
Chapter 1
Copulas, Sklar’s Theorem, and Distributional
Transform

In this chapter we introduce some useful tools in order to construct and analyse
multivariate distributions. The distributional transform and its inverse the quantile
transform allow to deal with general one-dimensional distributions in a similar
way as with continuous distributions. A nice and simple application is a short
proof of the general Sklar Theorem. We also introduce multivariate extensions,
the multivariate distributional transform, and its inverse, the multivariate quantile
transform. These extensions are a useful tool for the construction of a random vector
with given distribution function respectively allow to build functional models of
classes of processes. They are also a basic tool for the simulation of multivariate
distributions. We also describe some applications to stochastic ordering, to goodness
of fit tests and to a general version of the empirical copula process. We introduce
to some common classes of copula models and explain the pair copula construction
method as well as a construction method based on projections. In the final part
extensions to generalized Fréchet classes with given overlapping multivariate
marginals are discussed. The construction of dependence models by projections is
extended to the generalized Fréchet class where some higher dimensional marginals
are specified.

1.1 Sklar’s Theorem and the Distributional Transform

The notion of copula was introduced in Sklar (1959) to decompose an n-dimensional
distribution function F into two parts, the marginal distribution functions Fi and the
copula C , describing the dependence part of the distribution.

Definition 1.1 (Copula). Let X D .X1; : : : ; Xn/ be a random vector with distribu-
tion function F and with marginal distribution functions Fi , Xi � Fi , 1 � i � n. A
distribution function C with uniform marginals on Œ0; 1� is called a “copula” of X if

F D C.F1; : : : ; Fn/: (1.1)
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4 1 Copulas, Sklar’s Theorem, and Distributional Transform

By definition the set of copulas is identical to the Fréchet class F.U; : : : ; U/ of all
distribution functions C with uniform marginals distribution functions

U.t/ D t; t 2 Œ0; 1�: (1.2)

For the case that the marginal distribution functions of F are continuous it is easy
to describe a corresponding copula. Define C to be the distribution function of
.F1.X1/; : : : ; Fn.Xn//. Since Fi .Xi/ � U.0; 1/ have uniform distribution C is a
copula and furthermore we obtain the representation

C.u1; : : : ; un/ D P.F1.X1/ � u1; : : : ; Fn.Xn/ � un/

D P.X1 � F �1
1 .u1/; : : : ; Xn � F �1

n .un//

D FX .F �1
1 .u1/; : : : ; F �1

n .un//: (1.3)

Here F �1
i denotes the generalized inverse of Fi , the “quantile transform”, de-

fined by

F �1
i .t/ D inffx 2 R1I Fi .x/ � tg:

C is a copula of F since by definition of C

F.x1; : : : ; xn/ D P.X1 � x1; : : : ; Xn � xn/

D P.F1.X1/ � F1.x1/; : : : ; Fn.Xn/ � Fn.xn//

D C.F1.x1/; : : : ; Fn.xn//: (1.4)

The argument for the construction of the copula is based on the property that
for continuous distribution functions Fi , Fi .Xi / is uniformly distributed on .0; 1/:
Fi .Xi/ � U.0; 1/. There is a simple extension of this transformation which we call
“distributional transform.”

Definition 1.2 (Distributional transform). Let Y be a real random variable with
distribution function F and let V be a random variable independent of Y , such that
V � U.0; 1/, i.e. V is uniformly distributed on .0; 1/. The modified distribution
function F.x;λ/ is defined by

F.x;λ/ WD P.X < x/ C λP.Y D x/: (1.5)

We call

U WD F.Y; V / (1.6)

the (generalized) “distributional transform” of Y .
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For continuous distribution functions F , F.x;λ/ D F.x/ for all λ, and U D
F.Y /

dD U.0; 1/,
dD denoting equality in distribution. This property is easily ex-

tended to the generalized distributional transform (see e.g. Rü1 (2005)).

Proposition 1.3 (Distributional transform). Let U D F.Y; V / be the distribu-
tional transform of Y as defined in (1.6). Then

U
dD U.0; 1/ and Y D F �1.U / a.s. (1.7)

An equivalent way to introduce the distributional transform is given by

U D F.Y �/ C V.F.Y / � F.Y �//; (1.8)

where F.y�/ denotes the left-hand limit. Thus at any jump point of the distribution
function F one uses V to randomize the jump height.

The distributional transform is a useful tool which allows in many respects to deal
with general (discontinuous) distributions similar as with continuous distributions.
In particular it implies a simple proof of Sklar’s Theorem in the general case (see
Moore and Spruill (1975) and Rü (1981b, 2005)).

Theorem 1.4 (Sklar’s Theorem). Let F 2 F.F1; : : : ; Fn/ be an n-dimensional
distribution function with marginals F1; : : : ; Fn. Then there exists a copula C 2
F.U ; : : : ; U/ with uniform marginals such that

F.x1; : : : ; xn/ D C.F1.x1/; : : : ; Fn.xn//: (1.9)

Proof. Let X D .X1; : : : ; Xn/ be a random vector on a probability space
.�;A; P / with distribution function F and let V � U.0; 1/ be independent of X .
Considering the distributional transforms Ui WD Fi .Xi ; V /, 1 � i � n, we have by

Proposition 1.3 Ui
dD U.0; 1/ and Xi D F �1

i .Ui/ a.s., 1 � i � n. Thus defining C

to be the distribution function of U D .U1; : : : ; Un/ we obtain

F.x/ D P.X � x/ D P.F �1
i .Ui/ � xi ; 1 � i � n/

D P.Ui � Fi .xi /; 1 � i � n/ D C.F1.x1/; : : : ; Fn.xn//;

i.e. C is a copula of F . �

Remark 1.5. (a) Copula and dependence. From the construction of the distri-
butional transform it is clear that the distributional transform is not unique
in the case when the distribution has discrete parts. Different choices of the

1Within the whole book the author’s name is abbreviated to Rü.
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Figure 1.1 Copula of
uniform distribution on line
segments (published in: Journal of Stat.

Planning Inf., 139: 3921–3927, 2009)

randomizations V at the jumps or in the components, i.e. choosing Ui D
Fi .Xi ; Vi /, may introduce artificial local dependence between the components
of a random vector on the level of the copula. From the copula alone one does
not see whether some local positive or negative dependence is a real one or
just comes from the choice of the copula. For dimension n D 2 the copula in
Figure 1.1 could mean a real switch of local positive and negative dependence
for the original distribution, but it might also be an artefact resulting from the
randomization in case the marginals are e.g. both two-point distributions while
the joint distribution in this case could be even comonotone. Thus the copula
information alone is not sufficient to decide all dependence properties.

(b) Conditional value at risk. A more recent application of the distributional trans-
form is to risk measures. It is well known that the conditional tail expectation

TCE˛.X/ WD �E.X j X � q˛/; (1.10)

where q˛ is the lower ˛-quantile of the risk X , does not define a coherent risk
measure except when restricted to continuous distributions. This defect can be
overcome by using the distributional transform U D F.X; V / and defining the
modified version, which we call conditional value at risk (CVR˛)

CVR˛.X/ D �E.X j U � ˛/: (1.11)

By some simple calculations (see Burgert and Rü (2006b)) one sees that

CVR˛.X/ D � 1

˛

�
EX1.X < q˛/ C q˛

�
˛ � P.X < q˛/

�� D ES˛.X/:

(1.12)

Thus the more natural definition of CVR˛ coincides with the well-established
“expected shortfall risk measure” ES˛.X/ which is a coherent risk measure.
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As a consequence the expected shortfall is represented as conditional expec-
tation and our definition in (1.11) of the conditional value at risk seems to be
appropriate for this purpose.

(c) Stochastic ordering. The construction of copulas based on the distributional
transform as in the proof of Sklar’s Theorem above has been used in early papers
on stochastic ordering. The following typical example of this type of result is
from Rü (1981b, Proposition 7).

Proposition 1.6. Let Fi , Gi be one-dimensional distribution functions with
Fi � Gi (or equivalently Gi �st Fi ), 1 � i � n. Then to any F 2F.F1; : : : ; Fn/

there exists an element G 2 F.G1; : : : ; Gn/ with G �st F . Here �st denotes the
multivariate stochastic ordering w.r.t. increasing functions.

Proof. Let X D .X1; : : : ; Xn/ � F and let Ui D Fi .Xi ; V / denote the distri-
butional transforms of the components Xi . Then U D .U1; : : : ; Un/ is a copula
vector of F . Define Y D .Y1; : : : ; Yn/ as vector of the quantile transforms of
the components of U , Yi D G�1

i .Ui /. Then Y � G 2 F.G1; : : : ; Gn/ and
from the assumption Fi � Gi we obtain that Y � X pointwise. In consequence
G �st F . �
In particular the above argument shows that G �st F if F and G have the same
copula. ˙

1.2 Copula Models and Copula Constructions

In order to construct a distributional model for a random vector X it is by Sklar’s
representation theorem sufficient to specify a copula model fitting to the normalized
data. There are a large number of suggestions and principles for the construction of
copula models. Classical books on these models for n D 2 are Mardia (1962) and
Hutchinson and Lai (1990). More recent books for n � 2 are Joe (1997), Nelsen
(2006), Mari and Kotz (2001), Denuit et al. (2005), and McNeil et al. (2005b).
A lot of material on copulas can also be found in the conference volumes of the
“Probability with given marginals” conferences – i.e. the series of conferences in
Rome (1990), Seattle (1993), Prague (1996), Barcelona (2000), Québec (2004),
Tartu (2007) and Sao Paulo (2010) as well as in the recent proceedings edited
by Jaworski, Durante, Härdle, and Rychlik (2010). A huge basket of models has
been developed and some of its properties have been investigated, concerning in
particular the following questions:

• What is the “range of dependence” covered by these models and measured with
some dependence index. Is the range of dependence wide and flexible enough?

• What models exhibit tail dependence and thus are able to model situations with
strong positive dependence in tails?

• Is some parameter available describing the degree of dependence?
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• Is there a natural probabilistic representation respectively interpretation of these
models describing situations when to apply them?

• Is there a closed form of the copula or a simple simulation algorithm so that
goodness of fit test can be applied to evaluate whether they fit the data?

Several questions of this type have been discussed in the nice survey papers of
Schweizer (1991) and Durante and Sempi (2010).

1.2.1 Some Classes of Copulas

Copulas, their properties and applications are discussed in detail in the above-
mentioned literature. Copulas are not for any class of distributions the suitable
standardizations as for example for elliptical distributions. In extreme value theory
a standardization by the exponential distribution may be better adapted. For some
applications it may be more natural and simpler to model the distributions or
their densities directly without referring to copulas. Conceptually and for some
investigation of dependence properties like tail-dependence the notion of copula
is however a useful tool.

Some classical classes of copulas are the following.

• The “Farlie–Gumbel–Morgenstern (FGM) copula”:

C˛.u; v/ D uv.1 C ˛.1 � u/.1 � v//; j˛j � 1 (1.13)

as well as its generalized versions, “EFGM copulas” are extensions of FGM to
the n-dimensional case and given by

C.u/ D
nQ

iD1

ui

 

1 C
X

T �f1;:::;ng
˛T

Q
j 2T .1 � uj /

!

(1.14)

for suitable ˛T 2 R1.
• The “Archimedean copulas”

Cˆ.u1; : : : ; un/ D ˆ�1.ˆ.u1/ C � � � C ˆ.un// (1.15)

for some generator ˆ W .0; 1� ! RC with ˆ.1/ D 0 such that ˆ is com-
pletely monotone. In fact Cˆ is an n-dimensional copula if and only if ˆ is
“n-monotone”, i.e. ˆ is .n � 2/ times differentiable and

.�1/kˆ.k/.t/ � 0; 0 � k � n � 2; 8t > 0 (1.16)

and .�1/n�2ˆ.n�2/ is decreasing and convex (see McNeil and Nešlehová (2010)).
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In case ˆ.t/ D 1
˛
.t�˛ � 1/ one gets the “Clayton copula”

C˛.u/ D
�X

u�˛
i � n C 1

��1=˛

; ˛ > 0: (1.17)

In case ˆı.t/ D � 1
ı

log.1 � .1 � e�ı/e�t / one gets the “Frank copula”

Cı.u/ D �1

ı
log

�
1 C

Qn
iD1.e

�ıui � 1/

.e�ı � 1/n�1

	
: (1.18)

ˆ is by Bernstein’s theorem completely monotone if and only if it is n-monotone
for all n 2 N.

Archimedean copulas are connected with mixing models (“frailty models”).
Let

FX .x/ D
Z nY

iD1

.Gi .xi //
ıdF‰.ı/;

where ‰ is a positive real mixing variable. Then with L‰ , the Laplace transform
of ‰, we obtain that the i -th marginal is given by

Fi .xi / D
Z

exp.ı ln Gi .xi //dF‰.ı/ D L‰.� ln Gi .xi //:

As a consequence one gets

FX .x/ D L‰

� nX

iD1

L�1
‰ .Fi .xi //

	
; (1.19)

i.e. a representation as in (1.15) holds with the generator ˆ D L‰ which by
Bernstein’s theorem is completely monotone.

Archimedean copulas arise from multivariate distributions that have a stochas-
tic representation of the form

X
dD R � U (1.20)

where U is uniformly distributed on the unit simplex (1-sphere) in RnC, fx 2
RnCI Pn

iD1 xi D 1g respectively the simplex in Rn, and R is a scaling random
variable with values in RC independent of U . Formulae for the relation between
the distribution function FR and the generator ˆ are available (see McNeil and
Nešlehová (2010)).

• “Elliptical distributions” arise from stochastic representations of the form

X D � C RAU; (1.21)

where U is uniformly distributed on the unit 2-sphere Sn�1 D fx 2 Rn;Pn
iD1 u2

i D 1g in Rn. R is a real positive random variable independent from
U and A is an n � n-matrix. X has a density of the form
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f .x/ D j†j�1ˆ..x � �/>†�1.x � �// with † D AA>:

The distribution is denoted as E.�; †; FR/. Multivariate normal distributions
are elliptical (or elliptically contoured). The copulas of elliptical distributions are
in general not available in closed form.

• “Extreme value copulas” are defined as possible limits of max sequences. Let
Xi D .Xi;1; : : : ; Xi;d /, 1 � i � n (note that here d D dimension but n D
sample index) be a sequence of iid random vectors with copula CF . Let Mn D
maxfX1; : : : ; Xng D .Mn;1; : : : ; Mn;d / be the componentwise max of the Xi ,
then the copula Cn of Mn is given by

Cn.u/ D C
n

F .u1=n
1 ; : : : ; u1=n

d /:

C is called an “extreme value copula” if for any n 2 N there exist some
copula CF such that

C D C
n

F .u1=n
1 ; : : : ; u1=n

d /: (1.22)

A well-known fact is:
C is an extreme value copula if and only if C is “max stable”, i.e. C.u/ D
C

m
.u1=m

1 ; : : : ; u1=m

d / for all m 2 N.
De Haan and Resnick (1977) and Pickands (1981) gave the following

representation of extreme value copulas:
C is an extreme value copula if and only if it has a representation of the form

C.u/ D exp.�l.� log u1; : : : ; � log ud //: (1.23)

Here the “tail dependence function” l W .0; 1/d ! Œ0; 1� is given by

l.x/ D
Z

Sd�1

max
j �d

.wj xj /dH.w/ (1.24)

where H is a measure on the simple Sd�1 satisfying
R

Sd�1
wj dH.w/ D 1,

1 � j � d . H is called the “spectral measure” of C .
An example of copulas which are of interest in extreme value theory are

“Gumbel copulas” given by

Cı.u/ D exp

�
�
� nX

iD1

.� log ui /
ı
�1=ı

	
(1.25)

for ı 2 Œ1; 1/. Gumbel copulas are extreme value copulas. The parameter ı is a
dependence parameter. If 1 � ı1 < ı2, then Gı2 is more strongly dependent (in
the sense of supermodular ordering) than Gı1 (see Wei and Hu (2002)).
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1.2.2 Copulas and L2-Projections

A general principle for the construction of dependence models (copulas) was
introduced in Rü (1985). It is based on the following representation result. Let
Cn.λnn/ denote the set of all copulas on Œ0; 1�n which are Lebesgue-continuous and
thus have Lebesgue-densities f . Let Cs

n.λnn/ be the set of all signed measures on
Œ0; 1�n with uniform marginals and which have Lebesgue-densities f .

For any integrable f 2 L1.Œ0; 1�n;λnn/ and T � f1; : : : ; ng we define

fT D
Z

f
Q

i2T dyi ; (1.26)

i.e. we integrate over the components in T . We consider fT as a real function
on Œ0; 1�n being constant in the T components. The following linear operator
S W L1.λnn/ ! L1.λnn/ is of interest,

Sf D f �
X

T �f1;:::;ng
jT jDn�1

fT C .n � 1/ff1;:::;ng (1.27)

since it leads to the following representation result.

Theorem 1.7 (Copulas and L2-projections). All probability distributions on
Œ0; 1�n with Lebesgue-density and uniform marginals are of the form .1 C Sf /λnn

where f 2 L1.λnn/, more precisely

Cs
n.λnn/ D ˚

Q D .1 C Sf /λnnI f 2 L1.λnn/



(1.28)

and
Cn.λnn/ D ˚

P D .1 C Sf /λnnI f 2 L1.λn/; Sf � �1


: (1.29)

Proof. Any P 2 Cs
n.λnn/ has by the Radon–Nikodým theorem a density of the

form P D .1 C f /λnn where fT D 0 for jT j � n � 1. This implies that Sf D f ,
i.e. P D .1 C Sf /λnn. Conversely, let f 2 L1.λnn/ and P D .1 C Sf /λnn. Then for
T0 � f1; : : : ; ng, jT0j D n � 1 and any further T � f1; : : : ; ng with jT j D n � 1,
T 6D T0 we have .fT /T0 D ff1;:::;ng and, therefore,

.Sf /T0 D
�

f � fT0 �
X

jT jDn�1
T 6DT0

fT C .n � 1/ff1;:::;ng
	

T0

(1.30)

D fT0 � fT0 �
X

jT jDn�1
T 6DT0

.fT /T0 C .n � 1/ff1;:::;ng D 0: (1.31)
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Therefore Q D .1 C Sf /λnn 2 Cs
n.λnn/. This implies (1.28). Equation (1.29) is

immediate from (1.28). �
The operator S in (1.27) can be considered as an L2-projection of a (signed)

measure Q D .1 C f /λnn, f 2 L1.λn1/ to a copula P D .1 C Sf /λnn if Sf � �1.
The basic idea of the construction method for dependence (copula) models in Rü
(1985) is to describe in a first step the relevant dependence by the density function
1 C f . In a second step this model Q D .1 C f /λnn is projected to the class of
copulas in the form P D .1 C Sf /λnn.

The resulting proposed model construction method is the following:

Construction by “projection method”: Let f# , # 2 ‚ be a parametric family
of functions in L1.λnn/ (describing the intended dependence structure) such that
Sf# � �1, # 2 ‚. Then the proposed model obtained by the projection method is
given by

P D ˚
P# D .1 C Sf#/λnnI # 2 ‚



: (1.32)

The inherent idea in this construction is the hope that the projection on the correct
marginal structure does not change the intended dependence structure too much.
Obviously we can use the same procedure as above also for the construction of
elements in the Fréchet class M.P1; : : : ; Pn/ which are continuous w.r.t. a product
measure �1 ˝ � � � ˝ �n.

This projection idea is also underlying Sklar’s representation theorem. Let G 2
Fn.G1; : : : ; Gn/ be a multivariate distribution function with marginals G1; : : : ; Gn

and with copula C . Assume that G is a good description of the dependence
structure for a model. At the same time assume that the correct marginals should
be F1; : : : ; Fn instead of G1; : : : ; Gn. Then by Sklar’s Theorem the following
“nonmetric projection” would seem natural:

G ! C ! F D C.F1; : : : ; Fn/: (1.33)

By this transition the dependence structure is retained in the copula C . The difficulty
of calculation may however prevent use of this transition in examples. Typically it
will be easier to calculate (only) densities.

The following examples illustrate the projection method, see Rü (1985) and Mari
and Kotz (2001, pp. 73–78).

Example 1.8. Let f 2 L1.λnn/, let ˛0 D inf
˚
.Sf /.x/I x 2 Œ0; 1�n



> �1 and

consider f#.x/ D #f .x/, # 2 Œ0; 1
j˛0j �.

(1) Generalized FGM-family: If f .x/ D Qn
iD1 vi .xi / where

R
vi .xi /dxi D 0,

1 � i � n, then Sf D f and P gives a “generalized FGM-family” (see
Johnson and Kotz (1975) and Kimeldorf and Sampson (1975a,b), and (1.13)).

(2) Polynomial copula models: If f .x/ D Qn
iD1 x

mi

i is a polynomial, then

Sf .x/ D
nQ

iD1

x
mi

i �
nX

iD1

 
Q

j 6Di

1

mj C 1

!

x
mi

i C .n � 1/
nQ

iD1

1

mi C 1
(1.34)
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gives a “polynomial copula model” which is the same as the FGM-model
generated by vi .xi / D x

mi
i � 1

mi C1
. Linear combinations then yield the general

form of polynomial copula models. The restrictions to the parameters are given
in Mari and Kotz (2001, p. 74).

This polynomial model has also been discussed in Wei, Fang, and Fang
(1998). Several families of polynomial copulas have been suggested as local
approximations of other copula families. So the Ali–Mikhail–Haq family is a
polynomial approximate in the neighbourhood of the independence copula, the
FGM is an approximation of the Plackett family (see Mari and Kotz (2001,
p. 75)).

(3) A copula concentrated strongly near the diagonal: Let n D 2 and consider
f .x; y/ D 1p

jx�yj . The function f has singularities at the diagonal, i.e. we

expect a large density in the neighbourhood of the diagonal. Then by simple
calculation one gets

Sf .x; y/ D 1
pjx � yj � 2

�p
x C p

1 � x C p
y Cp

1 � y
�

C 8

3
: (1.35)

P describes a family of copulas which is concentrated near the diagonal. # is
a positive dependence parameter; higher values of # yield higher order positive
dependence.

(4) Diagonal weakly concentrated copula: For ‚ D Œ0; 1�, n D 2 define

f#.x; y/ D �1fjx�yj>#g;

so .1 C f#/λn2 is concentrated in a neighbourhood of the diagonal but it is
uniformly distributed on f.x; y/ 2 Œ0; 1�2 W jx � yj � #g in contrast to the
singular concentration in Example 1.8, (1.8).

By the projection to the correct marginals we obtain

Sf#.x; y/ D f#.x; y/ C g#.x/ C g#.y/ � .1 � #/2; (1.36)

where

g#.x/ D .2 � 2#/1f#�x�1�#g C .1 � x � y/1.0�x<#/ � .x � y/1.x>1�#/

for 0 � # � 1

2

and g#.x/ D .x � #/1.x>#/ C .# � x/1.x<1�#/, 1
2

< # � 1.
The projected probability model P# D .1 C Sf#/λn2 approaches for # ! 1

the product measure while for # small (neglecting small and large x-values)

1 C .Sf#/.x; y/ 	
(

2 � 2# for jx � yj < #;

1 � 2# for jx � yj > #:
(1.37)
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In order to introduce a stronger dependence effect one can start with f#;a.x; y/

D af#.x; y/ which for # small and a large centres the distribution near the
diagonal. ˙

1.3 Multivariate Distributional and Quantile Transform

The distributional transform F.X; V / as well as the inverse quantile transform
F �1.V / have been generalized to the multivariate case.

Definition 1.9 (Multivariate quantile transform). Let F be a d -dimensional
distribution function and let V1; : : : ; Vn be iid U.0; 1/-distributed random variables.
Then the “multivariate quantile transform” Y WD ��1

F .V / is defined recursively as

Y1 WD F �1
1 .V1/

Yk WD F �1
kj1;:::;k�1.Vk j Y1; : : : ; Yk�1/; 2 � k � n;

(1.38)

where Fkj1;:::;k�1 denote the conditional distribution functions of the k-th component
�k given the first k � 1 components �1; : : : ; �k�1.

The multivariate quantile transform is a basic method to construct a random vec-
tor Y with specified distribution function F from a given vector V D .V1; : : : ; Vn/

of iid uniformly on Œ0; 1� distributed random variables. By construction the mul-
tivariate quantile transform uses only one-dimensional conditional distribution
functions.

Theorem 1.10 (Multivariate quantile transform). The multivariate quantile
transform Y D ��1

F .V / is a random vector with distribution function F .

Proof. In case n D 2 and for any x1; x2 2 R we have using the independence of
.Vi /

P.Y1 � x1; Y2 � x2/ D
Z x1

�1
P.Y2 � x2 j Y1 D y1/dF1.y1/

D
Z x1

�1
P.F �1

2j1 .V2 j y1/ � x2 j Y1 D y1/dF1.y1/

D
Z x1

�1
P.F �1

2j1 .V2 j y1/ � x2/dF1.y1/

D
Z x1

�1
F2j1.x2 j y1/dF1.y1/ D F12.x1; x2/:

By induction this argument extends to yield P.Y1 � x1; : : : ; Yn � xn/ D
F.x1; : : : ; xn/. �
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The multivariate quantile transform was introduced in O’Brien (1975), Arjas and
Lehtonen (1978), and Rü (1981b). The construction Y is an inductive construction
of a random vector with specified distribution function F and is called “regression
representation” since Y is of the form

Y1 D h1.V1/;

Y2 D h2.Y1; V2/;

Y3 D h2.Y1; Y2; V3/;

:::

Yn D hn.Y1; : : : ; Yn�1; Vn/

(1.39)

representing Yk as function of the past Y1; : : : ; Yk�1 and some innovation Vk . As a
consequence this implies the “standard representation”

Yk D fk.V1; : : : ; Vk/; 1 � k � n: (1.40)

The multivariate quantile transform and particularly Theorem 1.10 is a basic
method for the “simulation of multivariate distributions”. In order to construct
a random vector with distribution function F one needs to simulate iid U.0; 1/-
random variables and to determine the inverses of the one-dimensional conditional
distribution functions Fi jx1;:::;xi�1

.xi /, which can be done in many examples either
analytically or numerically. There is a large literature on (Monte Carlo) simulation
of multivariate distributions, which uses essentially the multivariate quantile trans-
form. This transform was introduced first in the above-mentioned papers dealing
with representation of stochastic sequences and with stochastic orderings.

Definition 1.11 (Multivariate distributional transform). Let X be an n-
dimensional random vector and let V1; : : : ; Vn be iid U.0; 1/-distributed random
variables, V D .V1; : : : ; Vn/. For λ D .λ1; : : : ;λn/ 2 Œ0; 1�n define

�F .x;λ/ WD �
F1.x1;λ1/; F2.x2;λ2 j x1/; : : : ; Fd .xd ;λd j x1; : : : ; xd�1/

�
; (1.41)

where

F1.x1;λ1/ D P.X1 < x1/ C λ1P.X1 D x1/;

Fk.xk;λk j x1; : : : ; xk�1/ D P.Xk < xk j Xj D xj ; j � k � 1/

C λkP.Xk D xk j Xj D xj ; j � k � 1/

are the distributional transforms of the one-dimensional conditional distributions.
Finally the “multivariate distributional transform”of X is defined as

U WD �F .X; V /: (1.42)
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Rosenblatt (1952) introduced this transformation in the special case of absolutely
continuous conditional distributions allowing the application of the transformation
formula. Therefore this transformation is also called the “Rosenblatt transforma-
tion” in this case. For general distributions the multivariate distributional transform
(generalized Rosenblatt transform) was introduced in Rü (1981b). The basic
property is stated in the following theorem in Rü (1981b).

Theorem 1.12 (Multivariate distributional transform). Let X be a random vec-
tor and let U D �F .X; V / denote its multivariate distributional transform. Then

(a) U � U..0; 1/d /; (1.43)

i.e. the components Ui of U are iid U.0; 1/ distributed.

(b) The multivariate quantile transform ��1
F is inverse to the multivariate distribu-

tional transform, i.e.

X D ��1
F .U / D ��1

F .�F .X; V // a.s. (1.44)

Proof. U1 D F1.X1; V1/ � U.0; 1/ by Proposition 1.3. Consider next U2 D F2.X2;

V2 j X1/. Conditionally given X1 D x1 we have again from Proposition 1.3 that

U2
dD F2.X2; V2 j x1/ � U.0; 1/:

Furthermore, P U2jX1Dx1 D U.0; 1/ is independent of x1 and thus U2, X1 are
independent. Since U1 D F1.X1; V1/ we get from iterated conditional expectation
that also U2, U1 are independent. The general case then follows by induction. �

Remark 1.13 (Regression and standard representation).

(a) By combining the multivariate quantile and the multivariate distributional trans-
form one gets for any given stochastic sequence .Xk/ a pointwise “standard
(innovation) representation”

Xk D fk.U1; : : : ; Uk/ a.s.; (1.45)

respectively a pointwise “regression representation”

Xk D fk.X1; : : : ; Xk�1; Uk/ a.s.; 1 � k � n (1.46)

with some iid sequences .Ui/, Ui � U.0; 1/. This result was proved first for
n D 2 in Skorohod (1976). Related functional representations of classes of
stochastic models are given in Rü and de Valk (1993). For example in the case of
Markov chains the regression representation reduces to the following functional
representation of (any) Markov chain:

Corollary 1.14 (Regression representation of Markov chains). Any Markov
chain .Xn/ has a representation as a nonlinear regression model
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Xk D fk.Xk�1; Uk/ a.s.; (1.47)

where .Uk/ is an iid sequence of U.0; 1/-distributed random variables, Uk is
independent of X1; : : : ; Xk�1.

(b) The copula transformation

X D .X1; : : : ; Xd / ! U D .U1; : : : ; Ud /; Ui D Fi .Xi ; Vi /

which transforms a vector X to a copula vector U , where U corresponds to
the copula of X , forgets about the marginals but retains essential information
on the dependence structure of X . On the contrary the multivariate distribu-
tional transform forgets also about the dependence structure. This is an interest-
ing property, when one wants to identify a distribution. These two different
properties of the copula transformation and the multivariate distributional
transform lead to different kinds of applications. Some of them are described in
Section 1.5. ˙

1.4 Pair Copula Construction of Copula Models

Besides the multivariate quantile transform in Theorem 1.10, which is based on
the one-dimensional conditional distributions Fi jx1;:::;xi�1

, several further methods
to represent a distribution function F in terms of conditional distribution functions
have been proposed. Particular interest in the recent literature and in various
applications arose from the “pair copula construction (PCC)” method which is
based on a series of certain (organized) pairs of variables.

In the original example Joe (1997) used the following pairwise construction of an
m-dimensional distribution function F . For m D 3, F D F123 can be represented as

F123.x/ D
Z x2

�1
F13jz2

.x1; x3/dF2.z2/ (1.48)

where F13jz2
is the conditional distribution function of the pair X1; X3 given X2 D z2.

By Sklar’s Theorem this can also be written in terms of the conditional copula C13jz2

in the form

F123.x/ D
Z x2

�1
C13jz2

.F1jz2
.x1/; F3jz2

.x3//dF2.z2/: (1.49)

Similarly for general m one obtains recursively the representation

F1:::m.x/ D
Z x2

�1
: : :

Z xm�1

�1
C1mjz2;:::;zm�1

�
F1jz2;:::;zm�1

.x1/;

Fmjz2;:::;zm�1
.xm/

�
dF2:::m�1.z2; : : : ; zm�1/

(1.50)

which is given in terms of pairwise conditional copulas.
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In Bedford and Cooke (2001, 2002) and Kurowicka and Cooke (2006) some
general classes of graphical organization principles representing multivariate distri-
butions were developed. See also the survey of Czado (2010). Two basic examples
of these classes of constructions are C -vines and D-vines (C D canonical, D D
drawable).

(a) D-vines: The construction of D-vines is based on densities and uses the
representation

f .x1; : : : ; xn/ D
nY

iD2

fi jx1;:::;xi�1
.xi /f1.x1/: (1.51)

By Sklar’s Theorem we have

f12.x1; x2/ D c12.F1.x1/; F2.x2//f1.x1/f2.x2/; (1.52)

where c12 is a bivariate copula density. This implies for the conditional density

f1jx2
.x1/ D c12.F1.x1/; F2.x2//f1.x1/: (1.53)

Using (1.53) for the conditional density of .X1; Xi / given X2; : : : ; Xi�1 we
obtain by recursion

fi jx1;:::;xi�1
.xi / D c1;i j2;:::;i�1 � fi jx2;:::;xi�1

.xi /

D
 

i�2Y

j D1

cj;i jj C1;:::;i�1

!

ci�1;i � fi .xi / (1.54)

using the conditional copula densities

cj;i jj C1;:::;i�1 D cj;i jxj C1;:::;xi�1
.Fj jxj C1;:::;xi�1

.xj /; Fi jxj C1;:::;xi�1
.xi //:

As a result we obtain the “D-vine” density decomposition

f .x1; : : : ; xn/ D
 

nY

iD2

i�2Y

j D1

cj i jj C1;:::;i�1

!
nY

iD2

ci�1;i

nY

lD1

fl .xl /

D
 

n�1Y

iD1

n�iY

j D1

cj;iCj j.j C1;:::;j Ci�1/

!
nY

lD1

fl .xl /: (1.55)

The conditional copula densities in (1.55) are evaluated at the conditional
distribution functions Fj jxj C1;:::;xj Ci�1

; FiCj jxj C1;:::;xj Ci�1
.
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Figure 1.2 D-vine tree for n D 5

The D-vine decomposition in (1.55) can be organized iteratively by pairwise
copulas using iteratively levels T1; : : : ; Tn�1. For n D 5 we obtain the represen-
tation

f .x1; : : : ; x5/

D
5Y

lD1

fl .xl /c12 � c23 � c34 � c45 � c13j2 � c24j3 � c35j4 � c14j23 � c25j34 � c15j234:

This is described in the following graphical organization. Each transition step
from level Ti to level TiC1 involves a (conditional) pair copula (Figure 1.2).

(b) C -vines: C -vine decompositions are obtained when applying the representa-
tion of the conditional density successively to the conditional distribution of
Xi�1; Xi given X1; : : : ; Xi�2. This gives

fi jx1;:::;xi�1
.xi / D ci�1;i jx1;:::;xi�2

fi jx1;:::;xi�1
.xi /: (1.56)

Using (1.56) instead of (1.54) in (1.51) we obtain the C -vine decomposition

f .x1; : : : ; xn/ D f1.x1/

nY

iD2

i�1Y

kD1

ci�k;i j1;:::;i�k�1fk.xi /

D
 

nY

iD2

k�1Y

kD1

ci�k;i j1;:::;i�k�1

!
nY

kD1

fk.xk/

D
 

n�1Y

j D1

n�jY

iD1

cj;j Ci j1;:::;j �1

!
nY

kD1

fk.xk/: (1.57)
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Figure 1.3 C -vine for n D 5

For n D 5 (1.57) gives a decomposition of the form

f .x1; : : : ; x5/ D
5Y

kD1

fk.xk/c12c13c14c15c23j1c24j1c25j1c34j12c35j12c45j123;

which is represented by the following graph in Figure 1.3 with levels T1; : : : ; T4.
Again each transition of level Ti to TiC1 involves (conditional) pair copulas.

Remark 1.15. (a) PCC and Markov random fields:
More general systems to organize pairwise conditional copulas in order to
represent uniquely an n-dimensional distribution function respectively density
are described in Bedford and Cooke (2001, 2002) and Kurowicka and Cooke
(2006) under the denomination “regular vine”. These decompositions are
represented graphically as a nested tree. Edges of the tree denote the indices
used in the conditional copula densities. The representation of the density in
terms of these conditional distributions is an analogue of the Hammersley–
Clifford theorem for Markov random field specifications by certain conditional
distributions (of the components given their neighbourhoods). Depending on
the choice of the neighbourhoods there is some strong similarity between both
ways of constructing multivariate (spatial) models.

(b) Reduction of vine representation:
Haff, Aas, and Frigessi (2010) consider a reduction of the (great) complexity
of regular vine models by assuming that the conditional copula densities
cj;iCj jj C1;:::;j Ci�1 respectively copulas C1j j2;:::;j �1 do not depend on the var-
iables xk in the condition but they depend only through the conditional
distribution functions Fj jxj C1;:::;xj Ci�1

etc. This reduction seems to yield good
approximations in several applications. ˙
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1.5 Applications of the Distributional Transform

1.5.1 Application to Stochastic Ordering

Let �st denote the usual stochastic ordering on Rn, i.e. the integral induced ordering
w.r.t. the class Fi of increasing functions which is defined by

X �st Y if Ef .X/ � Ef .Y / for all f 2 Fi (1.58)

such that the expectations exist.
The following sufficient condition for the multitivariate stochastic order is a

direct consequence of Theorem 1.10 on the multivariate quantile transform.

Proposition 1.16. Let X , Y be n-dimensional vectors with distribution functions
F , G 2 Fn and let .Vi /1�i�n be iid, U.0; 1/-distributed, then

��1
F .V / � ��1

G .V / implies that X �st Y: (1.59)

Condition (1.59) is stated in Rü (1981b). It implies various sufficient conditions
for stochastic ordering going back to classical results of Veinott (1965), Kalmykov
(1962), and Stoyan (1972). The comparison result of Veinott (1965) states

Corollary 1.17 (Comparison w.r.t. stochastic order �st). Let X , Y be n-dimen-
sional random vectors such that X1 �st Y1 and for 2 � i � n

P Xi jX1Dx1;:::;Xi�1Dxi�1 �st P Yi jY1Dy1;:::;Yi�1Dyi�1 (1.60)

for all xj � yj , 1 � j � i � 1, then

X �st Y:

Proof. Condition (1.60) implies (by induction) that ��1
F .V / � ��1

G .V / where F D
FX , G D FY . Since ��1

F .V /
dD X and ��1

G .V /
dD Y this implies X �st Y . �

The standard construction in (1.45) respectively the regression representation
in (1.46) however are not applicable in general when P �st Q, i.e. they do not in
general produce pointwise a.s. constructions X � P , Y � Q such that X � Y

a.s. The existence of such a coupling is however true under general conditions as
follows from the following theorem due to Strassen (1965).

Let .S; �/ be a Polish space supplied with a closed semiorder “�”, i.e., the set
f.x; y/ 2 S � S I x � yg is closed w.r.t. the product topology. The closed order �
induces the “stochastic order” �st on the set M 1.S/ of probability measures on S

defined by
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P �st Q if
Z

fdP �
Z

fdQ

for all integrable increasing real functions f 2 Fi D Fi .S; �/:

(1.61)

Theorem 1.18 (Strassen’s ordering theorem, Strassen (1965)).
Let .S; �/ be a Polish space supplied with a closed partial order. Let P; Q 2
M 1.S/, then

P �st Q

, There exist random variables X � P; Y � Q such that X � Y a.s.

In Section 3.4 we will discuss extensions of this a.s. ordering theorem to the
class of “integral induced orderings �F” for some function class F . These are
defined via

P �F Q if
Z

fdP �
Z

fdQ for all integrable f 2 F :

Early sources for integral induced orderings are Marshall and Olkin (1979), Rü
(1979), and Whitt (1986).

The regression and standard constructions are used essentially in various papers
and textbooks on stochastic ordering and are closely connected with some notions
of stochastic ordering respectively dependence orderings. We state as one example
the notion of conditional increasing in sequence (CIS).

Definition 1.19 (Conditional increasing in sequence (CIS)).
A random vector X D .X1; : : : ; Xn/ is called “conditional increasing in sequence”
(CIS)if for 2 � i � n

Xi "st .X1; : : : ; Xi�1/; (1.62)

i.e. the conditional distribution Pi jx1;:::;xi�1
D P Xi jX1Dx1;:::;Xi�1Dxi�1 is stochastically

increasing in .x1; : : : ; xi�1/.

The CIS-property of a random vector X is a positive dependence property of X .
This property is equivalent to the condition that the standard representation based
on the multivariate quantile transform Y D ��1

F .V / is an increasing function in V ,
i.e.

Yk D fk.V1; : : : ; Vk/ are increasing in V; 2 � k � n: (1.63)

Proposition 1.20 (CIS and multivariate quantile transform).
Let X be a random vector with distribution function F , then X is CIS if and only
if the construction by the multivariate quantile transformation Y D ��1

F .V / D
.f1.V1/; f2.V1; V2/; : : : ; fn.V1; : : : ; Vn// is monotonically increasing in V .
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1.5.2 Optimal Couplings

The multivariate quantile transform is by Theorems 1.10 and 1.12 a basic con-
struction method for random vectors. An extension of this construction leads to
interesting connections with the construction of (optimal) couplings of distributions.

Let h W Rn ! Rm be a measurable function and let P 2 M 1.Rn;Bn/ have
distribution function F . Let furthermore S , V be random variables on .�;A; R/

such that the “distributional equation”

P h D RS;

holds, i.e. h and S have the same distributions w.r.t. P respectively R.

Theorem 1.21 (Solution of stochastic equations, Rü (1985) and Rachev and Rü
(1991)). Let S be a random variable on a probability space .�;A; R/ that satisfies
the distributional equation

P h D RS:

Assume that V D .Vi /1�i�n are further iid U.0; 1/-distributed random variables on
.�;A; R/ such that S , V are independent. Then there exists a random variable X

on .�;A; R/ such that

(a) RX D P , i.e. X has distribution function F

and
(b) X is a solution of the “stochastic equation”

h ı X D S a.s. with respect to R:

Remark 1.22. The situation is described by the following diagram:

.�;A; R/ .Rm;Bm/

.Rn;Bn; P /

S

X

����������������������
h

�
�
��

��
�
�

If the distributional equation RS D P h holds, then there exists a solution X

with RX D P solving the stochastic equation h ı X D S a.s. and thus making the
diagram commutative. ˙

Proof. We denote by

Fi jx1;:::;xi�1;s D Fi .� j x1; : : : ; xi�1; s/ D P �i j�1Dx1;:::;�i�1Dxi�1;hDs

the conditional distribution function of the i -th projection �i given �j D xj , j �
i � 1 and given h D s and define inductively a random vector X by
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X1 D F �1
1 .V1 j S/; X2 D F �1

2 .V2 j X1; S/; : : : ;

Xn D F �1
n .Vn j X1; : : : ; Xn�1; S/:

(1.64)

Equation (1.64) is an extension of the multivariate quantile transform. By the
independence assumptions we obtain

RX1jSDs D RF �1
1 .V1jS/jSDs D RF �1

1 .V1jSDs/ D P �1jhDs:

Similarly,

RX2jX1Dx1;SDs D RF �1
2 .V2jX1;S/jX1Dx1;SDs

D RF �1
2 .V2jx1;s/ D P �2j�1Dx1;hDs

implying

R.X1;X2/jSDs D
Z

RX2jX1Dx1;SDsdRX1jSDs

D
Z

P �2j�1Dx1;hDsdP �1jhDs.x2/ D P .�1;�2/jhDs :

By induction we find RX jSDs D P �jhDs and, therefore, RX D P .
Since almost surely w.r.t. P h it holds that P �jhDs.fxI h.x/ D sg/ D 1 we obtain

RX jSDs.fxI h.x/ D sg/ D 1ŒRS � and thus

R.fh.X/ D Sg/ D
Z

RX jSDs.fxI h.x/ D sg/dRS.x/ D 1: �

Remark 1.23. Using a measure isomorphism argument Theorem 1.21 on the
solutions of stochastic equations extends to Borel spaces E , F , replacing Rn, Rm

(see Rü (1985) and Rachev and Rü (1991)), i.e. let .E; P /
h! F , and .�; R/

f! F

be functions such that the distributional equation

P h D Rf (1.65)

holds. If .E; P / is rich enough, i.e. it allows a uniformly U.0; 1/-distributed random
variable V on .E; P / independent of h, then there exists a random variable X W
E ! F with P X D R such that X solves the stochastic equation

h D f ı XŒP �: (1.66)

˙
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An interesting application of Theorem 1.21 is to the construction of optimal
couplings. Let T W .Rn;Bn/ ! .Rm;Bm/ and for probability measures P; Q 2
M1.Rn;Bn/ define the optimal coupling problem:

cT .P; Q/ WD inf
n
EkT .X/ � T .Y /k2I X

dD P; Y
dD Q

o
: (1.67)

Equation (1.67) is the optimal coupling of T .X/, T .Y / over all possible couplings
X , Y of P , Q. Then the following result holds (see Rü (1986)):

Corollary 1.24 (Optimal coupling of T ). Let P1 D P T , Q1 D QT be the distri-
butions of T under P , Q. Then

cT .P; Q/ D inf
n
EkT .X/ � T .Y /k2I X

dD P; Q
dD Q

o
D `2

2.P1; Q1/;

where `2.P1; Q1/ is the “minimal `2-metric” of P1; Q1 given by

`2.P1; Q1/ D inf
n
.EkU � V k2/1=2I U

dD P1; V
dD Q1

o
: (1.68)

In case m D 1 it holds that

`2
2.P1; Q1/ D

Z 1

0

.F �1
1 .u/ � G�1

1 .u//2du; (1.69)

where F1; G1 are the distribution functions of P1; Q1.

1.5.3 Identification and Goodness of Fit Tests

For the construction of a goodness of fit test for the hypothesis H0 W F D F0

the multivariate distributional transform allows to construct simple test statistics by
checking whether the transformed random vectors Yi D �F0.Xi ; V i /, 1 � i � n,
are uniformly distributed on the unit cube Œ0; 1�d . Standard tests for this purpose
are based on Kolmogorov–Smirnov test statistics Tm D supt2Œ0;1� jbF m.t/ � t j on

Cramér–von Mises statistics
R

.bF m.t/ � t/2dt or on weighted variants of them.
Here m D dn is the sample size and bF m the corresponding empirical distribution
function. A detailed discussion of this principle and its practical and theoretical
properties is given in Prakasa Rao (1987). A main problem for the practical
application of this construction method is the calculation of conditional distribution
functions.

This principle of standardization is also useful for various other kinds of
identification problems and for statistical tests as for example for the test of the
two-sample problem H0 W F D G. For this problem we use the empirical version of
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the distributional transform based on the pooled sample. We have to check whether
the transformed sample is a realization of a U.Œ0; 1�d /-distributed variety.

1.5.4 Empirical Copula Process and Empirical Dependence
Function

We consider the problem of testing or describing dependence properties of multi-
variate distributions based on a sequence of observations. The construction of test
statistics is typically based on some classical dependence measures like Kendall’s �

or Spearman’s % (see Nelsen (2006)) or related dependence functionals. Empirical
versions of the dependence functionals can often be represented as functionals of
the reduced empirical process, the empirical copula function and the normalized
empirical copula process. The distributional transform allows to extend some limit
theorems known for the case of continuous distributions to more general distribution
classes.

Let Xj D .Xj;1; : : : ; Xj;k/, 1 � j � n be k-dimensional random vectors with
distribution function F 2 F.F1; : : : ; Fk/. For the statistical analysis of dependence
properties of F a useful tool is the “reduced empirical process”, which is also called
“copula process”, and is defined for t 2 Œ0; 1�k by

Vn.t/ WD 1p
n

nX

j D1

�
I
�
Uj;1 � t1; : : : ; Uj;k � tk

�� C.t/
�

: (1.70)

Here Uj D .Uj;1; : : : ; Uj;k/ are the copula vectors of Xj , Uj;i D Fi .Xj;i ; V j /, and
C is the corresponding copula C.t/ D P.Uj � t/.

The construction of the distributional transforms Uj;i is based on knowing the
marginal distribution functions Fi . If Fi are not known it is natural to use empirical
versions of them. Let

bF i .xi / D 1

n

nX

j D1

1.�1;xi �.Xj;i / (1.71)

denote the empirical distribution functions of the i -th components of X1, : : : , Xn.
Then in the case of a continuous distribution function F the empirical counterparts
of the distributional transforms are

bU j;i WD bF i.Xj;i /; bU j D
�
bU j;1; : : : ; bU j;k

�
: (1.72)

For continuous distribution function Fi we have that

nbU j;i D nbF i .Xj;i / D Rn
j;i (1.73)
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are the ranks of Xj;i in the n-tuple of i -th components X1;i ; : : : ; Xn;i of X1; : : : ;

Xn and the ranks R1;i ; : : : ; Rn;i are a.s. a permutation of 1; : : : ; n. The “empirical
copula function” is then given by

bC n.t/ D 1

n

nX

j D1

I
�
bU j � t

�
; t 2 Œ0; 1�k: (1.74)

bC n is an estimator of the copula function C . bC n induces the “normalized empirical
copula process”

Ln.t/ WD p
n
�
bC n.t/ � C.t/

�

D 1p
n

nX

j D1

n
I.Rn

j;1 � nt1; : : : ; Rn
j;k � ntk/ � C.t/

o
; t 2 Œ0; 1�k:

(1.75)

This normalized empirical copula process was introduced in Rü (1974, 1976)
under the name multivariate rank order process. In that paper more generally the
sequential version of the process

Ln.s; t/ D 1p
n

Œns�X

j D1

n
I
�bU j � t

� � C.t/
o

; s 2 Œ0; 1�; t 2 Œ0; 1�k (1.76)

was introduced and analysed for nonstationary and mixing random variables.
The empirical copula function bC n was also introduced in Deheuvels (1979) and

called “empirical dependence function”. Based on limit theory for the reduced
empirical process it is shown in Rü (1974, 1976) and also in a series of papers
of Deheuvels starting with Deheuvels (1979) that the normalized empirical copula
process converges to a Gaussian process. Several nonparametric measures of
dependence like Spearman’s % or Kendall’s � have corresponding empirical versions
which can be represented as functionals of Ln. As a consequence one obtains
asymptotic distributions for these test statistics for testing dependence properties.

The distributional transform suggests to consider an extension of the empirical
copula process to the case of general distribution functions F . The empirical
versions of the Uj;i are now defined as

bU j;i D �bF i

�
Xj;i ; V j

�
(1.77)

which are exactly U.0; 1/ distributed. In order to avoid artificial dependence it is
natural to let the copula Cj .t/ D P.Uj � t/, t 2 Œ0; 1�k , be based on the same
randomization V j in all components of the j -th random vector such that Cj .t/ D
C.t/, 1 � j � n. We define the normalized empirical copula process by

Ln.t/ D p
n
�bC n.t/ � C.t/

�
; t 2 Œ0; 1�k: (1.78)
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The copula C has bounded nondecreasing partial derivatives a.s. on Œ0; 1�k (see
Nelsen (2006, p. 11)). Now the proof of Theorem 3.3 in Rü (1976) extends to the
case of general distributions.

The basic assumption of this theorem is convergence of the reduced sequential
empirical process, the sequential version of Vn in (1.70) (defined as in (1.76) for
Ln). This assumption has been established for various classes of independent and
mixing sequences of random vectors.

(A) Assume that the reduced sequential process Vn.s; t/ converges weakly to an
a.s. continuous Gaussian process V0 in the Skorohod space DkC1.

The additional assumptions on V0 made in Rü (1976) served there to obtain
stronger convergence results or to deal with more general assumptions on the
distributions.

Theorem 1.25 (Limit theorem for the normalized empirical copula process,
Rü (1976, 2009)). Under condition (A) the sequential version Ln.s; t/ of the
normalized empirical copula process converges weakly to the a.s. continuous
Gaussian process L0 given by

L0.s; t/ D V0.s; t/ � s

nX

iD1

@C.t/

@ti
V0.1; : : : ; 1; ti ; : : : ; 1/: (1.79)

Based on this convergence result asymptotic distributions of test statistics testing
dependence properties can be derived as in the continuous case. The proofs are
based on representations or approximations of these statistics by functionals of
the empirical copula process Ln. For examples of this type see Rü (1974, 1976)
and Deheuvels (1979, 1981). For applications to the estimation of dependence
functionals and extensions to the empirical tail copula process see Schmidt and
Stadtmüller (2006).

1.6 Multivariate and Overlapping Marginals

In this section we consider the case that not only one-dimensional (marginal)
distributions of the risk vector X are known. We assume that also for certain subsets
J of the components the joint distribution of .Xj /j 2J is known. This is motivated
from available empirical information contained in certain historical data sets or from
functional knowledge of the random mechanism.

1.6.1 Generalized Fréchet Class

Let .Ej ;Aj /, 1 � j � n be n measure spaces and let E � P.f1; : : : ; ng/ be a
system of subsets J � f1; : : : ; ng such that [J 2EJ D f1; : : : ; ng. Let PJ 2
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J1

J2

J3

J5

J4

Figure 1.4 Multivariate
marginals

M1.EJ ;AJ /, J 2 E , be a consistent system of probability distributions on
.EJ ;AJ / D N

j 2J .Ej ;Aj /. We assume that we know the joint distributions of
the components in J for all J 2 E .

This assumption is a restriction on the joint dependence structure in the model.
In comparison the Fréchet class (with only single marginals fixed) includes the set
of all possible dependence structures (Figure 1.4).

Definition 1.26 (Generalized Fréchet class). To a given consistent system
.PJ /J 2E of probability measures we define the “generalized Fréchet class” ME by

ME D M.PJ ; J 2 E/ D ˚
P 2 M1.E;A/I P �J D PJ ; J 2 E
 ; (1.80)

where .E;A/ D Nn
iD1.Ei ;Ai / and �J are the projections on the components in J .

Using the generalized Fréchet class as a model class for a risk vector X means
that the distribution of XJ D .Xj /j 2J is specified to be PJ for all sets J 2 E .

In the particular case that E D ff1g; : : : ; fngg where E consists of singletons
we get the usual Fréchet class M.P1; : : : ; Pn/. If E D E s D ffi; i C 1g; 1 �
i � n � 1g we get the “series case”, where all neighboured pairwise distributions
are known. A system E is called “decomposable” (or “regular”), if there do not
exist cycles in E . The most simple nondecomposable (nonregular) system is given
by E2

3 D ff1; 2g; f2; 3g; f1; 3gg or in more general form by the “pairwise system”
E D E2

n D ffi; j gI 1 � i < j � ng.
The “marginal problem” is the question whether there exist joint distributions

with the given multivariate marginals. A classical result due to Vorobev (1962) and
Kellerer (1964) states in the situation of Polish spaces:

Theorem 1.27 (Marginal problem). Let E � P.f1; : : : ; ng/ and .Ej ;Aj / be
Polish spaces. Then the statement

Consistency of .PJ / implies ME 6D �

is equivalent to the condition that E is decomposable.



30 1 Copulas, Sklar’s Theorem, and Distributional Transform

Thus in general consistency is not enough to imply the existence of joint
distributions. A simple counterexample is the following. Let E D ff1; 2g; f2; 3g;
f1; 3gg and let P12 D P23 D P13 be the distribution of the pair .U; 1 � U / where
U � U.0; 1/. Then this system is consistent but ME D �. If there would exist some
element P 2 ME and X D .X1; X2; X3/ � P then we would get

Cov.X1; X3/ D Cov.X1; 1 � X2/ D � Cov.X1; X2/ > 0;

a contradiction. Some characterizations of nonemptiness of ME are known (see
Rü (1991a)), which however are not easy to apply but may serve to produce
counterexamples.

Assuming ME 6D �, a natural idea to construct submodels P � ME describing
the dependence structure in a correct way is the following extension of the projection
method discussed in Section 1.2 for the simple marginal case. Let fP# I # 2 ‚g
be a parametric class of probability measures on .E;A/ with densities f# � P#

describing the dependence of the components correctly. Then one may try to
determine the projections P# ! P 0

# 2 ME w.r.t. some suitable distance in order
to fit the marginal structure. The hope is that even after projection the dependence
structure is essentially not changed (see Section 1.2).

In the case that ME D M.P1; : : : ; Pn/ one can interpret Sklar’s Theorem in
this sense, i.e. transforming an element G 2 F.G1; : : : ; Gn/ to some F 2
F.F1; : : : ; Fn/ with the correct marginals F1; : : : ; Fn via the copula C ,

G ! C ! F D C.F1; : : : ; Fn/: (1.81)

For the Kullback–Leibler distance the projection is characterized by a density of
product form

dP

dQ
D

nY

iD1

fi :

The “iterative proportional fitting algorithm (IPF)” has been shown to converge to
the projection (see Rü (1995a)) under some conditions.

In the case of general overlapping marginals a characterization of all L2-
projections (with restriction to the probability measures continuous w.r.t. the product
measure) is given in Rü (1985). For the Kullback–Leibler distance a product form
of the density

dP

dQ
.x/ D

Y

J 2E
fJ .xJ / (1.82)

is sufficient for the projection and up to a closedness property also necessary.
In general however a natural extension of Sklar’s Theorem giving a construction

M.QJ ; J 2 E/ ! M.PJ ; J 2 E/ (1.83)

for two marginal systems is still an open question.
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There are some particular results on the connection described in (1.83). For P 2
M1.Rn;Bn/ denote C.P / the set of all copulas of P , then the following relations
can be easily seen.

Proposition 1.28. (a) If ME.PJ ; J 2 E/ 6D �, then there exist CJ 2 C.PJ /,
J 2 E such that MC

E WD ME.CJ ; J 2 E/ 6D �.
(b) If CJ are copulas of PJ , J 2 E and MC

E D ME.CJ ; J 2 E/ 6D �, then
ME D ME.PJ ; J 2 E/ 6D �.

(c) In general ME.PJ ; J 2 E/ 6D � does not imply MC
E .CJ ; J 2 E/ 6D � for any

choice of copulas CJ 2 C.PJ /.

1.6.2 Copulas with Given Independence Structure

In Section 1.2 the projections w.r.t. L2-distance have been described in the simple
marginal case. These results have been extended to the multivariate marginal case in
Rü (1985). Let E be an index class E D fT1; : : : ; Tkg with [ Tj D f1; : : : ; ng and let
PT1 ; : : : ; PTk

be a given consistent system of distributions on Œ0; 1�jTi j, 1 � i � k.
We assume that all univariate marginals are uniform U.0; 1/ and thus the generated
Fréchet class ME is a subclass of the set of all copulas. As in Section 1.2 we restrict
in the following to the Lebesgue-continuous elements in ME

ME.λnn/ D ˚
P 2 ME I P 
 λnn


I (1.84)

the signed version of this class we denote by Ms
E.λnn/.

In the first part we consider the special case of distributions with given indepen-
dence structure, i.e. we assume that

PTi D λnjTi j; 1 � i � k: (1.85)

Thus we consider the class of probability models for a random vector X such that
.Xj /j 2Ti are iid U.0; 1/-distributed for any i � k.

To describe the corresponding generalized Fréchet class we need a second linear
operator V supplementing the operator S defined in Section 1.2 in (1.27).

Define V W L1.λnn/ ! L1.λnn/ inductively by

f.1/ WD fR1 ; f.mC1/ WD f.m/ � .f.m//RmC1
for m < k and V.f / WD f.k/; (1.86)

where Rm D T c
m D f1; : : : ; ng n Tm and fR is obtained from f by integrating over

the components in R.

Theorem 1.29 (Distributions with given independence structure). For the inde-
pendence structure E given in (1.85) we have the representation of the generalized
Fréchet class Ms

n.E/ by

Ms
n.E/ D ˚

.1 C V ı Sf /λnnI f 2 L1.λnn/
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respectively

Mn.E/ D ˚
.1 C V ı Sf /λnnI f 2 L1.λnn/; 1 C V ı Sf � 0



:

The proof of Theorem 1.29 is similar to that of Theorem 1.7 in Section 1.2 (see
Rü (1985)).

Special attention has been given in the literature to the case that E D Ek D ˚
T �

f1; : : : ; ngI jT j D k



i.e. the case that all choices of k-components are independent.
In this case a more compact representation of the solutions is possible.

Define for f 2 L1.λnn/ and 1 � k < n inductively linear operators V1; : : : ; Vn by

V1f D f; VkC1f D Vkf �
X

jT jDn�kC1

.Vkf /T : (1.87)

Call a signed measure P “k-independent” if the distribution of any k-components
.�i1 ; : : : ; �ik / is λnk=Œ0; 1�k .

Theorem 1.30 (k-independent probability measures). The set of all k-indepen-
dent (signed) measures has the representation

Ms
n.Ek/ D ˚

.1 C Vk ı Sf /λnnI f 2 L1.λnn/



respectively

Mn.Ek/ D ˚
.1 C Vk ı Sf /λnnI f 2 L1.λnn/; 1 C Vk ı Sf � 0



: (1.88)

This result follows by reduction from Theorem 1.29.

Example 1.31 (FGM-distributions). Consider the generalized FGM-distributions
defined as .1 C f /λnn, where f .x/ D Qn

iD1 vi .xi / such that
R

vi .xi /dxi D 0,
1 � i � n. If λnn.ff D 0g/ < 1, then Sf D f and furthermore

V1f D V2f D � � � D Vn�1f D f: (1.89)

This implies that the FGM-distribution .1 C f /λnn is .n � 1/-independent but not
n-independent. This observation indicates the lack of strong dependence in higher
dimensional FGM-families. Simultaneously, it gives some natural examples of
.n�1/-independent distributions which are not n-independent. Similarly, .1Cf /λnn

is k-independent but not .k C 1/-independent, where we define f as

f .x/ D ˛
X

jT jDk

Y

j 2T

vj .xj /; (1.90)

˛ being a factor such that 1 C f � 0. ˙
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1.6.3 Copulas, Overlapping Marginals, and L2-Projections

The construction in Theorem 1.29 can be extended to the construction in the
general Fréchet class case. Define for J � f1; : : : ; kg, TJ WD T

j 2J Tj , and for
f 2 L1.λnn/, fT by integrating over the T components. fT again is considered as a
function on Œ0; 1�n. Let for T 2 E , PT have densities gT , PT D gT λnjT j and define

h.x/ D
kX

mD1

.�1/m�1
X

J �f1;:::;kg
jJ jDm

gTJ .x/; x 2 Œ0; 1�n; (1.91)

where gTJ .x/ D 0 if TJ is empty. Then we have the following representation of the
general Fréchet class (see Rü (1985)). Define the operator TE by

TEf WD h C V ı Sf: (1.92)

Theorem 1.32 (Representation of general Fréchet class). The class of all
(signed) measures in the generalized Fréchet class which are Lebesgue-continuous
has the representation

Ms
n.E/ D ˚

.TEf /λnnI f 2 L1.λnn/



respectively
Mn.E/ D ˚

.TEf /λnnI f 2 L1.λnn/; TEf � 0


: (1.93)

Proof. In the first step we prove that hλnn 2 Ms
n.E/ or, equivalently, that hRi DgTi ,

where Ri D T c
i , 1 � i � k. Without loss of generality we consider the case i D 1.

By definition of h we get

h D gT1 C
kX

mD1

.�1/m�1
X

jJ jDm;
J 6Df1g

gTJ

D gT1 C
kX

mD1

.�1/m�1
 X

jJ jDm;
12J;J 6Df1g

gTJ [f1g C
X

jJ jDm;
162J

gTJ

!

D gT1 C
kX

mD1

.�1/m�1
 X

jJ jDm�1;
162J;J 6D�

gTJ [f1g C
X

jJ jDm;
162J

gTJ

!

D gT1 C
kX

mD1

.�1/m
 X

jJ jDm;
162J

gTJ [f1g �
X

jJ jDm;
162J

gTJ

!

and from the relation .gTJ [f1g /R1 D .gTJ /R1 we obtain the assertion hRc
1

D gT1 .
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Let now P D gλnn 2 Ms
n.E/, then g D h C .g � h/ D h C V ı S.g � h/, since

g�h is by the first part of this proof a fixpoint of V ıS . Conversely, for f 2 L1.λnn/

and T 2 E
.h C V ı Sf /T c D hT c D gT

by definition of V , i.e. .h C V ı Sf /λn 2 M.E/. �

Theorem 1.32 allows in certain cases to construct families of probability mea-
sures with given multivariate marginals. The idea is to find a function f 2 L1.λn/,
such that V ıSf is balancing the negative parts of h. Some natural candidates for f

are functions which allow an explicit and simple determination of the transform
V ı Sf , such as e.g. linear combinations of functions of the type

Qn
iD1 vi .xi /

where
R

vi .xi /dxi D 0, 1 � i � n. The following is an example of this kind
of construction.

Example 1.33. Let n D 3, E D ff1; 2g; f2; 3g; f1; 3gg.

(a) When the marginal densities are f12.x1; x2/ D 1, f23.x1; x3/ D 1 C �
x2 � 1

2

�

� �x3 � 1
2

�
, f13.x1; x3/ D 1 C �

x1 � 1
2

� �
x3 � 1

2

�
, then

h.x1; x2; x3/ D 3

2
C x1x2 C x2x3 � x3 � x1 C x2

2

is already a non-negative density with the given marginals.
(b) If f12.x1; x2/ D 1 C 3

�
x1 � 1

2

� �
x2 � 1

2

�
, f13.x1; x3/ D 1 � 3

�
x1 � 1

2

�

� �x3 � 1
2

�
, and f23.x2; x3/ D 1, then

h.x1; x2; x3/ D f13.x1; x3/ C f12.x1; x2/ � 1

and minfh.x1; x2; x3/g D 1
2

D h.1; 0; 1/ D h.0; 1; 0/. A function balancing
these negative parts is given by

f .x1; x2; x3/ D �6
�
x1 � 1

2

� �
x2 � 1

2

� �
x3 � 1

2

�
;

so that

h.x1; x2; x3/ C f .x1; x2; x3/

D 1 � 6
�
x1 � 1

2

� �
x2 � 1

2

� �
x3 � 1

2

�

C 3
�
x1 � 1

2

� �
x2 � 1

2

�� 3
�
x1 � 1

2

� �
x3 � 1

2

�

gives a non-negative density with the given marginals as can easily be seen by
discussing the cases x1, x2 � 1

2
, x3 � 1

2
, etc. Instead of the factor 6 in the

balancing function, one can use a factor a in an interval around 6, in this way
obtaining a parametric class of distributions with given multivariate marginals.

˙
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