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Abstract Here we show that how the LZ-complexity concept connects to the
concepts such as Lyapunov exponent and K-entropy and has an application in the
theory of dynamical systems regardless of its main origin in the information theory.
Furthermore, selecting the Fibonacci sequence as a sample of evolutionary arrays,
it is proved that these systems’ LZ complexity represents its long-range order.

1 Introduction

Chaos is complex and disordered [1]. However, the outstanding attribute of such
behavior is that the state of the system cannot be predicted for a long period of
time. This limitation occurs when one withdraws infinite accuracy from the common
attitude toward the Newton dynamical system. Chaotic systems are very sensitive to
initial conditions. It means that every slight change in initial conditions has a major
impact on the final output [2—4].

2 LZ Complexity as a Dynamic Index

Here we consider the LZ complexity of the phase-space snapper of dynamic
systems, which is coded to specific messages. Based on this formalism, the LZ
complexity has been proposed as an index in the analysis of dynamic systems’
behavior. Following this idea, by coding the dynamic observables, the Henon system
is as follows:
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H: Xy =1—aX] +Y,; Y1 =bX,, (1)

and the driven dissipative oscillating continuous system with the motion equation:
P: X + KX +sinX = gcos(wgt). 2)

The LZ complexity has been calculated for the specific values of con-
trol parameters of these two systems. In the method of array-code gener-
ation for Henon mapping, the system’s phase space is divided into four
regions:(X,—Y), (X,Y),(—X,Y), (=X, —Y). Next, when the asymptotic response
of the dynamic system (X, ¥},) is placed on the first and third quarters for a specific
value of a, it be-comes the symbol 1 in the array, otherwise it becomes 0. The
resulted array is input to the LZ-complexity-calculation program. This process is
iterated and calculated for each a in the interval [1,4] at step size Aa = 0.001 and
b = 0.3. The calculation of LZ complexity for a driven dissipative oscillating
system has been carried out as follows. Here the control parameters are the
motive angular velocity (wg =2/3), friction factor (K =0.5), and the motive
force amplitude (g), which changes in the range 0.9 < g < 1.5 by the step size
Ag =0.001. The array length is considered n =20000. The generation of array
codes for a specific motive force amplitude in the above interval has been performed
based on a simple procedure such that whenever the oscillator angular velocity
(X) is larger than zero, it is considered the number corresponding to the single
array, and otherwise zero. The complexity analysis of each array has been done
by the computer program. The normalized LZ complexity, {C(n)/b(n)}, is near
zero for the periodic trajectories and bifurcation points of both systems. It means
that despite the fact that new bifurcations form and the periodic models become
more complex, there is not a clear and easy-to-observe effect of these changes on
the LZ complexity. This matter may result from the fact that data existing in the
phase-space snapper is mapped to two-alphabet array symbols. At this level of
calculation, it seems that we can just distinguish the determinable dynamic system’s
chaotic behavior (0 < C(n)/b(n) < 1) from ordered behavior (C(n)/b(n) =0).
Despite this difference in the periodic behavior region, the correspondence of these
two indexes is obvious in the consistent explanation of the nature evolution of
Henon and oscillator systems. This fact suggests the existence of a profound link
between these two concepts. The correlation between Lyapunov exponent and LZ
complexity was also proposed by Kasper and Shuster in 1987. This correlation
can be explicitly understood. The quantities such as algorithmic complexity, LZ
complexity, statistical complexity, and Rissanen complexity tend to the value of
K-entropy at n — oo. On the other hand, the ith positive Lyapunov exponent
(/\l.Jr ) determines the data generation rate under the system evolution along the ith
coordinate of phase space. K-entropy is the total data generation rate in that dynamic

process:
hu(X) = ZiDiAf, 3)
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Fig. 1 The correlation
between Fibonacci blocks and
subblocks
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where D; is the data density for each bit of the ith coordinate of phase space. For
directions that are dynamically unstable, although they are determinable, we cannot
predict every single bit of system-evolution data. Therefore, D; equals one for these
directions. Consequently:

hu(X) = ZiAt )

Accordingly, in chaotic modes, the LZ complexity directly relates to the sum
of positive Lyapunov exponent. For the systems such as Henon mapping and
dissipative driven oscillator in which there is only a positive Lyapunov exponent
the LZ complexity corresponds with that only positive Lyapunov exponent.

3 LZ Complexity of Fibonacci Sequence

The subarray A; A;+1 ... Aj 4+, with length [ > m from the sequence A1 A4; ... 4; ...
Aj4m ... AL is called a block.

Fibonacci block: The Fibonacci sequence {f,}Y¥ =0 in which f, = f,—1 +
fu—2, n < 2is considered. The Fibonacci block is a finite array whose formation
results from a command based on the formation of Fibonacci sequence, which is
due to the sort order operation () of two previous blocks. The simplest block is
called zero or one block. Figure 1 shows each block’s relation with its constitutive
subblocks. Furthermore, the correlation between each block and basic blocks Fj
and Fj is clear. For example, the block Fg is composed of Fy and F5. On the other
hand, Fg consists of a subblock Fs, two subblocks Fy, three subblocks F3, and five
subblocks F,. The calculation of these blocks’ LZ complexity is of importance. The
following simple example shows a procedure for calculating the LZ complexity.

Trick 1: The LZ complexity of the third Fibonacci block (F>) is equal to two.

It is proved by using the description of LZ complexity:

S'=F=101)S2=1/:2)0 =0;S0 = 1/0; V(SO) = 1" 1eV(SO); .".
S'=S=1/0= C(S') = C(F) = 2. (5)

Trick 2: If we add each block of S with length n — r to the sequence S with length
r (@), the LZ complexity of the resulted sequence (S’) will be:
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C(8)=C(©S) + 1, (6)
S'=S®S" S'cyS; L(S)=L(S®S") =n, %
S//:S151‘+1...Sj =S 418r42-..5,1 i < <r;

S’:slsz...srsr+1...s,,. (8)
Using the description, we calculate the LZ complexity of S’.

NS =8S\=s515%...5\:0 = 5,41:50 = S\s,41: 50 = S\;
S"CpS=(0=s4)€S8:..0€eV(SO)

J+1D) 0 =5118542:50 = S\sy41 5,42: SO = S\s,41:

S”"Cp S = (Q =s41512) € 5:.. Q € V(SO). )

Accordingly, this process is iterated up to the last term (j = r). For the last step, we
write:

j = I‘) Q = Sr+1Sr+2...S,,;SQ = S\s,+1s,+2...sn;SQ = S\sr+1s,+2...sn_1
S"CpS=0CpS;:".0€eV(SQ):COPY 0=8":".8"=85/0=S/S";..
C(S") =C(S) + 1. (10)

4 Conclusion

The calculation of Lyapunov exponent for large-scale systems faces some problems
such as lack of convergence in numerical solutions. Herein it is shown that the LZ
complexity can be also utilized for systems more complex than one-dimensional
mappings such as logistic mappings. Therefore, by selecting the appropriate coding
method or more alphabets (more than two alphabets), the LZ complexity, which is
simpler and less time-consuming in terms of calculation, can be used as a dynamical
index equivalent to Lyapunov exponent.
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