Chapter 2
Composite Asymptotic Expansions:
General Study

In this chapter, we present the general theory of CAsEs: their definition and their
behavior with respect to the basic operations of addition, multiplication, division,
differentiation, integration, composition and analytic continuation. In Sect. 2.4, we
also link our CASEs to the inner and outer expansions of the classical method
of matching. Using these inner and outer expansions is also a good method for
determining the coefficients of a composite expansion in practice, provided one can
show the existence of a composite expansion independently.

Many problems solved using CASEs have their origin in the real variable, so
a purely “real” presentation might seem enough. However, an essential element
in solving some problems is the Gevrey character of the CAsEs, which will be
developed in Chap.3. In order to obtain Gevrey properties, the only method
known so far is to apply our “key-theorem” 4.1 of Ramis—Sibuya type, for which
the complex framework is essential. Therefore the presentation here uses the
complex variable; a presentation of the results in the real domain can be found in
Fruchard/Schifke [27, 28].

2.1 Notation

The notation N refers to the set of all natural numbers, including 0. The open disk of
center 0 and radius r is denoted by D(0, r). Givena < f < a+2mw and0 < r < oo,
S(a, B, r) is the sector

S(,B,r)={xeC;0<|x| <r, a<argx < B}.

A sector is usually considered as part of the Riemann surface of the logarithm C*.
Since our sectors will always have an opening less than 2, however, we consider
them as subsets of C* = C \ {0}.
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18 2 Composite Asymptotic Expansions: General Study

We say that a function f holomorphic and bounded on a sector S has an
asymptotic expansion at x = 0 (in the sense of Poincaré) if there exists a formal
series Zv>0 a,x” and for all N € N there is some constant Cy such that

N—1

] ) = Y

v=0

<Cy

for all x € S. In that case, we write

f(x)~Zavx", S>x—0.

v=>0

We say that a function g holomorphic and bounded on an infinite sector S has an
asymptotic expansion at X = oo if the function f : x — g(1/x) has an asymptotic
expansion at x = 0.

Given a sector S = S(«, 8,7r) and u > 0, V(a, B, r, t) denotes the union of the
sector S and the disk D(0, ):

Vie,B,r,0) ={x e€C; (|x| <randa < argx < f) or |x| < u}. 2.1
For 1 < 0, we define
Vie,B,r,u) ={x€C; —u<|x| <randa < argx < §}. (2.2)

In the sequel, we call these sets quasi-sectors, for p positive or negative (Fig.2.1).
For simplicity, we often only consider the case i > 0. The necessary changes in the
case . < 0 are minor and will be indicated.

Given an infinite quasi-sector V' = V(«, 8, 0o, 1), 4 (V') denotes the vector space
of holomorphic functions g bounded in V' and having an asymptotic expansion in
the Poincaré sense at infinity without constant term g(X) ~ Y _, &X', V >
X — o0, l.e. -

N—1
YNeN 3Cy>0 VXeV. [XM[g) - g x

v=1

< Cy.

LetT : 4(V) — ¢4(V) denote the operator which, to a function g, associates the
function Tg given by
Tg(X) = Xg(X) —& (23)

where g X ! is the first term of the asymptotic expansion of g at infinity.

Sometimes V will be an annulus: V' = A(r,o0) ={x € C; r < |x| < c0}. In
that case, the Banach space 4 (V') is therefore the space of functions holomorphic
and bounded on V, tending to 0 as X — oo.
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Fig. 2.1 Two examples of i ,
quasi-sectors, on the left D - 3
i < 0, on the right & > 0 <77

o

Given a number r¢ > 0, ¢ (r() denotes the vector space of functions @ holomor-
phic and bounded in the disk D(0, ro) of radius ry centered in 0. Similarly to T, let
S : J(ry) — F(ro) be the operator which, to a function a, associates the function
Sa given by

Sa(x) = —— 2 (2.4)
On the expansions, the operators S and T act as a shift to the left: if g(X) ~

o0
> guX ", then Tg(X) ~ > gy X " andif a(x) = » a,x’, then Sa(x) =

v>1 v>1 v=0

00

v
E ay+1X .
v=0

2.2 Composite Formal Series

Definition 2.1. Let V = V(«, 8, 0o, ) be an infinite quasi-sector (with p positive
or negative) and ry > 0. A composite formal series associated to V and D(0, ry) is
an expression of the form

o) = (an) +&(2)) 7. 2.5)

n>0

where a, € 7 (ry) and g, € 4 (V).
The functions a, form the slow part of the composite formal series, and the g,
the fast part.

Remarks. 1. More precisely, a composite formal series is an element of (% (ro) x
9 (V))N. As for classical formal series, we could therefore represent a com-

posite formal series in the form Z (an (x) + gn (X))n”—Or in the form
n>0
Z (an(x), gn(X))n"—using three variables. We will however not have to

n>0
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consider functions of three variables asymptotic to a composite formal series:
the three variables are always related by x = nX.

2. In this section, the symbol 71 introduced in the above definition is arbitrary,
because we are just dealing with formal series. Later on, however, n will be a
new independent variable and we will consider the behavior of functions as n
tends to 0. In the context of singularly perturbed differential equations, as was
the case in the introductory examples, n will be connected to € by n” = ¢ with
a suitable integer p.

3. The names “slow part” and “fast part” are motivated by their behavior with
respect to differentiation d /dx. In general, differentiation does not change the
n-order of a slow term. For a fast term, however, differentiation introduces a
(large) factor 1/7. For details, see below (Definition 2.3).

The ‘Differential” Algebra %(ro, V). Let %(ro, V) denote the vector space
of composite formal series associated with V' and D(0, ), endowed with the
canonical addition and multiplication by constants, the ultrametric distance

d(y,, 7, = 2_""‘1(;1_?2), where val(y) = min{n > 0; a, or g, # 0} (2.6)

and the topology induced by this distance.

Let I denote the canonical inclusion of .7 (ry) in %(ro, V') and, to simplify the
notation, let the same letter denote the inclusion of 4 (V') in %(ro, V). The symbol
n denotes the real number, the function of (x, ) with value n and the composite
formal series with a single term a; = 1.

Due to the fact that g,(X) has an asymptotic expansion when X — oo, the
operators S and T endow %(ro, V') with a structure of algebra as follows.

In order to define the product of two composite formal series 3 and Z, we expand

the product term by term: if y(x,n) = ano (an(x) + g (%))nn and 2(x, ) =
2n=0 (bn (x) + hn(%)) 1", then we put

Y =) (Z (I(au)(x, n) +1(gy)(x. n)) :

n>0 \v=0

-(I(bn—u)(x, n + I(hy—y)(x, 77))) n'.

This is a convergent series with respect to the topology of %(ro, V) and it remains

to define products of images by L. The sets I(.#(ro)) and I(¢(V')) are naturally

equipped with a structure of algebra, hence we just have to define the product of

an element I(a)(x, n), a € F7(ry), and an element I(g)(x, n), g € 4 (V). For this
o0

purpose, with the notation a(x) = Z a,x’ and g(X) ~ Z 2 X™", we observe

v=0 v>0
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that a(x)g(%) = (a0 + xSa(x)) g(5) and xg(%) = (g1 + Tg(%)) n. In other
words, a composite asymptotic expansion of the product of functions a(x) g(%)
with respect to 7 can be obtained by

a(x) g(%) = ay g(%) + g1Sa(x)n + Sa(x) Tg(%)n. 2.7

By iterating this formula, we define with the convention go = 0

I DI =Y (6 S Q@ +a, TE) . @8

v>0

Remarks. 1. The above formula implies that the product of composite formal
series is again a composite formal series. It also shows the need to have an
asymptotic expansion of g; otherwise we could not define T" g. This is the main
reason why we require the functions g, in Definition 2.1 to have asymptotic
expansions as X — 00.

2. Classical composite series [4,59] are a special case of our CASEs: the functions
gn decay exponentially. Recall that a function g : J =]u, +oo[— R has an
exponential decay if there exist C, A > 0 such that

|g(X)| < Cexp(—AX) forall X € J.

A function g with exponential decay satisfies g(X) = 0(X V), X — +oo for
all integer NV, so is flat: it admits the zero series as asymptotic expansion.

3. Inthe case of classical composite series, the slow part of a product depends only
on the slow parts of the factors. This can be seen for example on (2.8): when
all the g, are zero, the product of a slow term and a fast term generates only
fast terms; cf. also Remark 2, p. 11 of [4]. In contrast, for our composite series,
formula (2.8) shows that the product of a slow term and a fast term yields many
slow terms, so that everything is intertwined.

Composite series are also compatible with the left composition.

Lemma2.2. Lety € 77(2(”0, V') be a composite formal series without constant

term, i.e. with ap(x) = 0 and go(X) = 0. Let P e %(ro, W[y, n]] be a

formal series in two variables whose coefficients are composite formal series:

ﬁ(x, y,n) = Z pjk(x, n)y’ n* with Djk € %(ro, V). Then the expression
Jk=0

Q) (x.m) = P(x.5(x.m.n) =Y piule. )PCx.n) ot
jk=0

defines a composite formal series. Moreover, the application 6 : r)‘%(ro, V) —
€ (ro, V) is well defined and 1-Lipschitz.



22 2 Composite Asymptotic Expansions: General Study

The proof is immediate, thanks to the convergence of the series defining 6(5?) (x,1m)
for the ultrametric topology induced by the distance (2.6).

Let us now define the derivative of a composite formal series. Since derivatives
of functions in #(ry) are not necessarily bounded and those of functions in 4 (V')
have no longer necessarily an asymptotic expansion, this differentiation is somewhat
more difficult to treat, although the formula is simple. In particular, it is required to
reduce slightly the definition domains of the functions. In the real framework, it is
not always possible to define the derivative of a composite formal series.

Definition 2.3. Ify € %(ro, Via, B, oo, ,u)) is a composite formal series given by

Feem = Y (@) + u(3)) 0.

n>0

such that the first fast term gy is identically zero, then its derivative with respect to

~

X, %, is given by

-
Zam =Y (@@ + g ()

n>0

This formula defines an element of %(70, V(a, :g ooﬁ)) for any 7y €]0, ro[, @ <
o <pB<Pandany @ < pu.

Remark. A priori, the derivative of a composite formal series is only defined if the
first fast t.erm go 18 i.d.entically zero. The operator 7, j—x = j—x(n - ), however, is
defined without condition on g.

Exercise 2.4. Give a detailed proof of Lemma 2.2.

2.3 Composite Expansions: Definition and Basic Properties

Until now, the objects considered were formal expressions. We now want to define
the composite expansion of a function of two variables x and 7. The simplest and
most natural way would be to consider functions defined on a product of sectors in
x and 5. For some applications, however, it will be convenient that the x-domain
contains a neighborhood of 0 of size proportional to |n|. For other applications, it
will be necessary to remove a neighborhood of 0. That is why we introduced the
quasi-sectors (2.1) and (2.2).

Definition 2.5. Let V = V(«a, B, 00, ) denote an infinite quasi-sector, let S, =
S(a2, B2, M) denote a finite sector and let &; < B; be such that < oy — B, <
B1 — oz < B. Let y(x,n) be a holomorphic function defined for n € S, and x €
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Vier, Bu. ro. ). Fimally, let 5(x, m) = D (@ (x) + gu(2)) o' € €(ro. V). We
n>0
say that y hasy as CASE and we write

y(xv 77) ij\(xv n)s as S2 >n— 0,x € V(als:Blers:u“|n|)s

if, for any integer N, there exists a constant K such that for all n € S, and all
X € V(als IBlervH |77|)

N—1

e = Y (@) + ga(2))

n=0

<Ky V. 2.9)

Again, the functions a, are the slow part of the CASE and the g, are its fast part.
The conditions on the angles «;, 8; ensure the implication: if n € S, and x €

V(ay, B1,ro, 1 |n|) thenx/n € V.

Remarks. 1. In the case of an annulus V' = A(r,00), r > 0, there is no

condition on the angles. A composite expansion y(x,n) ~ ano (an (x) +

Zn (%)) n" is then another form of a monomial expansion introduced in Canalis-

Durand/Mozo/Schifke [8]. If we put u=n/x, then n=xu and the func-
tion z(x,u)= y(x,xu) is defined on a sector in xu, defined in [8] after
Definition 3.4, i.e. the set of (x,u) such that |x| <ry, |u| < min (ll, Z—g) and
arg(xu) €lay, B[, and admits the monomial expansion z(x,u) ~ >, ., (an (x)
+ b, (u)) (xu)" defined in [8], Definition 3.6, with b, (u) = g,(1/u).

2. For the sake of simplicity, we ask the functions a, to be holomorphic in the
whole disk D(0, ry), while y itself is only defined for x € V(ay, B1,ro, 1t |1n])-
In Sect.2.4 we shall have to generalize the definition of CASE to a situation
where the functions a, are holomorphic on a more general domain containing
0, cf. the remark after Proposition 2.20.

3. A function y(x,n) cannot have two different CAsEs as S, > n — O and x €

V(ai, B1, 10, i |1|)- Indeed, one has lin})y(x, n) = ag(x) for x € S(ay, B1, ro),
n—

hence the holomorphic function ay € 7 (ry) is uniquely determined, therefore
also a((0). We continue with 1in}) y(nX,n) = ao(0) + go(X), and so on. It
n—

should be noted that, to prove this uniqueness, only the property that g,(X)
tends to 0 as X — oo was used; this will be useful in Sect. 4.1.

It is immediate that CASEs are compatible with addition and scalar multiplication.
For compatibility with the multiplication of expansions, the only less obvious point
is to show that a product a(x)g(%), a € 7(ro), g € 9(V) has a CAsE. This is
a consequence of Formula (2.7) and of the fact that S and T are endomorphisms.

Definition (2.8) was made so that we have a(x) g(%) ~ I(a)(x,n) 1(g)(x,n).
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Composition. The CASEs are also compatible with the left and right composition
by a holomorphic function, as expressed in the following proposition. Statement
(a) concerns left composition by a function of three variables, but in the case of a
CASE without term in 7°. Statement (b) treats the case of left composition without
this restriction, but by a function of one variable only. These two statements are
complementary. For the right composition, we have considered only functions of
one variable x for the sake of simplicity, but it is possible to generalize the result
to the case of a function ¢ of the two variables x and 7, such that ¢(0,0) = 0
and %(0, 0) = 1. The Gevrey version of this generalization is given in Sect. 4.6,
Theorem 4.7. We have not formulated any statement concerning a change of the
variable 1 because we do not need it.

Proposition 2.6. (a) Let P(x,z,n) be a holomorphic function defined when |z| <
r,n €Sy = S(az, B2,m0) and x € V(ay, B1, ro, k|n|) such that all coefficients
P, of the expansion P(x,z,n) = Y_,-o Pa(x,n)Z" have a CASE P,(x,n) ~
Py(x,n)as S > n — 0, x € V(ay, Bi,ro, u|nl). Let y(x,n) = O(n) be a
function having a CASE y(x,n) as S» > n — 0and x € V(ay, B1,ro, i4|n])
without terms in 1°. Suppose that sup, , [y(x,n)| < r. Then the function u :
(x,n) — P(x,y(x,n),n) has the CASE

QF)(x.m) =Y Pulx. P(x.n)".

n>0

as S, >n—>0,xeV.

(b) Consider a holomorphic function y defined for n € S, and x € V where
V = V(ay, B1, ro, it |n]), with range in a bounded set W C C and having a
CASE as 1 — 0. Let f be a holomorphic function in a neighborhood of the
closure of W. Then the functionz = f oy hasa CAsEas S, 5n— 0, x € V.

(¢) Let ¢ be a holomorphic function defined for |x| < xy such that ¢(0) = 0 and

¢'(0) = 1 and let z = z(u,n) be a function with a CASE ), (a,, (u) +

gn (%))n” as S, > n — 0andu € V(ay, B1, ro, |n|), with a, € 7 (ro) and

gn € 9(V). Then for all '071,:51 with ) < @) < :gl < Biandall i < p there
are 7.7 > 0 such that the function 'y : (x,n) — z(¢(x),n) has a CASE as
S(az. B2.70) 31— Oand x € V (a1, B1.7. I|nl).

Remark. In (a), the assumption “y bounded by r” is not essential: simply reduce
the n-domain if it is not satisfied.

Proof. (a) For all N € N*, the finite sum Z P,(x,n)y(x,n)" has a CASE
0<n<N-1
(compatibility with product and sum). It remains to verify that a constant L =
L(N) exists such that the remainder is bounded by L |n|". This is evident from
the assumptions.
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By modifying f and y if necessary, we may assume that a¢(0) = 0. Using a
Taylor expansion, it suffices to prove that f (ao (x) + go(%)) has a CASE.

Set h(u,v) = f(u + v). It suffices to show that h(ao(x), go(%)) has a CASE as
n tends to 0. To show this, we write

h(x,y) = h(x,0) + h(0,y) —h(0,0) + xy k(x, y)
with some holomorphic function k of two variables x, y; therefore

h(ao(x), g0(3)) = h(ao(x),0) + (0, go(3)) — h(0.0)
+ao(x)go(5) k(ao(x). go(3))-

Since ao(0) = 0, the product ao(x)go(%) is of the form &(n)); we obtain a CASE
for h(ao (x), go(%)) by iterating this procedure.

Note that the leading term of the CASE of f (y(x, 7)) (without the reduction to
ao(0) = 0) has f(ao(x)) as slow part and f (ao(0) +go(%)) — f(a0(0)) as fast

art.

i)f 7. 7o are small enough, then qo(V(al,,Bl,r ) € Vi, Bu,ro, pnl) if
n €S2 |n| < To. It suffices to show that b(‘p(")) has a CASE, if b is in 4(V).
For that purpose, we introduce the functions / and v defined by 7 (Y) —% = h(x)
and ¥ (x,1) = x/ (1 + txh(x)). The function / can be analytically continued
to a function defined for |x| < xj, still denoted / by abuse of notation, and
¥ (x,0) = x,¥(x,1) = @(x). The Taylor expansion of b(@) = b(%)
with respect to ¢ gives forall N € N

N—
¢_ Zia_
n n! ot"

Using the fact that %[f(@)] = nh(x)(Af)(W) with the operator A
defined by (Af)(X) = —X?2 f/(X), we obtain

1
) li=0+ = 1)'/ abe(WXt)) = 1-7)"""dx.

N—
= Z T h(x)" (A"b)(2)
n=0 (2.10)

o h0" /0 (AND) (H52) (1 =)' de

and one can verify that the last term is &'(n" ). The compatibility of CASEs with
addition and multiplication then yields the existence of a CASE for b (@) O
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Differentiation. As was the case for composite formal series, CASEs are compati-
ble with differentiation if the domains are slightly reduced and if the first fast term
is identically zero.

Recall and complete the notation of Definition 2.5: let «, «;, &2, B, B1, B2 € R
with ¢ < —,32 < ,31 — 0y =< ,3 and ap < ,32, let no,ro > 0 and let u €
R. Let V = V(a, B, 00, ), S2 = S(ag, f2,m0) and Vi(n) = V(ar, fi1,ro. 1 |n)).
Moreover, let 7o €]0,ro[, & < p, @y, B be such that ¢y < @ < By < By and
B> —ay < By — @) and @, B such that

A<T<T—Pa<Pi—ar<P<p

LetV = V(B?,E, 00, T) and V(n) = V(517E1,70,ﬁ|77|)-
Lemma 2.7. Let y(x,n) be a function defined for n € S, and x € V| such that

yx,m ~ Y0 (an(X) +gn(%)) N = 3 € E(ro,V)as S, 3 n — 0.
Assume that go(X) = 0. Then one has

d dA ! ! X n
P~ e = 3 (a0 + g (2) 1

n>0

~ dy ~ ~
as S, >n — 0and x € V(n), where d—y(x, n) € €. V).
X

Proof. Let § = min(|n|(uw — &), ro — 7o) and, for N € N arbitrary,

Ry(em) = y0em) = 3 (a0 + ga(2)) " @.11)

n<N

One has % =0 (—‘) The Cauchy formula for the derivative gives

1
n
1 / RN+1(""77)d
— SN T 4
2mi lu—x|=8 (M - )C)2
dRy +1

which yields ———(x, ) = &(|n|"). Since by the Cauchy formula the functions

dx

~ = dR

ay and g}y, are bounded in D(0,7), resp. in V', we deduce that 7 al (x,n) =
X

o(In™). o

Remark. Lemma 2.7 is not valid in the real framework. For example, it is well-
known that there are small functions with unbounded derivatives. We have the
following result in real framework, however: if the derivative of a function with
CASE also has a CAsE, then formula (2.12) below implies that the CASE of the
derivative can be obtained by differentiating the CASE of the function term by term.

dR !
‘ N+1 < - max |Ry+1(u,n)l,
dx 5

) lu—x|=

(x,n)‘ =
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Integration. Integration of a CASE does not always yield a CASE because of

possible terms % in the expansions of functions in 4 (V). If all these terms are

absent, integration poses no problem, as the following statement shows.

Proposition 2.8. Consider a CASE y(x,n) ~ Y, (an (x) + gn(%))n” defined
forn € Sy and x € V(ay, B1, ro, it |n]), such that all functions g, satisfy g,(X) =
O(X ) as X — oo. Letr € S(a1, B1, 7o)

Then the function (x,n) +— / y(t,n) dt has a CASE. More precisely, one has

r

/X y(t,n)dt ~ ?(x, n) — ?(r, n), where
T 00 (2.12)
V(e = 400 + Y (4n@) + Gut (2) )1

n=1

with A, (x) = /xan(t)dt and G, (X) = —/oo gu(T)dT.
r X

Here we have identified ?(r, n) with the formal series in which G, (%) has been
replaced by its asymptotic expansion as  — 0. The proof is immediate: one has
A, € J(ro) and, by hypothesis, G, € ¢(V). Before stating the result in the
general case, we introduce some notation. Let £ be an analytic function in the quasi-
sector V' = V(«, B, 00, ) such that its derivative £’ has an asymptotic expansion at
infinity starting with %:

U(X)~ > e, X" withe; = 1.

n>1
One can choose e.g. £(X) = log(X — y) with y ¢ V. If one wants a function
having real values on the real axis, one may use £(X) = %log(X 24+ L?) with L
large enough. Observe that the expression £ (%) will not be bounded for n € S, and
X in some quasi-sector V(«a, B, ro, i |n]), but we have £ (%) = O (|log(|n|)|) there,
because £(X) =logX + C + 0 (X~ ") as V 5 X — oo with some constant C.
The statement in the general case is as follows.

Proposition 2.9. Givena CASE y(x,n) ~ >_,- (an (x)+gn (%))7}”, let R denote
the series of residues of the g,(X): R(n) = )_,5ogun". Let r € S(a1, B1,70).
Then one has /X y(t,n)dt ~ ?(x, n) — ?(r, n), with

r
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Yo =nRm)(£(2) = €(2)) + Ao(x)+

i (An(X) + Hn_l(%))n”,

n=1

(2.13)

o

where A, (x) = /X an(t)dt and Hy,(X) = —/X (g,,(T) — gnlﬁ’(T)) dT.

Again, we have identified ?(r, n) with the formal expression obtained by replacing
E(%) and H, (%) by their expansions as 7 tends to 0.

Proof. The classical Borel-Ritt theorem (see below) provides a function R(7) with
’13(77) as asymptotic expansion. The difference y(x,n) — R(n)t’ (%) satisfies the
condition of Proposition 2.8, so its integral has a CAsSE. The “generalized CASE”
for y follows. O

We also have a statement similar to the classical Borel-Ritt theorem. The
statement of the classical theorem is as follows: given any sequence (dj)en
of complex numbers and any sector S(«, S, 7o), there exists a function a =
a(n) defined and holomorphic on S and having the formal series Y .o a,n" as
asymptotic expansion. The result is also true when (4, ), ey is a sequence of bounded
analytic functions of a complex variable x. In the case of our CASEs, the statement
is as follows.

Lemma 2.10. (Borel-Ritt) Let V. = V(a, B, 00, i) be an infinite quasi-sector
(u>0o0r < 0), S = S(az, B2,n0) a finite sector, ry > 0 and let a; < B be
such that o < a; — By < B1 — ay < B. Given a composite formal series y(x,n) =

ano (a,, (x) + gu (%)) n" e %(ro, V), there exists a holomorphic function y(x, n)

defined for n € S, and x € V(ay, B1,ro, i |n|) such that y(x,n) ~ y(x,n) as
n—0.

Proof. Simply use the Borel-Ritt theorem for classical uniform asymptotic expan-
sion twice: once for Y a, (x)n", once for Y_ g,(X)n". O

Exercise 2.11.

(a) Prove that the equation y + 5 = 2x + 2x? in the complex domain has a unique

solution y = y(x, ¢) holomorphic on the annulus 2 |8|1/ 2 < [x] < % satisfying

y(x, ) = 2x 4+ 2x2 + o(1) as € — 0 uniformly on this annulus.
(b) Using the properties of CASEs discussed in this section, show that z(x,7n) =
y(x,n?) has a CASE in the annulus 2 || < |x| < %, asn — 0.

Exercise 2.12. Let f = f(x, n) be a holomorphic function defined whenn € S, =
S(aa, B2, m0) and x € V(ay, B1, ro, j4|n]) and having a CASE

Fer ~ Y (a0 + (3)) 1" € 0. V),

n>0
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(a) Suppose that a¢(0) # 0 and gy = 0 identically. Prove that the function 1/ f has
a CASE, 1 € Sa = S(oa, B2, m0) and x € V(ay, Bi, ro, 1|n|) (with the same ).

(b) Assume only ao(0) # 0 and g¢ arbitrary. Prove that 1/f has a CASE, € S, =
S(az, B2, m0) and x € V(ay, B1, 70, 1|n|) if ao(0) + go(X) does not vanish on
the closure of V(a1 — B2, B1 — @2, i, 00).

Exercise 2.13. Give a detailed proof of Lemma 2.7.

Exercise 2.14. This example comes from Skinner’s book [54]. Prove that the
function z given by z(x,n) = H—+v‘+n has a CASE for n > 0 and x €]un, +oo|
for any u > —1. Compute an asymptotic expansion (containing a term in In ) for

1
F(r;)z/0 z(x, n)dx.

Exercise 2.15. Suppose that y(x, 1) is a function holomorphic and bounded on the
set of all complex (x, n) with |n| < no, K || < |x| < L, where ng, K, L are some
positive numbers. Using the Laurent decomposition of y, prove that y has a CAsSE
as n — 0, uniformly on the given annulus and that this CASE is actually convergent.
Using this result, solve again the Exercises 2.11(b) and 2.14, except for the value
of u.

2.4 Composite Expansions and Matching

Our concept of composite expansion combines the classical asymptotic expansion
in the sense of Poincaré of the form y(x,n) ~ ", c,(x)n" and an expansion of
the form y(nX.n) ~ ", .o ha(X)n". The former expansions are called “outer”, the
latter are called “inner” expansions. These inner and outer expansions are central in
the method of matched asymptotic expansion. Although CAsEs are different from
both, there are close links with inner and outer expansions.

On the one hand, we show that a function with a CASE also has an inner and an
outer expansion, and that these two expansions have a common region of validity.
In other words, a proof of existence of a CASE can provide a solid foundation for the
method of matching.

On the other hand, the converse is true: if the method of matching is valid, i.e. if
a function has inner and outer expansions with a common region of validity, and if
moreover such expansions satisfy an additional property, then the function also has
a CASE.

We emphasize that the results of this section, especially Proposition 2.17, are
not new. They present the classical relations between inner, outer and uniform
expansions adapted to our framework (see Chap. 7 for some more details).

The first result is the following.
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Proposition 2.16. Let (a,),en be a family of functions of 7 (ro) and (gn)nen a
o0

Sfamily of functions of (V) with V. = V(«, B, 00, ). Let a,(x) = Z apmx™ and
=0

gn(X) ~ Z gnm X ™ denote their expansions. Suppose that

m>0

e ~ D (@00 + &a(2)) "

n>0

as S > n — 0and x € V(a, B1, 70, 1L |1]) in the sense of Definition 2.5.
Then, for fixed x € S(a1, B1, ro), one has

y(x,n) ~ ch(x)n” as S, >n—0, (2.14)

n>0

where ¢, (x) = a,(x) + Z g1.n—1X'7". Moreover, for all r > 0, this expansion
0<l<n—1
is uniform with respect to x on all x € S(ay, By, ro) such that |x| > r.
Similarly, if X € V and a3, B3, n3 are such that n € S(as, B3, 13) impliesn € S
and nX € V(ay, B1, ro, it |1]), then one has

YX,m) ~ Y ha(X)n" as S(as, B3, m3) 30 — 0, (2.15)

n>0

where h,(X) = g,(X) + Z an_/,/Xl. The expansion is uniform with respect to
0<l<n
X on compact subsets of V satisfying the above condition.

Remarks. 1. According to the literature, we will call the first expansion (2.14)
outer expansion and the second (2.15) inner expansion. Each function ¢, of the
outer expansion may have a singularity at x = 0 but only a pole of order at most
n; similarly each function £, of the inner expansion has polynomial growth of
order at most n as X — oo. Thus the restraint index in the sense of Wasow
[62], Chap. VIII equals 1.

2. One can show that for every « €0, 1], the outer expansion (2.14) is uniform on
|x| > |n|“, and that the inner expansion (2.15) is uniformon | X | < |n|™*, which
justifies the method of matched asymptotic expansions when a CASE exists.
In both cases, we need to use % terms in order to obtain an approximation
with remainder &'(n"). It is often preferable, however, to have uniform
approximations throughout the domain instead of two different expansions on
overlapping regions. Such uniform approximations seem indispensable if we
want to obtain estimates of Gevrey kind.
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3. Incases where the existence of a composite expansion for a function y (x, 7) can

be shown indirectly, but the functions a,, and g, are not yet known, one method
for determining them is to apply the preceding proposition. For fixed non-
zero x, one computes the outer expansion y(x,n) ~ >, _,c.(x)n", then one
eliminates the terms with negative powers of x to obtain the slow parts a, (x).
Analogously, one computes the inner expansion y(nX.,n) ~ > oo h. (X)n"
and throws away the terms with non-negative powers of X, which gives g, (X).
In practice, the calculation of inner and outer expansions often leads to
recurrence equations for their coefficients. This allows to compute a,, g,
without having to use the cumbersome formulas for multiplication of composite
formal series.
In the case of singularly perturbed differential equations, as noted by
Gautheron/Isambert [29], the computation of the inner expansion is more
involved than the outer one. The latter only needs algebraic operations (if
the Taylor expansions of the coefficients of the equation are known). The
former, however, requires solving linear differential equations and choosing
the constant of integration such that the solution has a certain asymptotic
behavior; this introduces transcendence. For this reason, Isambert [32] calls
these outer and inner expansions algebraic and transcendental expansions,
respectively.

Proof of Proposition 2.16: Let N € N* be fixed and recall the notation (2.11).

Furthermore, set B
e (X)=g(X) = Y gmX "

O<m<k

By hypothesis, there are positive constants Cy, Ak, and Cj; such that

Vne Sy Vx e Vi, = Vi, Br,ro. iuln))  [Ry(x,n)| < Cylnl",

Vx € Viy ‘ak(x) — Zak/xl‘ < Apn|x|" (2.16)
I<n
and
VX eV lr(X)| < Cie) X |75, (2.17)

An elementary calculation gives

s = L = Ruo+ S a G = 3 (el )i

n<N I<N O<n<N > l<n
= Ry(e.m + ) riw (3, (2.18)
I<N

hence, as |x| > r,

e = X eaton| = (en+ el 219

n<N I<N
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Similarly, one has

YOXo 1) = Xy n OO = RyXom) + (an(n)o - Zaﬂzx’)n"

n<N I<n

= Rv(nX,n) + Z (ak(nX) - Z ax ﬂIXl)nk

k<N I<N—k

therefore, for all R > 0 and for | X| < R,

X = 3 b (O < (CN +2 AkN%RN‘k)InIN. (2:20)

n<N k<N

Conversely, one has the following statement.

Proposition 2.17. Let y be a function defined for n € S, = S(a2, B2, n0) and x €
V(n) = V(ai, Bi,ro, 1 |n|). Assume that there are real numbers a, b,k with 0 <
a <band0 < k < 1, and for each n € N a function c,, ¢,(x) = Pn(%) + a,(x),
P, polynomial without constant term, a, € € (ro) and a function h, = Q, + gn,
Q. polynomial and g, € 9(V), V = V(a, B, 00, 1), & < a1 — 2 < f1 —az2 < B,
with the following properties.

Assumption 1. Forall N € N, there is a constant C > 0 such that

N—1

y(xv 77) - Z Cn(x)nn

n=0

<C [N (2.21)

foralln € S, and all x € V(n) with |x| > a|n|“ and

N—1

X)) =Y ha (X"

n=0

<C n|"* (2.22)

foralln € Sy and all X € V such that nX € V(n) with | X| < b|n|*~".

Assumption 2. For any n € N, the polynomials P, and Q, have degree less
thann + 1.

Then y has a CASE for n € S, and x € V(n); precisely

Y~y () + g (2))r"

n=0
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Remarks. 1. As there is a common region for expansions (2.21) and (2.22), these
expansions are necessarily consistent, as shown in the proof, cf. (2.25).

2. In general we cannot get better than |r)|N (79 in the remainder of (2.21) and
|77|N “ in that of (2.22), as the first neglected terms have this size when Py and
QO are of degree N.

3. This statement is a special case of a general theorem of Eckhaus’ book [17].
In the classical method of matched asymptotic expansions, one first establishes
inner and outer expansions on growing domains as 7 — 0 having a nonempty
intersection. Then one constructs so-called “composite” expansions of which
our CASEs are an example, cf. also Chap.7.

Proof of Proposition 2.17: Let ¢,(x) = ;;io_n chmX™ and M,y be the largest

integer M such that M« +n < N(1 — k). Then (2.21) implies that for any N € N
there exists C, > 0 such that

N—1 M,y

Y =Y Y camx™n"| < Cy [N

n=0 m=-—n

asn € S, and x € V(n), a|n|“ < |x| < b|n|“. For any integer S, we can find a
constant Cs such that

MERE > CamxX™ ") < Cs [nl® (2.23)

n>0m>—nmk+n<S

asn € S,andx € V(n), a|n| < |x| <b|p|.
Similarly, noting A, (X) ~ Z;n"io_n ZumX ™™, one can find replacing X by % that
for any integer S there exists a constant Cy4 such that

(e, m) - > ZpgX P < Cyn)® (2.24)
p=0.9=—p.—q(k—1)+p<S

asne S,andx € V(n),a|n| < |x| <b|nl|.

As (2.23) and (2.24) uniquely determine the coefficients ¢,,, and z,,, they must
coincide, i.e. ¢,y = Zy4+m.—m foranyn € Nand m € Z, m > —n. One thus has the
formal equality

Y ha ()0 =Y ", (2.25)
n=0

n=0

where £, and ¢,, denote the series associated with £, and c,,.



34 2 Composite Asymptotic Expansions: General Study

N

Now consider the sum Yy (x, ) = Z (an (x) + gn (%))n" When a || < |x],
n=0
N—n—1
we find with [g,(2) = Y zsgx 97| < Cs|n|¥™"™ and hence with z,, =
q=1

Cntq.—q

ly(e.m) = Yn(x. )| <

N—1 n
y(x,n) — Z (an(x) + Z cn,_mx_’") 77”‘ +

n=0 m=1 N1
Co ||V ™).

This implies

N(1—«)

e = Y (e = [y = 205 e | + Colnl

f C7 |n|N(1—K)

(2.26)

asn € S, x € V(n), aln* < |x|.
Using the expansions of the a,,, we similarly find that

ly(x, ) = Yy (x, )| < Cs|n™*

also when n € S», x € V(n), |x| < b|n|*. Together with (2.26), this shows that
for all N, there is a constant Cy such that for all n € S, and x € V() one has
ly(x,n) — Yy (x.n)| < Co|n|¥* with A = min(k, 1 —«).

The statement to be proven corresponds to |5|" instead of |n|" * in this last
inequality. It is obtained in two steps. On the one hand, this last assertion can also be
written: there is Cyo with [y (x, ) — Ys(x,n)| < Cio 9|V, if SA > N.On the other
hand the fact that all functions a, (x) and g, (%) are bounded on all x, 1 in question
implies that there is a constant Cy; such that |Yg(x,n) — Yy (x,n)| < Cy |n|N. O

Exercise 2.18. Add details for Remark 2 after Proposition 2.16.

2.5 Continuation of Composite Expansions

In connection with the inner and outer expansions of the method of matching,
we also have two results of continuation of CAsEs, which will be very useful for
solutions of differential equations.

The first result says essentially that a function with a CASE for x in a quasi-sector,
whose inner expansion exists on a larger quasi-sector, admits the CASE also on the
larger quasi-sector. The precise result is as follows.
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<0< |ul<v O<p<v

n<0<v<|y| p<v<0

Fig. 2.2 Some domains V and §2 with different signs of &, || — v and v. Bold line: the boundary
of V', thin line: that of §2, their intersection in dark gray

Proposition 2.19. Let y be a function defined for n € S, = S(oa, B2, 1n0) and

x € Vi(n) = V(ay, B1,ro, L |n]) and having a CASE ano (an(X) + gn(%))n”,
as S > n — 0and x € Vi(n), with a, € 7 (ro) and g, € 4(V), where V =
Via,B,00,u), « = a1 — B and B = B — ap. Let v > . In the case where
v > |ul, set 2 = D(0,v), otherwise set 2 = V(a,B,— + y,v) withy > 0
arbitrarily small (Fig. 2.2).

Assume that the function Y : (X,n) — y(nX,n) can be analytically continued
on §2 x S, and that it has an asymptotic expansion Y (X, 1) ~ Y oo h,(X)n" as n
tends to 0, uniformly on 2.

Then y can be analytically continued to the set of all (x, n) with n € S, and with
x € V(ay, B1,70, Vv |n|) and has a CASE there as 1 — 0.

Remarks. 1. The domain §2 has been chosen bounded, with 2 NV # @ and
VU = V(x,B,00,v). Signs of u and v are arbitrary. We will use this result
particularly in the case £ < 0 < v.

2. The assumption on the domain and the asymptotic expansion of ¥ may be
slightly weakened (the domain with respect to X may depend on the argument
of 1), but the version presented is sufficient for our applications to differential
equations.

3. Itis possible to show this result using Propositions 2.16 and 2.17, but we prefer
to present an independent proof. One reason for this choice is that this proof
will serve for the Gevrey analog Proposition 3.8. In contrast to this, we have no
Gevrey analog of Proposition 2.17.
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Proof of Proposition 2.19: The expansion of Y in the assumption and the inner
expansion corresponding to the CASE of y given by Proposition 2.16 coexist on
some open region, hence coincide by the uniqueness of an asymptotic expansion.
Thus, the functions /4, (X) of the assumption are necessarily the analytic continua-
tions of the coefficients of this inner expansion.

The hypothesis implies that y(x,7) can be analytically continued to the set of
all (x,n) such that n € S, and x € Vi(n) = V(ay, Bi,ro.v |n|), precisely by
putting y(x,n) =Y (%, n). We now use again the notation introduced in the proof
of Proposition 2.16. We have to show that the remainder Ry (x,7) given by (2.11)
is bounded by a constant times |n|", also for “x € Vi(n) \ Vi(n). The assumption
on £2 ensures that for all n € Sy and all x € V() \ Vi(n), one has x/n € £2. By
hypothesis, there exists Dy such that

’y(x,n) =D (X"

n<N

< Dy|n|".

Now, the equality above (2.20) can be written

Ry (e, = ) = S ()" = Y (ann = 3 awe! )i

n<N k<N I<N—k

Moreover, modifying the constants Ay, if necessary, inequality (2.16) is valid for
all x € D(0, ro), hence in particular for x € V(1) \ Vi(n). This shows that for all
neSyandforallx € Vi(n)\ Vi(n)

[Ry(x,n)| < (DN + Z AkN—kMN_k)InlN (2.27)
k<N

with M = supyeo | X| = —pu + Sorv. O
The second result concerns outward continuation.

Proposition 2.20. Ler 0 < ry < 7o and let y be a function defined for n € Sy =
S(az. Ba. o) and x € Vi(n) = V(ar, Br.To. j1|n]). Suppose that y has a CASE
Ym0 (0) + 4(3)) ", as S2 30 — 0and x € Vi) = Vi, Br.ro. e |,
with a, € 7 (ro) and g, € Y(V), V = V(a, B, 00, 0) such that ¢ < a; — B, <
Br—ar < B.

Assume moreover that y has an asymptotic expansion y(x, 1) ~ Y oo o ¢y (X)1"

as 1 tends to O, uniformly for x € V(ay, B1, 10—y, 7o) with y > 0 arbitrarily small.
Then (2.9) is satisfied for alln € S, and all x € V 1(n).

Remark. By abuse of notation, we say that y hasa CAsE forn € Sp and x € v, ),
although the functions a,, are not necessarily defined on the whole disk D(0,7).

Proof. First, we can use Proposition 2.16 on the quasi-sector V(«y, 81, ro — ¥, o),
and by comparing (2.14) with the second hypothesis, we obtain that the functions ¢,
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of the hypothesis are analytic continuations of those of the proposition. Therefore
we can also continue the functions a, analytically on D(0, ro) UV (a1, B1, ro—Y,T0).

It remains to estimate Ry for x € Vl(n) \ Vi(n). By (2.18), one has

Ry(eom) = y(e,m) = D el = D i (3)n'. (2.28)

n<N I<N

and by (2.17) |r;y—(X)| < C;n—|X|'=N. By hypothesis, there are Ay > 0 such
that
v =D e < AV
n<N
forall n € S; and all x € Vi(n) \ Vl(n). We then obtain |Ry (x, n)| < C|n|V with
C :AN+21<N C[N_ll‘(l)_N. O

Exercise 2.21. Use Propositions 2.16 and 2.17 to prove Proposition 2.19.

2.6 Quotients of CASEs

Here we investigate under which conditions the multiplicative inverse of a function
with a CASE has a CASE.

If the first slow term ag is non zero at x = 0, then this inverse has a CASE thanks
to composition with the function f + 1/f, see Exercise 2.12. Here we investigate
a more general situation.

Let y = y(x,n) be a function defined and analytic for n € S = S(-4, 68, no)

and x € V(a, B, ro, |n|), having a CASE y(x,n) ~ ano (a,,(x) + g (%)) n"
as n — 0. We propose a slightly more general statement, more useful in practice:
it establishes conditions under which there exists k € N such that the function
(x,n) — 1°/y(x,n) has a CASE.

By Proposition 2.16, y has an inner expansion

YX.n) ~ D hy(X)n" as S5 — 0,

n>0

uniformly with respect to X on compact subsets of S(«y, 1, 00) where ) = o —

8, i =B+ 6and

ha(X) = ga(X) + Y a1 X", (2.29)

0<l<n

+o0
For all n, let Z hum X ™ denote the asymptotic expansion of £, at infinity and

m=—n
let v, = val(h,) denote the least integer m > —n such that h,,,,, # 0. If h,, is flat, we
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put v, = val(h,) = 4+o00. We say that y is degenerate, if it is flat or if there exists
N € Nsuchthat iy = ... = hy—; = 0 and hy # 0 is flat. If y is nondegenerate,
let C(y) denote the pair (N, M) with N € Nsuch that iy = ... = hy—; = 0,
hy # 0and M = val(hy) > —N.

Proposition 2.22. With the previous notation, the following three conditions are
equivalent.

(a) There existk € N, 7o < no, To < ro and [t < p such that the function (x,n)
n*/y(x.n) has a CAsE as n — 0in S = S(=8,8.,70) and x € V(a, B,70. T0).

(b) y is non-degenerate and, if C(y) = (N, M), one has val(h,) > M —n + N
foralln > N.

(¢c) There exist k € N, { € Z such that the function (x,n) — n
CASE whose first slow coefficient ay satisfies do(0) # 0.

“*xty(x,n) has a

Remarks. 1. The second condition in (b) can also be written in terms of the outer
expansion and the expansions of its coefficients. This is a consequence of the
relation (2.25).

2. Graphically, the second condition in (b) means that the points with coordinates
(n,m) such that h,,, # 0 (the “support” of the inner expansion) are all in the
quadrant on the right of the vertical line and above the line of slope —1 passing
through C(y), see Fig.2.3. Since h, has a polynomial part of degree at most
n, we already know that this support is in the quadrant on the right of the axis
and above the second bisector. The change of variable y — z : (x,n) —
n ¥ x%y(x, n) induces a shift of just —C(y) = (=N, —M) on the supports, with
N=k—{land M = (.

3. The proof also provides a procedure to calculate the CAsE for n*/y(x, 7). Using
the above shift, the situation is reduced to the case where y has a first slow term
ao non-zero at x = 0. Thus we obtain the CASE by left composition with the
function u — 1/u.

Proof of Proposition 2.22: We show the implications (b)=>(c)=>(a)=>(b). Suppose
that condition (b) is satisfied.

If M < 0, first consider z(x, n) = (%)_M ¥(x, 7). As a product of two functions
having CASsEs, z has a CASE on the same domain as y. The corresponding inner
expansion is that of X™y(nX,n) and satisfies therefore a condition similar to
(b) with (N, 0) instead of (N, M).

If M > 0, consider z(x,n) = xMy(x,n). As before, z has a CASE and the
corresponding inner expansion is that of n™ XM y(nX, n), thus satisfies a condition
similar to (b) with (N + M, 0) instead of (N, M'). Therefore both cases M > 0 and
M < 0 can be reduced to the case M = 0.

If M = 0, then formula (2.29) and the condition on the %, show that ag,, = 0 for
0 <s < N andm > 0, and that ay( # 0. Since the functions a; are analytic, this
implies a; = 0 fors = 0,..., N — 1. Then the functiony : (x,7n) = =V y(x,n)
has also a CASE on the same domain as y and satisfies the condition (c). To sum up,
in the three cases y satisfies condition (¢c) withk = N + M and £ = M.
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slope ¢

Fig. 2.3 In gray, the part of the plane containing the support of the inner expansion of y. In bold,
the boundary of the analogous part for z

Now suppose the condition (c) satisfied and set z(x,7) = n *x‘y(x,n). For

7o and 7y small enough and 71 < u suitable, the function z does not vanish when
nesS = S8(—587) and x € V(a, B, 70. ). Proposition 2.6(b) applies with the
function f : u +> 1/u and we deduce that % has a CASE. In the case where £ > 0,
the function (x, 1) — x%/z(x, 1) has therefore a CASE, which proves (a). In the case
{ < 0, the function (x, n) (%)[/z(x, n) has a CASE, which gives (a) with k — ¢
instead of k.
__ Finally, suppose that condition (a) is satisfied, let y(x,n) = n/y(x,n) and let
h,, denote the coefficients of the inner expansion of . Since (y7)(x, ) = n*, there
is a first term &, which is not identically zero in the inner expansion of y and a
first term i for y, with r + s = k and h,h; = 1. Each of these functions is of
polynomial growth as X — o0, so none can be flat. Thus the two functions y andy’
are nondegenerate. Set (N, M) = C(y) and (N, ?\7) =C().

For a proof by contradiction, suppose there exists n > N such that val(h,) <
M—n+N. Letq—mln{val(h#'s>N} —land #Z = {s > N ; val(h,) —
sq = M — Ngq}; itis a set of cardinal at least 2 (containing at least N and some s
for which the minimum ¢ is attained) and finite (since val(hy) > —s).

If 7 satisfies condition (b), we set’§ = —1, otherwise ¢ is the analog of g for
y. Sw1tch1ng y and y if necessary, we can assume without loss of generality that
g <q.Letthen K = min{val(h;) —sq ; s > N } and .4 denote the finite and
nonempty set of all s € N such that Val(h ) —sq = K. Note that 4" = {N 4 if
q > q and that the cardinal of .4 is at least 2 if § = ¢.

Recall that the minimum of .# is ny = N, and let n, = max.#; let n; and
7, denote the minimum and the maximum of .#". Consider the inner expansion
of p = y¥y: p(nX,n) ~ X ,50 Pu(X)n". Thus one has p, = >, _ h,hs for all
n>0.Ifn = n; +7, then hn:h/;l has valuation M +71, + K = M —Ng+nqg+K;
if r +s =n = ny +7; with r # ny, then the valuation of h,%s is greater than that
number because of the choice of n; and 7. So we obtain p, +m # 0. Similarly, we
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also get Py # 0. Since n; < ny and n; < 7>, this contradicts the assumption
that the product y is reduced to the monomial 7*. O

2.7 Multiple CASEs

In this section we call vertex of a function y a point near which y has a CASE which
is not a classical asymptotic expansion, i.e. at least one of the fast terms g, is non
zero. Here we would like to discuss the case of a domain with two vertices on its
boundary. The following statement shows that it not necessary to generalize the
concept of CASE for uniform expansions on domains that have several vertices on
their boundary, because we can reduce this situation to the case of a single vertex.
For simplicity, we only study the case of a real interval.

Proposition 2.23. Let a < b < ¢ < d be four real numbers and let y
la, d[x]0, n1] = R be a function having a CASE

Y~y (@) + g (252) )

n=0

as n — 0, uniformly on |a, c|, with a, holomorphic in a neighborhood of [a, c] and
gn €9(S), S = S(=4, 68, 00) with some § > 0.
Assume that y also has a CASE

[e.]

p0en) ~ D7 (ba) + ha(52) )

n=0

as n — 0, uniformly on b, d|, with b, holomorphic in a neighborhood of |b, d| and
h, € 9(S).

Then y has an asymptotic expansion

[e.]

y0en) ~ 37 (e (0 + gn(552) + ha(455) )" (2.30)

n=0

as 1 — 0O, uniform on la,d[ with the g,,h, of the previous formulas and with
functions ¢, holomorphic in a neighborhood of [a, d].

More precisely, if g,(X) ~ > ooy gamX ™ and hy(X) ~ > oo hymX ™™ as
X — o9, then ¢, (x) = a,(x) —ZZ;(I) hew—ie(d —x)" when x is in a neighborhood
of la,c] and ¢, (x) = by(x) — ZZ;(I) gen—t(x —a)*™" when x is in a neighborhood
of [b.d].

Remark. The functions ¢, are the non-polar parts of the functions b, at the point
x = a and the non-polar parts of the functions a,, at the point x = d.
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Proof. By the classical Borel-Ritt theorem, we construct two functions g, & with
gX,n) ~ Y a0 &n(X)n" and h(X, 1) ~ ", hu(X)n" uniformly on S. Then we
consider the difference z(x, ) = y(x,n) —g(%, n) —h (d%, n). Proposition 2.16,
applied to & respectively g, shows that z has two slow expansions uniform on [a, c]
and on [b, d]. By the uniqueness of asymptotic expansions, they must coincide on

[b, c]. This implies that their coefficients must be continuations of each other and
we obtain the statement. O
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