Chapter 1
Copulas, Sklar’s Theorem, and Distributional
Transform

In this chapter we introduce some useful tools in order to construct and analyse
multivariate distributions. The distributional transform and its inverse the quantile
transform allow to deal with general one-dimensional distributions in a similar
way as with continuous distributions. A nice and simple application is a short
proof of the general Sklar Theorem. We also introduce multivariate extensions,
the multivariate distributional transform, and its inverse, the multivariate quantile
transform. These extensions are a useful tool for the construction of a random vector
with given distribution function respectively allow to build functional models of
classes of processes. They are also a basic tool for the simulation of multivariate
distributions. We also describe some applications to stochastic ordering, to goodness
of fit tests and to a general version of the empirical copula process. We introduce
to some common classes of copula models and explain the pair copula construction
method as well as a construction method based on projections. In the final part
extensions to generalized Fréchet classes with given overlapping multivariate
marginals are discussed. The construction of dependence models by projections is
extended to the generalized Fréchet class where some higher dimensional marginals
are specified.

1.1 Sklar’s Theorem and the Distributional Transform

The notion of copula was introduced in Sklar (1959) to decompose an n-dimensional
distribution function F' into two parts, the marginal distribution functions F; and the
copula C, describing the dependence part of the distribution.

Definition 1.1 (Copula). Let X = (X,..., X,;) be a random vector with distribu-
tion function F and with marginal distribution functions F;, X; ~ F;, 1 <i <n. A
distribution function C with uniform marginals on [0, 1] is called a “copula” of X if

F=C(F,.... F). (1.1)
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4 1 Copulas, Sklar’s Theorem, and Distributional Transform

By definition the set of copulas is identical to the Fréchet class F (U, ..., U) of all
distribution functions C with uniform marginals distribution functions

Ut)=t, telo1]. (1.2)

For the case that the marginal distribution functions of F are continuous it is easy
to describe a corresponding copula. Define C to be the distribution function of
(Fi(Xy),..., F,(Xy)). Since F;(X;) ~ U(0,1) have uniform distribution C is a
copula and furthermore we obtain the representation
C(uy,...,up) = P(F1(X)) <uy,..., Fo(Xy) <uy)
= P(X) < F/'(wr)..... Xy < F;, Nuy))

= Fx(F[ '), ..., F7 (uy)). (1.3)

Here F,-_1 denotes the generalized inverse of F;, the “quantile transform”, de-

fined by
F7'(t) = inf{x e R'; F;(x)>1}.
C is a copula of F since by definition of C
F(xi,....xp) = P(X1 <x1,..., X, < xp)
= P(Fi(X1) < Fi(x),.... Fa(Xy) < Fu(xn))

= C(Fi(x1),..., Fu(xy)). (1.4)

The argument for the construction of the copula is based on the property that
for continuous distribution functions F;, F;(X;) is uniformly distributed on (0, 1):
F;(X;) ~ U(0, 1). There is a simple extension of this transformation which we call
“distributional transform.”

Definition 1.2 (Distributional transform). Let Y be a real random variable with
distribution function F' and let V' be a random variable independent of Y, such that
V ~ U(0,1), i.e. V is uniformly distributed on (0, 1). The modified distribution
function F(x, A) is defined by
F(x,\) = P(X <x)+ AP =x). (1.5)
We call
U:=FX,V) (1.6)

the (generalized) “distributional transform” of Y.
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For continuous distribution functions F, F(x,\) = F(x) for all A, and U =
F(Y) Lu 0,1), Ca denoting equality in distribution. This property is easily ex-
tended to the generalized distributional transform (see e.g. Rii' (2005)).

Proposition 1.3 (Distributional transform). Ler U = F(Y,V) be the distribu-
tional transform of Y as defined in (1.6). Then

ULU©01)andY = F7\(U) as. (1.7)
An equivalent way to introduce the distributional transform is given by
U=FY-)+V(F(Y)-F{Y-)), (1.8)

where F(y—) denotes the left-hand limit. Thus at any jump point of the distribution
function F one uses V' to randomize the jump height.

The distributional transform is a useful tool which allows in many respects to deal
with general (discontinuous) distributions similar as with continuous distributions.
In particular it implies a simple proof of Sklar’s Theorem in the general case (see
Moore and Spruill (1975) and Rii (1981b, 2005)).

Theorem 1.4 (Sklar’s Theorem). Let F € F(Fy,..., F,) be an n-dimensional
distribution function with marginals Fi, ..., F,. Then there exists a copula C €
FU, ..., U) with uniform marginals such that

F(xi,...,xy) = C(Fi(x1),..., Fy(xp)). (1.9)

Proof. Let X = (Xi,...,X,) be a random vector on a probability space
(2,2, P) with distribution function F and let V' ~ U(0, 1) be independent of X.
Considering the distributional transforms U; := F;(X;,V), | <i < n, we have by
Proposition 1.3 U; < U©,1)and X; = Fi_l(Ui) a.s., 1 <i < n. Thus defining C
to be the distribution function of U = (U, ..., U,) we obtain

F(x)=P(X <x)=P(F'(U) <x;.1<i <n)
= PU; < Fi(x;),1 <i <n) =C(Fi(x1),...,F(xy)),

i.e. C is acopulaof F. |

Remark 1.5. (a) Copula and dependence. From the construction of the distri-
butional transform it is clear that the distributional transform is not unique
in the case when the distribution has discrete parts. Different choices of the

I'Within the whole book the author’s name is abbreviated to Rii.
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randomizations V at the jumps or in the components, i.e. choosing U; =
F;(X;,V;), may introduce artificial local dependence between the components
of a random vector on the level of the copula. From the copula alone one does
not see whether some local positive or negative dependence is a real one or
just comes from the choice of the copula. For dimension n = 2 the copula in
Figure 1.1 could mean a real switch of local positive and negative dependence
for the original distribution, but it might also be an artefact resulting from the
randomization in case the marginals are e.g. both two-point distributions while
the joint distribution in this case could be even comonotone. Thus the copula
information alone is not sufficient to decide all dependence properties.
Conditional value at risk. A more recent application of the distributional trans-
form is to risk measures. It is well known that the conditional tail expectation

TCE,(X) := —E(X | X < qq), (1.10)

where g, is the lower «-quantile of the risk X, does not define a coherent risk
measure except when restricted to continuous distributions. This defect can be
overcome by using the distributional transform U = F(X, V') and defining the
modified version, which we call conditional value at risk (CVR,,)

CVRy(X) =—E(X | U < ). (1.11)
By some simple calculations (see Burgert and Rii (2006b)) one sees that
1
CVR,(X) = - [EXI(X < qa) + qa (a —P(X < qa))] = ESy(X).
(1.12)

Thus the more natural definition of CVR,, coincides with the well-established
“expected shortfall risk measure” E S, (X) which is a coherent risk measure.
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As a consequence the expected shortfall is represented as conditional expec-
tation and our definition in (1.11) of the conditional value at risk seems to be
appropriate for this purpose.

(c) Stochastic ordering. The construction of copulas based on the distributional
transform as in the proof of Sklar’s Theorem above has been used in early papers
on stochastic ordering. The following typical example of this type of result is
from Rii (1981b, Proposition 7).

Proposition 1.6. Let F;, G; be one-dimensional distribution functions with
F; < G; (orequivalently G; <y« F;), 1 <i <n.Thentoany FeF(F,...,Fy,)
there exists an element G € F(Gy,...,Gy) with G <y F. Here < denotes the
multivariate stochastic ordering w.r.t. increasing functions.

Proof. Let X = (Xy,...,X,) ~ F and let U; = F;(X;, V) denote the distri-
butional transforms of the components X;. Then U = (U, ..., U,) is a copula
vector of F. Define Y = (Y1,...,Y,) as vector of the quantile transforms of
the components of U, ¥; = G;'(U;). Then Y ~ G € F(Gy,...,G,) and
from the assumption F; < G; we obtain that Y < X pointwise. In consequence
G <\F. O

In particular the above argument shows that G <y F if F and G have the same
copula. O

1.2 Copula Models and Copula Constructions

In order to construct a distributional model for a random vector X it is by Sklar’s
representation theorem sufficient to specify a copula model fitting to the normalized
data. There are a large number of suggestions and principles for the construction of
copula models. Classical books on these models for n = 2 are Mardia (1962) and
Hutchinson and Lai (1990). More recent books for n > 2 are Joe (1997), Nelsen
(2006), Mari and Kotz (2001), Denuit et al. (2005), and McNeil et al. (2005b).
A lot of material on copulas can also be found in the conference volumes of the
“Probability with given marginals” conferences — i.e. the series of conferences in
Rome (1990), Seattle (1993), Prague (1996), Barcelona (2000), Québec (2004),
Tartu (2007) and Sao Paulo (2010) as well as in the recent proceedings edited
by Jaworski, Durante, Hirdle, and Rychlik (2010). A huge basket of models has
been developed and some of its properties have been investigated, concerning in
particular the following questions:

e What is the “range of dependence” covered by these models and measured with
some dependence index. Is the range of dependence wide and flexible enough?

e What models exhibit tail dependence and thus are able to model situations with
strong positive dependence in tails?

* [s some parameter available describing the degree of dependence?
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s there a natural probabilistic representation respectively interpretation of these
models describing situations when to apply them?

e Is there a closed form of the copula or a simple simulation algorithm so that
goodness of fit test can be applied to evaluate whether they fit the data?

Several questions of this type have been discussed in the nice survey papers of
Schweizer (1991) and Durante and Sempi (2010).

1.2.1 Some Classes of Copulas

Copulas, their properties and applications are discussed in detail in the above-
mentioned literature. Copulas are not for any class of distributions the suitable
standardizations as for example for elliptical distributions. In extreme value theory
a standardization by the exponential distribution may be better adapted. For some
applications it may be more natural and simpler to model the distributions or
their densities directly without referring to copulas. Conceptually and for some
investigation of dependence properties like tail-dependence the notion of copula
is however a useful tool.
Some classical classes of copulas are the following.

 The “Farlie-Gumbel-Morgenstern (FGM) copula™
Co(,v) =uw(l +a(l —u)(1—v)), |of <1 (1.13)

as well as its generalized versions, “EFGM copulas” are extensions of FGM to
the n-dimensional case and given by

C(u)=ﬁuf 1+ Z ar [1;er(1 —u;) (1.14)
i=1 TC{l,..n}

for suitable oy € R!.
e The “Archimedean copulas”

Co(ur, ... up) = & (Duy) + -+ + P(uy)) (1.15)
for some generator ® : (0,1] — R4+ with &(1) = 0 such that ® is com-
pletely monotone. In fact Cy is an n-dimensional copula if and only if & is
“n-monotone”, i.e. ® is (n — 2) times differentiable and

(D)o @)y>0, 0<k<n—2,Vr>0 (1.16)

and (—1)"2®"=? is decreasing and convex (see McNeil and Neslehova (2010)).
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In case O(¢) = é(l‘“ — 1) one gets the “Clayton copula”

Colu) = (Z U —n + 1)_l/a, @ > 0. (1.17)

In case Ps(t) = —% log(1 — (1 —e~%)e™) one gets the “Frank copula”

n —Sui __
[licye™ -1 1)). (1.18)

1
C =—=1 1+
5(u) 3 Og( (ef — 1y
® is by Bernstein’s theorem completely monotone if and only if it is 7-monotone
foralln € IN.
Archimedean copulas are connected with mixing models (“frailty models”).
Let

Fe) = [ T]Gie) dru®).
i=1
where W is a positive real mixing variable. Then with Ly, the Laplace transform
of W, we obtain that the 7-th marginal is given by

Fix) = / exp(31n G (x))dFy(8) = Ly(—In Gy (x)).

As a consequence one gets

Fe) = Lo L3RG, (119)

i=1

i.e. a representation as in (1.15) holds with the generator ® = Ly which by
Bernstein’s theorem is completely monotone.

Archimedean copulas arise from multivariate distributions that have a stochas-
tic representation of the form

XLR.U (1.20)

where U is uniformly distributed on the unit simplex (1-sphere) in R}, {x €
R%; > '_, x; = 1} respectively the simplex in R”, and R is a scaling random
variable with values in R independent of U. Formulae for the relation between
the distribution function Fg and the generator ® are available (see McNeil and
Neslehova (2010)).

e “Elliptical distributions” arise from stochastic representations of the form

X = pu+ RAU, (1.21)

where U is uniformly distributed on the unit 2-sphere S,—; = {x € R";
Yo ”1‘2 = 1} in R". R is a real positive random variable independent from
U and A is an n x n-matrix. X has a density of the form
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F) =127 o((x — )T (x — p)) with & = AA4T.

The distribution is denoted as £(u, X, Fg). Multivariate normal distributions

are elliptical (or elliptically contoured). The copulas of elliptical distributions are
in general not available in closed form.
“Extreme value copulas” are defined as possible limits of max sequences. Let
Xi = (Xi1,---.Xiq), 1 < i < n (note that here d = dimension but n =
sample index) be a sequence of iid random vectors with copula Cr. Let M, =
max{Xy,..., Xy} = (My1,..., M, q) be the componentwise max of the X;,
then the copula C, of M, is given by

Colw) = Crw" ... u").

C is called an “extreme value copula” if for any n € IN there exist some
copula Cr such that

C=Cruw, ... .uf". (1.22)

A well-known fact is:
C is an extreme value copula if and only if C is “max stable”, i.e. C(u) =
C" ()™, ... ulf™) forallm € IN.

De Haan and Resnick (1977) and Pickands (1981) gave the following
representation of extreme value copulas:
C is an extreme value copula if and only if it has a representation of the form

C(u) = exp(—I(—loguy,...,—logug)). (1.23)

Here the “tail dependence function” [ : (0, 00)? — [0, o0] is given by

I(x) =/ max(w;x;)dH(w) (1.24)
Sq_y J=d

where H is a measure on the simple S;_; satisfying de—l widH(w) =1,
1 <j <d. H is called the “spectral measure” of C.

An example of copulas which are of interest in extreme value theory are
“Gumbel copulas” given by

Cs(u) = exp ( — (Zn:(— log ui)g)l/s) (1.25)

i=1

for § € [1, 00). Gumbel copulas are extreme value copulas. The parameter § is a
dependence parameter. If 1 < §; < §,, then Gg, is more strongly dependent (in
the sense of supermodular ordering) than G, (see Wei and Hu (2002)).
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1.2.2 Copulas and L*-Projections

A general principle for the construction of dependence models (copulas) was
introduced in Rii (1985). It is based on the following representation result. Let
C,(A") denote the set of all copulas on [0, 1]” which are Lebesgue-continuous and
thus have Lebesgue-densities f. Let C3(A\") be the set of all signed measures on
[0, 1]" with uniform marginals and which have Lebesgue-densities f.

For any integrable f € L'([0,1]",\")and T C {1,...,n} we define

Jr =/fl'[,-er dy;. (1.26)

i.e. we integrate over the components in 7. We consider fr as a real function
on [0, 1]" being constant in the 7" components. The following linear operator
S : LY(A\") — L'(\") is of interest,

Sf=f= > fr+m-Dfu.n (1.27)

since it leads to the following representation result.

Theorem 1.7 (Copulas and LZ2-projections). All probability distributions on
[0, 1] with Lebesgue-density and uniform marginals are of the form (1 + Sf)\"
where f € LY(\"), more precisely

Gy ={0 =1+ SHA" feL' (A} (1.28)

and
CA) ={P =1+ SHN"; feL'N).Sf >=-1}. (1.29)

Proof. Any P € CJ(\") has by the Radon—Nikodym theorem a density of the
form P = (1 + f)N" where fr = 0 for |T'| > n — 1. This implies that Sf = f,
ie. P = (14 Sf)\". Conversely,let f € L'(A") and P = (1 + Sf)\". Then for
To C {1,...,n},|Ty| = n — 1 and any further T C {1,...,n} with |T| = n — 1,
T # Ty we have (fr)r, = f{1...ny and, therefore,

$hn=(r=fn= X fr+o- 1)f{1,...,n}) (130)
=n— To
!
=fon—fn— Y. (fo)n+0—1)fu..=0. (131)
|T|=n—1

T#T,
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Therefore Q = (1 + Sf)N" € C3(\"). This implies (1.28). Equation (1.29) is
immediate from (1.28). O

The operator S in (1.27) can be considered as an L>-projection of a (signed)
measure Q = (1 4+ f)N", f € L'(A)toacopula P = (1 + SN if Sf > —1.
The basic idea of the construction method for dependence (copula) models in Rii
(1985) is to describe in a first step the relevant dependence by the density function
1 + f.In a second step this model Q = (1 + f)A" is projected to the class of
copulas in the form P = (1 + Sf)N".

The resulting proposed model construction method is the following:

Construction by “projection method”: Let fy, ¥ € © be a parametric family
of functions in L'(\") (describing the intended dependence structure) such that
Sfy = —1,9 € ©. Then the proposed model obtained by the projection method is
given by

P={Py=(1+SfH)\" 9 €06} (1.32)

The inherent idea in this construction is the hope that the projection on the correct
marginal structure does not change the intended dependence structure too much.
Obviously we can use the same procedure as above also for the construction of
elements in the Fréchet class M (P, ..., P,) which are continuous w.r.t. a product
measure (b1 & --- Q WUp.

This projection idea is also underlying Sklar’s representation theorem. Let G €
Fu(Gy,...,G,) be a multivariate distribution function with marginals Gy, ..., G,
and with copula C. Assume that G is a good description of the dependence
structure for a model. At the same time assume that the correct marginals should
be Fi,..., F, instead of Gy,...,G,. Then by Sklar’s Theorem the following
“nonmetric projection” would seem natural:

G—>C—F=C(F,....F). (1.33)

By this transition the dependence structure is retained in the copula C. The difficulty
of calculation may however prevent use of this transition in examples. Typically it
will be easier to calculate (only) densities.

The following examples illustrate the projection method, see Rii (1985) and Mari
and Kotz (2001, pp. 73-78).

Example 1.8. Let /€ L'(\"), let g = inf {(Sf)(x): x € [0.1]"} > —oc and
consider f3(x) = 9f(x), ¥ € [0, ﬁ].

(1) Generalized FGM-family: If f(x) = []/_, vi(x;) where [v;(x;)dx; = 0,
1 <i < n,then Sf = f and P gives a “generalized FGM-family” (see
Johnson and Kotz (1975) and Kimeldorf and Sampson (1975a,b), and (1.13)).

(2) Polynomial copula models: If f(x) = []’_, x" is a polynomial, then

i

S =12 = (H (1.34)

i=1 j i mj; + 1

mi o1
)xi1+(n_1),l:[1m.+1

i=1
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gives a “polynomial copula model” which is the same as the FGM-model
1

generated by v; (x;) = x/" — T Linear combinations then yield the general
form of polynomial copula models. The restrictions to the parameters are given
in Mari and Kotz (2001, p. 74).

This polynomial model has also been discussed in Wei, Fang, and Fang
(1998). Several families of polynomial copulas have been suggested as local
approximations of other copula families. So the Ali-Mikhail-Haq family is a
polynomial approximate in the neighbourhood of the independence copula, the

FGM is an approximation of the Plackett family (see Mari and Kotz (2001,

p-75)).
A copula concentrated strongly near the diagonal: Let » = 2 and consider
f(x,y) = L__ . The function f has singularities at the diagonal, i.e. we

A x=yl

expect a large density in the neighbourhood of the diagonal. Then by simple
calculation one gets

Sf(x,y) = x/}+\/1—x+ﬁ+\/l—y)+§. (1.35)

;_2(
Vix =yl

‘P describes a family of copulas which is concentrated near the diagonal. ¢ is
a positive dependence parameter; higher values of ¢ yield higher order positive
dependence.
Diagonal weakly concentrated copula: For ® = [0, 1], » = 2 define

Jo(x,y) = =Lgx—y|>0}.

so (1 + f3)A? is concentrated in a neighbourhood of the diagonal but it is
uniformly distributed on {(x,y) € [0,1]* : |x — y| < ¥} in contrast to the
singular concentration in Example 1.8, (1.8).

By the projection to the correct marginals we obtain

Sfy(x,y) = fo(x.p) + go(x) + go(y) — (1 —9)%, (1.36)

where

go(x) = 2 =2 lpy<x<i—oy + (1 —=x = Y)10zr<t) — (x = ¥)Lx>1-9)
1
for0 <9 < —
2
and gy(x) = (x — H) 19 + (F — X) 1 x<1-9), % < <L
The projected probability model Py = (1 + Sfy)A* approaches for ¥ — 1
the product measure while for & small (neglecting small and large x-values)

2—-29 for|x—y| <9,
14 (Sfy)(x,y) ~ (137)
PYED SV 08 forx—y| > 9.
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In order to introduce a stronger dependence effect one can start with f3,(x, y)
= afy(x,y) which for ¢ small and a large centres the distribution near the
diagonal. O

1.3 Multivariate Distributional and Quantile Transform

The distributional transform F(X, V) as well as the inverse quantile transform
F~1(V) have been generalized to the multivariate case.

Definition 1.9 (Multivariate quantile transform). Let F be a d-dimensional
distribution function and let V1, ..., V, beiid U(0, 1)-distributed random variables.
Then the “multivariate quantile transform” ¥ := r;l(V) is defined recursively as

Y, = Fl_l(Vl) (1.38)

where Fy; . x—1 denote the conditional distribution functions of the k-th component
7y given the first k — 1 components 7y, ..., Tx—.

The multivariate quantile transform is a basic method to construct a random vec-
tor Y with specified distribution function F from a given vector V = (V1,..., V})
of iid uniformly on [0, 1] distributed random variables. By construction the mul-
tivariate quantile transform uses only one-dimensional conditional distribution
functions.

Theorem 1.10 (Multivariate quantile transform).  The multivariate quantile
transform Y = ‘c;1 (V) is a random vector with distribution function F.

Proof. In case n = 2 and for any x|, x, € R we have using the independence of
Vi)

X

1
P <x1,Y2 <xy) = / P(Yr <x | Y1 =y)dFi(y1)

—0o0

X1
- / PESI (Vs | 1) < xa | V1 = y0dFa(yn)

—00

:/ l P(Fy (V2] y1) < x2)dFi(y1)

—00

xi
= / Fy1(x2 | ydFi(y1) = Fia(xy, x2).
—00

By induction this argument extends to yield P(Y; X1y Yy < X)) =
F(xi,...,xy). O

IA
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The multivariate quantile transform was introduced in O’Brien (1975), Arjas and
Lehtonen (1978), and Rii (1981b). The construction Y is an inductive construction
of a random vector with specified distribution function F' and is called “regression
representation” since Y is of the form

Yi =h(W),
Yy = hy(Y1, Va),

Y; = (Y1, Y2, V3), (1.39)

YI’L = hn(Yl,...,Yn—lv I/n)

representing Y as function of the past Y, ..., Yx—; and some innovation V. As a
consequence this implies the “standard representation”

Yi=fitVi,....Va), 1<k =n. (1.40)

The multivariate quantile transform and particularly Theorem 1.10 is a basic
method for the “simulation of multivariate distributions”. In order to construct
a random vector with distribution function F one needs to simulate iid U(0, 1)-
random variables and to determine the inverses of the one-dimensional conditional
distribution functions Fj|y, _,_, (x;), which can be done in many examples either
analytically or numerically. There is a large literature on (Monte Carlo) simulation
of multivariate distributions, which uses essentially the multivariate quantile trans-
form. This transform was introduced first in the above-mentioned papers dealing
with representation of stochastic sequences and with stochastic orderings.

Definition 1.11 (Multivariate distributional transform). Let X be an n-
dimensional random vector and let Vi,...,V, be iid U(0, 1)-distributed random
variables, V = (V1,...,V,). For A = (A1,..., \y) € [0, 1]" define

rF(x,)\) = (Fl(xl,/\l),Fz()Cz,/\z | xl),...,Fd(xd,/\d |x1,...,xd_1)), (1.41)

where

Fi(x;,\) =P(X; <x1)+ M P(X| =x)),
Fi(xie, e | X1, 0v 0y X5—1) = P(Xg < xy | X;=x;,] <k-1)
+ M P( Xy = xi | X;=xj,j <k-1

are the distributional transforms of the one-dimensional conditional distributions.
Finally the “multivariate distributional transform”of X is defined as

U:=1(X,V). (1.42)
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Rosenblatt (1952) introduced this transformation in the special case of absolutely
continuous conditional distributions allowing the application of the transformation
formula. Therefore this transformation is also called the “Rosenblatt transforma-
tion” in this case. For general distributions the multivariate distributional transform
(generalized Rosenblatt transform) was introduced in Rii (1981b). The basic
property is stated in the following theorem in Rii (1981b).

Theorem 1.12 (Multivariate distributional transform). Let X be a random vec-
tor and let U = tp (X, V) denote its multivariate distributional transform. Then

(a) U ~ U((0, D), (1.43)

i.e. the components U; of U are iid U(0, 1) distributed.

1

(b) The multivariate quantile transform ty;" is inverse to the multivariate distribu-

tional transform, i.e.
X =17 (U) = 7' (tr (X, V)) as. (1.44)

Proof. U, = Fi(X1, V1) ~ U(0, 1) by Proposition 1.3. Consider next U, = F>(X>,
V2 | X1). Conditionally given X; = x; we have again from Proposition 1.3 that

d
Uy = (X2, V2 | x1) ~U(O,1).

Furthermore, PU21X1=x1 — U(0,1) is independent of x; and thus U,, X| are
independent. Since U; = Fi(X), V1) we get from iterated conditional expectation
that also U,, U, are independent. The general case then follows by induction. [

Remark 1.13 (Regression and standard representation).

(a) By combining the multivariate quantile and the multivariate distributional trans-
form one gets for any given stochastic sequence (Xx) a pointwise “standard
(innovation) representation”

Xk = fk(Ul,...,Uk) a.s., (1.45)
respectively a pointwise “regression representation”
Xkak(Xl,...,Xk_l,Uk) a.s., lfkfn (1.46)

with some iid sequences (U;), U; ~ U(0, 1). This result was proved first for
n = 2 in Skorohod (1976). Related functional representations of classes of
stochastic models are given in Rii and de Valk (1993). For example in the case of
Markov chains the regression representation reduces to the following functional
representation of (any) Markov chain:

Corollary 1.14 (Regression representation of Markov chains). Any Markov
chain (X,) has a representation as a nonlinear regression model
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Xk = fi(Xik—1,Up) as., (1.47)

where (Uy) is an iid sequence of U(0, 1)-distributed random variables, Uy is
independent of Xy, ..., Xk—1.

(b) The copula transformation

X:(Xl,...,Xd)—>U:(Ul,...,Ud),Ui:Fi(Xi,V,')

which transforms a vector X to a copula vector U, where U corresponds to
the copula of X, forgets about the marginals but retains essential information
on the dependence structure of X. On the contrary the multivariate distribu-
tional transform forgets also about the dependence structure. This is an interest-
ing property, when one wants to identify a distribution. These two different
properties of the copula transformation and the multivariate distributional
transform lead to different kinds of applications. Some of them are described in
Section 1.5. O

1.4 Pair Copula Construction of Copula Models

Besides the multivariate quantile transform in Theorem 1.10, which is based on
the one-dimensional conditional distributions Fjy, . ,_,, several further methods
to represent a distribution function F in terms of conditional distribution functions
have been proposed. Particular interest in the recent literature and in various
applications arose from the “pair copula construction (PCC)” method which is
based on a series of certain (organized) pairs of variables.

In the original example Joe (1997) used the following pairwise construction of an
m-dimensional distribution function F'. Form = 3, FF = Fj»3 can be represented as

Fio3(x) Z/ Fizjz, (x1, x3)d F>(22) (1.48)

where Fi3|,, is the conditional distribution function of the pair X1, X3 given X, = z,.
By Sklar’s Theorem this can also be written in terms of the conditional copula C3,
in the form

Fio(x) = / Cra(Fims (01). Foy (x))d Fo(22). (1.49)

Similarly for general m one obtains recursively the representation

X2 Xm—1
Fl...m (X) = / cee / Clmlzz,...,szl (Fllzz,...,szl (xl)a
—00 —00

Fm|z2 Zm—1 (xm))dFZ...m—l(ZZv cees Zm—l)

(1.50)

which is given in terms of pairwise conditional copulas.
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In Bedford and Cooke (2001, 2002) and Kurowicka and Cooke (2006) some
general classes of graphical organization principles representing multivariate distri-
butions were developed. See also the survey of Czado (2010). Two basic examples
of these classes of constructions are C-vines and D-vines (C = canonical, D =
drawable).

(a) D-vines: The construction of D-vines is based on densities and uses the
representation

n
S xn) = [ ] fitere ) filx). (151)
i=2
By Sklar’s Theorem we have

Si2(x1, x2) = cia(Fi(x1), Fa(x2)) fi(x1) f2(x2), (1.52)

where ¢y, is a bivariate copula density. This implies for the conditional density

Jile (x1) = ci2(Fi(x1), F2(x2)) fi(x1). (1.53)

Using (1.53) for the conditional density of (X, X;) given X,,..., X;—; we
obtain by recursion

filxl ..... Xj—](xi) = Cll|2 ..... lez ..... Xi— 1(-xl)

(1.54)

I
A
[2

.

C

+

v

o

~
~

=

N

using the conditional copula densities

Chilj+tnmi=t = Clilxjpromrimt (Fjlxg g (5 Fipxy vy (X0))-

As a result we obtain the “D-vine” density decomposition

n o i—2 n n
S xn) = (l_[l—[Cjin+l ..... i—1)l—[Ci—1,il—[f1(xl)
i=2j=1 i=2 =1

n—1 n—i
(nl_[c]z+j|(j+l ..... Jjti— l))l_[fl(xl) (155)

i=1j=1

The conditional copula densities in (1.55) are evaluated at the conditional

distribution functions Fj\xj+1 ..... X1 Fi+j|xj+1 ..... X
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Figure 1.2 D-vine tree forn = 5

(b)

The D-vine decomposition in (1.55) can be organized iteratively by pairwise

copulas using iteratively levels 71, ..., T,,—;. For n = 5 we obtain the represen-
tation
PACTRRR )|
5

= l—[ Ji(xr)eiz - ca3 - €34 - C45 - C13]2 * C24[3 * €354 * C1423 * C25|34 * C15|234-
I=1

This is described in the following graphical organization. Each transition step
from level 7; to level 7; 4 involves a (conditional) pair copula (Figure 1.2).

C -vines: C-vine decompositions are obtained when applying the representa-
tion of the conditional density successively to the conditional distribution of
Xi—1, X; given X1, ..., X;—. This gives

fi\xl ..... Xi_l(xi) = ci—l,i\xl ..... X,‘-zﬁl){] ..... Xj—]('xi)' (156)

Using (1.56) instead of (1.54) in (1.51) we obtain the C-vine decomposition

n i—1
S x) = fl(xl)l_[ l_[ Cimtilli—k—1 ik (Xi)
i=2k=1
n k—1 n
= (nnci—k,il ..... i—k—l) l_[fk(xk)
i=2k=1 k=1

n—ln—j n
- (l—[ [ C/zf+i1,....,j—1) [T /00 (1.57)
k=1

j=li=1
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Figure 1.3 C-vine forn =5

For n = 5 (1.57) gives a decomposition of the form

5

Sx1, ..., x5) = l—[ Jie (X )€12€13€14C15C23]1C24]1C25]1 €34]12C35]12C45(123
k=1

which is represented by the following graph in Figure 1.3 with levels 71, . . ., Ty.
Again each transition of level 7; to T; 4 involves (conditional) pair copulas.

Remark 1.15. (a) PCC and Markov random fields:

(b)

More general systems to organize pairwise conditional copulas in order to
represent uniquely an n-dimensional distribution function respectively density
are described in Bedford and Cooke (2001, 2002) and Kurowicka and Cooke
(2006) under the denomination “regular vine”. These decompositions are
represented graphically as a nested tree. Edges of the tree denote the indices
used in the conditional copula densities. The representation of the density in
terms of these conditional distributions is an analogue of the Hammersley—
Clifford theorem for Markov random field specifications by certain conditional
distributions (of the components given their neighbourhoods). Depending on
the choice of the neighbourhoods there is some strong similarity between both
ways of constructing multivariate (spatial) models.

Reduction of vine representation:

Haff, Aas, and Frigessi (2010) consider a reduction of the (great) complexity
of regular vine models by assuming that the conditional copula densities
Cjitjlj+1...j+i—1 respectively copulas Cyjj» ;- do not depend on the var-
iables x; in the condition but they depend only through the conditional
distribution functions F; 1 10k CLC This reduction seems to yield good
approximations in several applications. O
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1.5 Applications of the Distributional Transform

1.5.1 Application to Stochastic Ordering

Let < denote the usual stochastic ordering on R", i.e. the integral induced ordering
w.r.t. the class F; of increasing functions which is defined by

X <qYifEf(X) < Ef(Y)foral f € F (1.58)

such that the expectations exist.
The following sufficient condition for the multitivariate stochastic order is a
direct consequence of Theorem 1.10 on the multivariate quantile transform.

Proposition 1.16. Let X, Y be n-dimensional vectors with distribution functions
F, G € F, and let (Vi)1<i<n be iid, U(0, 1)-distributed, then

7' (V) < t5 ' (V) implies that X <y Y. (1.59)

Condition (1.59) is stated in Rii (1981b). It implies various sufficient conditions
for stochastic ordering going back to classical results of Veinott (1965), Kalmykov
(1962), and Stoyan (1972). The comparison result of Veinott (1965) states

Corollary 1.17 (Comparison w.r.t. stochastic order <y). Let X, Y be n-dimen-
sional random vectors such that X1 <q Y and for2 <i <n

pilXi=x1, Ximi=xi—) <q pYii=yi..Yi—1=yi— (1.60)
forallx; <y;, 1 <j <i—1,then
X <q7Y.

Proof. Condition (1.60) implies (by induction) that z' (V) < t5'(V) where F =
Fy.G = Fy. Since 77! (V) £ X and 15 (V) £ Y this implies X < Y. O

The standard construction in (1.45) respectively the regression representation
in (1.46) however are not applicable in general when P < Q, i.e. they do not in
general produce pointwise a.s. constructions X ~ P,Y ~ Q suchthat X <Y
a.s. The existence of such a coupling is however true under general conditions as
follows from the following theorem due to Strassen (1965).

Let (S, <) be a Polish space supplied with a closed semiorder “<”, i.e., the set
{(x,y) € S x§; x < y}isclosed w.r.t. the product topology. The closed order <
induces the “stochastic order” < on the set M !(S) of probability measures on S
defined by



22 1 Copulas, Sklar’s Theorem, and Distributional Transform

P it [ sar < [ rao

for all integrable increasing real functions f € F; = F; (S, <).

(1.61)

Theorem 1.18 (Strassen’s ordering theorem, Strassen (1965)).
Let (S, <) be a Polish space supplied with a closed partial order. Let P, Q €
M(S), then

P <40
& There exist random variables X ~ P,Y ~ Q suchthat X <Y a.s.

In Section3.4 we will discuss extensions of this a.s. ordering theorem to the
class of “integral induced orderings <z” for some function class F. These are
defined via

Pfy:Qif/fdP §/fdQ for all integrable f € F.

Early sources for integral induced orderings are Marshall and Olkin (1979), Rii
(1979), and Whitt (1986).

The regression and standard constructions are used essentially in various papers
and textbooks on stochastic ordering and are closely connected with some notions
of stochastic ordering respectively dependence orderings. We state as one example
the notion of conditional increasing in sequence (CIS).

Definition 1.19 (Conditional increasing in sequence (CIS)).
A random vector X = (X1,..., X)) is called “conditional increasing in sequence”
(CIS)iffor2 <i <n

Xi T (X1,...,Xi-1), (1.62)

increasing in (xp, ..., X;—).

The CIS-property of a random vector X is a positive dependence property of X .
This property is equivalent to the condition that the standard representation based
on the multivariate quantile transform ¥ = r;l (V) is an increasing function in V,
ie.

Y = fi(V1,..., Vi) areincreasingin V, 2 <k <n. (1.63)

Proposition 1.20 (CIS and multivariate quantile transform).

Let X be a random vector with distribution function F, then X is CIS if and only
if the construction by the multivariate quantile transformation ¥ = tfl(V) =
(O, LV, V), ..o, fu(Vh, ..., V) is monotonically increasing in V.
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1.5.2 Optimal Couplings

The multivariate quantile transform is by Theorems 1.10 and 1.12 a basic con-
struction method for random vectors. An extension of this construction leads to
interesting connections with the construction of (optimal) couplings of distributions.

Let 7 : R" — R” be a measurable function and let P € M'(R",5") have
distribution function F. Let furthermore S, V' be random variables on (£2,%(, R)
such that the “distributional equation”

Ph — RS

holds, i.e. & and S have the same distributions w.r.t. P respectively R.

Theorem 1.21 (Solution of stochastic equations, Rii (1985) and Rachev and Rii
(1991)). Let S be a random variable on a probability space (2,21, R) that satisfies
the distributional equation

Ph = RS.
Assume that V = (V;)1<i<n are further iid U(0, 1)-distributed random variables on
(2,24, R) such that S, V are independent. Then there exists a random variable X
on (2,2, R) such that

(a) RX =P, i.e X has distribution function F
and
(b) X is a solution of the “stochastic equation”

hoX =S a.s. with respect to R.

Remark 1.22. The situation is described by the following diagram:
S

(2,2, R) — = (R",B")
X
(R",B", P)

If the distributional equation RS = P” holds, then there exists a solution X
with R¥ = P solving the stochastic equation 4 o X = S a.s. and thus making the
diagram commutative. O

Proof. We denote by

Filyios = FiG [ x1,00 xi0,8) = e

the conditional distribution function of the i-th projection 7; given 7; = x;, j <
i — 1 and given & = s and define inductively a random vector X by
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Xi=F'M|S), Xo=F'0]X.S),...,
(1.64)
X, =FE 'V | X1,..., Xu—1, S).

Equation (1.64) is an extension of the multivariate quantile transform. By the
independence assumptions we obtain

RY1IS=s _ RFI_I(VIIS)|S=S _ RFI_I(VI\S:V) — pmlh=s
Similarly,
RXeIXi=x1.5=s _ RF;‘(VZ\XI,S)|X1=x1,S=s
— RF{l(Vz\Xlﬁ‘Y) — prlm=xih=s
implying

R(X],X2)|S=s :/RX2|X1=XI,S=stX1|S=S
:/Pnz\n1=x1,h=sdP7r1V1=5(x2) — P(m,nz)\h=s.

By induction we find RX1$=5 = P7"=s and, therefore, RX = P.
Since almost surely w.r.t. P” it holds that P7"=5({x; h(x) = s}) = 1 we obtain
RX¥IS=s({x: h(x) = s}) = 1[R®] and thus

R(h(X) = §}) = / R¥S=5({x: h(x) = s)dRS(x) = 1. 0

Remark 1.23. Using a measure isomorphism argument Theorem 1.21 on the
solutions of stochastic equations extends to Borel spaces E, F, replacing R", R"

(see Rii (1985) and Rachev and Rii (1991)), i.e. let (E, P) i F,and (2, R) —f> F
be functions such that the distributional equation

Ph =R/ (1.65)
holds. If (E, P) is rich enough, i.e. it allows a uniformly U(0, 1)-distributed random
variable V' on (E, P) independent of /, then there exists a random variable X :
E — F with PX = R such that X solves the stochastic equation

h=foX[P] (1.66)

¢
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An interesting application of Theorem 1.21 is to the construction of optimal
couplings. Let 7 : (R",5") — (R™,B") and for probability measures P, Q €
M (IR, 8") define the optimal coupling problem:

cr(P, Q) = inf{E||T(X) T xLpy 4L Q}. (1.67)

Equation (1.67) is the optimal coupling of 7(X), T(Y) over all possible couplings
X, Y of P, Q. Then the following result holds (see Rii (1986)):

Corollary 1.24 (Optimal coupling of T). Let P, = PT, Q| = QT be the distri-
butions of T under P, Q. Then

er(P.Q) = inf [EIT(X) =TI X £ P.0 L 0} = B(P1. Q).
where £,( Py, Q1) is the “minimal £,-metric” of Py, Q1 given by
— 2y1/2. 4 4
GPLOY) =inf[(EJU—VIDY: UL PV S0} (168)

In case m = 1 it holds that

1
BP0 = /0 (Fy' () — GT () du, (1.69)

where Fi, G; are the distribution functions of Py, Q;.

1.5.3 Identification and Goodness of Fit Tests

For the construction of a goodness of fit test for the hypothesis Hy : FF = K
the multivariate distributional transform allows to construct simple test statistics by
checking whether the transformed random vectors ¥; = tr,(X;, Vi ), 1 <i <n,
are uniformly distributed on the unit cube [0, 1]. Standard tests for this purpose
are based on Kolmogorov—Smirnov test statistics 7,, = sup;¢jo jj |/I5m (t) —t] on

Cramér-von Mises statistics | (T’ m(t) — t)?dt or on weighted variants of them.

Here m = dn is the sample size and F,, the corresponding empirical distribution
function. A detailed discussion of this principle and its practical and theoretical
properties is given in Prakasa Rao (1987). A main problem for the practical
application of this construction method is the calculation of conditional distribution
functions.

This principle of standardization is also useful for various other kinds of
identification problems and for statistical tests as for example for the test of the
two-sample problem Hj : FF' = G. For this problem we use the empirical version of
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the distributional transform based on the pooled sample. We have to check whether
the transformed sample is a realization of a U([0, 1]¢)-distributed variety.

1.5.4 Empirical Copula Process and Empirical Dependence
Function

We consider the problem of testing or describing dependence properties of multi-
variate distributions based on a sequence of observations. The construction of test
statistics is typically based on some classical dependence measures like Kendall’s ©
or Spearman’s o (see Nelsen (2006)) or related dependence functionals. Empirical
versions of the dependence functionals can often be represented as functionals of
the reduced empirical process, the empirical copula function and the normalized
empirical copula process. The distributional transform allows to extend some limit
theorems known for the case of continuous distributions to more general distribution
classes.

Let X; = (Xj1,....Xjx), | < j < nbe k-dimensional random vectors with
distribution function F € F(F}, ..., Fy). For the statistical analysis of dependence
properties of F a useful tool is the “reduced empirical process”, which is also called
“copula process”, and is defined for ¢ € [0, 1] by

V(1) = % Z (I(Ujy <ty Upp < 1) — C(1)) . (1.70)
j=

Here U; = (U, 1,...,U;y) are the copula vectors of X;, U;; = F;(X;;,V/), and
C is the corresponding copula C(¢) = P(U; <1t).

The construction of the distributional transforms U;; is based on knowing the
marginal distribution functions F;. If F; are not known it is natural to use empirical
versions of them. Let

~ 1 <
Fi(x) =~ Z 1 oo (Xj4) (1.71)
j=1
denote the empirical distribution functions of the i-th components of Xy, ..., X,,.

Then in the case of a continuous distribution function F the empirical counterparts
of the distributional transforms are

ﬁj,i = f,‘(Xj,,'), ﬁj = (ﬁjﬁ],...,ﬁj,k). (172)
For continuous distribution function F; we have that

nﬁj,i = nf:i(Xj,i) = Rj; (1.73)
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are the ranks of X;; in the n-tuple of i-th components Xy;,...,X,; of Xy,...,
X, and the ranks R;;,..., R,; are a.s. a permutation of 1,...,n. The “empirical
copula function” is then given by

n

C,(t) = %Zl (17,- < z), t €0, 1. (1.74)
j=1

C, is an estimator of the copula function C. C,, induces the “normalized empirical
copula process”

L) := v/ (Co() =€)

L ) ) s
:WZ{I(RN§ntl,...,Rj!k§ntk)—C(t)}, t e o, 1]*,

Jj=1

This normalized empirical copula process was introduced in Rii (1974, 1976)
under the name multivariate rank order process. In that paper more generally the
sequential version of the process

[n5]

La(s,1) = WZ{I(ﬁ,- <1) —C(t)}, se1,re[0,1F  (1.76)

Jj=1

was introduced and analysed for nonstationary and mixing random variables.

The empirical copula function c » was also introduced in Deheuvels (1979) and
called “empirical dependence function”. Based on limit theory for the reduced
empirical process it is shown in Rii (1974, 1976) and also in a series of papers
of Deheuvels starting with Deheuvels (1979) that the normalized empirical copula
process converges to a Gaussian process. Several nonparametric measures of
dependence like Spearman’s ¢ or Kendall’s T have corresponding empirical versions
which can be represented as functionals of L,. As a consequence one obtains
asymptotic distributions for these test statistics for testing dependence properties.

The distributional transform suggests to consider an extension of the empirical
copula process to the case of general distribution functions F. The empirical
versions of the U;; are now defined as

U;i= e (X0 V) (1.77)
which are exactly U(0, 1) distributed. In order to avoid artificial dependence it is
natural to let the copula C;(t) = P(U; < 1), t € [0, 1]%, be based on the same

randomization ¥/ in all components of the j-th random vector such that C () =
C(t), 1 < j < n.We define the normalized empirical copula process by

La(t) = V/n(C,(t) = C(0)), €0, 1] (1.78)
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The copula C has bounded nondecreasing partial derivatives a.s. on [0, 1]* (see
Nelsen (2006, p. 11)). Now the proof of Theorem 3.3 in Rii (1976) extends to the
case of general distributions.

The basic assumption of this theorem is convergence of the reduced sequential
empirical process, the sequential version of V, in (1.70) (defined as in (1.76) for
L,). This assumption has been established for various classes of independent and
mixing sequences of random vectors.

(A) Assume that the reduced sequential process V, (s, ) converges weakly to an
a.s. continuous Gaussian process 1 in the Skorohod space Dy .

The additional assumptions on V, made in Rii (1976) served there to obtain
stronger convergence results or to deal with more general assumptions on the
distributions.

Theorem 1.25 (Limit theorem for the normalized empirical copula process,
Rii (1976, 2009)). Under condition (A) the sequential version L,(s,t) of the
normalized empirical copula process converges weakly to the a.s. continuous
Gaussian process L given by

Lo(s, 1) = Vo(s. 1) —SZ%VO(L...JJ;,...J). (1.79)

i=1

Based on this convergence result asymptotic distributions of test statistics testing
dependence properties can be derived as in the continuous case. The proofs are
based on representations or approximations of these statistics by functionals of
the empirical copula process L,. For examples of this type see Rii (1974, 1976)
and Deheuvels (1979, 1981). For applications to the estimation of dependence
functionals and extensions to the empirical tail copula process see Schmidt and
Stadtmiiller (2006).

1.6 Multivariate and Overlapping Marginals

In this section we consider the case that not only one-dimensional (marginal)
distributions of the risk vector X are known. We assume that also for certain subsets
J of the components the joint distribution of (X;);es is known. This is motivated
from available empirical information contained in certain historical data sets or from
functional knowledge of the random mechanism.

1.6.1 Generalized Fréchet Class

Let (E;,2(;), 1<j<n be n measure spaces and let £ECP({l,...,n}) be a
system of subsets J C {1,...,n} such that UjegJ = {1,...,n}. Let P; €
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Figure 1.4 Multivariate Jy
marginals

Jy

MY E; Ay), J € &, be a consistent system of probability distributions on
(Ej,2y) = ®jEJ(Ej,Qlj). We assume that we know the joint distributions of
the components in J forall J € €.

This assumption is a restriction on the joint dependence structure in the model.
In comparison the Fréchet class (with only single marginals fixed) includes the set
of all possible dependence structures (Figure 1.4).

Definition 1.26 (Generalized Fréchet class). To a given consistent system
(Py)es of probability measures we define the “generalized Fréchet class” Mg by

Mg =M(P;,J €€) ={PeM\(EA); PYV="P; Jec&, (180)

where (E,2) = @;_,(E;,2;) and 7, are the projections on the components in J .

Using the generalized Fréchet class as a model class for a risk vector X means
that the distribution of X; = (X) ey is specified to be P, forall sets J € £.

In the particular case that £ = {{1},...,{n}} where £ consists of singletons
we get the usual Fréchet class M(Py,..., P,). If &€ = & = {i,i + 1},1 <
i < n— 1} we get the “series case”, where all neighboured pairwise distributions
are known. A system & is called “decomposable” (or “regular”), if there do not
exist cycles in £. The most simple nondecomposable (nonregular) system is given
by &7 = {{1,2},{2,3},{1,3}} or in more general form by the “pairwise system”
E=E={i.js 1<i<j=<n}

The “marginal problem” is the question whether there exist joint distributions
with the given multivariate marginals. A classical result due to Vorobev (1962) and
Kellerer (1964) states in the situation of Polish spaces:

Theorem 1.27 (Marginal problem). Let £ C P({1,...,n}) and (E;,2;) be
Polish spaces. Then the statement

Consistency of (Py) implies Mg # ¢

is equivalent to the condition that € is decomposable.
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Thus in general consistency is not enough to imply the existence of joint
distributions. A simple counterexample is the following. Let £ = {{1,2}, {2, 3},
{1,3}} and let P;, = P,3 = Pj3 be the distribution of the pair (U, 1 — U) where
U ~ U(0, 1). Then this system is consistent but Mg = ¢. If there would exist some
element P € Mg and X = (X, X2, X3) ~ P then we would get

COV(Xl, X}) = COV(Xl, 11— Xz) = —COV(Xl, Xz) > 0,

a contradiction. Some characterizations of nonemptiness of Mg are known (see
Rii (1991a)), which however are not easy to apply but may serve to produce
counterexamples.

Assuming Mg # ¢, a natural idea to construct submodels P C Mg describing
the dependence structure in a correct way is the following extension of the projection
method discussed in Section 1.2 for the simple marginal case. Let {Py; ¥ € O}
be a parametric class of probability measures on (E,2() with densities fy ~ Py
describing the dependence of the components correctly. Then one may try to
determine the projections Py — P; € Mg w.rt. some suitable distance in order
to fit the marginal structure. The hope is that even after projection the dependence
structure is essentially not changed (see Section 1.2).

In the case that Mg = M(Py,..., P,) one can interpret Sklar’s Theorem in
this sense, i.e. transforming an element G € F(Gy,...,G,) to some F €
F(F,..., F,) with the correct marginals Fi, ..., F, via the copula C,

G—>C—F=C(F,....F). (1.81)

For the Kullback-Leibler distance the projection is characterized by a density of

product form

dP -

o Ul S
The “iterative proportional fitting algorithm (IPF)” has been shown to converge to
the projection (see Rii (1995a)) under some conditions.

In the case of general overlapping marginals a characterization of all L>-
projections (with restriction to the probability measures continuous w.r.t. the product
measure) is given in Rii (1985). For the Kullback-Leibler distance a product form
of the density

dP
To@=T1/0n (1.82)
0 e
is sufficient for the projection and up to a closedness property also necessary.
In general however a natural extension of Sklar’s Theorem giving a construction

M@Qy,J €e&) > M(Py,J €€) (1.83)

for two marginal systems is still an open question.
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There are some particular results on the connection described in (1.83). For P €
M (R",B") denote C(P) the set of all copulas of P, then the following relations
can be easily seen.

Proposition 1.28. (a) If Mg(P;,J € &) # ¢, then there exist C; € C(Py),
J € & such that M& := Mg(Cy,J € E) # ¢.

(b) If C; are copulas of Py, J € & and M& = Mg(Cy,J € E) # ¢, then
Mg = Me(Py,J €8&) # ¢.

(c) In general Mg(Py,J € E) # ¢ does not imply MS(Cy,J € E) # ¢ for any
choice of copulas C; € C(Py).

1.6.2 Copulas with Given Independence Structure

In Section 1.2 the projections w.r.t. L2-distance have been described in the simple
marginal case. These results have been extended to the multivariate marginal case in
Rii (1985). Let £ be anindex class € = {T1,..., Ty} withUT; = {1,...,n} andlet
Pr,, ..., Py, be a given consistent system of distributions on [0, 1]‘Ti 1 <i<k.
We assume that all univariate marginals are uniform U(0, 1) and thus the generated
Fréchet class M is a subclass of the set of all copulas. As in Section 1.2 we restrict
in the following to the Lebesgue-continuous elements in Mg

Me\") ={P e Mg; P < \"}; (1.84)

the signed version of this class we denote by M (A\").
In the first part we consider the special case of distributions with given indepen-
dence structure, i.e. we assume that

pr =Nl 1<i<k. (1.85)

Thus we consider the class of probability models for a random vector X such that
(X;)jer; areiid U(0, 1)-distributed for any i < k.

To describe the corresponding generalized Fréchet class we need a second linear
operator V' supplementing the operator S defined in Section 1.2 in (1.27).

Define V : L'(\") — L'(\") inductively by

f(l) = le, f(m+1) = f(m) — (f(m))Rerl form < k and V(f) = f(k), (186)
where R,, = TS, = {l,...,n}\ T,, and fg is obtained from f by integrating over
the components in R.

Theorem 1.29 (Distributions with given independence structure). For the inde-
pendence structure £ given in (1.85) we have the representation of the generalized
Fréchet class M (€) by

ME) ={1+VoSHN: feL'(A\}
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respectively
M (E) = {1+ Vo SHN'; feL'(\),1+VoSf >0}

The proof of Theorem 1.29 is similar to that of Theorem 1.7 in Section 1.2 (see
Rii (1985)).

Special attention has been given in the literature to the case that £ = &, = {T C
{L,....n}; |T|= k} i.e. the case that all choices of k-components are independent.
In this case a more compact representation of the solutions is possible.

Define for f € L'(\")and 1 < k < n inductively linear operators Vi, ..., V, by

Vif=fVinf=Vif— > hhr. (1.87)

IT|=n—k+1

Call a signed measure P “k-independent” if the distribution of any k-components
(i, ... 7,) is AF /[0, 175
Theorem 1.30 (k-independent probability measures). The set of all k-indepen-
dent (signed) measures has the representation

Mi(E) = {(1+ Vi o SHN™ f € L'}
respectively

M) = {0+ Vi o SHN"; f e L'(A'), 14 VioSf > 0}. (1.88)

This result follows by reduction from Theorem 1.29.

Example 1.31 (FGM-distributions). Consider the generalized FGM-distributions
defined as (1 + f)A", where f(x) = []/_, vi(x;) such that [v;(x;)dx; = 0,
1<i<nIN{f =0} <1, then Sf = f and furthermore

if=Wf=—-=Viaf=/[ (1.89)

This implies that the FGM-distribution (1 + f)A" is (n — 1)-independent but not
n-independent. This observation indicates the lack of strong dependence in higher
dimensional FGM-families. Simultaneously, it gives some natural examples of
(n—1)-independent distributions which are not n-independent. Similarly, (14 f)\"
is k-independent but not (k 4 1)-independent, where we define f as

f(x) =« Z l—[vj(xj), (1.90)

|T|=k j€T

« being a factor such that 1 + f > 0. )



1.6 Multivariate and Overlapping Marginals 33

1.6.3 Copulas, Overlapping Marginals, and L>-Projections

The construction in Theorem 1.29 can be extended to the construction in the
general Fréchet class case. Define for J C {1,....k}, T; = (;¢,; T}, and for
f € L'(\"), fr by integrating over the T components. fr again is con51dered as a
function on [0, 1]". Let for T € &, Pr have densities g”, Pr = gT/\\IT‘ and define

k

h(x) =Y (=D"" Y glx). xelo.1]", (1.91)

m=1 JcAl,...k}

where g7’ (x) = 0 if T, is empty. Then we have the following representation of the
general Fréchet class (see Rii (1985)). Define the operator T¢ by

Tef:=h+VoSf (1.92)

Theorem 1.32 (Representation of general Fréchet class). The class of all
(signed) measures in the generalized Fréchet class which are Lebesgue-continuous
has the representation

M(E) = {(Te fIN"; f e L'(A\")}

respectively

M, (&) = {(Te /IN"; [ € L'N"), Te f = 0}. (1.93)

Proof. In the first step we prove that h\" € M (&) or, equivalently, that hg,—g”
where R; = T, 1 <i < k. Without loss of generality we consider the case i = 1.
By definition of & we get

h—gT‘+Z( Tty e

|J|=m,
J#{1}
k
B T e Ty
m=1 |J|= |J|=m,
IEJJ#{I} 1€J
k
=gT1+Z(_1)m—l Z gTJU“}“F Z gTj
m=1 |J|=m—1, [J|=m,
160,04 1¢J

|J|=m, |J|=m,
1¢J 1¢J

=g +Z( 1)’”( Yo gl =y gT’)

and from the relation (g7/vi}) g, = (g77)g, we obtain the assertion hre = gh
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Letnow P = g\" e M5(E),theng =h+ (g—h) =h+V o S(g—h), since
g —h is by the first part of this proof a fixpoint of V o S. Conversely, for f € L'(\")
andT € &
(h+VoSfyre=hr =g

by definition of V,ie. (h + V o SN € M(E). O

Theorem 1.32 allows in certain cases to construct families of probability mea-
sures with given multivariate marginals. The idea is to find a function f € L'(\"),
such that VV o S is balancing the negative parts of 1. Some natural candidates for f
are functions which allow an explicit and simple determination of the transform
V o Sf, such as e.g. linear combinations of functions of the type []/_; vi(x;)
where f vi(x;)dx; = 0,1 < i < n. The following is an example of this kind
of construction.

Example 1.33. Letn = 3, & = {{1,2},{2,3},{1,3}}.
(a) When the marginal densities are fi(x1,x2) = 1, fo3(x1,x3) = 1 + (Xz — %)
(x3— 1), fis(x1.x3) = 1+ (x; — 3) (x3 — §). then

X1+ X2
2

3
h(x1,x2,x3) = 3 + X1X2 4+ XpX3 — X3 —

is already a non-negative density with the given marginals.
) If filx,x) = 1+ 3(x—3)(2—12), fisxi,xs) = 1 =3(x1—3)
-(X3 — %), and f>3(x2, x3) = 1, then

h(x1,x2,x3) = fiz(x1,x3) + fia(x1,x2) — 1

and min{h(xy, X2, x3)} = % = h(1,0,1) = h(0,1,0). A function balancing
these negative parts is given by

flrxax3) =—6(x; — 1) (o= 3) (x3—1).

so that

h(x1, x2,x3) + f(x1, X2, x3)
=1-6(x1—3)(x2—3) (x3—3)
+3 (1 —3) (2 —3) =3 (1 —3) (x3-3)

gives a non-negative density with the given marginals as can easily be seen by
discussing the cases xi, xp < %, X3 > %, etc. Instead of the factor 6 in the
balancing function, one can use a factor @ in an interval around 6, in this way
obtaining a parametric class of distributions with given multivariate marginals.

\
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