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2.1 Introduction and Motivation

The previous chapter provided a detailed introduction to empirical data concerning

the long run growth of the world economy as a whole and to the international

economic relations prevailing among nearly 100 nation states. In this chapter we

intend to explore within a simple theoretical model the driving forces behind the

apparently unbounded growth of the global market economy, and for the moment

simply disregard the international relations among countries. In order to go some

way towards addressing the frequently expressed fear that globalization has gone

too far we begin by envisioning a world economy where globalization has come to

an end. In other words, we assume a fully integrated world economy with a single

global commodity market and a uniform global labor and capital market. Although

the present world economy is still quite far away from achieving full integration

dealing with this commonly cited bogey of globalization critics would nevertheless

appear worthwhile.

In view of Kaldor’s (1961) stylized facts presented in Chap. 1 it is not surprising

at all that economic growth attracted the attention of economic theorists in post-

WWII period of the 1950s and 1960s. In contrast to the rather pessimistic growth

projections of the leading post-Keynesian economists, Harrod (1939) and Domar

(1946), the GDP growth rate, especially in countries destroyed in WWII, dramati-

cally exceeded its long run average (of about 2 % p.a.) and remained at the higher

level at least for a decade.

As it is well-known, Solow (1956) and Swan (1956) were the first to provide

neoclassical growth models of closed economies. This rather optimistic growth

models were better akin to the growth reality of the post-war period than the post-

Keynesian approaches. However, savings behavior in Solow’s and Swan’s macro-

economic growth models lacked intertemporal micro-foundations. In order to

address this drawback from the perspective of current mainstream growth theory

(Acemoglou 2009) our basic growth model of the world economy is based on

Diamond’s (1965) classic overlapping generations’ (OLG) version of neoclassical
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growth theory.1 This modeling framework enables us to study the relationship

between aggregate savings, private capital accumulation and GDP growth within

an intertemporal general equilibrium framework. After working through this chapter

the reader should be able to address the following questions:

• How can we explain private capital accumulation endogenously on the basis of

the rational behavior of all agents in a perfectly competitive market economy?

• Which factors determine the accumulation of capital (investment) and GPD

growth, and how do they evolve over time?

• Are there other economic variables determined by the dynamics of capital

accumulation?

• Is a world economy with a large savings rate better off than one with a smaller

savings rate?

This chapter is organized as follows. In the next section the set-up of the model

economy is presented. In Sect. 2.3, the macroeconomic production function and its

per capita version are described. The structure of the intertemporal equilibrium is

analyzed in Sect. 2.4. The fundamental equation of motion of the intertemporal

equilibrium is derived in Sect. 2.5. In Sect. 2.6, the “golden rule” of capital

accumulation to achieve maximal consumption per capita is dealt with. Section 2.7

summarizes and concludes.

2.2 The Set-Up of the Model Economy

There are two types of households (¼ generations) living in the model economy: old

households comprise the retired (related symbols are denoted by superscript “2”),

and young households represent the “active” labor force and their children (denoted

by superscript “1”). Each generation lives for two periods. Consequently, the young

generation born at the beginning of period t has to plan for two periods (t, t +1),
while the planning horizon of retired households consists of one (remaining) period

only. In each period, two generations overlap – hence the term Overlapping
Generations model (or OLG model). The typical length of one period is about

25–30 years. While members of the young households work to gain labor income,

members of the old generation simply enjoy their retirement.

For the sake of analytical simplicity, we assume a representative (young)

household characterized by a log-linear utility function. Moreover, members of

the young generation are assumed to be “workaholics”, i.e. they attach no value to

leisure. As a consequence, labor time supplied to production firms is completely

inelastic to variations in the real wage.2

1Alternative intertemporal general equilibrium foundations are provided by Ramsey’s (1928)

infinitely-lived-agent approach which is not dealt with at all in this book.
2We make these assumptions to keep the model as simple as possible. They can of course be

replaced by more realistic assumptions – e.g. that leisure does have a positive value to households

and, thus, labor supply depends on the real wage rate. As e.g. Lopez-Garcia (2008) shows the

endogeneity of the labor supply does not alter the main insights concerning growth and public debt.
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The utility function of the young generation, born in period t, and at the

beginning of period t, is given by:

U1
t ¼ ln c1t þ b ln c2tþ1; 0< b � 1: (2.1)

In Eq. 2.1, c1t refers to the per-capita consumption of the young household when

working, c2tþ1 denotes the expected per-capita consumption when retired, and b
denotes the subjective time discount factor. The time discount factor is a measure of

the subjective time preference (consumption today is generally valued more than

consumption tomorrow), and specifies the extent to which consumption in the

retirement period is valued less than one unit of consumption in the working period.

The available technologies can be described by a macroeconomic production

function of the form Yt ¼ FðAt;KtÞ, where Yt denotes the gross national product

(GDP) in period t, At stands for the number of productivity-weighted (efficiency)

employees and Kt denotes the physical capital stock at the beginning of period t.
In the absence of technological progress, the actual number of employees is equal to

the productivity-weighted sum of employees. Labor-saving technological progress

implies that the same number of workers is producing an ever increasing amount of

products. Technological progress thus has the same impact as an increase in

workers employed – the number of efficiency workers increases (given a constant

number of physical employees). A common specification for the production func-

tion is that first introduced by Cobb and Douglas (1934):

Yt ¼ A1�a
t Ka

t ; 0< a< 1: (2.2)

The technological coefficients a and 1� að Þ denote the production elasticity of

capital and of efficiency employees, respectively. These coefficients indicate the

respective percentage change in output when capital or labor is increased by 1 %.

0 � d � 1 denotes the depreciation rate of capital within one period. The capital

stock evolves according to the following accumulation equation:

Ktþ1 ¼ 1� dð ÞKt þ It: (2.3)

The labor force Lt (number of young households in generation t) increases by

the constant factor GL ¼ 1þ gL > 0 . Hence, the parameter gL represents the

(positive or negative) growth rate of the labor force. The accumulation equation

of the labor force has the following form: Ltþ1 ¼ GLLt.
We assume that the efficiency at of employees Nt rises by the constant rate gt:

atþ1 ¼ ð1þ gtÞat ¼ Gtat; a0 ¼ 1; (2.4)

At ¼ atNt: (2.5)

In accordance with the stylized facts of the first chapter, we adopt labor-saving,

but not capital-saving technological progress in the basic model.
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We want to analyze economic developments of the world economy over time.

To do this, we have to make an assumption regarding the formation of expectations

of market participants with respect to the evolution of market variables.3 As in other

standard textbooks, we assume that all economic agents have perfect foresight with

respect to prices, wages and interest rates, i.e. they expect exactly those prices that

induce clearing of all markets in all future periods (i.e. deterministic rational

expectations). Expectation formation can be modeled in several ways. We may

use, for example, static expectations, adaptive expectations or non-perfect fore-

sight. Such variations, however, are only of relatively minor importance in the

growth literature. Under static expectations households presume that wages, inter-

est rates and prices in future periods are identical to those existing today. Adaptive

expectations mean that expected future prices depend not only on current prices, but

also on past price changes. Given non-perfect foresight, expectations regarding

prices in some future periods are realized, but after some future period expectations

then become “static”.

Walras’ law (see the mathematical appendix) implies that the goods market

clears – regardless of goods prices – when all other markets are in equilibrium.

Hence, goods prices can be set equal to 1 for all periods.

Pt ¼ 1; t ¼ 1; 2; . . . (2.6)

Finally, natural resources are available for free to producers and consumers (“free

gifts of nature”). This assumption implies a high elasticity of substitution between

capital and natural resources and the possibility of free disposal. If this (up to the

early 1970s quite realistic) assumption is dropped, the interactions between the

natural environment and production and consumption has to be modeled explicitly.

These interactions are the subject of environmental science and resource economics

and will not be discussed in this book (see e.g. Farmer and Bednar-Friedl 2010).

2.3 The Macroeconomic Production Function
and Its Per Capita Version

In the basic model of neoclassical growth theory, the technology of the representa-

tive firm is depicted by a linear-homogeneous production function with substitut-

able production factors. It specifies the maximum possible output of the aggregate

of all commodities produced in the world economy, Y, for each feasible factor

combination. Figure 2.1 illustrates the above mentioned Cobb-Douglas (CD) pro-

duction function graphically (for a ¼ 0:3). In general, homogeneous production

functions exhibit the following form:

3A more thorough discussion of alternative expectation formation hypotheses in OLG models can

be found in De la Croix and Michel (2002, Chap. 1)
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Yt ¼ FðatNt;KtÞ � FðAt;KtÞ; where FðmAt; mKtÞ ¼ mYt; m> 0: (2.7)

Homogeneity of degree r implies that if all production inputs are multiplied by

an arbitrary (positive) factor m , the function value changes by the amount m r .

For linear-homogeneous functions the exponent r is equal to one, i.e. a doubling of
all inputs leads to a doubling of production output.

Replacing in Eq. 2.7 m by 1 At= attributes a new meaning to the production

function: it signifies the production per-efficiency employee (¼ per-efficiency

capita product ¼ efficiency-weighted average product).

It is evident from Eq. 2.8 that the per-efficiency capita product, yt, depends on
one variable only, namely the efficiency-weighted capital intensity. The production

function Eq. 2.8 is a function of only one variable. The notation used below

conforms to the following rule: variables expressing levels are stated using capital

letters, per-capita values (and per-efficiency capita values) are depicted using small

letters. E.g. kt ¼ Kt At= denotes the capital stock per-efficiency employee and is

called the (productivity-weighted) capital intensity.

Yt
At

� yt ¼ F 1;
Kt

At

� �
� f

Kt

At

� �
¼ f ðktÞ (2.8)

The property of substitutability implies that different input combinations can be

used to produce the same output. This is in contrast to post-Keynesian models,

where production input proportions are fixed (limitational). Under substitutability

however, the marginal products of capital and of efficiency-weighted labor can be

calculated. How is this done?

Fig. 2.1 Cobb-Douglas

production function

2.3 The Macroeconomic Production Function and Its Per Capita Version 33



The marginal products equal the first partial derivatives of the production

function FðAt;KtÞ or f ðktÞ with respect to At and Kt , and with respect to kt ,
respectively. Thus, the marginal product of capital can be determined as follows:

@F

@Kt
¼ @ At f Kt At=ð Þ½ �

@Kt
¼ df

dkt
> 0;

@2F

@Kt@kt
¼ d2 f

dk2t
< 0; since

@2F

@K2
t

< 0: (2.9)

The derivative of the production function with respect to labor yields:

@F

@At
¼ @ At f Kt At=ð Þ½ �

@At
¼ f ðktÞ þ At

d f

d kt

�Kt

Atð Þ2
" #

¼ f ðktÞ � kt
d f

d kt
; (2.10a)

and

@2F

@At@kt
> 0; since

@2F

@At@Kt
> 0: (2.10b)

The Eqs. 2.10a and 2.9 give the marginal products of labor and capital, i.e. the

additional output which is due to the input of an additional unit of capital or

efficiency-weighted labor. It is striking that for linear-homogeneous production

functions both the average and the marginal products are functions of a single

variable, namely the capital-labor ratio. As long as this ratio does not change, the

per-efficiency capita product and the marginal products do not change.

tan a ¼ @F

@K1

¼ df

dk1
� f 0ðk1Þ; tan b ¼ f ðk1Þ

k1
¼ Y1 A1=

K1 A1=
¼ 1

v1
where v1 ¼ K1

Y1

(2.11)

Figure 2.2 shows that if the capital intensity is equal to k1, the per-efficient capita
product amounts to f k1ð Þ. Moreover, the tangent of the angle a gives the slope of the

Fig. 2.2 Cobb-Douglas per-

capita production function
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production function at this point, i.e. the marginal product of capital in k1 .
The tangent of the angle b denotes the (average) productivity of capital. It gives

the amount of output per unit of capital and is the reciprocal of the (average) capital

coefficient, which indicates the amount of capital required to produce one unit of

output.

2.4 Structure of the Intertemporal Equilibrium

After having presented the basic characteristics of the growth model, we are now

able to return to the main question of this chapter: How can we determine the key

variables of the model described above, while accounting for all market interactions

of economically rational (self-interested) households and firms?

The answer to this question is provided in two steps: First, we use mathematical

programming (i.e. constrained optimization) to solve the rational choice problems

of households and firms (see the Appendix to this chapter for an introduction to

classical optimization). Second, to ensure consistency among the individual opti-

mization solutions, the market clearing conditions in each period need to be

invoked. To start with, the rational choice problem of younger households is

described first.

2.4.1 Intertemporal Utility Maximization of Younger Households

In line with Diamond (1965) we assume that younger households are not concerned

about the welfare of their offspring, i.e. in intergenerational terms, they act egoistic.

In other words: they do not leave bequests. Thus, consumption and savings choices

in their working period and consumption in their retirement period are made with a

view towards maximizing their own lifetime utility. Thus, for all t, the decision

problem of households entering the economy in period t reads as follows:

Max U1
t ¼ ln c1t þ b ln c2tþ1; (2.12)

subject to:

c1t þ st ¼ wt; (2.13)

c2tþ1 ¼ ð1þ itþ1Þst where 1þ itþ1 � qtþ1 þ 1� d: (2.14)

The first constraint Eq. 2.13 ensures that per-capita consumption plus per-capita

savings of young households equals their income (the wage rate per employee) and

based on the second constraint Eq. 2.14 retirement consumption is restricted by the

sum of savings made in the working period and interest earned on savings. Active

households save by acquiring capital, and the real interest rate is equivalent to
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the rental price of capital minus depreciation. Since the no-arbitrage condition

itþ1 ¼ qtþ1 � d holds, the real interest rate (¼ rate of return on savings) has to be

equal to the rental price of capital minus depreciation (¼ return on investment in

physical capital). Obviously, if the real interest rate were smaller (larger) than the

capital rental price minus the depreciation rate, then households would just invest in

real capital (savings deposits). The relative prices of assets then would change

quickly such that respective rates of return once again equate and the no-arbitrage

condition is satisfied.

Equations 2.13 and 2.14 can be combined to obtain Eq. 2.15 by calculating st
from Eq. 2.14 and substituting st in Eq. 2.13.

4 This then leaves Eq. 2.15 as the only

constraint in the household’s utility maximization problem. This is known as the

intertemporal budget constraint (i.e. all current and present values of future

expenses equal all current and present values of future revenues).

c1t þ
c2tþ1

1þ itþ1

¼ wt (2.15)

The left-hand side of Eq. 2.15 gives the present value of all spending in the two

periods of life; the right-hand side the (present value of) total income. If the

objective function Eq. 2.12 is maximized subject to the intertemporal budget

constraint Eq. 2.15, we obtain the first-order conditions (¼ FOCs) Eqs. 2.16 and

2.17 for household utility maximization.

� dc2tþ1

dc1t
� @ U1

t @ c1t
�

@U1
t @ c2tþ1

� ¼ c2tþ1

bc1t
¼ 1þ itþ1 (2.16)

In the household’s optimum, the intertemporal marginal rate of substitution

ð�dc2tþ1 dc1t
� Þ equals the interest factor.

� dc2tþ1

dc1t
� 1 ¼ itþ1 (2.17)

Equation 2.17 states that at the optimum the marginal rate of time preference

(time-preference rate) is equivalent to tomorrow’s real interest rate. What is the

rationale behind this result? The left-hand side of Eq. 2.17, the marginal rate of time

preference, indicates how much more than one retirement consumption unit the

4Here we have to assume that utility maximizing savings per capita are strictly larger than zero.

However, this is true since optimal retirement consumption is certainly larger than zero otherwise

the marginal utility of retirement consumption would be infinitely large while the price of an

additional consumption unit would be finite. This cannot be utility maximizing and thus the

optimal retirement consumption must be strictly larger than zero implying, from Eq. 2.14, strictly

positive savings.
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younger household demands for foregoing one working-period consumption unit.

On the right-hand side, the real interest rate indicates how much more than one unit

the household gets in its retirement period, if it forgoes one unit of consumption in

its active period (i.e. if the household saves). Utility maximization implies that the

left-hand side in Eq. 2.17 equals the right-hand side.

However, if the right-hand side were larger than the left-hand side, then the

household would receive a higher compensation for foregoing current consumption

than it demands. The household would then use these surplus earnings to increase

its utility. A situation in which the left-hand side of Eq. 2.17 is smaller than the

right-hand side can, therefore, never be a utility maximizing situation. The same is

true if the left-hand side of Eq. 2.17 is larger than the right-hand side. Maximum

utility is thus achieved only if Eq. 2.17 is satisfied.

The optimization condition Eq. 2.16 and the intertemporal budget constraint

Eq. 2.15 are sufficient to determine the entire optimal consumption plan of a

young household. Figure 2.3 illustrates the decision problem and the optimal

consumption plan of the young household. Consumption when young is plotted on

the horizontal axis (the abscissa), and the retirement consumption of a young

household, which enters the economy in period t, is plotted on the vertical axis

(the ordinate). The negatively sloped straight line represents the intertemporal

budget constraint. This can be obtained algebraically by solving Eq. 2.15 for c2tþ1:

c2tþ1 ¼ ð1þ itþ1Þwt � ð1þ itþ1Þ c1t .
Ifc1t ¼ 0, we get an intercept of the budget constraint (on the ordinate) ofwtð1þ itþ1Þ,

and if c2tþ1 ¼ 0, the intercept (on the abscissa) is wt . The negative slope of the budget

constraint equals tan g ¼ 1þ itþ1. The distance between the intersection of the budget

constraint with the abscissa and the utility maximizing consumption point gives the

optimal savings st of young households.
The three hyperbolas in Fig. 2.3 represent intertemporal indifference curves.

Along such curves the lifetime utility U1
t of generation t is constant. Analytically,

these indifference curves are obtained by solving the intertemporal utility function

Fig. 2.3 Graphical illustration of the utility maximizing consumption plan
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for fixed levels of utility. The further away an indifference curve is from the origin,

the higher is lifetime utility. Accordingly, the consumption plan indicated by point

A is associated with a higher utility level than consumption plan B, which is also

affordable. The negative slope of the intertemporal indifference curve is a conse-

quence of the intertemporal marginal rate of substitution Eq. 2.16. This rate can be

analytically derived by totally differentiating the utility function and setting the

total differential equal to zero (because the utility level is constant along each

indifferent curve).

d U1
t ¼

@U1
t

@ c1t
d c1t þ

@ U1
t

@ c2tþ1

d c2tþ1 ¼ 0 ¼ 1

c1t
d c1t þ

b
c2tþ1

d c2tþ1 (2.18)

� d c2tþ1

d c1t
¼ @ U1

t @ c1t
�

@ U1
t @ c2tþ1

� ¼ c2tþ1

bc1t
(2.19)

Since the intertemporal marginal rate of substitution in Fig. 2.3 corresponds to

the negative slope of the intertemporal indifference curve and the interest factor is

given by the negative slope of the budget line, the slopes of the intertemporal

indifference curve and of the intertemporal budget constraint have to be identical at

the optimum – i.e. the intertemporal budget constraint and the indifference curve

are at a point of tangency. Point A in Fig. 2.3 represents the tangency point, while

point B is a cutting point. Although both consumption plans, A and B, are afford-

able, the indifference curve associated with the consumption plan A is at a higher

utility level. Consumption plan C, which belongs to an even higher indifference

curve, is not affordable. Therefore, A gives the optimal consumption plan, i.e. a

consumption plan which lies on the indifference curve which is farthest from the

origin but still affordable.

By solving Eq. 2.16 for c2tþ1 ð1þ itþ1Þ= ð¼ bc1t Þ and inserting the result into the

intertemporal budget constraint Eq. 2.15 we obtain: c1t þ bc1t ¼ wt . Rearranging

yields immediately the optimal (utility maximizing) working-period consumption:

c1t ¼
wt

1þ b
; t ¼ 1; :::: (2.20)

Inserting Eq. 2.20 into Eq. 2.13 and solving for st yields utility-maximizing

savings per capita:

s1t ¼
b

1þ b
wt; t ¼ 1; :::: (2.21)

Inserting Eq. 2.20 into Eq. 2.16 and solving for c2tþ1 results in the following:

c2tþ1 ¼
bð1þ itþ1Þ

1þ b
wt; t ¼ 1; :::: (2.22)
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Equation 2.20 reveals that current (optimal) consumption depends only on the

real wage rate and not on the real interest rate.5 Equation 2.21 illustrates that the

portion of wages not consumed is saved completely. This results from the fact that

the public sector is ignored and thus households pay no taxes. Moreover, since

current-period consumption is independent of the real interest rate, this is also true

for optimal savings. Finally, the amount saved when young (plus interest earned)

can be consumed when old Eq. 2.22. As mentioned above savings of retired

households (i.e. bequests) are excluded. However, even with the introduction of a

bequest motive for old households the following characteristics are still valid.

2.4.2 Old Households

In period 1 the number of retired households equals the number of young

households in the previous period, i.e. L0 . Their total consumption in period 1 is

identical to their total amount of assets (in real terms) in period 1.

L0c
2
1 ¼ q1K1 þ ð1� dÞK1 ¼ ð1þ i1ÞK1 (2.23)

These assets include the rental income on capital acquired in the past, plus the

market value of the capital stock (after depreciation). Equation 2.23 assumes that

the no-arbitrage condition (2.14) applies.

2.4.3 A-Temporal Profit Maximization of Producers

Besides households, the producers of the aggregate commodity also strive to

maximize profits in every period t. By assumption, markets are perfectly competi-

tive. To maximize profits, firms have to decide on the number of employees (labor

demand,Nt) and on the use of capital services (demand for capital services,Kd
t ). The

profits, expressed in units of output, are defined as the difference between produc-

tion output and real factor costs: pt ¼ FðatNt;K
d
t Þ � wtNt � qtK

d
t . In the case of a

CD production function, the profit function can be written as pt ¼ ðatNtÞ1�aðKd
t Þa

�wtNt � qtK
d
t . To determine the profit-maximizing input levels, we set the first

partial derivatives of the profit function with respect to Nt and Kd
t equal to zero:

@pt
@Nt

¼ @F At;K
d
t

� �
@At

@At

@Nt
� wt ¼ 0; (2.24)

@pt
@Kd

t

¼ @F At;K
d
t

� �
@Kd

t

� qt ¼ 0: (2.25)

5Due to the log-linear intertemporal utility function the substitution effect and the income effect of

a change in the real interest rate cancel out.
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The first-order condition (2.24) tells us that in each period t firms demand

additional workers as long as the physical marginal product is equal to the real

(measured in units of output) wage rate. Equation 2.24 is equivalent to:

ð1� aÞðkdt Þ
a
at ¼ wt: (2.24a)

In the same manner, one arrives at the decision rule for optimal capital input.

Firms have to adjust the capital stock such that the marginal product of capital

(yield on capital) in each period t is equivalent to the real capital costs. In the case of
a CD production function, Eq. 2.25a holds.

aðkdt Þ
a�1 ¼ qt (2.25a)

With exogenously given technological progress, the number of efficiency

employees At is a direct consequence of the producer demand for labor.

At ¼ atNt (2.26)

Aggregate production output is determined by the profit maximizing levels of

the capital stock and the number of efficiency employees.

Yt ¼ FðAt;K
d
t Þ ¼ A1�a

t ðKd
t Þ

a
(2.27)

Finally, linear-homogeneity implies that the aggregate output is distributed across

all production factors. Every factor of production is thus paid according to its

marginal productivity. Thus, the sum of factor payments corresponds exactly to the

production output and there are no surplus profits. Applying Euler’s theorem to the

aggregate production function Eq. 2.27 implies: Yt ¼ ð@Yt @Nt= ÞNt þ ð@Yt @Kd
t

� ÞKd
t .

Since through Eqs. 2.24 and 2.25 ð@Yt @Nt= Þ ¼ wt and ð@Yt @Kd
t

� Þ ¼ qt, we obtain:

Yt ¼ wtNt þ qtK
d
t : (2.28)

2.4.4 Market Equilibrium in All Periods

The second step in delineating the structure of the intertemporal equilibrium is to

specify the market clearing conditions. In a perfectly competitive market economy

no authority or central administration matches or coordinates individual decisions.

The coordination of individual decisions results from changes in market prices

such that the supply and demand for each good is equal in all markets (market

clearing conditions).
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In the basic OLG model there are three markets: the capital market, the labor

market and the commodity market. The clearing of these three markets demands:

Kd
t ¼ Kt; 8t; (2.29)

Nt ¼ Lt; 8t; (2.30)

Yt ¼ Ltc
1
t þ Lt�1c

2
t þ Ktþ1 � 1� dð ÞKt ; 8t: (2.31)

Due to Walras’ law the sum of nominal (measured in terms of their prices)

excess demands (¼ demand minus supply) on all three markets is equal to zero for

all feasible prices. Consequently, if two of the three markets are in equilibrium, the

third market must also be in balance. Walras’ law is derived for our basic OLG

growth model in the mathematical appendix to this chapter.

A pivotal equation for the dynamics of the intertemporal equilibrium is implicitly

included in the system of equilibrium conditions (2.29, 2.30 and 2.31). This equation

becomes immediately apparent when one considers the equilibrium conditions for

period t ¼ 1. Equating the left-hand side of Eq. 2.31 and Eq. 2.28 and substituting

the budget constraints for both the aggregate consumption of young households

(Eq. 2.13 multiplied by L1 on both sides) and for old households Eq. 2.23 into the

right-hand side of Eq. 2.31 yields:

w1N1 þ q1K1 ¼ w1L1 � L1s
1
1 þ ð1þ i1ÞK1 þ K2 � 1� dð ÞK1: (2.32)

Since 1þ i1 ¼ q1 þ ð1� dÞ and Eqs. 2.29 and 2.30 also apply for t ¼ 1, this

equation reduces to K2 ¼ L1s1. This can be generalized to:

Ktþ1 ¼ Ltst; t � 2: (2.33)

In an intertemporal market equilibrium, the optimal aggregate savings of all

young households in period t correspond exactly to the optimal aggregate capital

stock in tþ 1. This result becomes immediately apparent when we keep in mind that

we have excluded a bequest motive in the basic model. Therefore, in order to

consume, old households sell all their assets to the young households of the next

generation. The young households save by buying the entire old capital stock plus

investing in new capital goods (¼ gross investment).

2.5 The Fundamental Equation of Motion of the Intertemporal
Equilibrium

The next step is to study how the economy evolves over time when in each period

households maximize their utility, firms maximize profits, and all markets clear.

In order to derive the fundamental equation ofmotion of the intertemporal equilibrium
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we focus on the accumulation of aggregate capital and on the dynamics of the

efficiency-weighted capital intensity (capital-labor ratio). To this end, Eq. 2.33 is

divided by atLt ¼ atNt ¼ At, to obtain:

Ktþ1

At
¼ st

at
: (2.34)

If the left-hand side is multiplied by Atþ1=Atþ1 ¼ 1, we arrive at:

Ktþ1

Atþ1

Atþ1

At
¼ ktþ1

Atþ1

At
¼ st

at
: (2.34a)

Equation 2.34a involves the growth factor of efficiency-weighted labor Atþ1 At=
which is equal to the (exogenous) growth factor of labor efficiency times the

population growth factor. The latter is called the natural growth factor, and it is

denoted by Gn. When growth rates are not too large it can be approximated by one

plus the natural growth rate gn:

Atþ1

At
¼ atþ1Ltþ1

atLt
¼ GtGL � Gn � 1þ gn: (2.35)

Taking Eq. 2.35 into account, we find that Eq. 2.34 is equivalent to:

ktþ1 ¼ st
Gnat

: (2.36)

By inserting Eq. 2.24a into Eq. 2.21, we obtain optimal savings per efficiency

capita in period t as a function of the capital intensity in the same period:

st
at

¼ bð1� aÞkat
1þ b

: (2.37)

Fig. 2.4 The fundamental

equation of motion of the

basic model
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Finally, by inserting Eq. 2.37 into Eq. 2.36 we arrive at the following dynamic

equation for kt:

ktþ1G
n ¼ bð1� aÞkat

1þ b
: (2.38)

By introducing the aggregate savings rate s � bð1� aÞ 1þ bð Þ= we obtain the

fundamental equation of motion for our basic OLG growth model:

ktþ1 ¼ s
Gn

kat ; for t � 1 and k1 ¼ K1

a1L1
: (2.39)

Mathematically, the fundamental equation of motion (2.39) is a nonlinear

difference equation in kt (capital per efficiency capita) and determines for each

(productivity-weighted) capital intensity kt the equilibrium (productivity-weighted)

capital intensity in the next period ktþ1. If the capital intensity of the initial period

t ¼ 1 is known, the fundamental equation of motion describes the evolution of kt for
all future periods (see Fig. 2.4).

Additionally, the fundamental equation of motion allows us to deduce what

determines the absolute change of the capital intensity. Equation 2.39 is equivalent to:

ktþ1 � kt ¼ ðGnÞ�1ðskat � GnktÞ: (2.40)

Obviously, the capital intensity remains constant if savings per efficiency capita,

skat , are just sufficient to support the additional capital needed for natural growth,

Gnkt. This additional capital requirement arises since the accrued and more efficient

workers must be equipped with the same capital per efficiency capita as those

already employed. If per efficiency capita savings (¼ per efficiency capita invest-

ment) exceed (fall short of) this intensity-sustaining capital requirement, the capital

intensity of the next period increases (decreases). Thus, there are two types of

investments (¼ savings): those that are necessary to sustain the current capital

intensity and those that increase the current capital intensity. The former are called

“capital-widening” investments (savings), the latter “capital-deepening”

investments (Müller and Stroebele 1985, 37).

A competitive intertemporal equilibrium is completely determined by the above

mentioned equilibrium sequence of capital intensities over time. For example, the

marginal productivity conditions (2.24a) and (2.25a) immediately determine the

period-specific real wage rates and capital rental prices.

wt ¼ atð1� aÞkat ; t ¼ 1; . . . (2.41)

qt ¼ a ka�1
t ; t ¼ 1; . . . (2.42)
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The optimal consumption levels for young and old households and the optimal

savings can be deduced from the Eqs. 2.20, 2.21 and 2.22. Finally, the aggregate

output per efficiency capita is a direct result of the production function Eq. 2.8:

yt ¼ f ktð Þ ¼ kat : (2.43)

2.6 Maximal Consumption and the “Golden Rule”
of Capital Accumulation

Before closing this chapter it is interesting to explore whether a world economy

with a higher savings rate (¼ higher capital intensity) is always better off than one

with a lower savings rate (¼ lower capital intensity). We begin with the following

aggregate accumulation equation:

Ktþ1 � Kt ¼ FðKt;AtÞ � Ct � dKt; (2.44)

where the depreciation rate is not necessarily equal to one. If we divide both sides

by At, to arrive at per efficiency capita values, we obtain:

ktþ1G
n � kt ¼ f ktð Þ � ct � dkt: (2.45)

Variable ct (with no generation index) denotes total consumption per efficiency

employee. Suppose again time-stationary capital intensities, i.e. ktþ1 ¼ kt ¼ k .
Equation 2.45 can then be solved for c:

c ¼ f ðkÞ � gn þ dð Þk: (2.46)

Fig. 2.5 Consumption and

savings in the basic OLG

model
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Consumption per efficiency capita is maximized when the savings ratio is

such that ðdc=dkÞðdk=dsÞ ¼ 0 holds. This is equivalent to:

dc

d s
¼ d f ðkÞ

@ k
� gn þ dð Þ

� �
dk

d s

� �
¼ 0: (2.47)

It is obvious from Eq. 2.47 that c is maximized only if f 0ðkÞ ¼ gn þ dð Þ. In the

case of a CD production economy the so-called “golden rule” capital intensity k� is
equal to:

k� ¼ gn þ d
a

� �1 ða�1Þ=

: (2.48)

If, in addition, d ¼ 1 and Eq. 2.39 is taken into account, then the golden rule

capital intensity demands s ¼ a, i.e. a savings rate of about 30 % when a ¼ 0:3 is

assumed.6

Figure 2.5 illustrates consumption and savings in the basic model under the

assumption of d ¼ 1 . In such a case consumption per efficiency capita is equal to

c ¼ f ðkÞ � Gnk ¼ ks � ska.
As shown in the figure, consumption is exactly equal to the difference between

output per efficiency capita, f ðkÞ , and intensity-sustaining savings Gnkð¼ skaÞ .
However, as the consumption level c� associated with capital intensity k� shows,

steady-state (ktþ1 ¼ kt ¼ k) intensity k does not maximize consumption per effi-

ciency capita. In order to obtain maximum consumption c� the savings rate must be

Fig. 2.6 Golden rule savings

and consumption

6 Empirical values for the other model parameters can be found in Auerbach and Kotlikoff (1998,

Chaps. 2 and 3).
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changed. Hence, we need to search for a savings rate where consumption per

efficient capita is maximized. From a purely static perspective, consumption

decreases with an increase in the savings rate. But a higher savings rate s also

leads to a higher capital stock in the future and therefore to a greater production

capacity and higher potential consumption.

In an intertemporal context we have to weigh short-term consumption losses due

to a higher savings rate against the increase in the future capital stock which allows

for higher consumption tomorrow. The savings rate which permanently allows for

maximum consumption per efficiency capita implies, according to Phelps (1966),

the “golden rule” of capital accumulation. This term is borrowed from the “golden

rule” of New Testament ethics: “So whatever you wish that men would do to you,

do so to them” (Matthew 7, 12). Economically speaking, the “golden rule” con-

sumption level is not only available to currently living generations, but also to all

future generations. Graphically, the “golden rule” capital intensity can be found, by

maximizing the distance between f ðkÞ and Gnk (¼ ska ). Figure 2.6 shows the

“golden rule” savings rate and “golden rule” capital intensity leading to long-run

maximum consumption.

2.7 Summary and Conclusion

In this chapter the basic OLG growth model of the closed world economy � a log-

linear CD version of Diamond’s (1965) neoclassical growth model � was

introduced and its intertemporal equilibrium dynamics were derived. In contrast

to post-Keynesian growth theory our basic OLG growth model rests on solid

intertemporal general equilibrium foundations comprising constrained optimization

of agents and the clearing of all markets in each model period. Regarding produc-

tion technology, the linear-homogeneity of the production function and the substi-

tutability of production factors were emphasized. This is in line with neoclassical

growth theory. Factor substitutability enables profit-maximizing firms to adapt their

capital intensities (capital-labor ratios) to the prevailing relative wage rate.

Another key feature of the basic growth model is the endogeneity of per capita

savings. Young households choose savings in order to maximize their life-time

utility. In doing so, they also choose optimal (i.e. utility maximizing) consumption

when young, and optimal consumption when old. As in the Solow-Swan neoclassi-

cal growth model the savings rate is constant, and can be traced back to the time

discount factor of younger households. The old households consume their entire

wealth (bequests are excluded by definition).

All market participants (young households, old households and producers)

interact in competitive markets for capital and labor services and for the produced

commodity. Supply and demand in each market are balanced by the perfectly

flexible real wage and real interest rate. The first-order conditions (FOCs) for

intertemporal utility maxima and period-specific profit maxima in conjunction

with market clearing conditions yield the fundamental equation of motion for our
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basic OLG model of capital accumulation together with the equilibrium dynamics

of the efficiency weighted capital intensity. The fundamental equation of motion

also allows for the determination of the real wage rate and the real interest rate on

the intertemporal equilibrium path.

Finally, we sought for the savings rate and associated capital intensity that

maximizes permanent consumption per-efficiency capita. It turns out that higher

savings rates are not in general better than lower savings rates. The golden rule for

achieving maximum consumption per efficiency capita demands a capital intensity

at which the marginal product of capital corresponds exactly to the rate of natural

growth plus depreciation rate. If we assume a depreciation rate of one, the savings

rate, leading to the “golden rule” capital intensity, must be equal to the production

elasticity of capital.

2.8 Exercises

2.8.1. Explain the set-up of the basic OLG model and provide empirically relevant

values for basic model parameters such as b; Gn and a. Why is a independent of the
length of the model period while b and Gn are not?

2.8.2. Use the CD function Eq. 2.2 to show that the marginal product of capital is

always smaller than the average product of capital.

2.8.3. Explain in terms of the marginal rate of substitution and the negative slope

of the intertemporal budget constraint why point B in Fig. 2.3 is not utility

maximizing.

2.8.4. Show that under the CD production function Eq. 2.2 maximum profits are

zero. Which property of general neoclassical production functions implies zero

profits?

2.8.5. Why must the younger households finance next-period capital stock even

when capital does not depreciate completely during one period?

2.8.6. Verify the derivation of the intertemporal equilibrium dynamics Eq. 2.39

and explain why not the whole savings per efficiency capita cannot be used for

capital deepening?

2.8.7. Explain the meaning of the golden rule of capital accumulation and provide

a sufficient condition with respect to capital production share such that the savings

rate is irrelevant for golden rule capital intensity. (Hint: See Galor and Ryder, 1991)

2.8 Exercises 47



Appendix

Constrained Optimization

All agents in this chapter aim at optimizing their decisions to reach their goals in the

best possible way. However, they are all confronted with various restrictions

(constraints) – in some cases they are of a natural or technological nature, in

other cases choices are limited due to available income. How can one find the

optimum decision in the face of such constraints? The method of mathematical

(classical) programming provides a solution. In order to formalize the decision

problem we first need to define the following: What are the objectives of the

different actors? Which variables are to be included in agent decision making?

Which restrictions do they face?

The objectives of the agents can be formalized by use of the objective function, Z.
This function assigns a real number to every decision (consisting of a list of n
decision variables) made by an agent.

Z : <n ! <1 (2.49)

We introduced two objective functions in the main text of this chapter: one for

households whose goal is to act in such a way that their preferences, represented by

a utility function, are met best, and one for firms that try to maximize their profit

function.

Concerning the second and third questionwe know that households can determine

consumption quantities and the distribution of consumption over time.We also know

that producers can determine the demand for labor as well as for capital. These

variables are referred to as decision (choice) variables or instrumental variables. The

quantities households can consume depend, among other things, on their income.

The production cost of a specific quantity of a good depends, among other things, on

the technology used in the production process. Such restrictions are represented in

the form of constraints.

Mathematically speaking, the decisionproblem is to findvalues for the instrumental

variables which maximize the value of the objective function (profit, utility) or

minimize it (cost), subject to all constraints. Formally, the optimization problem can

be written as one of the following three programs:

Max ZðxÞ s:t:: gðxÞ ¼ b; classical optimizationð Þ (2.50a)

Max ZðxÞ s:t:: gðxÞ � b; x � 0; non� linear optimizationð Þ (2.50b)

Max ZðxÞ ¼ c x s:t:: A x � b; x � 0: linear optimizationð Þ (2.50c)
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The objective function Z is a function of n variables, i.e. x is a vector of

dimension n (n decision variables). The function gðxÞ denotes m constraints; b is

a column vector of dimension m.
We now turn to classical optimization and try to find a rule which allows us to

unveil the optimal decision making of agents. An example of the household

objective functionUðxÞ is given by Eq. 2.12; the (only) constraint gðxÞ by Eq. 2.15.

Max Ut c
1
t ; c

2
tþ1

� � ¼ ln c1t þ b ln c2tþ1 (2.51a)

subject to (s.t.):

c1t þ
c2tþ1

1þ itþ1

¼ wt (2.51b)

The two instrumental variables in this optimization problem are c1t and c2tþ1, and

are the (only) variables households can determine. Due to the constraint, future

consumption can (under certain conditions) be written as a function of current

consumption.

c2tþ1 ¼ ð1þ itþ1Þðwt � c1t Þ (2.52a)

Or, more generally:

c2tþ1 ¼ hðc1t Þ; (2.52b)

dh

dc1t
¼ � @g=@c1t

@g=@c2tþ1

: (2.52c)

The objective function can also be formulated as a function ~Lof a single decision

variable:

~L ¼ ln c1t þ b ln ½ð1þ itþ1Þðwt � c1t Þ� : (2.53a)

Or, more generally:

~L ¼ ~L ðc1t ; hðc1t ÞÞ: (2.53b)

This intermediate step simplifies the search for a value c of the decision variable

c1t that maximizes the objective function ~L (utility) in our decision problem.

Obviously, at a maximum, the following condition has to hold:

~L ðcÞ � ~L ðcþ DcÞ: (2.54)
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If we make use of Taylor’s theorem, we can find the maximum of the (modified)

objective function Eq. 2.53b. The first-order condition (FOC) of the problem is:

d ~L
dc1t

¼ 0 ¼ @U

@c1t
þ @U

@h

dh

d c1t
: (2.55)

On taking account of Eq. 2.52b, then Eq. 2.55 is equivalent to:

d ~L
dc1t

¼ 0 ¼ @U

@c1t
þ @U

@h
� @g=@c1t
@g=@c2tþ1

� �
¼ @U

@c1t
þ � @U=@h

@g=@c2tþ1

� �
@g

@c1t
: (2.56)

We denote the expression in brackets on the right-hand side by l, so that the

maximization problem (2.56) can be written more simply as:

d ~L
dc1t

¼ 0 ¼ @U

@c1t
þ l

@g

@c1t
: (2.57)

This is the solution to the household’s decision problem. However, a simpler

route is provided by a function that leads us directly to condition (2.57). This is:

Lðc1t ; c2tþ1; lÞ ¼ Uðc1t ; c2tþ1Þ þ lðw� gðc1t ; c2tþ1ÞÞ: (2.58)

This function is called the Lagrangian function and the variable l the Lagrangian
multiplier. After calculating the first derivative with respect to the two instrumental

variables, the first-order (necessary) conditions for the solution of the optimization

problem follows. Thus, differentiating Eq. 2.58 with respect to l results directly in

the constraint. The Lagrangian function of young households has the following

form:

Lðc1t ; c2tþ1; lÞ ¼ ln c1t þ b ln c2tþ1 þ l w� c1t �
c2tþ1

1þ itþ1

� �
: (2.59)

The first-order conditions (FOCs) are:

@L
@c1t

¼ 1

c1t
� l ¼ 0; (2.60a)

@L
@c2tþ1

¼ b
1

c2tþ1

� 1

1þ itþ1

l ¼ 0; (2.60b)

@L
@l

¼ wt � c1t �
c2tþ1

1þ itþ1

¼ 0: (2.60c)
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If we solve condition (2.60a) for variable l and substitute the solution into

Eq. 2.60b then, assuming the constraint Eq. 2.60c is also taken into account, we

can determine the optimal consumption in period t Eq. 2.20, the optimal consump-

tion in period tþ 1 Eq. 2.22 and the optimal savings per capita Eq. 2.21.

To ensure that Eqs. 2.20, 2.21 and 2.22 constitute a maximum (and not a

minimum), we have to check the second-order conditions:

@2L

@ c1t
� �2 ¼ � 1

c1t
� �2 < 0; (2.61a)

@2L

@ c2tþ1

� �2 ¼ �b
1

c2tþ1

� �2 < 0: (2.62b)

Both conditions are negative, satisfying the second-order conditions for a strict

(local) maximum.

One last and very important question remains: What is the meaning of the

Lagrange multiplier in this optimization problem?

The Lagrange multiplier reflects the sensitivity of the value of the objective

function with respect to a marginal change in the constants b (cf. Eq. 2.50a) of the

constraints. In the optimization problem of young households the Lagrange multi-

plier is equal to:

lt ¼ @Ut

@ wt
: (2.63)

It indicates the amount by which the optimum value of the utility function

increases when disposable income rises by one unit.

Walras’ Law

Finally, we want to show that our basic growth model satisfies Walras’ law. We

therefore note the budget constraints of all economic agents for any period t and
express all values in monetary units (and not in terms of output units as is done in

the main text). In addition, we multiply all per-capita values by the number of

corresponding number of individuals. Moreover, we indicate what savings of young

households are used for, i.e. to buy investment goods and old capital at the

reproduction price Pt. Thus, we have:

LtstPt ¼ PtIt þ Ptð1� dÞKt: (2.64)

This equality implies that the budget constraint of young households can be

rewritten as follows:
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PtLtc
1
t þ PtIt þ Ptð1� dÞKt ¼ WtLt; (2.65)

while the aggregate budget constraint of old households reads as follows:

PtLt�1c
2
t ¼ QtKt þ Ptð1� dÞKt: (2.66)

The linear-homogeneity of the production function implies that at a maximum

profits are zero:

Pt ¼ 0 ¼ PtYt �WtNt � QtK
d
t : (2.67)

Adding the left-hand sides and the right-hand sides of Eqs. 2.65 and 2.66 yields:

Pt Ltc
1
t þ Lt�1c

2
t

	 
 ¼ WtLt þ QtK
d
t � PtIt: (2.68)

Clearing of the labor and capital market (Nt ¼ Lt and Kd
t ¼ Kt) implies:

Pt Ltc
1
t þ Lt�1c

2
t

	 
þ PtIt ¼ WtNt þ QtKt ¼ PtYt: (2.69)

Since It ¼ Ktþ1 � ð1� dÞKt holds, Eq. 2.69 becomes:

Pt Ltc
1
t þ Lt�1c

2
t þ Ktþ1 � ð1� dÞKt � Yt

	 
 ¼ 0: (2.70)

Since Pt > 0, the sum of the terms in square brackets in Eq. 2.70 must be zero.

Thus, we have shown that the product market clears once the labor and the

capital markets clear. Equation 2.31 is thus an identity, not a constraint. Thus, we

cannot determine the price level in this economy; it has therefore to be set exoge-

nously (e.g. – and as we have assumed here – it can be set equal to one).
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