for all A-adequate knots and links. See Theorem 9.3 on p. 140 for the most
general result along these lines.

We also focus on two well-studied families of links: namely, positive braids and
Montesinos links. For these families, we are able to compute or estimate the quantity
x—(guts(M)) in terms of much simpler diagrammatic data. As a consequence, we
obtain tight, two-sided estimates on the volumes of knots and links in terms of the
twist number 7(D) (see Definition 1.7).

Theorem 9.7. Let D(K) be a diagram of a hyperbolic link K, obtained as the
closure of a positive braid with at least three crossings in each twist region. Then

% 1(D) < vol(S?\ K) < 10v3(1(D) — 1),
where v3 = 1.0149... is the volume of a regular ideal tetrahedron and vy =
3.6638 ... is the volume of a regular ideal octahedron.

Observe that the multiplicative constants in the upper and lower bounds differ by
a rather small factor of about 4.155. For Montesinos links, we obtain similarly tight
two-sided volume bounds.

Theorem 9.12. Let K C S* be a Montesinos link with a reduced Montesinos
diagram D(K). Suppose that D(K) contains at least three positive tangles and
at least three negative tangles. Then K is a hyperbolic link, satisfying

%(t(D)—#K) < vol(S*\ K) < 2vs1(D),

where v = 3.6638 ... is the volume of a regular ideal octahedron and #K is the
number of link components of K. The upper bound on volume is sharp.

We also relate the volumes of these links to quantum invariants. Recall that the
volume conjecture of Kashaev and Murakami—Murakami [54, 73] states that all
hyperbolic knots satisfy
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= vol(§*\ K).

If this volume conjecture is true, it would imply for large n a relation between the
volume of a knot K and coefficients of J¢(¢). For example, for n > 0 one would
have vol(S3 \ K) <C||J¢||, where ||J}|| denotes the L!-norm of the coefficients
of Jg(t), and C is an appropriate constant. In recent years, a series of articles by
Dasbach and Lin, as well as the authors, has established such relations for several
classes of knots [24, 32-34]. In fact, in all known cases, the upper bounds on
volume are paired with similar lower bounds. However, in all of the past results,
showing that coefficients of Jg(t) bound volume below required two steps:
first, showing that Jones coefficients give a lower bound on twist number #(D), and
then showing that twist number gives a lower bound on volume. Each of these two
steps is known to fail outside special families of knots [34,35], and their combination
produces an indirect argument in which the constants are far from sharp.

By contrast, our results in this manuscript bound volume below in terms of a
topological quantity, y—(guts), that is directly related to colored Jones coefficients.
As a consequence, we obtain much sharper lower bounds on volume, along with an
intrinsic and satisfactory conceptual explanation for why these lower bounds exist.
See Sect. 9.4 in Chap. 9 for more discussion.

Our techniques also imply similar results for additional classes of knots. For
instance, Theorems 9.7 and 9.12 have the following corollaries.

Corollary 9.22. Suppose that a hyperbolic link K is the closure of a positive braid
with at least three crossings in each twist region. Then

vs (|B| = 1) < vol(S*\ K) < 15v3(|B)| — 1) — 10v3,

where v3 = 1.0149... is the volume of a regular ideal tetrahedron and vg =
3.6638... is the volume of a regular ideal octahedron.

Corollary 9.23. Let K C S? be a Montesinos link with a reduced Montesinos
diagram D(K). Suppose that D(K) contains at least three positive tangles and at
least three negative tangles. Then K is a hyperbolic link, satisfying

vs (max{|Bk|. [Bx |} — 1) < vol(S*\ K) < 4dvs (IBk|+ |Bk| —2) + 2vs (#K),

where #K is the number of link components of K.

1.6 Organization

We now give a brief guide to the organization of this monograph.
In Chap.2, we begin with a connected link diagram D(K), and explain how
to construct the state graph G4 and the state surface S4. Guided by the structure



14 1 Introduction

of G4, we will cut the 3-manifold M, = S 3\\S 4 along a collection of disks into
several topological balls. We obtain a collection of lower balls that are in one-to-one
correspondence with the alternating tangles in D(K) and a single upper 3-ball. The
boundary of each ball admits a checkerboard coloring into white and shaded regions
that we call faces. In the last section of the chapter we discuss the generalization of
the decomposition to o-homogeneous and o-adequate diagrams.

In Chap. 3, we show that if D(K) is A-adequate, each of these balls is a checker-
board colored ideal polyhedron with 4-valent vertices. This amounts to showing
that the shaded faces on each of the 3-balls are simply-connected (Theorem 3.12).
Furthermore, we show that the ideal polyhedra do not contain normal bigons
(Proposition 3.18), which quickly implies Theorem 3.19. In the last section of the
chapter, we generalize these results to homogeneous and adequate states.

In Chap. 4, we prove a structural result about the geometric decomposition of
M. As already mentioned, the JSJ decomposition yields three kinds of pieces:
I-bundles, solid tori, and the guts, which admit a hyperbolic metric with totally
geodesic boundary. Let B be an /-bundle in the characteristic submanifold of
M 4. We say that a finite collection of disjoint essential product disks (EPDs)
{Di,...,Dy}spans B if B\ (D;U---U D,) is a finite collection of prisms (which
are /-bundles over a polygon) and solid tori (which are /-bundles over an annulus
or Mobius band). We prove the following.

Theorem 4.4. Let B be a component of the characteristic submanifold of M4
which is not a solid torus. Then B is spanned by a collection of essential product
disks (EPDs) D, ..., Dy, with the property that each D; is embedded in a single
polyhedron in the polyhedral decomposition of M 4.

Like all results from the early chapters, Theorem 4.4 generalizes to o-adequate
and o-homogeneous diagrams. See Sect. 4.5 for details.

In Chap.5, we calculate the number of EPDs required to span the 7-bundle
of M. We do this by explicitly constructing a suitable spanning set of disks
(Lemmas 5.6 and 5.8). The EPDs in the spanning set that lie in the lower polyhedra
of the decompositions are well understood; they are in one-to-one correspondence
with 2-edge loops in the state graph G 4. The EPDs in the spanning set that lie in
the upper polyhedron are complex; they are not parabolically compressible to EPDs
in the lower polyhedra. The construction of this spanning set leads to a proof of
Theorem 5.14. The spanning set of Chap.5 also makes it straightforward to detect
when the manifold M4 is an /-bundle, leading to a proof of Theorem 5.11.

The main tool used in Chaps. 3-5 is normal surface theory. In fact, our results
about normal surfaces in the polyhedral decomposition of M4 can likely be used to
attack other topological problems about A-adequate links: see Sect. 10.2 in Chap. 10
for variations on this theme.

The results of Chap. 5 reduce the problem of computing the Euler characteristic
of the guts of M4 to counting how many complex EPDs are required to span the
I-bundle of the upper polyhedron. In Chap.6, we restrict attention to prime
diagrams and address the problem of how to recognize such EPDs from the structure
of the all-A state graph G 4. Our main result there is Theorem 6.4, which describes
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the basic building blocks for such EPDs. Roughly speaking, each of these building
blocks maps onto to a 2-edge loop of G 4.

In Chap.7, we restrict attention to A-adequate diagrams D(K) for which
the polyhedral decomposition includes no non-prime arcs or switches (see
Definition 2.18 on p. 27). In this case, one can simplify the statement of
Theorem 5.14 and give an easier combinatorial estimate for the guts of M,4. To
state our result, let b4 denote the number of bigons in twist regions of the diagram
such that a loop tracing the boundary of this bigon belongs to the B-resolution of
D. (The A-resolution of these twist regions is short in Fig.5.4 on p. 86.) Then,
definemy = x(G4) — x(G'y) — bs. We prove the following estimate.

Theorem 7.2. Let D(K) be a prime, A-adequate diagram, and let S be the
essential spanning surface determined by this diagram. Suppose that the polyhedral
decomposition of M 4 = S3\\Sy4 includes no non-prime arcs. Then

x-(Gl) —8ma = x—(guts(M4)) = x—(G.

where the lower bound is an equality if and only if m4 = 0.
In Chap. 8, we study the polyhedral decompositions of Montesinos links. The
main result is the following.

Theorem 8.6. Suppose K is a Montesinos link with a reduced admissible diagram
D(K) that contains at least three tangles of positive slope. Then

x—(guts(M4)) = x—(G)).

Similarly, if D(K) contains at least three tangles of negative slope, then

x—(guts(Mp)) = x—(Gp).

The arguments in Chaps. 6-8 require a detailed and fairly technical analysis of
the combinatorial structure of the polyhedral decomposition; we call this analysis
tentacle chasing. In addition, Chaps.7 and 8 depend heavily on Theorem 6.4 in
Chap. 6.

In Chap. 9, we give the applications to volume estimates and relations with the
colored Jones polynomials that were discussed earlier in this introduction. The
results in this chapter do not use Chap. 7 at all, and do not directly reference Chap. 6
or the arguments of Chap. 8. Thus, having the statement of Theorem 8.6 at hand, a
reader who is eager to see the aforementioned applications may proceed to Chap. 9
immediately after Chap. 5.

In Chap. 10, we state several open questions and problems that have emerged
from this work, and discuss potential applications of the methods that we have
developed.
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