2.1 Introduction and Motivation

The previous chapter provided a detailed introduction to empirical data concerning
the long run growth of the world economy as a whole and to the international
economic relations prevailing among nearly 100 nation states. In this chapter we
intend to explore within a simple theoretical model the driving forces behind the
apparently unbounded growth of the global market economy, and for the moment
simply disregard the international relations among countries. In order to go some
way towards addressing the frequently expressed fear that globalization has gone
too far we begin by envisioning a world economy where globalization has come to
an end. In other words, we assume a fully integrated world economy with a single
global commodity market and a uniform global labor and capital market. Although
the present world economy is still quite far away from achieving full integration
dealing with this commonly cited bogey of globalization critics would nevertheless
appear worthwhile.

In view of Kaldor’s (1961) stylized facts presented in Chap. 1 it is not surprising
at all that economic growth attracted the attention of economic theorists in post-
WWII period of the 1950s and 1960s. In contrast to the rather pessimistic growth
projections of the leading post-Keynesian economists, Harrod (1939) and Domar
(1946), the GDP growth rate, especially in countries destroyed in WWII, dramati-
cally exceeded its long run average (of about 2 % p.a.) and remained at the higher
level at least for a decade.

As it is well-known, Solow (1956) and Swan (1956) were the first to provide
neoclassical growth models of closed economies. This rather optimistic growth
models were better akin to the growth reality of the post-war period than the post-
Keynesian approaches. However, savings behavior in Solow’s and Swan’s macro-
economic growth models lacked intertemporal micro-foundations. In order to
address this drawback from the perspective of current mainstream growth theory
(Acemoglou 2009) our basic growth model of the world economy is based on
Diamond’s (1965) classic overlapping generations’ (OLG) version of neoclassical
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growth theory.' This modeling framework enables us to study the relationship

between aggregate savings, private capital accumulation and GDP growth within

an intertemporal general equilibrium framework. After working through this chapter

the reader should be able to address the following questions:

* How can we explain private capital accumulation endogenously on the basis of
the rational behavior of all agents in a perfectly competitive market economy?

¢ Which factors determine the accumulation of capital (investment) and GPD
growth, and how do they evolve over time?

e Are there other economic variables determined by the dynamics of capital
accumulation?

» Is a world economy with a large savings rate better off than one with a smaller
savings rate?

This chapter is organized as follows. In the next section the set-up of the model
economy is presented. In Sect. 2.3, the macroeconomic production function and its
per capita version are described. The structure of the intertemporal equilibrium is
analyzed in Sect. 2.4. The fundamental equation of motion of the intertemporal
equilibrium is derived in Sect. 2.5. In Sect. 2.6, the “golden rule” of capital
accumulation to achieve maximal consumption per capita is dealt with. Section 2.7
summarizes and concludes.

2.2  The Set-Up of the Model Economy

There are two types of households (= generations) living in the model economy: old
households comprise the retired (related symbols are denoted by superscript “2”),
and young households represent the “active” labor force and their children (denoted
by superscript “1”’). Each generation lives for two periods. Consequently, the young
generation born at the beginning of period ¢ has to plan for two periods (¢, ¢ +1),
while the planning horizon of retired households consists of one (remaining) period
only. In each period, two generations overlap — hence the term Overlapping
Generations model (or OLG model). The typical length of one period is about
25-30 years. While members of the young households work to gain labor income,
members of the old generation simply enjoy their retirement.

For the sake of analytical simplicity, we assume a representative (young)
household characterized by a log-linear utility function. Moreover, members of
the young generation are assumed to be “workaholics”, i.e. they attach no value to
leisure. As a consequence, labor time supplied to production firms is completely
inelastic to variations in the real wage.”

! Alternative intertemporal general equilibrium foundations are provided by Ramsey’s (1928)
infinitely-lived-agent approach which is not dealt with at all in this book.

2We make these assumptions to keep the model as simple as possible. They can of course be
replaced by more realistic assumptions — e.g. that leisure does have a positive value to households
and, thus, labor supply depends on the real wage rate. As e.g. Lopez-Garcia (2008) shows the
endogeneity of the labor supply does not alter the main insights concerning growth and public debt.



2.2 The Set-Up of the Model Economy 31

The utility function of the young generation, born in period ¢, and at the
beginning of period ¢, is given by:
Ul =Inc; +flnc;;, 0<B<1. 2.1)
In Eq. 2.1, ¢/ refers to the per-capita consumption of the young household when
working, c,z_H denotes the expected per-capita consumption when retired, and f
denotes the subjective time discount factor. The time discount factor is a measure of
the subjective time preference (consumption today is generally valued more than
consumption tomorrow), and specifies the extent to which consumption in the
retirement period is valued less than one unit of consumption in the working period.
The available technologies can be described by a macroeconomic production
function of the form Y, = F (A, K,), where Y, denotes the gross national product
(GDP) in period ¢, A; stands for the number of productivity-weighted (efficiency)
employees and K, denotes the physical capital stock at the beginning of period .
In the absence of technological progress, the actual number of employees is equal to
the productivity-weighted sum of employees. Labor-saving technological progress
implies that the same number of workers is producing an ever increasing amount of
products. Technological progress thus has the same impact as an increase in
workers employed — the number of efficiency workers increases (given a constant
number of physical employees). A common specification for the production func-
tion is that first introduced by Cobb and Douglas (1934):

Y, =AKY, 0<a<l. (2.2)

The technological coefficients o and (1 — o) denote the production elasticity of
capital and of efficiency employees, respectively. These coefficients indicate the
respective percentage change in output when capital or labor is increased by 1 %.

0 < 6 < 1 denotes the depreciation rate of capital within one period. The capital
stock evolves according to the following accumulation equation:

K= (1— 8K, +1,. 2.3)

The labor force L, (number of young households in generation ¢) increases by
the constant factor G =1+ gf' >0. Hence, the parameter gl represents the
(positive or negative) growth rate of the labor force. The accumulation equation
of the labor force has the following form: L, | = GLL,.

We assume that the efficiency a, of employees N, rises by the constant rate g*:

a1 = (1L +¢Ha, =Gayy ap =1, (2.4)
A; = a/N,. 2.5)

In accordance with the stylized facts of the first chapter, we adopt labor-saving,
but not capital-saving technological progress in the basic model.
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We want to analyze economic developments of the world economy over time.
To do this, we have to make an assumption regarding the formation of expectations
of market participants with respect to the evolution of market variables.® As in other
standard textbooks, we assume that all economic agents have perfect foresight with
respect to prices, wages and interest rates, i.e. they expect exactly those prices that
induce clearing of all markets in all future periods (i.e. deterministic rational
expectations). Expectation formation can be modeled in several ways. We may
use, for example, static expectations, adaptive expectations or non-perfect fore-
sight. Such variations, however, are only of relatively minor importance in the
growth literature. Under static expectations households presume that wages, inter-
est rates and prices in future periods are identical to those existing today. Adaptive
expectations mean that expected future prices depend not only on current prices, but
also on past price changes. Given non-perfect foresight, expectations regarding
prices in some future periods are realized, but after some future period expectations
then become “static”.

Walras’ law (see the mathematical appendix) implies that the goods market
clears — regardless of goods prices — when all other markets are in equilibrium.
Hence, goods prices can be set equal to 1 for all periods.

P=1t=12,... 2.6)

Finally, natural resources are available for free to producers and consumers (“free
gifts of nature”). This assumption implies a high elasticity of substitution between
capital and natural resources and the possibility of free disposal. If this (up to the
early 1970s quite realistic) assumption is dropped, the interactions between the
natural environment and production and consumption has to be modeled explicitly.
These interactions are the subject of environmental science and resource economics
and will not be discussed in this book (see e.g. Farmer and Bednar-Friedl 2010).

23 The Macroeconomic Production Function
and Its Per Capita Version

In the basic model of neoclassical growth theory, the technology of the representa-
tive firm is depicted by a linear-homogeneous production function with substitut-
able production factors. It specifies the maximum possible output of the aggregate
of all commodities produced in the world economy, Y, for each feasible factor
combination. Figure 2.1 illustrates the above mentioned Cobb-Douglas (CD) pro-
duction function graphically (for o = 0.3). In general, homogeneous production
functions exhibit the following form:

3 A more thorough discussion of alternative expectation formation hypotheses in OLG models can
be found in De la Croix and Michel (2002, Chap. 1)
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Fig. 2.1 Cobb-Douglas
production function

Y, = F(a,N,,K;) = F(A,,K,), where F(uA,, ukK,) = uY,, u>0. (2.7)

Homogeneity of degree r implies that if all production inputs are multiplied by
an arbitrary (positive) factor u, the function value changes by the amount u”.
For linear-homogeneous functions the exponent r is equal to one, i.e. a doubling of
all inputs leads to a doubling of production output.

Replacing in Eq. 2.7 u by 1/A, attributes a new meaning to the production
function: it signifies the production per-efficiency employee (= per-efficiency
capita product = efficiency-weighted average product).

It is evident from Eq. 2.8 that the per-efficiency capita product, y,, depends on
one variable only, namely the efficiency-weighted capital intensity. The production
function Eq. 2.8 is a function of only one variable. The notation used below
conforms to the following rule: variables expressing levels are stated using capital
letters, per-capita values (and per-efficiency capita values) are depicted using small
letters. E.g. k; = K,/A, denotes the capital stock per-efficiency employee and is
called the (productivity-weighted) capital intensity.

Yo el K 2 (K 2
A= _F(l’A,) _f<A,> =f(k) (2.8)

The property of substitutability implies that different input combinations can be
used to produce the same output. This is in contrast to post-Keynesian models,
where production input proportions are fixed (limitational). Under substitutability
however, the marginal products of capital and of efficiency-weighted labor can be
calculated. How is this done?
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Fig. 2.2 Cobb-Douglas per- y
capita production function

1)
Jtky)

The marginal products equal the first partial derivatives of the production
function F(A,,K;) or f(k;) with respect to A, and K,, and with respect to k;,
respectively. Thus, the marginal product of capital can be determined as follows:

OF _JAf(K/A) _ df PFdf OF

OF _ _ T2 %) 0 since - <0. (29
oK, oK, a, " akon, ~ ae = S g <0 29

t

The derivative of the production function with respect to labor yields:

OF _ a[Atf(KI/AI)] . df | =K, B df
oA, 0A, =f(k) +Atdk, A, =f(k) k[dk,’ (2.10a)
and
OF . &F
DAk, >0, since OAK, >0. (2.10b)

The Eqgs. 2.10a and 2.9 give the marginal products of labor and capital, i.e. the
additional output which is due to the input of an additional unit of capital or
efficiency-weighted labor. It is striking that for linear-homogeneous production
functions both the average and the marginal products are functions of a single
variable, namely the capital-labor ratio. As long as this ratio does not change, the
per-efficiency capita product and the marginal products do not change.

daf

or flki)  Yi/Ap 1
0K,  dk,

K
— where v :Y_

tano = = =
ki Ki/Ar  w

=f"(ky), tanB =

1
@2.11)

Figure 2.2 shows that if the capital intensity is equal to k1, the per-efficient capita
product amounts tof (k; ). Moreover, the tangent of the angle o gives the slope of the
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production function at this point, i.e. the marginal product of capital in % .
The tangent of the angle f denotes the (average) productivity of capital. It gives
the amount of output per unit of capital and is the reciprocal of the (average) capital
coefficient, which indicates the amount of capital required to produce one unit of
output.

2.4  Structure of the Intertemporal Equilibrium

After having presented the basic characteristics of the growth model, we are now
able to return to the main question of this chapter: How can we determine the key
variables of the model described above, while accounting for all market interactions
of economically rational (self-interested) households and firms?

The answer to this question is provided in two steps: First, we use mathematical
programming (i.e. constrained optimization) to solve the rational choice problems
of households and firms (see the Appendix to this chapter for an introduction to
classical optimization). Second, to ensure consistency among the individual opti-
mization solutions, the market clearing conditions in each period need to be
invoked. To start with, the rational choice problem of younger households is
described first.

2.4.1 Intertemporal Utility Maximization of Younger Households

In line with Diamond (1965) we assume that younger households are not concerned
about the welfare of their offspring, i.e. in intergenerational terms, they act egoistic.
In other words: they do not leave bequests. Thus, consumption and savings choices
in their working period and consumption in their retirement period are made with a
view towards maximizing their own lifetime utility. Thus, for all ¢, the decision
problem of households entering the economy in period ¢ reads as follows:

Max U} =Inc} + BInc},,, (2.12)

subject to:
el s =wy, (2.13)
¢ty = (1 +ip1)s; where 1 +ipg = gy + 16, (2.14)

The first constraint Eq. 2.13 ensures that per-capita consumption plus per-capita
savings of young households equals their income (the wage rate per employee) and
based on the second constraint Eq. 2.14 retirement consumption is restricted by the
sum of savings made in the working period and interest earned on savings. Active
households save by acquiring capital, and the real interest rate is equivalent to
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the rental price of capital minus depreciation. Since the no-arbitrage condition
ir+1 = ¢r+1 — 0 holds, the real interest rate (= rate of return on savings) has to be
equal to the rental price of capital minus depreciation (= return on investment in
physical capital). Obviously, if the real interest rate were smaller (larger) than the
capital rental price minus the depreciation rate, then households would just invest in
real capital (savings deposits). The relative prices of assets then would change
quickly such that respective rates of return once again equate and the no-arbitrage
condition is satisfied.

Equations 2.13 and 2.14 can be combined to obtain Eq. 2.15 by calculating s,
from Eq. 2.14 and substituting s in Eq. 2.13.* This then leaves Eq. 2.15 as the only
constraint in the household’s utility maximization problem. This is known as the
intertemporal budget constraint (i.e. all current and present values of future
expenses equal all current and present values of future revenues).

1 Cr2+1
—_— = 2.15
¢, + T+ Wy ( )

The left-hand side of Eq. 2.15 gives the present value of all spending in the two
periods of life; the right-hand side the (present value of) total income. If the
objective function Eq. 2.12 is maximized subject to the intertemporal budget
constraint Eq. 2.15, we obtain the first-order conditions (= FOCs) Egs. 2.16 and
2.17 for household utility maximization.

dcz a []1 a Cl Cz .
B H{IE lt/ 2f ZLIIZI‘FHH (2.16)
del —oUl/o 2., B

In the household’s optimum, the intertemporal marginal rate of substitution
(—dc?,, /dc}) equals the interest factor.

dct2+1
—— 1= 2.17)
dc}

Equation 2.17 states that at the optimum the marginal rate of time preference
(time-preference rate) is equivalent to tomorrow’s real interest rate. What is the
rationale behind this result? The left-hand side of Eq. 2.17, the marginal rate of time
preference, indicates how much more than one retirement consumption unit the

“Here we have to assume that utility maximizing savings per capita are strictly larger than zero.
However, this is true since optimal retirement consumption is certainly larger than zero otherwise
the marginal utility of retirement consumption would be infinitely large while the price of an
additional consumption unit would be finite. This cannot be utility maximizing and thus the
optimal retirement consumption must be strictly larger than zero implying, from Eq. 2.14, strictly
positive savings.
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Fig. 2.3 Graphical illustration of the utility maximizing consumption plan

younger household demands for foregoing one working-period consumption unit.
On the right-hand side, the real interest rate indicates how much more than one unit
the household gets in its retirement period, if it forgoes one unit of consumption in
its active period (i.e. if the household saves). Utility maximization implies that the
left-hand side in Eq. 2.17 equals the right-hand side.

However, if the right-hand side were larger than the left-hand side, then the
household would receive a higher compensation for foregoing current consumption
than it demands. The household would then use these surplus earnings to increase
its utility. A situation in which the left-hand side of Eq. 2.17 is smaller than the
right-hand side can, therefore, never be a utility maximizing situation. The same is
true if the left-hand side of Eq. 2.17 is larger than the right-hand side. Maximum
utility is thus achieved only if Eq. 2.17 is satisfied.

The optimization condition Eq. 2.16 and the intertemporal budget constraint
Eq. 2.15 are sufficient to determine the entire optimal consumption plan of a
young household. Figure 2.3 illustrates the decision problem and the optimal
consumption plan of the young household. Consumption when young is plotted on
the horizontal axis (the abscissa), and the retirement consumption of a young
household, which enters the economy in period ¢, is plotted on the vertical axis
(the ordinate). The negatively sloped straight line represents the intertemporal
budget constraint. This can be obtained algebraically by solving Eq. 2.15 for ¢
ety = (U +i)we — (1 + i) ¢

Ifct1 = 0, we get an intercept of the budget constraint (on the ordinate) of w,(1 + i;41),
and if c[2+l = 0, the intercept (on the abscissa) is w;. The negative slope of the budget
constraint equals tany = 1 + 7,;. The distance between the intersection of the budget
constraint with the abscissa and the utility maximizing consumption point gives the
optimal savings s; of young households.

The three hyperbolas in Fig. 2.3 represent intertemporal indifference curves.
Along such curves the lifetime utility U, of generation 7 is constant. Analytically,
these indifference curves are obtained by solving the intertemporal utility function

2 .
t+1°
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for fixed levels of utility. The further away an indifference curve is from the origin,
the higher is lifetime utility. Accordingly, the consumption plan indicated by point
A is associated with a higher utility level than consumption plan B, which is also
affordable. The negative slope of the intertemporal indifference curve is a conse-
quence of the intertemporal marginal rate of substitution Eq. 2.16. This rate can be
analytically derived by totally differentiating the utility function and setting the
total differential equal to zero (because the utility level is constant along each
indifferent curve).

U aU! 1 i
1_ 1 f a2 o 1 2
dU, = ac}t dc, Jr_@c,zﬂdctﬂ =0 _—C}dct +—c,2+1dct+l (2.18)

_dc,z+1 _ 8U}/(‘3c,‘ :cfz_+1 (2.19)
dc " U} [ac,  pel |

Since the intertemporal marginal rate of substitution in Fig. 2.3 corresponds to
the negative slope of the intertemporal indifference curve and the interest factor is
given by the negative slope of the budget line, the slopes of the intertemporal
indifference curve and of the intertemporal budget constraint have to be identical at
the optimum — i.e. the intertemporal budget constraint and the indifference curve
are at a point of tangency. Point A in Fig. 2.3 represents the tangency point, while
point B is a cutting point. Although both consumption plans, A and B, are afford-
able, the indifference curve associated with the consumption plan A is at a higher
utility level. Consumption plan C, which belongs to an even higher indifference
curve, is not affordable. Therefore, A gives the optimal consumption plan, i.e. a
consumption plan which lies on the indifference curve which is farthest from the
origin but still affordable.

By solving Eq. 2.16 for ¢?,, /(1 +i.1)(= Bc!) and inserting the result into the
intertemporal budget constraint Eq. 2.15 we obtain: ¢! + fc! = w,. Rearranging
yields immediately the optimal (utility maximizing) working-period consumption:

1 _ _
R e ... (2.20)

Inserting Eq. 2.20 into Eq. 2.13 and solving for s, yields utility-maximizing
savings per capita:

B
s :mw,, t=1,... (2.21)

Inserting Eq. 2.20 into Eq. 2.16 and solving for c,zJrl results in the following:

1+
., —Ww,, r=1,... (2.22)
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Equation 2.20 reveals that current (optimal) consumption depends only on the
real wage rate and not on the real interest rate.” Equation 2.21 illustrates that the
portion of wages not consumed is saved completely. This results from the fact that
the public sector is ignored and thus households pay no taxes. Moreover, since
current-period consumption is independent of the real interest rate, this is also true
for optimal savings. Finally, the amount saved when young (plus interest earned)
can be consumed when old Eq. 2.22. As mentioned above savings of retired
households (i.e. bequests) are excluded. However, even with the introduction of a
bequest motive for old households the following characteristics are still valid.

2.4.2 Old Households

In period 1 the number of retired households equals the number of young
households in the previous period, i.e. Ly. Their total consumption in period 1 is
identical to their total amount of assets (in real terms) in period 1.

Lot = iK1 + (1 — 0K, = (1 +i1)K; (2.23)

These assets include the rental income on capital acquired in the past, plus the
market value of the capital stock (after depreciation). Equation 2.23 assumes that
the no-arbitrage condition (2.14) applies.

2.4.3 A-Temporal Profit Maximization of Producers

Besides households, the producers of the aggregate commodity also strive to
maximize profits in every period ¢. By assumption, markets are perfectly competi-
tive. To maximize profits, firms have to decide on the number of employees (labor
demand, N,) and on the use of capital services (demand for capital services, K;’). The
profits, expressed in units of output, are defined as the difference between produc-
tion output and real factor costs: n, = F(a[N[,K;i) —wN, — q,K;i. In the case of a
CD production function, the profit function can be written as n, = (a[Nt)lfa(K ;i)a
—w;N; — thtd . To determine the profit-maximizing input levels, we set the first
partial derivatives of the profit function with respect to N, and K;i equal to zero:

or, OF(A,KY) 04,

I _ ks R 2.24

oN, oa, o, =0 (2-24)
om,  OF(A,KY)
OKd  OKd

—q,=0. (2.25)

5 Due to the log-linear intertemporal utility function the substitution effect and the income effect of
a change in the real interest rate cancel out.
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The first-order condition (2.24) tells us that in each period ¢ firms demand
additional workers as long as the physical marginal product is equal to the real
(measured in units of output) wage rate. Equation 2.24 is equivalent to:

(1 — o) (kD a, = w. (2.24a)

In the same manner, one arrives at the decision rule for optimal capital input.
Firms have to adjust the capital stock such that the marginal product of capital
(yield on capital) in each period ¢ is equivalent to the real capital costs. In the case of
a CD production function, Eq. 2.25a holds.

(k)™ =g, (2.252)

With exogenously given technological progress, the number of efficiency
employees A; is a direct consequence of the producer demand for labor.

A; = a/N, (2.26)

Aggregate production output is determined by the profit maximizing levels of
the capital stock and the number of efficiency employees.

Y, = F(A,K?) = A= (K9 (2.27)

Finally, linear-homogeneity implies that the aggregate output is distributed across
all production factors. Every factor of production is thus paid according to its
marginal productivity. Thus, the sum of factor payments corresponds exactly to the
production output and there are no surplus profits. Applying Euler’s theorem to the
aggregate production function Eq. 2.27 implies: ¥, = (9Y,/ON,)N, + (0Y,/OK?)K.
Since through Eqs. 2.24 and 2.25 (8Y,/0N;) = w, and (9Y,/0K¢) = q,, we obtain:

Y, = wiN, + q.K¢. (2.28)

244 Market Equilibrium in All Periods

The second step in delineating the structure of the intertemporal equilibrium is to
specify the market clearing conditions. In a perfectly competitive market economy
no authority or central administration matches or coordinates individual decisions.
The coordination of individual decisions results from changes in market prices
such that the supply and demand for each good is equal in all markets (market
clearing conditions).
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In the basic OLG model there are three markets: the capital market, the labor
market and the commodity market. The clearing of these three markets demands:

K9 =K, V1, (2.29)
N, = L;,Vt, (2.30)
Y, =Lic! + L} + Koy — (1 —8)K,, Ve (2.31)

Due to Walras’ law the sum of nominal (measured in terms of their prices)
excess demands (= demand minus supply) on all three markets is equal to zero for
all feasible prices. Consequently, if two of the three markets are in equilibrium, the
third market must also be in balance. Walras’ law is derived for our basic OLG
growth model in the mathematical appendix to this chapter.

A pivotal equation for the dynamics of the intertemporal equilibrium is implicitly
included in the system of equilibrium conditions (2.29, 2.30 and 2.31). This equation
becomes immediately apparent when one considers the equilibrium conditions for
period ¢ = 1. Equating the left-hand side of Eq. 2.31 and Eq. 2.28 and substituting
the budget constraints for both the aggregate consumption of young households
(Eq. 2.13 multiplied by L; on both sides) and for old households Eq. 2.23 into the
right-hand side of Eq. 2.31 yields:

wiN1 + iK1 =wiLy — Lis; + (1 +i)K; + K> — (1 = §)K. (2.32)

Since 1+ i1 = ¢ + (1 — 9) and Egs. 2.29 and 2.30 also apply for 7 = 1, this
equation reduces to K, = L;s;. This can be generalized to:

Kip1 = Lis,, t>2. (2.33)

In an intertemporal market equilibrium, the optimal aggregate savings of all
young households in period ¢ correspond exactly to the optimal aggregate capital
stock inf + 1. This result becomes immediately apparent when we keep in mind that
we have excluded a bequest motive in the basic model. Therefore, in order to
consume, old households sell all their assets to the young households of the next
generation. The young households save by buying the entire old capital stock plus
investing in new capital goods (= gross investment).

2,5 The Fundamental Equation of Motion of the Intertemporal
Equilibrium

The next step is to study how the economy evolves over time when in each period
households maximize their utility, firms maximize profits, and all markets clear.
In order to derive the fundamental equation of motion of the intertemporal equilibrium
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Fig. 2.4 The fundamental k
equation of motion of the
basic model
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we focus on the accumulation of aggregate capital and on the dynamics of the
efficiency-weighted capital intensity (capital-labor ratio). To this end, Eq. 2.33 is
divided by a,L; = a;N; = A;, to obtain:

K1 St
—_ = 2.34
A a (2.34)
If the left-hand side is multiplied by A, /A;+1 = 1, we arrive at:
K1 At Al 8
= —_— = 2.34
A A o Ay az ( 2

Equation 2.34a involves the growth factor of efficiency-weighted labor A, /A,
which is equal to the (exogenous) growth factor of labor efficiency times the
population growth factor. The latter is called the natural growth factor, and it is
denoted by G”. When growth rates are not too large it can be approximated by one
plus the natural growth rate g":

Art1 _ Arr1Li1
A al,

=G'Gtr=G"~1+g" (2.35)

Taking Eq. 2.35 into account, we find that Eq. 2.34 is equivalent to:

St

—_— 2.36
Gra (2.36)

kr+1 =

By inserting Eq. 2.24a into Eq. 2.21, we obtain optimal savings per efficiency
capita in period ¢ as a function of the capital intensity in the same period:

s B(L—a)ky

o 11p (2.37)
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Finally, by inserting Eq. 2.37 into Eq. 2.36 we arrive at the following dynamic
equation for k;:

p(l — a)k?

k1 G" =
t+1 1+B

(2.38)

By introducing the aggregate savings rate ¢ = f(1 — a)/(1 + f8) we obtain the
fundamental equation of motion for our basic OLG growth model:

o K
kipr = = k7, for ¢>1 and &y =al (2.39)

Mathematically, the fundamental equation of motion (2.39) is a nonlinear
difference equation in k, (capital per efficiency capita) and determines for each
(productivity-weighted) capital intensity &, the equilibrium (productivity-weighted)
capital intensity in the next period k., . If the capital intensity of the initial period
t = 1is known, the fundamental equation of motion describes the evolution of k, for
all future periods (see Fig. 2.4).

Additionally, the fundamental equation of motion allows us to deduce what
determines the absolute change of the capital intensity. Equation 2.39 is equivalent to:

ki1 — k= (G") " (ok* — G"k,). (2.40)

Obviously, the capital intensity remains constant if savings per efficiency capita,
ok}, are just sufficient to support the additional capital needed for natural growth,
G"k,. This additional capital requirement arises since the accrued and more efficient
workers must be equipped with the same capital per efficiency capita as those
already employed. If per efficiency capita savings (= per efficiency capita invest-
ment) exceed (fall short of) this intensity-sustaining capital requirement, the capital
intensity of the next period increases (decreases). Thus, there are two types of
investments (= savings): those that are necessary to sustain the current capital
intensity and those that increase the current capital intensity. The former are called
“capital-widening” investments (savings), the latter “capital-deepening”
investments (Miiller and Stroebele 1985, 37).

A competitive intertemporal equilibrium is completely determined by the above
mentioned equilibrium sequence of capital intensities over time. For example, the
marginal productivity conditions (2.24a) and (2.25a) immediately determine the
period-specific real wage rates and capital rental prices.

we=a(1—a)k*, t=1,... 2.41)

qg=ok t=1,... (2.42)
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Fig. 2.5 Consumption and
savings in the basic OLG
model

9 — 10

. [

The optimal consumption levels for young and old households and the optimal
savings can be deduced from the Eqgs. 2.20, 2.21 and 2.22. Finally, the aggregate
output per efficiency capita is a direct result of the production function Eq. 2.8:

v =f(k;) = k7. (2.43)

2.6 Maximal Consumption and the “Golden Rule”
of Capital Accumulation

Before closing this chapter it is interesting to explore whether a world economy
with a higher savings rate (= higher capital intensity) is always better off than one
with a lower savings rate (= lower capital intensity). We begin with the following
aggregate accumulation equation:

Kt+1 -K, = F(KMAI‘) -C = 5Kt> (2.44)

where the depreciation rate is not necessarily equal to one. If we divide both sides
by A, to arrive at per efficiency capita values, we obtain:

kH_]Gn - k[ :f(k[) — Ct — 5]{1. (2.45)
Variable ¢, (with no generation index) denotes total consumption per efficiency

employee. Suppose again time-stationary capital intensities, i.e. k4 =k =k.
Equation 2.45 can then be solved for c:

¢ =f(k) — (¢" + O)k. (2.46)
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Fig. 2.6 Golden rule savings
and consumption

Consumption per efficiency capita is maximized when the savings ratio is
such that (dc/dk)(dk/do) = 0 holds. This is equivalent to:

& [%(kk) (" + 5)] (%) o, (2.47)

It is obvious from Eq. 2.47 that ¢ is maximized only if /' (k) = (¢" + ). In the
case of a CD production economy the so-called “golden rule” capital intensity k* is
equal to:

(2.48)
o

o |:gn 4 5:| 1/(0‘*1).

If, in addition, 4 = 1 and Eq. 2.39 is taken into account, then the golden rule
capital intensity demands ¢ = o, i.e. a savings rate of about 30 % when o = 0.3 is
assumed.®

Figure 2.5 illustrates consumption and savings in the basic model under the
assumption of § = 1 . In such a case consumption per efficiency capita is equal to
c=f(k) — G"k =k’ — ak”.

As shown in the figure, consumption is exactly equal to the difference between
output per efficiency capita, f(k), and intensity-sustaining savings G"k(= gk”).
However, as the consumption level ¢* associated with capital intensity k* shows,
steady-state (k.1 = k, = k) intensity k& does not maximize consumption per effi-
ciency capita. In order to obtain maximum consumption c* the savings rate must be

S Empirical values for the other model parameters can be found in Auerbach and Kotlikoff (1998,
Chaps. 2 and 3).
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changed. Hence, we need to search for a savings rate where consumption per
efficient capita is maximized. From a purely static perspective, consumption
decreases with an increase in the savings rate. But a higher savings rate ¢ also
leads to a higher capital stock in the future and therefore to a greater production
capacity and higher potential consumption.

In an intertemporal context we have to weigh short-term consumption losses due
to a higher savings rate against the increase in the future capital stock which allows
for higher consumption tomorrow. The savings rate which permanently allows for
maximum consumption per efficiency capita implies, according to Phelps (1966),
the “golden rule” of capital accumulation. This term is borrowed from the “golden
rule” of New Testament ethics: “So whatever you wish that men would do to you,
do so to them” (Matthew 7, 12). Economically speaking, the “golden rule” con-
sumption level is not only available to currently living generations, but also to all
future generations. Graphically, the “golden rule” capital intensity can be found, by
maximizing the distance between f(k) and G"k (= ok*). Figure 2.6 shows the
“golden rule” savings rate and “golden rule” capital intensity leading to long-run
maximum consumption.

2,7 Summary and Conclusion

In this chapter the basic OLG growth model of the closed world economy — a log-
linear CD version of Diamond’s (1965) neoclassical growth model — was
introduced and its intertemporal equilibrium dynamics were derived. In contrast
to post-Keynesian growth theory our basic OLG growth model rests on solid
intertemporal general equilibrium foundations comprising constrained optimization
of agents and the clearing of all markets in each model period. Regarding produc-
tion technology, the linear-homogeneity of the production function and the substi-
tutability of production factors were emphasized. This is in line with neoclassical
growth theory. Factor substitutability enables profit-maximizing firms to adapt their
capital intensities (capital-labor ratios) to the prevailing relative wage rate.

Another key feature of the basic growth model is the endogeneity of per capita
savings. Young households choose savings in order to maximize their life-time
utility. In doing so, they also choose optimal (i.e. utility maximizing) consumption
when young, and optimal consumption when old. As in the Solow-Swan neoclassi-
cal growth model the savings rate is constant, and can be traced back to the time
discount factor of younger households. The old households consume their entire
wealth (bequests are excluded by definition).

All market participants (young households, old households and producers)
interact in competitive markets for capital and labor services and for the produced
commodity. Supply and demand in each market are balanced by the perfectly
flexible real wage and real interest rate. The first-order conditions (FOCs) for
intertemporal utility maxima and period-specific profit maxima in conjunction
with market clearing conditions yield the fundamental equation of motion for our
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basic OLG model of capital accumulation together with the equilibrium dynamics
of the efficiency weighted capital intensity. The fundamental equation of motion
also allows for the determination of the real wage rate and the real interest rate on
the intertemporal equilibrium path.

Finally, we sought for the savings rate and associated capital intensity that
maximizes permanent consumption per-efficiency capita. It turns out that higher
savings rates are not in general better than lower savings rates. The golden rule for
achieving maximum consumption per efficiency capita demands a capital intensity
at which the marginal product of capital corresponds exactly to the rate of natural
growth plus depreciation rate. If we assume a depreciation rate of one, the savings
rate, leading to the “golden rule” capital intensity, must be equal to the production
elasticity of capital.

2.8 Exercises

2.8.1. Explain the set-up of the basic OLG model and provide empirically relevant
values for basic model parameters such as §, G”" and o. Why is o independent of the
length of the model period while ff and G" are not?

2.8.2. Use the CD function Eq. 2.2 to show that the marginal product of capital is
always smaller than the average product of capital.

2.8.3. Explain in terms of the marginal rate of substitution and the negative slope
of the intertemporal budget constraint why point B in Fig. 2.3 is not utility
maximizing.

2.8.4. Show that under the CD production function Eq. 2.2 maximum profits are
zero. Which property of general neoclassical production functions implies zero
profits?

2.8.5. Why must the younger households finance next-period capital stock even
when capital does not depreciate completely during one period?

2.8.6. Verify the derivation of the intertemporal equilibrium dynamics Eq. 2.39
and explain why not the whole savings per efficiency capita cannot be used for
capital deepening?

2.8.7. Explain the meaning of the golden rule of capital accumulation and provide
a sufficient condition with respect to capital production share such that the savings
rate is irrelevant for golden rule capital intensity. (Hint: See Galor and Ryder, 1991)
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Appendix
Constrained Optimization

All agents in this chapter aim at optimizing their decisions to reach their goals in the
best possible way. However, they are all confronted with various restrictions
(constraints) — in some cases they are of a natural or technological nature, in
other cases choices are limited due to available income. How can one find the
optimum decision in the face of such constraints? The method of mathematical
(classical) programming provides a solution. In order to formalize the decision
problem we first need to define the following: What are the objectives of the
different actors? Which variables are to be included in agent decision making?
Which restrictions do they face?

The objectives of the agents can be formalized by use of the objective function, Z.
This function assigns a real number to every decision (consisting of a list of n
decision variables) made by an agent.

Z R — R! (2.49)

We introduced two objective functions in the main text of this chapter: one for
households whose goal is to act in such a way that their preferences, represented by
a utility function, are met best, and one for firms that try to maximize their profit
function.

Concerning the second and third question we know that households can determine
consumption quantities and the distribution of consumption over time. We also know
that producers can determine the demand for labor as well as for capital. These
variables are referred to as decision (choice) variables or instrumental variables. The
quantities households can consume depend, among other things, on their income.
The production cost of a specific quantity of a good depends, among other things, on
the technology used in the production process. Such restrictions are represented in
the form of constraints.

Mathematically speaking, the decision problem is to find values for the instrumental
variables which maximize the value of the objective function (profit, utility) or
minimize it (cost), subject to all constraints. Formally, the optimization problem can
be written as one of the following three programs:

Max Z(x) s.t.. g(x) =b, (classical optimization) (2.502)
Max Z(x) s.t.. g(x) <b, x>0, (non— linear optimization) (2.50b)

Max Z(x) = cx s.t.: Ax <b, x> 0. (linear optimization) (2.50¢)
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The objective function Z is a function of n variables, i.e. x is a vector of
dimension 7 (n decision variables). The function g(x) denotes m constraints; b is
a column vector of dimension m.

We now turn to classical optimization and try to find a rule which allows us to
unveil the optimal decision making of agents. An example of the household
objective function U(x) is given by Eq. 2.12; the (only) constraint g(x) by Eq. 2.15.

Max U,(c;,c;,,) = Inc; + Blnc}, (2.51a)
subject to (s.t.):
1 i
¢+ [+ i =w (2.51b)
The two instrumental variables in this optimization problem are ¢} and c?, and

are the (only) variables households can determine. Due to the constraint, future
consumption can (under certain conditions) be written as a function of current
consumption.

oy =1+ i) (w —¢}) (2.52a)

Or, more generally:
iy = h(e), (2.52b)
dh _ _ 0g/0¢_ (2.520)

I'rl o 9g/0ct,;

The objective function can also be formulated as a function A of a single decision
variable:

A=1n ¢/ + BIn [(1 +iy1)(w —c))]. (2.53a)
Or, more generally:

A= A(c!, h(ch). (2.53b)

This intermediate step simplifies the search for a value ¢ of the decision variable
1

¢, that maximizes the objective function A (utility) in our decision problem.
Obviously, at a maximum, the following condition has to hold:

A(c) > A(c+ Ac). (2.54)
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If we make use of Taylor’s theorem, we can find the maximum of the (modified)
objective function Eq. 2.53b. The first-order condition (FOC) of the problem is:

dA oU U dh
)= 2.55
dc} Oc] o dc} (2-55)
On taking account of Eq. 2.52b, then Eq. 2.55 is equivalent to:
dA_ _ou Ul og/oc] _ou [ oufon)oe oo
del " 9c) Oh | 0g/oct,] Oc! dg/oct, | dc} '

We denote the expression in brackets on the right-hand side by A, so that the
maximization problem (2.56) can be written more simply as:

dA ou . Og
o 0=
dc} Oc] 4 Oc]

(2.57)
This is the solution to the household’s decision problem. However, a simpler
route is provided by a function that leads us directly to condition (2.57). This is:

A(c,l,c,zﬂ, A) = U(c,l,ctzﬂ) + Aw— g(c',l,C',ZH)). (2.58)

This function is called the Lagrangian function and the variable A the Lagrangian
multiplier. After calculating the first derivative with respect to the two instrumental
variables, the first-order (necessary) conditions for the solution of the optimization
problem follows. Thus, differentiating Eq. 2.58 with respect to 2 results directly in
the constraint. The Lagrangian function of young households has the following
form:

2
A(cl ety 2) =Ine} + Blnct,, —&—i{w—c,‘ —ﬂ} (2.59)
L+ i
The first-order conditions (FOCs) are:
oA 1
= _ =0 2.60
dcl ¢} ’ (2.602)
oaA 1 1
— =B - — =0, (2.60b)
Ociiy G L+im
oA 2
Wy — ¢} — o] (2.60¢)

({M: CI_l‘i’l'H,l:
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If we solve condition (2.60a) for variable ) and substitute the solution into
Eq. 2.60b then, assuming the constraint Eq. 2.60c is also taken into account, we
can determine the optimal consumption in period ¢ Eq. 2.20, the optimal consump-
tion in period ¢ + 1 Eq. 2.22 and the optimal savings per capita Eq. 2.21.

To ensure that Eqgs. 2.20, 2.21 and 2.22 constitute a maximum (and not a
minimum), we have to check the second-order conditions:

A 1
=—— <0, (2.61a)
o))’ ()
F4__ —B ! <0 (2.62b)
a(ctz+])2 (Crz+1)2

Both conditions are negative, satisfying the second-order conditions for a strict
(local) maximum.

One last and very important question remains: What is the meaning of the
Lagrange multiplier in this optimization problem?

The Lagrange multiplier reflects the sensitivity of the value of the objective
function with respect to a marginal change in the constants b (cf. Eq. 2.50a) of the
constraints. In the optimization problem of young households the Lagrange multi-
plier is equal to:

ou,

;u - .
T Ow,

(2.63)

It indicates the amount by which the optimum value of the utility function
increases when disposable income rises by one unit.

Walras’ Law

Finally, we want to show that our basic growth model satisfies Walras’ law. We
therefore note the budget constraints of all economic agents for any period ¢ and
express all values in monetary units (and not in terms of output units as is done in
the main text). In addition, we multiply all per-capita values by the number of
corresponding number of individuals. Moreover, we indicate what savings of young
households are used for, i.e. to buy investment goods and old capital at the
reproduction price P,. Thus, we have:

L[S[P{ = P{[{ +Pt(1 - 5)K[. (2.64)

This equality implies that the budget constraint of young households can be
rewritten as follows:
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P.Lic; + P, + Pi(1 — 0)K, = WL, (2.65)
while the aggregate budget constraint of old households reads as follows:
PLi_ic; = QK+ P,(1 — §)K,. (2.66)

The linear-homogeneity of the production function implies that at a maximum
profits are zero:

I, =0=PY, —WN, — QK. (2.67)
Adding the left-hand sides and the right-hand sides of Egs. 2.65 and 2.66 yields:
Pi[Lic} + Li_ic}] = WL, + QK! — Pi,. (2.68)
Clearing of the labor and capital market (N, = L, and Kf’ = K;) implies:
Pi[Lic} + Li_ic}] 4+ Pd, = W,N, + Q,K, = PY,. (2.69)
Since I, = K;+1 — (1 — 0)K; holds, Eq. 2.69 becomes:
Pi[Lic! + Loic} + Ky — (1= 0)K, — Y,] = 0. (2.70)

Since P, > 0, the sum of the terms in square brackets in Eq. 2.70 must be zero.

Thus, we have shown that the product market clears once the labor and the
capital markets clear. Equation 2.31 is thus an identity, not a constraint. Thus, we
cannot determine the price level in this economy; it has therefore to be set exoge-
nously (e.g. — and as we have assumed here — it can be set equal to one).
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