
2   Univariate Stationary Processes  

As mentioned in the introduction, the publication of the textbook by 
GEORGE E.P. BOX and GWILYM M. JENKINS in 1970 opened a new road to 
the analysis of economic time series. This chapter presents the Box-Jen-
kins Approach, its different models and their basic properties in a rather 
elementary and heuristic way. These models have become an indispensa-
ble tool for short-run forecasts. We first present the most important ap-
proaches for statistical modelling of time series. These are autoregressive 
(AR) processes (Section 2.1) and moving average (MA) processes (Section 
2.2), as well as a combination of both types, the so-called ARMA process-
es (Section 2.3). In Section 2.4 we show how this class of models can be 
used for predicting the future development of a time series in an optimal 
way. Finally, we conclude this chapter with some remarks on the relation 
between the univariate time series models described in this chapter and the 
simultaneous equations systems of traditional econometrics (Section 2.5).  

2.1   Autoregressive Processes 

We know autoregressive processes from traditional econometrics: Already 
in 1949, DONALD COCHRANE and GUY H. ORCUTT used the first order au-
toregressive process for modelling the residuals of a regression equation. 
We will start with this process, then treat the second order autoregressive 
process and finally show some properties of autoregressive processes of an 
arbitrary but finite order. 

2.1.1   First Order Autoregressive Processes  

Derivation of Wold’s Representation 

A first order autoregressive process, an AR(1) process, can be written as 
an inhomogeneous stochastic first order difference equation, 

(2.1) xt   =     +   xt-1  +  ut, 
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where the inhomogeneous part  + ut consists of a constant term  and a 
pure random process ut. Let us assume that for t = t0 the initial value 

0t
x is 

given. By successive substitution in (2.1) we get 
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x  + 
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For t = t0 + , we get 

(2.2) xt   =   0

0

t t
tx  + 

0 0t t t t 1
j

t j
j 0

1 u
1

. 

The development and thus the properties of this process are mainly deter-
mined by the assumptions on the initial condition 

0t
x . 

The case of a fixed (deterministic) initial condition is given if x0 is as-
sumed to be a fixed (real) number, for example for t0 = 0, i.e. no random 
variable. Then we can write: 

xt   =   t x0  +  
t t 1

j
t j

j 0

1 u
1

. 

This process consists of time dependent deterministic and stochastic parts. 
Thus, it can never be weakly stationary, since first and second order mo-
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ments are time dependent. It is, however, asymptotically stationary be-
cause the time dependence vanishes for t0  - . 

We can imagine the case of stochastic initial conditions as (2.1) being 
generated along the whole time axis, i.e. -  < t < . If we observe the 
process only for positive values of t, the initial value x0 is a random varia-
ble which is generated by this process. Formally, the process with stochas-
tic initial conditions results from (2.2) if the solution of the homogeneous 
difference equation has disappeared. This is only possible if | | < 1. There-
fore, in the following, we restrict  to the interval –1 <  < 1. If 

0
0

tt
lim x is 

bounded, (2.2) for t0  -  converges to  

(2.3) xt   =   j
t j

j 0
u

1
 . 

The time dependence has disappeared. According to Section 1.5, the AR(1) 
process (2.1) has the Wold representation (2.3) with j = j and | | < 1. 
This results in the convergence of 

2
j

j 0
  =  2 j

j 0
  =  2

1
1

. 

Thus, assuming stochastic initial conditions, the process (2.1) is weakly 
stationary.  

The Lag Operator 

Equation (2.3) can also be derived from relation (2.1) by using the lag op-
erator defined in Section 1.3: 

(2.1') (1 – L)xt   =    + ut . 

If we solve for xt we get 

(2.4) xt   =  
1 L

 + 
1

1 L
ut . 

The expression 1/(1 – L) can formally be expanded to a geometric series,  

1
1 L

  =   1  +  L  +  2L2  +  3L3  +  …  . 

Thus, we get 

xt   =   (1  +  L  +  2L  +  …)   +  (1  +  L  +  2L  +  …)ut 

             =   (1  +    +  2  +  …)   +  ut  +   ut-1+  2 ut-2  +  … , 
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and because of | | < 1 

xt   =   j
t j

j 0
u

1
 . 

The first term could have been derived immediately if we substituted the 
value ‘1’ for L in the first term of (2.4). (See also relation (1.8) on p. 11). 

Calculation of Moments 

Due to representation (2.3), the first and second order moments can be cal-
culated. As E[ut] = 0 holds for all t, we get for the mean 

E[xt] =   j
t j

j 0
E u

1
 

E[xt] =   j
t j

j 0
E u

1
   =   

1
  =   

i.e. the mean is constant. It is different from zero if and only if   0. Be-
cause of 1 –  > 0, the sign of the mean is determined by the sign of . For 
the variance we get 

V[xt] =   
2

tE x
1

  =  
2

j
t j

j 0
E u  

 =   E[(ut + ut-1 + 2ut-2 + ... )2]  

 =   E[ 2
tu  +  2 2

t 1u  +  4 2
t 2u  +  …  +  2 utut-1  +  2 2utut-2  +  …  ] 

 =   2(1 + 2 + 4 + ...), 

because E[ut us] = 0 for t  s and E[ut us] = 2 for t = s. Applying the sum-
mation formula for the geometric series, and because of | | < 1, we get the 
constant variance  

V[xt]   =   
2

21
. 

The covariances can be calculated as follows:  

Cov [xt,xt- ] =   t tE x x
1 1
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 =   E[(ut +  ut-1 + ... +  ut-  + ...) 
        (ut-  +  u t- -1 + 2 u t- -2 + ...)] 

 =   E[(ut +  ut-1 + ... + -1 ut- +1  
       + (ut-  +  u t- -1 + 2 u t- -2 + ...))  
        (ut-   +   u t- -1  + 2 u t- -2  +  ...)] 

 =    E[(ut-  + ut- -1 + 2ut- -2 + ... )2] . 

Thus, we get  

Cov [xt,xt- ]   =    V[xt- ]   =     . 

The autocovariances are only a function of the time difference  and not of 
time t, and we can write: 

(2.5) ( )   =     ,     =  0, 1, 2, ... . 

Therefore, the AR(1) process with | | < 1 and stochastic initial conditions 
is weakly stationary.  

An Alternative Method for the Calculation of Moments 

Under the condition of weak stationarity, i.e. for | | < 1 and stochastic ini-
tial conditions, the mean of xt is constant. If we apply the expectation op-
erator on equation (2.1), we get: 

E[xt]   =   E[  +  xt-1 + ut]   =    +  E[xt-1] + E[ut] . 

Because of E[ut] = 0 and E[xt] = E[xt-1] =  for all t we can write 

E[xt]   =      =   
1

. 

If we consider the deviations from the mean,  

tx   =   xt  –   

and substitute this in relation (2.1), we get: 

tx  +   =    +  t 1x  +     +  ut . 

From this it follows that 

2

21

2

21
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tx  =    +  (  – 1)  +   t 1x  +  ut 

 =    +
1

(  – 1)  +   t 1x  +  ut 

(2.6) tx   =    t 1x  +  ut . 

This is the AR(1) process belonging to (2.1) with E[ tx ] = 0.  
If we multiply equation (2.6) with tx  for   0 and take expectations 

we can write: 

(2.7) E[ t tx x ]   =    E[ t t 1x x ]  +  E[ tx ut] . 

Because of (2.3) we get 

tx   =   ut-   +   ut- -1  +  2 ut- -2  +  … . 

This leads to 

(2.8) E[ tx ut]   =   
2 for 0

0 for 0
 . 

Because of the stationarity assumption and because of the (even) sym-
metry of the autocovariances, ( ) = (- ), equation (2.7) results in 

 = 0: E[ 2
tx ] =    E[ t t 1x x ] +  2, 

or 

 (0) =     (1) + 2,    

 = 1: E[ t t 1x x ] =    E[ 2
t 1x ], 

or 

 (1) =   (0) . 

This leads to the variance of the AR(1) process  

(0)   =   
2

21
. 

For   1 (2.7) implies 

(1)   =    (0) 

(2)   =    (1)   =   2 (0) 
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(3)   =    (2)   =   3 (0) 

           

( )   =    ( -1)   =    (0)  . 

Thus, the covariances can be calculated from the linear homogeneous first 
order difference equation  

( ) –  ( -1)   =   0 

with the initial value (0) = 2/(1 – 2). 

The Autocorrelogram 

Because of ( ) = ( )/ (0), the autocorrelation function (the autocorrelo-
gram) of the AR(1) process is  

(2.9) ( )  =   ,     =  1, 2, ... . 

This function converges geometrically to zero for   , and its infinite 
sum equals 1/(1 – ) since | | < 1. This convergence is monotone for posi-
tive and oscillating for negative values of . 

Example 2.1 

For  = 0 and   {0.9, 0.5, -0.9}, Figures 2.1 to 2.3 each present one realisation 
of the corresponding AR(1) process with T = 240 observations. To generate these 
series, we used realisations of normally distributed pure random processes with 
mean zero and variance one. We always dropped the first 60 observations to elim-
inate the dependence of the initial values.  

The realisation for  = 0.9, presented in Figure 2.1, is relatively smooth. This is 
to be expected given the theoretical autocorrelation function because random vari-
ables with a considerable distance between each other still have high positive cor-
relations.  

The development of the realisation in Figure 2.2 with  = 0.5 is much less sys-
tematic. The geometric decrease of the theoretical autocorrelation function is ra-
ther fast. The fourth order autocorrelation coefficient is only 0.0625. 

Contrary to this, the realisation of the AR(1) process with  = -0.9, presented in 
Figure 2.3, follows a well pronounced zigzag course with, however, alternating posi-
tive and negative amplitudes. This is consistent with the theoretical autocorrelation 
function indicating that all random variables with even-numbered distance are posi-
tively correlated and those with odd-numbered distance negatively correlated.  
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Figure 2.1:   AR(1) process with  = 0.9 
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Figure 2.2:   AR(1) process with = 0.5 



36      Univariate Stationary Processes 

 

 

-5 

-2.5 

0 

2.5 

5 

t

a) Realisation

b) Theoretical autocorrelation function

 c) Estimated autocorrelation function 
with confidence intervals 

1 

-1 

-0.8 
-0.6 

-0.4 
-0.2 

0 

0.2 
0.4 

0.6 
0.8 

5 10 15

 ˆ 

 

-1 
-0.8 
-0.6 
-0.4 
-0.2 

0 
0.2 
0.4 
0.6 
0.8 

1 

10 15 20

20

5

xt 

 

Figure 2.3:   AR(1) process with  = -0.9 
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It generally holds that the closer the parameter  is to +1, the smoother the realisa-
tions will be. For negative values of  we get zigzag developments which are the 
more pronounced the closer  is to -1. For  = 0 we get a pure random process. 
The autocorrelation functions estimated by means of relation (1.10) with the given 
realisations are also presented in Figures 2.1 to 2.3. The dotted parallel lines show 
approximate 95 percent confidence intervals for the null hypothesis assuming that 
the true process is a pure random process. In all three cases, the estimated func-
tions reflect quite well the typical development of the theoretical autocorrelations. 

Example 2.2 

In a paper on the effect of economic development on the electoral chances of the 
German political parties during the period of the social-liberal coalition from 1969 
to 1982, GEBHARD KIRCHGÄSSNER (1985) investigated (besides other issues) the 
time series properties of the popularity series of the parties constructed by monthly 
surveys of the Institute of Demoscopy in Allensbach (Germany). For the period 
from January 1971 to April 1982, the popularity series of the Christian Democrat-
ic Union (CDU), i.e. the share of voters who answered that they would vote for 
this party (or its Bavarian sister party, the CSU) if there were a general election by 
the following Sunday, is given in Figure 2.4. The autocorrelation and the partial 
autocorrelation function (which is discussed in Section 2.1.4) are also presented in 
this figure. While the autocorrelation function goes slowly towards zero, the par-
tial autocorrelation function breaks off after  = 1. This argues for an AR(1) pro-
cess. 

The model has been estimated with Ordinary Least Squares (OLS), the method 
proposed in Section 2.1.5 for the estimation of autoregressive models. Thus, we 
get:  

 CDUt  =   8.053  + 0.834 CDUt-1  +  ût, 
  (3.43)   (17.10) 

 2R   =  0.683,   SE  =  1.586,   Q(11)  =  12.516  (p  =  0.326). 

The estimated t values are given in parentheses, SE denotes the standard error of 
the residuals. The autocorrelogram, which is also given in Figure 2.4, does not in-
dicate any higher-order process. Moreover, given the high p-value, the Ljung-Box 
Q statistic with 12 correlation coefficients (i.e. with 11 degrees of freedom) gives 
no reason to reject this model. The mean is calculated as 

8.053ˆ 48.512
1 0.834

. 

It shows that about 48.5 percent of the voters voted on average for the CDU dur-
ing this period.  
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Figure 2.4:   Popularity of the CDU/CSU, 1971 – 1982 



2.1   Autoregressive Processes      39 

Stability Conditions 

Along with the stochastic initial value, the condition | | < 1, the so-called 
stability condition, is crucial for the stationarity of the AR(1) process. We 
can also derive the stability condition from the linear homogeneous differ-
ence equation, which is given for the process itself by 

xt  –   xt-1  =  0, 

for its autocovariances by  

( )  –   ( -1)  =  0 

and for the autocorrelations by 

( )  –   ( -1)  =  0. 

These difference equations have stable solutions, i.e. lim ( )  = 0, if and 

only if their characteristic equation  

(2.10)   –    =  0 

has a solution (root) with an absolute value smaller than one, i.e. if | | < 1 
holds. We get an equivalent condition if we do not consider the character-
istic equation but the lag polynomial of the corresponding difference equa-
tions, 

(2.11) 1  –   L  =  0. 

This implies that the solution has to be larger than one in absolute value. 
(Strictly speaking, L, which denotes an operator, has to be substituted by a 
variable, which is often denoted by ‘z’. To keep the notation simple, we 
use L in both meanings.) 

Example 2.3 

Let us consider the stochastic process 

(E2.1) yt  =  xt + vt . 

In this equation, xt is a stationary AR(1) process, xt  =   xt-1 + ut, with | | < 1; vt is 
a pure random process with mean zero and constant variance 2

v  which is uncorre-
lated with the other pure random process ut with mean zero and constant variance 

2
u . 
We can interpret the stochastic process yt as an additive decomposition of two 

stationary components. Then yt itself is stationary. In the sense of MILTON 
FRIEDMAN (1957) we can interpret xt as the permanent (systematic) and vt as the 
transitory component.  
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What does the correlogram of yt look like? As both xt and vt have zero mean, 
E[yt] = 0. Multiplying (E2.1) with yt-  and taking expectations results in 

E[yt-  yt]  =  E[yt-  xt]  +  E[yt-  vt] . 

Due to yt-   =  xt-  + vt- , we get 

E[yt-  yt]  =  E[xt-  xt]  +  E[vt-  xt]  +  E[xt-  vt] +  E[vt-  vt]. 

As ut and vt are uncorrelated, it holds that E[vt-  xt] = E[xt-  vt] = 0, and because of 
the stationarity of the two processes, we can write  

(E2.2) y( )  =  x( ) + v( ) . 

For  = 0 we get the variance of yt as 

y(0)  =  x(0) + 2
v   =  

2
u

21
 + 2

v . 

For   > 0, because of v( ) = 0 for   0, we get from (E2.2) 

y( )  =  x( )  =  
2
u

21
 . 

Thus, we finally get  

y( )  =  2 2 2
v u1 (1 ) /

 ,     =  1, 2, ...,  

for the correlogram of yt. The overlay of the systematic component by the transito-
ry component reduces the autocorrelation generated by the systematic component. 
The larger the variance of the transitory component, the stronger is this effect.  

2.1.2   Second Order Autoregressive Processes  

Generalising (2.1), the second order autoregressive process (AR(2)) can 
be written as 

(2.12) xt  =   + 1 xt-1 + 2 xt-2 + ut, 

with ut denoting a pure random process with variance 2 and 2  0. With 
the lag operator L we get 

(2.13) (1 – 1 L – 2 L2) xt   =    + ut. 

With (L) = 1 – 1 L – 2 L2 we can write 

(2.14) (L) xt   =    + ut. 
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As for the AR(1) process, we get the Wold representation from (2.14) if 
we invert (L); i.e. under the assumption that -1(L) exists and has the 
property 

(2.15) (L) -1(L)  =  1 

we can ‘solve’ for xt in (2.14): 

(2.16) xt   =   -1(L)   +  -1(L) ut . 

If we use the series expansion with undetermined coefficients for 
-1(L)  =  0 + 1L + 2L2 + ... 

it has to hold that 

1  =  (1 – 1 L – 2 L2 )( 0 + 1L + 2L2 + 3L3 + ... ) 

because of (2.15). This relation is an identity only if the coefficients of Lj, 
j = 0, 1, 2, ..., are equal on both the right and the left hand side. We get 

2 3
0 1 2 3

2 3
1 0 1 1 1 2

2 3
2 0 2 1

1 L L L ...
L L L ...

L L ...
  . 

Comparing the coefficients of the lag polynomials on the right- and left-
hand side finally leads to 

L0:           0  =  1 

L1:   1 – 1 0  =  0    1  =  1. 

L2:   2 – 1 1 – 2 0 =  0    2  =  2
1  + 2 . 

L3:   3 – 1 2 – 2 1 =  0    3  =  3
1  + 2 1 2 . 

By applying this so-called method of undetermined coefficients, we get the 
values j, j = 2, 3, ..., from the linear homogeneous difference equation  

j – 1 j-1 – 2 j-2 =  0 

with the initial conditions 0 = 1 and 1 = 1. 
The stability condition for the AR(2) process requires that, for j  , 

the j converge to zero, i.e. that the characteristic equation of (2.12), 

(2.17) 2 – 1  – 2  =  0, 

has only roots with absolute values smaller than one, or that all solutions 
of the lag polynomial in (2.13), 
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(2.18) 1 – 1 L – 2 L2  =  0 

are larger than one in modulus. Together with stochastic initial conditions, 
this guarantees the stationarity of the process. The stability conditions are 
fulfilled if the following parameter restrictions hold jointly for (2.17) and 
(2.18): 

1  +  (- 1)  +  (- 2)  >  0, 

1  –  (- 1)  +  (- 2)  >  0, 

1  –  (- 2)  >  0. 

As a constant is not changed by the application of the lag operator, the 
number ‘1’ can substitute the lag operator in the corresponding terms. 
Thus, due to (2.16), the Wold representation of the AR(2) process is given 
by 

(2.19)  xt   =   j t j
j 01 2

u
1

, 0 = 1. 

Under the assumption of stationarity, the expected value of the stochastic 
process can be calculated directly from (2.12) since E[xt] = E[xt-1] = E[xt-2] 
= . We get 

  =   + 1  + 2  

or 

(2.20) E[xt]   =      =   
1 21

 . 

As the stability conditions are fulfilled, 1 – 1 – 2 > 0 holds, i.e. the sign 
of  also determines the sign of . 

In order to calculate the second order moments, we can assume – with-
out loss of generality – that  = 0, which is equivalent to  = 0. Multiply-
ing (2.12) with xt- ,   0, and taking expectations leads to 

(2.21) E[xt-  xt]  =  1 E[xt-  xt-1]  + 2 E[xt-  xt-2]  +  E[xt-  ut] . 

Because of representation (2.19), relation (2.8) holds here as well. This 
leads to the following equations 

(2.22) 

2
1 2

1 2

1 2

0 : (0) (1) (2)
1 : (1) (0) (1)
2 : (2) (1) (0)

 , 
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and, more generally, the following difference equation holds for the auto-
covariances ( ),  2,  

(2.23) ( ) – 1 ( -1) – 2 ( -2)  =  0. 

As the stability conditions hold, the autocovariances which can be recur-
sively calculated with (2.23) are converging to zero for   . 

The relations (2.22) result in  

(2.24) V[xt]   =   (0)   =   22
2 2

2 2 1

1
(1 ) [(1 ) ]

  

for the variance of the AR(2) process, and in 

(1)   =   21
2 2

2 2 1(1 ) [(1 ) ]
, 

and 

(2)   =   
2 2

21 2 2
2 2

2 2 1(1 ) [(1 ) ]
, 

for the autocovariances of order one and two. 
The autocorrelations can be calculated accordingly. If we divide (2.23) 

by the variance (0) we get the linear homogeneous second order differ-
ence equation,  

(2.25) ( ) – 1 ( -1) – 2 ( -2)  =  0 

with the initial conditions (0) = 1 and (1) = 1/(1 – 2) for the autocorre-
lation function. Depending on the values of 1 and 2, AR(2) processes can 
generate quite different developments, and, therefore, these processes can 
show considerably different characteristics.  

Example 2.4 

Let us consider the AR(2) process 

(E2.3) xt  =  1 + 1.5 xt-1 – 0.56 xt-2 + ut 

with a variance of ut of 1. Because the characteristic equation 
2 – 1.5  + 0.56  =  0 

has the two roots 1 = 0.8 and 2 = 0.7, (E2.3) is stationary, given that we have 
stochastic initial conditions. The expected value of this process is 
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   =   
1

1 1.5 0.56
   =   16.6 . 

The variance of (E2.3) can be calculated from (2.24) as (0) = 19.31. A realisation 
of this process (with 180 observations) is given in Figure 2.5 in which the (esti-
mated) mean was subtracted. Thus, the realisations fluctuate around zero, and the 
process always tends to go back to the mean. This mean-reverting behaviour is a 
typical property of stationary processes.  

Due to (2.25) we get  

( ) – 1.5 ( -1) + 0.56 ( -2)  =  0,     =  2, 3, ...,  
with  (0) = 1,   (1) = 0.96 

for the autocorrelation function. The general solution of this homogeneous differ-
ence equation is 

( )   =   C1 (0.8)  + C2 (0.7)  , 

where C1 and C2 are two arbitrary constants. Taking into account the two initial 
conditions we get  

( )   =   2.6 (0.8)  – 1.6 (0.7)  

for the autocorrelation coefficients. This development is also expressed in Figure 
2.5. The coefficients are always positive but strictly monotonically decreasing. 
Initially, the estimated autocorrelogram using the given realisation is also mono-
tonically decreasing, but, contrary to the theoretical development, the values begin 
to fluctuate from the tenth lag onwards. However, except for the coefficient for  = 
16, the estimates are not significantly different from zero; they are all inside the 
approximate 95 percent confidence interval indicated by the dotted lines. 

The characteristic equations of stable autoregressive processes of second 
or higher order can result in conjugate complex roots. In this case, the time 
series exhibit dampened oscillations, which are shocked again and again 
by the pure random process. The solution of the homogeneous part of 
(2.12) for conjugate complex roots can be represented by  

xt   =   dt (C1 cos (f t) + C2 sin (f t)) 

with C1 and C2 again being arbitrary constants that can be determined by 
using the initial conditions. The dampening factor  

d   =   2  

corresponds to the modulus of the two roots, and  

f   =   1

2

arccos
2
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Figure 2.5:   AR(2) process with 1 = 1.5, 2= -0.56 
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Figure 2.6:   AR(2) process with 1 = 1.4 and 2 = -0.85 
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is the frequency of the oscillation. The period of the cycles is P = 2 /f. 
Processes with conjugate complex roots are well-suited to describe busi-
ness cycle fluctuations.  

Example 2.5 

Consider the AR(2) process 

(E2.4) xt   =   1.4 xt-1 – 0.85 xt-2 + ut, 

with a variance of ut of 1. The characteristic equation 
2 – 1.4  + 0.85   =   0 

has the two solutions 1 = 0.7 + 0.6i and 2 = 0.7- 0.6i. (‘i’ stands for the imagi-
nary unit: i2 = - 1.) The modulus (dampening factor) is d = 0.922. Thus, (E2.4) 
with stochastic initial conditions and a mean of zero is stationary. According to 
(2.24) the variance is given by (0) = 8.433.  

A realisation of this process with 180 observations is given in Figure 2.6. Its 
development is cyclical around its zero mean. For the autocorrelation function we 
get  

( ) – 1.4 ( -1) + 0.85 ( -2)  =  0,     =  2, 3, ...,  
(0) = 1,   (1) = 0.76,  

because of (2.25). 
The general solution is 

( )   =   0.922  (C1 cos (0.709 ) + C2 sin (0.709 )) . 

Taking into account the two initial conditions, we get for the autocorrelation coef-
ficients  

( )   =   0.922  (cos (0.709 ) + 0.1 sin (0.709 )) , 

with a frequency of   f  =  0.709. 
In case of quarterly data, this corresponds to a period length of about 9 quarters. 

Both the theoretical and the estimated autocorrelations in Figure 2.6 show this 
kind of dampened periodical behaviour.  

Example 2.6 

Figure 2.7 shows the development of the three month money market rate in Frank-
furt (GSR) from the first quarter of 1970 to the last quarter of 1998 as well as the 
autocorrelation and the partial autocorrelation functions explained in Section 2.1.4. 
Whereas the autocorrelation function tends only slowly towards zero, the partial 
autocorrelation function breaks off after two lags. As will be shown below, this 
indicates an AR(2) process. For the period from 1970 to 1998, estimation with 
OLS  results in the following: 
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Figure 2.7:   Three month money market rate in Frankfurt, 1970 – 1998 
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GSRt   = 0.575  + 1.407 GSRt-1  – 0.498 GSRt-2  +  ût,. 
 (2.82) (17.50) (-6.16) 

2R   =  0.910,   SE  =  0.812,  Q(6)  =  6.475  (p  =  0.372), 

with t values being again given in parentheses. On the 0.1 percent level, both es-
timated coefficients of the lagged interest rates are significantly different from ze-
ro. The autocorrelogram of the estimated residuals (given in Figure 2.7c) as well 
as the Ljung-Box Q statistic which is calculated with 8 correlation coefficients 
(and 6 degrees of freedom) does not indicate any higher order process. 
The two roots of the process are 0.70 ± 0.06i, i.e. they indicate dampened cycles. 
The modulus (dampening factor) is d = 0.706; the frequency f = 0.079 corresponds 
to a period of 79.7 quarters and therefore of nearly 20 years. Correspondingly, this 
oscillation cannot be detected in the estimated autocorrelogram presented in Fig-
ure 2.7b. 

2.1.3   Higher Order Autoregressive Processes  

An AR(p) process can be described by the following stochastic difference 
equation,  

(2.26) xt  =   + 1 xt-1 + 2 xt-2 + ... + p xt-p + ut, 

with p  0, where ut is again a pure random process with zero mean and 
variance 2. Using the lag operator we can also write: 

(2.26') (1 – 1 L – 2 L2 – ... – p Lp) xt   =    + ut. 

If we assume stochastic initial conditions, the AR(p) process in (2.26) is 
stationary if the stability conditions are satisfied, i.e. if the characteristic 
equation  

(2.27) p – 1 p-1 – 2 p-2 – ... – p   =   0 

only has roots with absolute values smaller than one, or if the solutions of 
the lag polynomial  

(2.28) 1 – 1 L – 2 L2 – ... – p Lp   =   0 

only have roots with absolute values larger than one. 
If the stability conditions are satisfied, we get the Wold representation 

of the AR(p) process by the series expansion of the inverse lag polynomial,  

p
1 p

1
1 L ... L

   =   1 + 1L + 2L2 + ... 

as 
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(2.29) xt   =   j t j
j 01 p

u
1 ...

 . 

Generalising the approach that was used to calculate the coefficients of the 
AR(2) process, the series expansion can again be calculated by the method 
of undetermined coefficients. 

From (2.29) we get the constant (unconditional) expectation as 

E[xt]   =  
1 p1 ...

  =    . 

Again, similarly to the AR(1) and AR(2) cases, a necessary condition for 
stability is  

1 – 1 – 2 – ... – p   >   0. 

Without loss of generality we can set  = 0, i.e.  = 0, in order to calcu-
late the autocovariances. Because of ( ) = E[xt-  xt], we get according to 
(2.26) 

(2.30) ( )   =  E[xt-  ( 1 xt-1 + 2 xt-2 + ... + p xt-p + ut)] . 

For  = 0, 1, ... , p, it holds that 

(2.31)    

2
1 2 p

1 2 p

1 2 p

(0) (1) (2) (p)
(1) (0) (1) (p 1)

(p) (p 1) (p 2) (0)

 

because of the symmetry of the autocovariances and because of E[xt-  ut] = 
2 for  = 0 and zero for  > 0. 
This is a linear inhomogeneous equation system for given i and 

2 to 
derive the p + 1 unknowns (0), (1), ..., (p). For  > p we get the linear 
homogeneous difference equation to calculate the autocovariances of order 
 > p: 

(2.32) ( ) – 1 ( -1) – ... – p ( -p)    =    0. 

If we divide (2.32) by (0), we get the corresponding difference equation 
to calculate the autocorrelations: 

(2.33) ( ) – 1 ( -1) – ... – p ( -p)    =   0. 

The initial conditions (1), (2), ..., (p) can be derived from the so-called 
Yule-Walker equations. We get those if we successively insert  = 1, 2, ..., 
p in (2.33), or, if the last p equations in (2.31) are divided by (0), 
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 (1) = 1 +  2 (1) +  3 (2) + ... +  p (p-1) 
 (2) = 1 (1) +  2 +  3 (1) + ... +  p (p-2) 
(2.34)  
 (p) = 1 (p-1) +  2 (p-2) +  3 (p-3) + ... +  p  

If we define ' = ( (1), (2), ..., (p)), ' = ( 1, 2, ..., p) and 

p p

1 (1) (2) (p 1)
(1) 1 (1) (p 2)

R

(p 1) (p 2) (p 3) 1

 

we can write the Yule-Walker equations (2.34) in matrix form, 

(2.35)    =   R  . 

If the first p autocorrelation coefficients are given, the coefficients of the 
AR(p) process can be calculated according to (2.35) as  

(2.36)    =   R-1   . 

Equations (2.35) and (2.36) show that there is a one-to-one mapping be-
tween the p coefficients  and the first p autocorrelation coefficients  of 
an AR(p) process. If there is a generating pure random process, it is suffi-
cient to know either  or  to identify the AR(p) process. Thus, there are 
two possibilities to describe the structure of an autoregressive process of 
order p: the parametric representation that uses the parameters 1, 2, ..., p, 
and the non-parametric representation with the first p autocorrelation coef-
ficients (1), (2), ..., (p). Both representations contain exactly the same 
information. Which representation is used depends on the specific situa-
tion. We usually use the parametric representation to describe finite order 
autoregressive processes (with known order). 

Example 2.7 

Let the fourth order autoregressive process 

xt  =  4 xt-4  + ut,   0  <  4  <  1, 

be given, where ut is again white noise with zero mean and variance 2. Applying 
(2.31) we get: 

(0)   =   4 (4)  +   2, 

(1)   =   4 (3), 

(2)   =   4 (2), 
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(3)   =   4 (1), 

(4)   =   4 (0). 

From these relations we get 

(0)   =   
2

2
41

 , 

(1)   =   (2)   =   (3)   =   0, 

(4)   =   4

2

2
41

 . 

As can easily be seen, only the autocovariances with lag  = 4j, j = 1, 2, ... are dif-
ferent from zero, while all other autocovariances are zero. Thus, for  > 0 we get 
the autocorrelation function  

( )   =   
j
4 for 4j, j 1, 2, ...

0 elsewhere.
. 

Only every fourth autocorrelation coefficient is different from zero; the sequence 
of these autocorrelation coefficients decreases monotonically like a geometric se-
ries. Employing such a model for quarterly data, this AR(4) process captures the 
correlation between random variables that are distant from each other by a multi-
plicity of four periods, i.e. the structure of the correlations of all variables which 
belong to the i-th quarter of a year, i = 1, 2, 3, 4, follows an AR(1) process while 
the correlations between variables that belong to different quarters are always ze-
ro. Such an AR(4) process provides a simple possibility of modelling seasonal ef-
fects which typically influence the same quarters of different years. For empirical 
applications, it is advisable to first eliminate the deterministic component of a sea-
sonal variation by employing seasonal dummies and then to model the remaining 
seasonal effects by such an AR(4) process. 

2.1.4   The Partial Autocorrelation Function 

Due to the stability conditions, autocorrelation functions of stationary fi-
nite order autoregressive processes are always sequences that converge to 
zero but do not break off. This makes it difficult to distinguish between 
processes of different orders when using the autocorrelation function. To 
cope with this problem, we introduce a new concept, the partial autocorre-
lation function. The partial correlation between two random variables is 
the correlation that remains if the possible impact of all other random vari-
ables has been eliminated. To define the partial autocorrelation coefficient, 
we use the new notation,  
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xt   =   k1xt-1  +  k2xt-2  +  …  +  kkxt-k  +  ut, 

where ki is the coefficient of the variable with lag i if the process has or-
der k. (According to the former notation it holds that i = ki  i = 1,2,…,k.) 
The coefficients kk are the partial autocorrelation coefficients (of order k),  
k = 1,2,… . The partial autocorrelation measures the correlation between xt 
and xt-k which remains when the influences of xt-1, xt-2, ..., xt-k+1 on xt and 
xt-k have been eliminated. 

Due to the Yule-Walker equations (2.35), we can derive the partial au-
tocorrelation coefficients kk from the autocorrelation coefficients if we 
calculate  the coefficients kk, which belong to xt-k, for k = 1, 2, ... from the 
corresponding linear equation systems 

k1

k2

kk

(1)1 (1) (2) (k 1)
(1) 1 (2) (k 2) (2)

(k 1) (k 2) (k 3) 1 (k)

,   k = 1, 2, ... . 

With Cramer’s rule we get  

(2.37) kk

1 (1) (1)
(1) 1 (2)

(k 1) (k 2) (k)
1 (1) (k 1)
(1) 1 (k 2)

(k 1) (k 2) 1

,   k = 1, 2, ... . 

Thus, if the data generating process (DGP) is an AR(1) process, we get for 
the partial autocorrelation function: 

11  =   (1) 

22  =   

1 (1)
(1) (2)
1 (1)
(1) 1

  =  
2

2

(2) (1)
1 (1)

  =  0, 
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because of (2) = (1)2. Generally, the partial autocorrelation coefficients 
kk = 0 for k >1 in an AR(1) process. 

If the DGP is an AR(2) process, we get 

11  =  (1),   22  =  
2

2

(2) (1)
1 (1)

, kk  =  0   for   k > 2 . 

The same is true for an AR(p) process: all partial autocorrelation coeffi-
cients of order higher than p are zero. Thus, for finite order autoregressive 
processes, the partial autocorrelation function provides the possibility of 
identifying the order of the process by the order of the last non-zero partial 
autocorrelation coefficient. We can estimate the partial autocorrelation co-
efficients consistently by substituting the theoretical values in (2.37) by 
their consistent estimates (1.10). For the partial autocorrelation coefficients 
which have a theoretical value of zero, i.e. the order of which is larger than 
the order of the process, we get asymptotically that they are normally dis-
tributed with E[ kk

ˆ ] = 0 and V[ kk
ˆ ] = 1/T for k > p . 

Example 2.8 

The AR(1) process of Example 2.1 has the following theoretical partial autocorre-
lation function: 11 = (1) =  and zero elsewhere. In this example,  takes on the 
values 0.9, 0.5 and -0.9. The estimates of the partial autocorrelation functions for 
the realisations in Figures 2.1 and 2.3 are presented in Figure 2.8. It is obvious for 
both processes that these are AR(1) processes. The estimated value for the process 
with  = 0.9 is 11

ˆ  = 0.91, while all other partial autocorrelation coefficients are 

not significantly different from zero. We get 11
ˆ  = -0.91 for the process with  

= -0.9, while all estimated higher order partial autocorrelation coefficients do not 
deviate significantly from zero. 

The AR(2) process of Example 2.4 has the following theoretical partial auto-
correlation function: 11 = 0.96, 22 = -0.56 and zero elsewhere. The realisation of 
this process, which is given in Figure 2.5, leads to the empirical partial autocorre-
lation function in Figure 2.8. It corresponds quite closely to the theoretical func-
tion; we get 11

ˆ  = 0.95 and 22
ˆ  = -0.60 and all higher order partial autocorrelation 

coefficients are not significantly different from zero. The same holds for the 
AR(2) process with the theoretical non-zero partial autocorrelations 11 = 0.76 and 

22 = -0.85 given in Example 2.5. We get the estimates 11
ˆ  = 0.76 and 22

ˆ  = -0.78, 
whereas all higher order partial correlation coefficients are not significantly differ-
ent from zero. 
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2.1.5   Estimating Autoregressive Processes 

Under the assumption of a known order p we have different possibilities to 
estimate the parameters: 

(i) If we know the distribution of the white noise process that generates 
the AR(p) process, the parameters can be estimated by using maxi-
mum likelihood (ML) methods.  

(ii) The parameters can also be estimated with the method of moments by 
using the Yule-Walker equations. 

(iii) A further possibility is to treat 

(2.26) xt  =   + 1 xt-1 + 2 xt-2 + ... + p xt-p + ut, 

as a regression equation and apply the ordinary least squares (OLS) 
method for estimation. OLS provides consistent estimates. Moreover, 
if (2.26) fulfils the stability conditions, ˆT( )  as well as 

i iˆT( ) , i = 1, 2, ..., p, are asymptotically normally distributed.  

If the order of the AR process is unknown, it can be estimated with the 
help of information criteria. For this purpose, AR processes with succes-
sively increasing orders p = 1, 2, ..., pmax are estimated. Finally, the order 
p* is chosen which minimises the respective criterion. The following crite-
ria are often used: 

(i) The final prediction error which goes back to HIROTUGU AKAIKE 
(1969)  

FPE   =  
T

(p) 2
t

t 1

T m 1 ˆ(u )
T m T

 . 

(ii) Closely related to this is the Akaike information criterion (HIROTUGU 
AKAIKE (1974)) 

AIC   =  
T

(p) 2
t

t 1

1 2ˆln (u ) m
T T

 . 

(iii) Alternatives are the Bayesian criterion of GIDEON SCHWARZ (1978) 

SC   =  
T

(p) 2
t

t 1

1 ln Tˆln (u ) m
T T

  

(iv) as well as the criterion developed by EDWARD J. HANNAN and 
BARRY G. QUINN (1979)  
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HQ   =  
T

(p) 2
t

t 1

1 2ln(ln T)ˆln (u ) m
T T

 . 

(p)
tû  are the estimated residuals of the AR(p) process, while m is the number 

of estimated parameters. If the constant term is estimated, too, m = p + 1 
for an AR(p) process. These criteria are always based on the same princi-
ple: They consist of one part, the sum of squared residuals (or its loga-
rithm), which decreases when the number of estimated parameters increas-
es, and of a ‘penalty term’, which increases when the number of estimated 
parameters increases. Whereas the first two criteria overestimate the true 
(finite) order asymptotically, the two other criteria estimate the true order 
of the process consistently. For T  16, the penalty term of SC is larger 
than the one of HQ which itself is larger than the one of AIC. This leads to 
the following ordering of the estimated AR orders: 

SC order    HQ order    AIC order. 

Please note that choosing such an order does not always imply that we 
have white noise residuals. This has to be checked independently. Many 
computer programmes like, for example, EViews, do not exactly report the 
criteria given in (ii) through (iv). Relying on the log-likelihood function 
instead of on the sum of squared residuals directly, they add 1 + ln(2 )  
2.8379, which does, of course, neither affect the order nor which value of p 
minimises the information criteria.  

Example 2.9 

As in Example 2.6, we take a look at the development of the three month money 
market interest rate in Frankfurt am Main. If, for this series, we estimate AR pro-
cesses up to the order p = 4, we get the following results (for T = 116): 

p = 0:   AIC  =  4.8334,  HQ  =  4.8430,   SC  =  4.8571; 

p = 1:   AIC  =  2.7180,  HQ  =  2.7373,   SC  =  2.7655; 

p = 2:   AIC  =  2.4457,  HQ  =  2.4746,   SC  =  2.5169; 

p = 3:   AIC  =  2.4609,  HQ  =  2.4995,   SC  =  2.5559; 

p = 4:   AIC  =  2.4778,  HQ  =  2.5260,   SC  =  2.5965. 

With all three criteria we get the minimum for p = 2. Thus, the optimal number of 
lags is p* = 2, as used in Example 2.6. 
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2.2   Moving Average Processes 

Moving average processes of an infinite order have already occurred when 
we presented the Wold decomposition theorem. They are, above all, of 
theoretical importance as, in practice, only a finite number of (different) 
parameters can be estimated. In the following, we consider finite order 
moving average processes. We start with the first order moving average 
process and then discuss general properties of finite order moving average 
processes.  

2.2.1   First Order Moving Average Processes  

The first order moving average process (MA(1)) is given by the following 
equation:  

(2.38) xt   =     +  ut  –   ut-1 ,  

or 

(2.38') xt  –     =   (l – L)ut , 

with ut again being a pure random process. The Wold representation of an 
MA(1) process (as of any finite order MA process) has a finite number of 
terms. In this special case, the Wold coefficients are 0 = 1, 1 = -  and j 
= 0 for j  2. Thus, 2

jj
 is finite for all finite values of , i.e. an MA(1) 

process is always stationary. 
Taking expectations of (2.38) leads to 

E[xt]   =     +  E[ut]  –   E[ut-1] =    . 

The variance can also be calculated directly, 

V[xt] =   E[(xt – )2]   

 =   E[(ut –  ut-1)2] 

 =   E[( 2
tu  – 2  ut ut-1 + 2 2

t 1u )] 

 =   (1 + 2) 2   =   (0) . 

Therefore, the variance is constant at any point of time. 
For the covariances of the process we get 

E[(xt – )(xt+  – )]  =   E[(ut –  ut-1)(ut+  –  ut+  -1)] 

 =   E[(utut+  –  utut+  –1 –  ut-1ut+  + 2 ut-1ut+  -1)] . 
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The covariances are different from zero only for  = ± 1, i.e. for adjoining 
random variables. In this case  

(1)   =   -  2 . 

Thus, for an MA(1) process, all autocovariances and therefore all autocorre-
lations with an order higher than one disappear, i.e. ( ) = ( ) = 0 for   2. 

The correlogram of an MA(1) process is 

(0)  =  1,   (1)  =  21
,    ( )  =  0  for    2. 

If we consider (1) as a function of , (1) = f( ), it holds that f(0) = 0 and 
f( ) = -f(- ), i.e. that f( ) is point symmetric to the origin, and that |f( )|  
0.5. f( ) has its maximum at  = -1 and its minimum at  = 1. Thus, an 
MA(1) process cannot have a first order autocorrelation above 0.5 or be-
low -0.5.  

If we know the autocorrelation coefficient (1) = 1, for example, by es-
timation, we can derive (estimate) the corresponding parameter  by using 
the equation for the first order autocorrelation coefficient,  

(1 + 2) 1  +     =   0 . 

The quadratic equation can also be written as  

(2.39) 2  +  
1

1
   +  1   =   0,  

and it has the two solutions 

1,2   =   2
1

1

1 1 1 4
2

 . 

Thus, the parameters of the MA(1) process can be estimated non-linearly 
with the method of moments: the theoretical moments are substituted by 
their consistent estimates and the resulting equation is used for estimating 
the parameters consistently. 

Because of | 1|  0.5, the quadratic equation always results in real roots. 
They also have the property that 1 2 = 1. This gives us the possibility to 
model the same autocorrelation structure with two different parameters, 
where one is the inverse of the other. 

In order to get a unique parameterisation, we require a further property 
of the MA(1) process. We ask under which conditions the MA(1) process 
(2.38) can have an autoregressive representation. By using the lag operator 
representation (2.38') we get 
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ut   =   –  
1

  +  1
1 L

xt . 

An expansion of the series 1/(1 – L) is only possible for  < 1 and re-
sults in the following AR( ) process 

ut   =   –  
1

  +  xt  +   xt-1  +  2 xt-2  + ... 

or 

xt  +   xt-1  +  2 xt-2  + ...   =   
1

  +  ut . 

This representation requires the condition of invertibility (  < 1). In this 
case, we get a unique parameterisation of the MA(1) process. Applying the 
lag polynomial in (2.38'), we can formulate the invertibility condition in 
the following way: An MA(1) process is invertible if and only if the root 
of the lag polynomial  

1 – L   =   0 

is larger than one in modulus. 

Example 2.10 

The following MA(1) process is given: 

(E2.5) xt   =   t  –   t-1,   t ~ N(0, 22), 

with  = -0.5. For this process we get 

E[xt]  =  0, 

V[xt]  =  (1 + 0.52)·4  =  5,    

(1)  =  2

0.5
1 0.5

  =  0.4, 

( )  =  0   for       2. 

Solving the corresponding quadratic equation (2.39) for this value of (1) leads to 
the two roots 1 = -2.0 and 2 = -0.5. If we now consider the process 

(E2.5a) yt   =   t  +  2 t-1,   t ~ N(0, 1), 

we obtain the following results: 

E[yt]  =  0, 

V[yt]  =  (1 + 2.02)·1  =  5,    



2.2   Moving Average Processes      61 

(1)  =  2

2.0
1 2.0

  =  0.4, 

( )  =  0   for       2, 

i.e. the variances and the autocorrelogram of the two processes (E2.5) and (E2.5a) 
are identical. The only difference between them is that (E2.5) is invertible, be-
cause the invertibility condition  < 1 holds, whereas (E2.5a) is not invertible. 
Thus, given the structure of the correlations, we can choose the one of the two 
processes that fulfils the invertibility condition without imposing any restrictions 
on the structure of the process.  

With equation (2.37), the partial autocorrelation function of the MA(1) 
process can be calculated in the following way:  

11   =   (1), 

22   =   

1 (1)
(1) 0
1 (1)
(1) 1

  =  
2

2

(1)
1 (1)

  <  0 , 

33   =   

1 (1) (1)
(1) 1 0
0 (1) 0
1 (1) 0
(1) 1 (1)
0 (1) 1

  =  
3

2

(1)
1 2 (1)

    0   for       0, 

44   =   

1 (1) 0 (1)
(1) 1 (1) 0
0 (1) 1 0
0 0 (1) 0
1 (1) 0 0
(1) 1 (1) 0
0 (1) 1 (1)
0 0 (1) 1

  =  
4

2 2 2

(1)
(1 (1) ) (1)

  <  0 , 

etc. 
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If  is positive, (1) is negative and vice versa. This leads to the two 
possible patterns of partial autocorrelation functions, exemplified by  = 
±0.8: 

  = 0.8,   ii  {-0.49,-0.31,-0.22, -0.17, ... } , 

  = -0.8,   ii  {0.49,-0.31, 0.22, -0.17, ... } . 

Thus, contrary to the AR(1) process, the autocorrelation function of the 
MA(1) process breaks off, while the partial autocorrelation function does 
not. These properties hold generally, since invertible finite order MA pro-
cesses are equivalent to infinite order AR processes.  

2.2.2   MA(1) and Temporal Aggregation 

The time series which are discussed in this book are measured in discrete 
time, with intervals of equal length. Exchange rates, for example, are nor-
mally quoted at the end of each trading day. For econometric analyses, 
however, monthly, quarterly, or even annual data are used, rather than the-
se daily values. Usually, averages or end-of-period data are used for tem-
poral aggregation.  

Thus, two aggregation schemes have to be distinguished. The first one is 
skip sampling (or: systematic sampling) where only every mth data point is 
recorded. If xt is the basic series at t = 1, 2, 3,…, the skip sampled series ys  
with new time scale s is end-of-period data, 

y1  =  xm,   y2  =  x2m,   y3  =  x3m, …, ys  =  xsm. 

Such an aggregation is typical for stock variables. However, the second 
scheme of averaging over m  non-overlapping periods is also widely used, 
in particular for rates or indices: 

1 m m 1 1
1y x x ... x
m

 

2 2m 2m 1 m 1
1y x x ... x
m

 

 

s sm sm 1 (s 1)m 1
1y x x ... x
m

. 
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In the following, we do not present a general theory of temporal aggrega-
tion but just discuss a special case of particular applied interest, the ran-
dom walk, with  

xt   =   xt-1  +  ut, 

where an artificial MA(1) structure arises due to aggregation by averaging. 
It is straightforward to see that systematic sampling does not affect the 
random walk property, since in this case we can write 

ys   =   x0  + 
sm

t
t 1

u .  

From this representation we get 

ys   =   ys-1  +  s, 

with s being white noise:  

s   =   usm  +  usm-1  +  ...  +  u(s-1)m+1, 

with E[ s] = 0 and 

E( s · s – )   =   
2
um for 0

0 elsewhere
 . 

Hence, the random walk property is inherited by ys, only the variance of 
the differences ys – ys-1 is inflated in the obvious way. In case of averaging,

sy , matters get more complicated. It can, however, be shown that the dif-
ferences 

s s 1 sy y  

follow no longer a white noise process but an MA(1) scheme hidden be-
hind  

s sm sm 1 s 1 m 1 s 2 m 3 s 2 m 2
1 u 2u ... mu ... 2u u .
m

 

We omit details but refer to HOLBROOK WORKING (1960) who showed 
that with increasing aggregation level, m  , one obtains the autocorre-
lation function 
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( )   =   s s

s

1, 0
E 1 , 1

V 4
0, elsewhere

. 

Note that the above autocorrelation function corresponds to the following 
MA(1)-process 

s s s 1u u  

where su is white noise, and the limiting value (for m  ) of the MA pa-
rameter is 

3 2 0.268.  

GEORGE C. TIAO (1972) generalised this result the following way:  
If xt – xt-1 is not generated by white noise but by an invertible MA(1) pro-
cess, then s s 1y y  behaves with growing m like the MA(1) process 

s s 1u u , where  is independent of the underlying MA(1) structure of xt 
– xt-1. This result even continues to hold when the assumption that xt – xt-1 
is MA(1) is replaced by a more general moving average process of higher 
order as introduced in subsection 2.2.3. 

Example 2.11 

Consider averaging over m = 2 periods,  

s 2s 2s 1
1y x x
2

. 

For the random walk xt = xt-1 + ut, it holds that 

s s s 1y y  

 =   1
2

 (x2s  +  x2s-1  –  x2s-2  –  x2s-3) 

 =   1
2

 ( u2s  +  2 u2s-1  +  u2s-2) . 

This process can be described as  

s s s 1u u  

with  = 2 2 – 3  –0.172, and 
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E( s  · s )   =   

2
u

2
u

3 for 0
2
1 for 1
4

0 elsewhere

 , 

such that for m = 2 the autocorrelation coefficient at lag one becomes (1) = 1/6.  

Example 2.12 

Example 1.3 as well as Figure 1.8 present the end-of-month exchange rate be-
tween the Swiss Franc and the U.S. Dollar over the period from January 1974 to 
December 2011. The autocorrelogram of the first differences of the logarithms of 
this time series indicates that they follow a pure random process. The tests we ap-
plied did not reject this null hypothesis. 

If we use monthly averages instead of end-of-month data, the following MA(1) 
process can be estimated for the first difference of the logarithms of this exchange 
rate: 

ln(et)   =  -0.003  +  ût +  0.308 ût-1, 
 (-1.53) (6.91) 

2R  = 0.082,   SE  =  0.028,   Q(11)  =  8.216  (p  =  0.694), 
JB   = 21.194 (p = 0.000), 

with the t values again given in parentheses. ln(·) denotes the natural logarithm. 
The estimated coefficient of the MA(1) term is highly significantly different from 
zero. The Ljung-Box Q-statistic indicates that there is no longer any significant 
autocorrelation in the residuals. As m  20 is relatively large (in this context), the 
estimated values of the MA(1) term should not be too different from the theoreti-
cal value given by GEORGE C. TIAO (1972). The theoretical value -0.268 lies in the 
two-sigma confidence interval of the estimated parameter -0.308. 

2.2.3   Higher Order Moving Average Processes  

In general, the moving average process of order q (MA(q)) can be written 
as 

(2.40) xt   =     +  ut  –  1 ut-1  –  2 ut-2  –  ...  –  q ut-q 

with q  0 and ut as a pure random process. Using the lag operator we get  

(2.40') xt  –   =   (1 – 1L – 2L2 –  ...  – qLq)ut 

 =   (L)ut . 
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From (2.40) we see that we already have a finite order Wold representation 
with k = 0 for k > q. Thus, there are no problems of convergence, and 
every finite MA(q) process is stationary, no matter what values are used 
for j, j = 1, 2, ..., q. 

For the expectation of (2.40) we immediately get E[xt] = . Thus, the 
variance can be calculated as: 

V[xt] =   E[(xt – )2]   

 =   E[(ut – 1 ut-1  –  ...  –  q ut-q)2] 

 =   E[( 2
tu  + 2 2

1 t 1u  + ... + 2 2
q t qu  – 2 1 utut-1 – ...  

  – 2 q-1 q ut-q+1ut-q)] . 

From this we obtain 

V[xt]   =   (1  + 2
1  + 2

2  + ... + 2
q ) 2 . 

For the covariances of order  we can write 

Cov[xt, xt+ ] =   E[(xt – )(xt+  – )] 

 =   E[(ut – 1 ut-1  –  ...  –  q ut-q) 
  (ut+  – 1 ut+ -1  –  ...  –  q ut+ -q)] 

 =   E[ut(ut+  – 1 ut+ -1  –  ...  –  q ut+ -q) 
  – 1 ut-1(ut+  – 1 ut+ -1  –  ...  –  q ut+ -q) 
   

  – q ut-q(ut+  – 1 ut+ -1  –  ...  –  q ut+ -q)] . 

Thus, for  = 1, 2, ..., q we get 
  =  1:   (1)  =  (– 1 + 1 2 + ... + q-1 q) 2, 

(2.41)   =  2:   (2)  =  (– 2 + 1 3 + ... + q-2 q) 2, 

     

  =  q:   (q)  =  – q
2, 

while we have ( ) = 0 for  > q. 
Consequently, all autocovariances and autocorrelations with orders 

higher than the order of the process are zero. It is – at least theoretically – 
possible to identify the order of an MA(q) process by using the autocorre-
logram.  

It can be seen from (2.41) that there exists a system of non-linear equa-
tions for given (or estimated) second order moments that determines 
(makes it possible to estimate) the parameters 1, ..., q. As we have al-
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ready seen in the case of the MA(1) process, such non-linear equation sys-
tems have multiple solutions, i.e. there exist different values for 1, 2, ... 
and q that all lead to the same autocorrelation structure. To get a unique 
parameterisation, the invertibility condition is again required, i.e. it must 
be possible to represent the MA(q) process as a stationary AR( ) process. 
Starting from (2.40'), this implies that the inverse operator -1(L) can be 
represented as an infinite series in the lag operator, where the sum of the 
coefficients has to be bounded. Thus, the representation we get is an 
AR( ) process 

ut =   – 
(1)

 + -1(L) xt  

 =   – 
(1)

 + j t j
j 0

c x  , 

where 

1   =   (1 – 1L – ... – qLq)( 1 + c1L + c2L2 + ... ), 

and the parameters ci, i = 1, 2, ... are calculated by using again the method 
of undetermined coefficients. Such a representation exists if all roots of  

1 – 1L – ... – qLq   =   0 

are larger than one in absolute value.  

Example 2.13 

Let the following MA(2) process 

xt  =  ut + 0.6 ut-1 – 0.1 ut-2  

be given, with a variance of 1 given for the pure random process u. For the vari-
ance of x we get 

V[xt]  =  (1 + 0.36 + 0.01)  1  =  1.37 . 

Corresponding to (2.41) the covariances are 

(1)   =   + 0.6 – 0.06   =   0.54 

(2)   =   – 0.1  . 

( )   =   0   for  > 2 

This leads to the autocorrelation coefficients (1) = 0.39 and (2) = -0.07. To 
check whether the process is invertible, the quadratic equation  

1 + 0.6 L  0.1 L2   =   0 
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has to be solved. As the two roots -1.36 and 7.36 are larger than 1 in absolute val-
ue, the invertibility condition is fulfilled, i.e. the MA(2) process can be written as 
an AR( ) process 

xt  =   (1 + 0.6 L – 0.1 L2) ut , 

ut  =   2

1
1 0.6L 0.1L

 xt 

  =   (1 + c1 L + c2 L2 + c3 L3 + ) xt . 
The unknowns ci, i = 1, 2,  ..., can be determined by comparing the coefficients of 
the polynomials in the following way:  

1   =   (1 + 0.6 L – 0.1 L2)(1 + c1 L + c2 L2 + c3 L3 + ) 
1   =   1  +   c1  L  +        c2 L2  +       c3 L3  +  
 +  0.6 L  +  0.6 c1 L2  + 0.6 c2 L3  +   
         0.1 L2  0.1 c1 L3    

It holds that 
               c1  +  0.6      =  0      c1  =  0.60, 
c2  +  0.6 c1  –  0.1      =  0      c2  =  0.46, 
c3  +  0.6 c2  –  0.1 c1  =  0      c3  = 0.34, 
c4  +  0.6 c3  –  0.1 c2  =  0      c4  = 0.25, 

                        . 

Thus, we get the following AR( ) representation 

xt  –  0.6 xt-1  +  0.46 xt-2  –  0.34 xt-3  +  0.25 xt-4       =   ut . 

Similarly to the MA(1) process, the partial autocorrelation function of the MA(q) 
process does not break off. As long as the order q is finite, the MA(q) process is 
stationary whatever its parameters are. If the order tends towards infinity, howev-
er, for the process to be stationary the series of the coefficients has to converge 
just like in the Wold representation. 

2.3   Mixed Processes 

If we take a look at the two different functions that can be used to identify 
autoregressive and moving average processes, we see from Table 2.1 that 
the situation in which neither of them breaks off can only arise if there is 
an MA( ) process that can be inverted to an AR( ) process, i.e. if the 
Wold representation of an AR( ) process corresponds to an MA( ) pro-
cess. However, as pure AR or MA representations, these processes cannot 
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be used for empirical modelling because they can only be characterised by 
means of infinitely many parameters. After all, according to the principle 
of parsimony, the number of estimated parameters should be as small as 
possible when applying time series methods.  

In the following, we introduce processes which contain both an auto-
regressive (AR) term of finite order p and a moving average (MA) term of 
finite order q. Hence, these mixed processes are denoted as ARMA(p,q) 
processes. They enable us to describe processes in which neither the auto-
correlation nor the partial autocorrelation function breaks off after a finite 
number of lags. Again, we start with the simplest case, the ARMA(1,1) 
process, and consider the general case afterwards. 

Table 2.1:  Characteristics of the Autocorrelation and the Partial 
Autocorrelation Functions of AR  and MA Processes 

 Autocorrelation Function Partial Autocorrelation 
Function 

MA(q) breaks off with q  does not break off 

AR(p) does not break off breaks off with p  

2.3.1   ARMA(1,1) Processes 

An ARMA(1,1) process can be written as follows, 

(2.42) xt   =     +   xt-1  +  ut  –   ut-1 , 

or, by using the lag operator 

(2.42') (1 – L) xt   =     +  (1 –  L) ut , 

where ut is a pure random process. To get the Wold representation of an 
ARMA(1,1) process, we solve (2.42') for xt, 

xt   =   
1

  +  1 L
1 L

 ut . 

It is obvious that    must hold, because otherwise xt would be a pure 
random process fluctuating around the mean  = /(1 – ). The j, j = 0, 1, 
2, ..., can be determined as follows: 
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1 L
1 L

  =   0  +  1L  +  2L2  +  3L3  +  … 

 1 – L   =   (1 – L)( 0  +  1L  +  2L2  +  3L3  +  …) 

 1 – L   =   0  +  1L   +   2L2  +    3L3  +  …   
                         – 0L  –  1L2  –  2L3  –  …  . 

Comparing the coefficients of the two lag polynomials we get 

L0:   0  =  1 

L1:   1 – 0  =  –     1  =   –   

L2:   2 – 1  =  0    2  =  (  – )  

L3:   3 – 2  =  0    3  = 2(  – ) 

 

Lj:   j – j-1  =  0     j  = j-1(  – ) . 

The j, j  2 can be determined from the linear homogeneous difference 
equation 

j – j-1 = 0 

with 1 =  –  as initial condition. The j converge towards zero if and 
only if | | < 1. This corresponds to the stability condition of the AR term. 
Thus, the ARMA(1,1) process is stationary if, with stochastic initial condi-
tions, it has a stable AR(1) term. The Wold representation is 

(2.43)  xt   =   
1

 + ut  +  (  – ) ut-1 +  (  – ) ut-2 + 2(  – ) ut-3 + ... . 

Thus, the ARMA(1,1) process can be written as an MA( ) process. 
To invert the MA(1) part, | | < 1 must hold. Starting from (2.42') leads 

to 

ut   =   
1

  +  1 L
1 L

 xt . 

If 1/(1 – L) is developed into a geometric series we get  

ut =   
1

  +  (1 – L)(1 + L + 2L2 + ... ) xt 

  =   
1

  +  xt + (  – ) xt-1 + (  – ) xt-2 + 2(  – ) xt-3 + ... . 
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This proves to be an AR( ) representation. It shows that the combination 
of an AR(1) and an MA(1) term leads to a process with both MA( ) and 
AR( ) representation if the AR term is stable and the MA term invertible. 

We obtain the first and second order moments of the stationary process 
in (2.42) as follows: 

E[xt] =   E[   +   xt-1  +  ut  –   ut-1] 

 =     +   E[xt-1] . 

Due to E[xt] = E[xt-1] =  , we get  

   =   
1

 , 

i.e. the expectation is the same as in an AR(1) process. 
If we set  = 0 without loss of generality, the expectation is zero. The 

autocovariance of order   0 can then be written as 

(2.44) E[xt- xt]   =   E[xt- (  xt-1  +  ut  –   ut-1)], 

which leads to 

(0)   =    (1)  + E[xtut] –  E[xtut-1] 

for  = 0. Due to (2.43), E[xtut] = 2 and E[xtut-1] = (  – ) 2. Thus, we can 
write 

(2.45) (0)   =    (1)  +  (1 – (  – )) 2. 

(2.44) leads to 

(1)   =    (0)  + E[xt-1ut] –  E[xt-1ut-1]  

for  = 1. Because of (2.43) this can be written as 

(2.46) (1)   =    (0)  –  2 . 

If we insert (2.46) in (2.45) and solve for (0), the resulting variance of the 
ARMA(1,1) process is 

(2.47) (0)   =   
2

2

1 2
1

 2. 

Inserting this into (2.46), we get  

(2.48) (1)   =   2

( )(1 )
1

 2 



72      Univariate Stationary Processes 

for the first order autocovariance. For   2, (2.44) results in the autoco-
variances 

(2.49) ( )   =    ( -1) 

and the autocorrelations 

(2.50) ( )   =    ( -1) . 

This results in the same difference equation as in an AR(1) process but, 
however, with the different initial condition  

(1)   =   2

( )(1 )
1 2

 . 

The first order autocorrelation coefficient is influenced by the MA term, 
while the higher order autocorrelation coefficients develop in the same 
way as in an AR(1) process. 

If the process is stable and invertible, i.e. for | | < 1 and | | < 1, the sign 
of (1) is determined by the sign of (  – ) because of (1 + 2 – 2 ) > 0 
and (1 – ) > 0. Moreover, it follows from (2.49) that the autocorrelation 
function – as in the AR(1) process – is monotonic for  > 0 and oscillating 
for  < 0. Due to | | < 1 with  increasing, the autocorrelation function also 
decreases in absolute value. 

Thus, the following typical autocorrelation structures are possible:  

(i)  > 0 and  > : The autocorrelation function is always positive.  

(ii)  < 0 and  < : The autocorrelation function oscillates; the initial 
condition (1) is negative. 

(iii)  > 0 and  < : The autocorrelation function is negative from (1) 
onwards. 

(iv)  < 0 and  > : The autocorrelation function oscillates; the initial 
condition (1) is positive. 

Figure 2.9 shows the development of the corresponding autocorrelation 
functions up to  = 20 for the parameter values ,   {0.8, 0.5, -0.5, -0.8} 
in which, of course,    must always hold, as otherwise the ARMA(1,1) 
process degenerates to a pure random process.  

For the partial autocorrelation function we get  

11   =   (1)   =   2

( )(1 )
1 2

 , 
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Figure 2.9:   Theoretical autocorrelation functions of ARMA(1,1) processes 

 



74      Univariate Stationary Processes 

22   =  

1 (1)
(1) (2)
1 (1)
(1) 1

  =  
2

2

(2) (1)
1 (1)

  =  2

(1)( (1))
1 (1)

, 

because of (2) =  (1), 

33   =  

1 (1) (1)
(1) 1 (2)
(2) (1) (3)
1 (1) (2)
(1) 1 (1)
(2) (1) 1

  =  
2

3 2 2

1 (1) (1)
(1) 1 (1)
(1) (1) (1)

1 2 (1) (1) (2 )
 

        =  
2

3 2 2

(1)( (1))
1 2 (1) (1) (2 )

 , etc. 

Thus, the ARMA(1,1) process is a stationary stochastic process where nei-
ther the autocorrelation nor the partial autocorrelation function breaks off. 

The following example shows how, due to measurement error, an 
AR(1)-process becomes an ARMA(1,1) process.  

Example 2.14 

The ‘true’ variable tx  is generated by a stationary AR(1) process, 

(E2.8) tx   =    t 1x   +  ut , 

but it can only be measured with an error vt, i.e. for the observed variable xt it 
holds that 

(E2.9) xt   =   tx   +  vt , 

where vt is a pure random process uncorrelated with the random process ut. (The 
same model was used in Example 2.3 but with a different interpretation.) If we 
transform (E2.8) to 

tx    =   tu
1 L

 

and insert it into (E2.9) we get 

(1 – L) xt   =   ut  +  vt  –   vt-1 . 
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For the combined error term t = ut + vt –  vt-1 we get 

(0)   =     +  (1 + 2) 2
v  

(1)   =    -  2
v  

( )   =    0   for       2, 

or 

(1)  =  
2
v

2 2 2
u v(1 )

,   ( )  =  0   for       2. 

Thus, the observable variable xt follows an ARMA(1,1) process,  

(1 –  L) xt   =   (1 –  L) t , 

where  can be calculated by means of (1) and t is a pure random pro-
cess. (See also the corresponding results in Section 2.2.1.) 

2.3.2   ARMA(p,q) Processes 

The general autoregressive moving average process with AR order p and 
MA order q can be written as 

(2.51)  xt   =     +  1 xt-1  +  ...  +  p xt-p  +  ut  –  1 ut-1  –  ...  –  q ut-q , 

with ut being a pure random process and p  0 and q  0 having to hold. 
Using the lag operator, we can write 

(2.51')  (1 – 1L – ... – pLp) xt   =     +  (1 – 1L – ... – qLq) ut , 

or 

(2.51'') (L) xt   =     +  (L) ut . 

As factors that are common in both polynomials can be reduced, (L) and 
(L) cannot have identical roots. The process is stationary if – with sto-

chastic initial conditions – the stability conditions of the AR term are ful-
filled, i.e. if (L) only has roots that are larger than 1 in absolute value. 
Then we can derive the Wold representation for which 

(L)   =   (L)(1 + 1L + 2 L2 + ... ) 

must hold. Again, the j, j  = 1, 2, ..., can be calculated by comparing the 
coefficients. If, likewise, all roots of (L) are larger than 1 in absolute val-
ue, the ARMA(p,q) process is also invertible. 

A stationary and invertible ARMA(p,q) process may either be repre-
sented as an AR( ) or as an MA( ) process. Thus, neither its autocorrela-

2
u
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tion nor its partial autocorrelation function breaks off. In short, it is possi-
ble to generate stationary stochastic processes with infinite AR and MA 
orders by using only a finite number of parameters. 

Under the assumption of stationarity, (2.51) directly results in the con-
stant mean  

E[xt]   =      =  
1 p1

 . 

If, without loss of generality, we set  = 0 and thus also  = 0, we get the 
following relation for the autocovariances: 

( ) =   E[xt- xt]  

 =   E[xt- ( 1 xt-1  +  ...  +  p xt-p  +  ut  –  1 ut-1  –  ...  –  q ut-q)] . 

This relation can also be written as  
( )   = 1 ( -1)  +  2 ( -2)  +  ...  +  p ( -p)  

 +  E[xt- ut]  –  1 E[xt- ut-1]  –  ...  –  q E[xt- ut-q] . 

Due to the Wold representation, the covariances between xt-  and ut-i, i = 0, 
..., q, are zero for  > q, i.e. the autocovariances for  > q and  > p are gen-
erated by the difference equation of an AR(p) process,  

( )  –  1 ( -1) –  2 ( -2) –  ... –  p ( -p)   =   0   for  > q    > p 

whereas the first q autocovariances are also influenced by the MA part. 
Normalisation with (0) leads to exactly the same results for the autocorre-
lations. 

If the orders p and q are given and the distribution of the white noise 
process ut is known, the parameters of an ARMA(p,q) process can be esti-
mated consistently by using maximum likelihood methods. These esti-
mates are also asymptotically efficient. If there is no such programme 
available, it is possible to estimate the parameters consistently with least 
squares. As every invertible ARMA(p,q) process is equivalent to an 
AR( ) process, first of all an AR(k) process is estimated with k sufficient-
ly larger than p. From this, one can get estimates of the non-observable re-
siduals ût. By employing these residuals, the ARMA(p,q) process can be 
estimated with the least squares method, 

xt   =     +  1 xt-1  +  ...  +  p xt-p  –  1 ût-1  –  ...  –  q ût-q  +  vt . 

This approach can also be used if p and q are unknown. These orders can, 
for example, be determined by using the information criteria shown in Sec-
tion 2.1.5.  
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Figure 2.10: Three month money market rate in New York, 1994 – 2003 
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Example 2.15 

Figure 2.10 shows the development of the US three month money market rate 
(USR) as well as the estimated autocorrelation and partial autocorrelation function 
of the first differences of this time series for the period from March 1994 to Au-
gust 2003 (114 observations). Both functions do not show a clear break-off behav-
iour. Therefore, the following ARMA(1,1) model has been estimated for this time 
series: 

USRt   =  – 0.006  + 0.831 USRt-1  +  ût  – 0.457 ût-1,. 
 (-0.73) (10.91) (-3.57) 

2R   =  0.351,   SE  =  0.166,   Q(10)  =  7.897  (p  =  0.639). 

The AR(1) as well as the MA(1) terms are different from zero and from one at any 
usual significance level. The autocorrelogram of the estimated residuals, which is 
also given in Figure 2.10, as well as the Ljung-Box Q statistic, which is calculated 
for this model with 12 autocorrelation coefficients (i.e. with 10 degrees of free-
dom), do not provide any evidence of a higher order process.  

2.4   Forecasting 

As mentioned in the introduction, in the 1970’s, one of the reasons for the 
broad acceptance of time series analysis using the Box-Jenkins approach 
was the fact that forecasts with this comparably simple method often out-
performed forecasts generated by large econometric models. In the follow-
ing, we show how ARMA models can be used for making forecasts about 
the future development of time series. In doing so, we assume that all ob-
servations of the time series up to time t are known. 

2.4.1   Forecasts with Minimal Mean Squared Errors  

We want to solve the problem of making a -step ahead forecast for xt with 
a linear prediction function, given a stationary and/or invertible data gen-
erating process.  

Let tx̂ ( )  be such a prediction function for xt+ . Thus, tx̂ ( ) is a random 
variable for given t and . As all stationary ARMA processes have a Wold 
representation, we assume the existence of such a representation without 
loss of generality. Thus,  

xt  =   + j t j
j 0

u ,   0  =  1,    2
j

j 0
  <  , 
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where ut is a pure random process with the usual properties E[ut]  =  0,    

E[utus]  =    
2 for t s

0 for t s
. 

Therefore, it also holds that 

(2.52) xt+    =     +  j t j
j 0

u ,     =  1, 2, ... . 

For a linear prediction function with the information given up to time t, we 
assume the following representation  

(2.53) tx̂ ( )    =     +  k t k
k 0

u ,     =  1, 2, ... , 

where the k , k = 0, 1, 2, ...,  = 1, 2, ..., are unknown. The forecast error 
of a -step forecast is ft( ) = xt+  – tx̂ ( ),  = 1, 2, ..., . In order to make a 
good forecast, these errors should be small. The expected quadratic fore-
cast error E[(xt+  – tx̂ ( ))2], which should be minimised, is used as the cri-
terion to determine the unknowns k . Taking into account (2.52) and 
(2.53) we can write 

E [ 2
tf ( )] =   

2

j t j k t k
j 0 k 0

E u u  

 =   
2

t 1 t 1 1 t 1 k k t k
k 0

E u u u ( )u . 

From this it follows that 

(2.54) E [ 2
tf  ( )]   =   

2
2 2 2 2
1 1 k k

k 0
1 . 

The variance of the forecast error reaches its minimum if we set k  = +k 
for k = 0, 1, 2, ..., . Thus, we get the optimal linear prediction function for 
a -step ahead forecast from (2.53), as 

(2.55) tx̂ ( )   =     +  k t k
k 0

u ,     =  1, 2, ... . 
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For the conditional expectation of ut+s, given ut, ut-1, …, it holds that 

E[ut+s|ut, ut-1, ...]   =   t su for s 0
0 for s 0

 . 

Thus, we get the conditional expectation of xt+ , because of (2.52), as 

E[xt+ |ut, ut-1, ...]   =     +  k t k
k 0

u . 

Due to (2.55), the conditional expectation of xt+ , with all information 
available at time t given, is identical to the optimal prediction function. 
This leads to the following result: The conditional expectation of xt+ , with 
all information up to time t given, provides the -step forecast with mini-
mal mean squared prediction error.  

With (2.52) and (2.55) the -step forecast error can be written as 

(2.56)   ft( )   =   xt+  – tx̂ ( )   =   ut+  + 1ut+ -1 + 2ut+ -2 + ... + -1ut+1 

with  

E[ft( )|ut, ut-1, ...]   =   E[ft( )]   =   0 . 

From these results we can immediately draw some conclusions: 

1. Best linear unbiased predictions (BLUP) of stationary ARMA process-
es are given by the conditional expectation for xt+ ,  = 1,2, … 

tx̂ ( )   =   E[xt+ |xt, xt-1, ...]   =   Et[xt+ ] . 

2. For the one-step forecast errors (  = 1), ft(1) = ut+1, we get 

E[ft(1)]   =   E[ut+1]   =   0,   and 

E[ft(1)fs(1)]   =   E[ut+1us+1]   =   
2 for t s

0 for t s
. 

The one-step forecast errors are a pure random process; they are identi-
cal with the residuals of the data generating process. If the one-step 
prediction errors were correlated, the prediction could be improved by 
using the information contained in the prediction errors. In such a case, 
however, tx̂ (1) would not be an optimal forecast. 

3. For the -step forecast errors (  > 1) we get 

ft( )   =   ut+  + 1ut+ -1 + 2ut+ -2 + ... + -1ut+1 , 
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i.e. they follow a MA( -1) process with E[ft( )] = 0 and the variance 

(2.57) V[ft( )]   =   2 2 2
1 11  . 

This variance can be used for constructing confidence intervals for -
step forecasts. However, these intervals are too narrow for practical ap-
plications because they do not take into account the uncertainty in the 
estimation of the parameters i, i = 1, 2, ..., -1. 

4. It follows from (2.57) that the forecast error variance increases mono-
tonically with increasing forecast horizon : 

V[ft( )]      V[ft( -1)] . 

5. Due to (2.57) we get for the limit 

lim  V[ft( )]   =   2 2
1 1lim 1 2   =   2 2

j
j 0

   =   V[xt] , 

i.e. the variance of the -step forecast error is not larger than the vari-
ance of the underlying process.  

6. The following variance decomposition follows from (2.55) and (2.56):  

(2.58) V[xt+ ]   =   V[ tx̂ ( )]  +  V[ft( )] . 

7. Furthermore,  

tˆlim x ( )   =   k t k
k 0

lim u    =      =   E[xt] , 

i.e. for increasing forecast horizons, the forecasts converge to the (un-
conditional) mean of the series.  

The concept of ‘weak’ rational expectations whose information set is re-
stricted to the current and past values of a variable exactly corresponds to 
the optimal prediction approach used here.  

2.4.2   Forecasts of ARMA(p,q) Processes 

The Wold decomposition employed in the previous section has advantages 
when it comes to the derivation of theoretical results, but it is not practical-
ly useful for forecasting. Thus, in the following, we will discuss forecasts 
directly using AR, MA, or ARMA representations. 



82      Univariate Stationary Processes 

Forecasts with a Stationary AR(1) Process 

For this process, it holds that 

xt   =    +  xt-1 + ut , 

with | | < 1. The optimal -step forecast is the conditional mean of xt+ , i.e. 

Et[xt+ ]   =   Et[  +  xt+ -1 + ut+ ]   =    +  Et[xt+ -1] . 

Due to the first conclusion, we get the following first order difference 
equation for the prediction function  

tx̂ ( )   =     +   tx̂  ( -1) , 

which can be solved recursively: 

 = 1:   tx̂ (1)   =     +   tx̂ (0)   =     +   xt  

 = 2:   tx̂ (2)   =     +   tx̂ (1)   =     +     + 2 xt 

             

  tx̂ ( )   =   (1 +  + ... + -1)  +  xt 

 tx̂ ( )   =   
1
1

   +  xt   =   
1

  +   (xt – 
1

) . 

As  = /(1 – ) is the mean of a stationary AR(1) process,  

tx̂ ( )   =     +   (xt – )   with   tˆlim x ( )   =    , 

i.e., with increasing forecast horizon , the predicted values of an AR(1) 
process converge geometrically to the unconditional mean  of the pro-
cess. The convergence is monotonic if  is positive, and oscillating if  is 
negative. 

To calculate the -step prediction error, the Wold representation, i.e. the 
MA( ) representation of the AR(1) process, can be used,  

xt   =     +  ut +   ut-1  +  2 ut-2  +  3 ut-3  + ... . 

Due to (2.56) and (2.57) we get the MA( -1) process  

ft( )   =   ut+   +   ut+ -1  + 2 ut+ -2  +  ...  +  -1
 ut+1 

for the forecast error with the variance  

V[ft( )]   =   2 2( 1)1 2   =    
2

2

1
1

 2. 
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With increasing forecast horizons, it follows that 

lim V[ft( )]   =   
2

21
   =   V[xt] , 

i.e. the prediction error variance converges to the variance of the AR(1) 
process. 

Forecasts with Stationary AR(p) Processes 

Starting with the representation 

xt   =     +  1 xt-1  +  2 xt-2  +  ...  +  p xt-p  +  ut , 

the conditional mean of xt+  is given by 

Et[xt+ ]   =     +  1 Et[xt+ -1]  +  ...  +  p Et[xt+ -p] . 

Here, 

Et[xt+s]   =   t

t s

x̂ (s) for s 0
x for s 0

 . 

Thus, the above difference equation can be solved recursively:  

 = 1:   tx̂ (1)   =     +  1 xt  +  2 xt-1  +  ...+  p xt+1-p  

 = 2:   tx̂ (2)   =     +  1 tx̂ (1)  +  2 xt  +  ...  +  p xt+2-p , etc. 

Forecasts with an Invertible MA(1) Process 

For this process, it holds that 

xt   =     +  ut  –   ut-1 

with | | < 1. The conditional mean of xt+  is  

Et[xt+ ]   =     +  Et[ut+ ]  –   Et[ut+ -1] . 

For  = 1, this leads to 

(2.59) tx̂ (1)   =     –   ut , 

and for   2, we get 

tx̂ ( )   =    , 

i.e. the unconditional mean is the optimal forecast of xt+ ,  = 2, 3, ..., . For 
the -step prediction errors and their variances we get: 
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ft(1) =   ut+1, V[ft(1)] =   2 

ft(2) =   ut+2  –   ut+1, V[ft(2)] =   (1 + 2) 2 

           

ft( ) =   ut+   –   ut+ -1, V[ft( )] =   (1 + 2) 2 . 

To be able to perform the one-step forecasts (2.59), the unobservable vari-
able u has to be expressed as a function of the observable variable x. To do 
this, it must be taken into account that for s  t, the one-step forecast errors 
can be written as 

(2.60) us   =  xs – s 1x̂ (1). 

For t = 0, we get from (2.59) 
0x̂ (1)   =     –   u0 

with the non-observable but fixed u0. Taking (2.60) into account, we get 
for t = 1 

1x̂ (1)  =     –   u1 =     –   (x1 – 0x̂  (1)) 

 =     –   x1  +   (  –  u0) 

 =   (1 + )  –   x1  – 2 u0 . 

Correspondingly, we get for t = 2 
2x̂ (1)   =     –   u2  =     –   (x2 – 1x̂  (1)) 

  =     –   x2  +  ( (1 + ) –   x1 – 2 u0) 

  =   (1 +  + 2)  –   x2  – 2 x1 – 3 u0 . 

If we continue this procedure, the so-called backcasting, we finally arrive 
at a representation of the one-step prediction which – except for u0 – con-
sists only of observable terms,  

tx̂ (1)   =   (1 +  + ... + t)  –   xt  – 2 xt-1 – ... – t x1 – t+1 u0 . 

Due to the invertibility of the MA(1) process, i.e. for | | < 1, the impact of 
the unknown initial value u0 finally disappears. 

Similarly, one can show that, after q forecast steps, the optimal forecasts 
of invertible MA(q) processes, q > 1 are equal to the unconditional mean 
of the process and that the variance of the forecast errors is equal to the 
variance of the underlying process. The forecasts in observable terms are 
represented similarly to those of the MA(1) process. 
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Forecasts with ARMA(p,q) Processes 

Forecasts for these processes result from combining the approaches of pure 
AR and MA processes. Thus, the one-step ahead forecast for a stationary 
and invertible ARMA(1,1) process is given by   

tx̂ (1)   =     +   xt  –   ut. 

Starting with t = 0 and taking (2.60) into account, forecasts are successive-
ly generated by backcasting. We first get 

0x̂ (1)   =     +   x0  –   u0, 

where x0 and u0 are assumed to be any fixed numbers. For t = 1 we get  

1x̂ (1) =     +   x1  –   u1   =     +   x1  –  (x1 – 0x̂ (1)) 

 =   (1 + )  +  (  – ) x1  +    x0 – 2u0 , 

which finally leads to 

(2.61)  tx̂ (1) =   (1 +  + ... + t)  +  (  – ) xt  +  (  – ) xt-1  +  ... 

 +  t-1(  – ) x1  +  t  x0 – t+1u0 . 

Due to the invertibility condition, i.e. for | | < 1, the one-step forecast for 
large values of t does no longer depend on the unknown initial values x0 
and u0. 

For the -step forecast,  = 2, 3, ..., we get 

tx̂ (2)   =     +   tx̂ (1) 

tx̂ (3)   =     +   tx̂ (2) 

  

Using (2.61), these forecasts can be calculated recursively. 

2.4.3   Evaluation of Forecasts 

Forecasts can be evaluated ex post, i.e. when the realised values are avail-
able. There are many kinds of measures to do this. Quite often, only graphs 
and/or scatter diagrams of the predicted values and the corresponding ob-
served values of a time series are plotted. Intuitively, a forecast is good’ if 
the predicted values describe the development of the series in the graphs 
relatively well or if the points in the scatter diagram are concentrated 
around the angle bisecting line in the first and/or third quadrant. Such intu-
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itive arguments are, however, not founded on the above-mentioned consid-
erations on optimal predictions. For example, as (2.59) shows, the optimal 
one-step forecast of a MA(1) process is a pure random process. This im-
plies that the graphs compare two quite different processes. Conclusion 6 
given above states that the following decomposition holds for the vari-
ances of the data generating processes, the forecasts and the forecast er-
rors, 

V[xt+ ]   =   V[ tx̂ ( )]  +  V[ft( )] . 

Thus, it is obvious that predicted and realised values are generally generat-
ed by different processes. 

As a result, a measure for the predictability of stationary processes can 
be developed. It is defined as follows, 

(2.62) P( )2   =   t

t

ˆV[x ( )]
V[x ]

   =   1  –  t

t

V[f ( )]
V[x ]

, 

with 0  P( )2  1. At the same time, P( )2 is the correlation coefficient be-
tween the predicted and the realised values of x. The optimal forecast of a 
pure random process with mean zero is tx̂ ( ) = 0, i.e. P( )2 = 0. Such a 
process cannot be predicted. On the other hand, for the one-step forecast of 
a MA(1) process, we can write 

P(1)2   =   
2 2

2 2(1 )
   =   

2

21
   >   0. 

However, the decomposition (2.58), theoretically valid for optimal fore-
casts, does not hold for actual (empirical) forecasts, even if they are gener-
ated by using (estimated) ARMA processes. This is due to the fact that 
forecast errors are hardly ever totally uncorrelated with the forecasts. 
Therefore, the value of P( )2 might even become negative for bad’ fore-
casts. 

JACOB MINCER and VICTOR ZARNOWITZ (1969) made the following 
suggestion to check the consistency of forecasts. By using OLS the follow-
ing regression equation is estimated  

(2.63) xt+    =   a0  +  a1 tx̂ ( )  +  t+ . 

It is tested either individually with t tests or commonly with a F test 
whether a0 = 0 and a1 = 1. If this is fulfilled, the forecasts are said to be 
consistent. However, such a regression produces consistent estimates of 
the parameters if and only if tx̂ ( ) and t+  are asymptotically uncorrelated. 



2.4   Forecasting      87 

Moreover, to get consistent estimates of the variances, which is necessary 
for the validity of the test results, the residuals have to be pure random 
processes. Even under the null hypothesis of optimal forecasts, this only 
holds for one-step predictions. Thus, the usual F and t tests can only be 
used for  = 1. For  > 1, the MA( -1) process of the forecast errors has to 
be taken into account when the variances are estimated. A procedure for 
such situations combines Ordinary Least Squares for the estimation of the 
parameters and Generalised Least Squares for the estimation of the vari-
ances, as proposed by BRYAN W. BROWN and SHLOMO MAITAL (1981). 

JINOOK JEONG and GANGADHARRAO S. MADDALA (1991) have pointed 
out another problem which is related to these tests. Even rational forecasts 
are usually not without errors; they contain measurement errors. This im-
plies, however, that (2.63) cannot be estimated consistently with OLS; an 
instrumental variables estimator must be used. An alternative to the esti-
mation of (2.63) is therefore to estimate a univariate MA( -1) model for 
the forecast errors of a -step prediction, 

f̂ t( )   =   a0  +  ut  +  a1 ut-1  +  a2 ut-2  +  ...  +  a -1 ut- +1 , 

and to check the null hypothesis H0: a0 = 0 and whether the estimated re-
siduals ût are white noise. 

On the other hand, simple descriptive measures, which are often em-
ployed to evaluate the performance of forecasts, are based on the average 
values of the forecast errors over the forecast horizon. The simple arithme-
tic mean indicates whether the values of the variable are – on average – 
over- or underestimated. However, the disadvantage of this measure is that 
large over- and underestimates cancel each other out. The mean absolute 
error is often used to avoid this effect. Starting the forecasts from a fixed 
point of time, t0, and assuming that realisations are available up to t0+m, 
we get 

MAE( )   =   
0

m

t j
j 0

1 f ( )
m 1

,     =  1, 2, ... . 

Every forecast error gets the same weight in this measure. The root mean 
square error is often used to give particularly large errors a stronger 
weight: 

RMSE( )   =   
0

m
2
t j

j 0

1 f ( )
m 1

,     =  1, 2, ... . 

These measures are not normalised, i.e. their size depends on the scale of 
the data. 
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The inequality measure proposed by HENRY THEIL (1961) avoids this 
problem by comparing the actual forecasts with so-called naïve forecasts, 
i.e. the realised values of the last available observation, 

U( )   =   
0

0 0

m
2
t j

j 0
m

2
t j t j

j 0

f ( )

(x x )
 ,     =  1, 2, ... . 

If U( ) = 1, the forecast is as good as the naïve forecast, tx̂ ( ) = xt. For 
U( ) < 1 the forecasts perform better than the naïve one. MAE, RMSE and 
Theil’s U all become zero if predicted and realised values are identical 
over the whole forecast horizon. 

Example 2.16 

All these measures can also be applied to forecasts which are not generated by 
ARMA models, as, for example, the forecasts of the Council of Economic Experts 
or the Association of German Economic Research Institutes. Since the end of the 
1960’s, both institutions have published forecasts of the German economic devel-
opment for the following year, the institutes usually in October and the Council at 
the end of November. HANNS MARTIN HAGEN and GEBHARD KIRCHGÄSSNER 
(1996) investigated the annual forecasts of the growth rates of GNP for the period 
from 1970 to 1995 as well as for the sub-periods from 1970 to 1982 and from 
1983 to 1995. These periods correspond to the social-liberal government of SPD 
and FDP and the conservative-liberal government of CDU/CSU and FDP. 

The results are given in Table 2.2. Besides the criteria given above, the table al-
so indicates the square of the correlation coefficient between realised and predict-
ed values (R2), the estimated regression coefficient â1 of the test equation (2.63) as 
well as the mean error (ME). According to almost all criteria, the forecasts of the 
Council outperform those of the institutes. This was to be expected, as the Coun-
cil’s forecasts are produced slightly later, at a time when more information is 
available. It holds for the forecasts of both institutions that the mean absolute er-
ror, the root mean squared error as well as Theil's U are smaller in the second pe-
riod compared to the first one. This is some evidence that the forecasts might have 
improved over time. On the other hand, the correlation coefficient between pre-
dicted and realised values has also become smaller. This indicates a deterioration 
of the forecasts. It has to be taken into account that the variance of the variable to 
be predicted was considerably smaller in the second period as compared to the 
first one. Thus, the smaller errors do not necessarily indicate improvements of the 
forecasts. It is also interesting to note that on average the forecast errors of both 
institutions were negative in the first and positive in the second sub-period. They 
tended to overestimate the development in the period of the social-liberal coalition 
and to underestimate it in the period of the conservative-liberal coalition. 
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Table 2.2:  Forecasts of the Council of Economic Experts   
and of the Economic Research Institutes 

 Period R2 RMSE MAE ME â1 U 

Institutes 

1970 – 1995 0.369 1.838 1.346 -0.250* 1.005* 0.572 

1970 – 1982 0.429 2.291 1.654 -0.731 1.193* 0.625 

1983 – 1995 0.399 1.229 1.038 0.231 1.081 0.457 

Council of 
Economic 

Experts 

1970 – 1995 0.502* 1.647* 1.171* -0.256 1.114 0.512* 

1970 – 1982 0.599* 2.025* 1.477* -0.723* 1.354 0.552* 

1983 – 1995 0.472* 1.150* 0.865* 0.212* 1.036* 0.428* 

‘*’ denotes the ‘better’ of the two forecasts. 

2.5   The Relation between Econometric Models and 
ARMA Processes  

The ARMA model-based forecasts discussed in the previous section are 
unconditional forecasts. The only information that is used to generate the-
se forecasts is the information contained in the current and past values of 
the time series. There is demand for such forecasts, and – as mentioned 
above – one of the reasons for the development and the popularity of the 
Box-Jenkins methodology presented in this chapter is that by applying the 
above-mentioned approaches, these predictions perform – at least partly – 
much better than forecasts generated by large scale econometric models. 
Thus, the Box-Jenkins methodology seems to be a (possibly much better) 
alternative to the traditional econometric methodology.  

However, this perspective is rather restricted. On the one hand, condi-
tional rather than unconditional forecasts are required in many cases, for 
example, in order to evaluate the effect of a tax reform on economic 
growth. Such forecasts cannot be generated by using (only) univariate 
models. On the other hand, and more importantly, the separation of the two 
approaches is much less strict than it seems to be at first glance. As 
ARNOLD ZELLNER and FRANZ C. PALM (1974) showed, linear dynamic 
simultaneous equation systems as used in traditional econometrics can be 
transformed into ARMA models. (Inversely, multivariate time series mod-
els as discussed in the next chapters can be transformed into traditional 
econometric models.) The univariate ARMA models correspond to the fi-
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nal equations of econometric models in the terminology of JAN TINBER-
GEN (1940).  

Let us consider a very simple model. An exogenous, weakly stationary 
variable x, as defined in (2.64b), has a current and lagged impact on the 
dependent variable y, while the error term might be autocorrelated. Thus, 
we get the model 

(2.64a) yt   =   1(L) xt  + 2(L) u1,t , 

(2.64b) (L) xt   =   (L) u2,t , 

where 1(L) and 2(L) are lag polynomials of finite order. If we insert 
(2.64b) in (2.64a), we get for y the univariate model 

(2.64a') (L) yt   =   (L) vt 

with 

 (L) vt   :=   1(L) (L) u2,t  + 2(L) (L) u1,t . 

As (L)vt is an MA process of finite order, we get a finite order ARMA 
representation for y. It must be pointed out that the univariate representa-
tions of the two variables have the same finite order AR term. 
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