
Chapter 2
Composite Asymptotic Expansions:
General Study

In this chapter, we present the general theory of CAsEs: their definition and their
behavior with respect to the basic operations of addition, multiplication, division,
differentiation, integration, composition and analytic continuation. In Sect. 2.4, we
also link our CAsEs to the inner and outer expansions of the classical method
of matching. Using these inner and outer expansions is also a good method for
determining the coefficients of a composite expansion in practice, provided one can
show the existence of a composite expansion independently.

Many problems solved using CAsEs have their origin in the real variable, so
a purely “real” presentation might seem enough. However, an essential element
in solving some problems is the Gevrey character of the CAsEs, which will be
developed in Chap. 3. In order to obtain Gevrey properties, the only method
known so far is to apply our “key-theorem” 4.1 of Ramis–Sibuya type, for which
the complex framework is essential. Therefore the presentation here uses the
complex variable; a presentation of the results in the real domain can be found in
Fruchard/Schäfke [27, 28].

2.1 Notation

The notation N refers to the set of all natural numbers, including 0. The open disk of
center 0 and radius r is denoted byD.0; r/. Given ˛ < ˇ � ˛C2� and 0 < r � 1,
S.˛; ˇ; r/ is the sector

S.˛; ˇ; r/ D fx 2 C I 0 < jxj < r; ˛ < argx < ˇg:

A sector is usually considered as part of the Riemann surface of the logarithm fC
�.

Since our sectors will always have an opening less than 2� , however, we consider
them as subsets of C� D C n f0g.
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18 2 Composite Asymptotic Expansions: General Study

We say that a function f holomorphic and bounded on a sector S has an
asymptotic expansion at x D 0 (in the sense of Poincaré) if there exists a formal
series

P

��0 a�x� and for all N 2 N there is some constant CN such that

jxj�N
ˇ

ˇ

ˇf .x/ �
N�1
X

�D0
a�x

�
ˇ

ˇ

ˇ � CN

for all x 2 S . In that case, we write

f .x/ �
X

��0
a�x

�; S 3 x ! 0:

We say that a function g holomorphic and bounded on an infinite sector S has an
asymptotic expansion atX D 1 if the function f W x 7! g.1=x/ has an asymptotic
expansion at x D 0.

Given a sector S D S.˛; ˇ; r/ and � > 0, V.˛; ˇ; r; �/ denotes the union of the
sector S and the disk D.0;�/:

V.˛; ˇ; r; �/ D fx 2 C I .jxj < r and ˛ < argx < ˇ/ or jxj < �g: (2.1)

For � < 0, we define

V.˛; ˇ; r; �/ D fx 2 C I �� < jxj < r and ˛ < argx < ˇg: (2.2)

In the sequel, we call these sets quasi-sectors, for � positive or negative (Fig. 2.1).
For simplicity, we often only consider the case � > 0. The necessary changes in the
case � < 0 are minor and will be indicated.

Given an infinite quasi-sector V DV.˛; ˇ;1; �/, G .V / denotes the vector space
of holomorphic functions g bounded in V and having an asymptotic expansion in
the Poincaré sense at infinity without constant term g.X/ � P

��1 g�X��; V 3
X ! 1, i.e.

8N 2 N 9CN > 0 8X 2 V; jX jN
ˇ

ˇ

ˇg.X/ �
N�1
X

�D1
g�X

��
ˇ

ˇ

ˇ � CN :

Let T W G .V / ! G .V / denote the operator which, to a function g, associates the
function Tg given by

Tg.X/ D Xg.X/ � g1 (2.3)

where g1X�1 is the first term of the asymptotic expansion of g at infinity.
Sometimes V will be an annulus: V D A.r;1/ D fx 2 C I r < jxj < 1g. In

that case, the Banach space G .V / is therefore the space of functions holomorphic
and bounded on V , tending to 0 as X ! 1.
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Fig. 2.1 Two examples of
quasi-sectors, on the left
� < 0, on the right � > 0

Given a number r0 > 0, H .r0/ denotes the vector space of functions a holomor-
phic and bounded in the disk D.0; r0/ of radius r0 centered in 0. Similarly to T, let
S W H .r0/ ! H .r0/ be the operator which, to a function a, associates the function
Sa given by

Sa.x/ D a.x/ � a.0/

x
: (2.4)

On the expansions, the operators S and T act as a shift to the left: if g.X/ �
X

��1
g�X

�� , then Tg.X/ �
X

��1
g�C1X�� and if a.x/ D

1
X

�D0
a�x

� , then Sa.x/ D
1
X

�D0
a�C1x� .

2.2 Composite Formal Series

Definition 2.1. Let V D V.˛; ˇ;1; �/ be an infinite quasi-sector (with � positive
or negative) and r0 > 0. A composite formal series associated to V and D.0; r0/ is
an expression of the form

by.x; �/ D
X

n�0

�

an.x/C gn
�

x
�

�

�

�n; (2.5)

where an 2 H .r0/ and gn 2 G .V /.
The functions an form the slow part of the composite formal series, and the gn

the fast part.

Remarks. 1. More precisely, a composite formal series is an element of
�

H .r0/�
G .V /

�N
. As for classical formal series, we could therefore represent a com-

posite formal series in the form
X

n�0

�

an.x/ C gn.X/
�

�n—or in the form

X

n�0

�

an.x/; gn.X/
�

�n—using three variables. We will however not have to
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consider functions of three variables asymptotic to a composite formal series:
the three variables are always related by x D �X .

2. In this section, the symbol � introduced in the above definition is arbitrary,
because we are just dealing with formal series. Later on, however, � will be a
new independent variable and we will consider the behavior of functions as �
tends to 0. In the context of singularly perturbed differential equations, as was
the case in the introductory examples, � will be connected to " by �p D " with
a suitable integer p.

3. The names “slow part” and “fast part” are motivated by their behavior with
respect to differentiation d=dx. In general, differentiation does not change the
�-order of a slow term. For a fast term, however, differentiation introduces a
(large) factor 1=�. For details, see below (Definition 2.3).

The “Differential” Algebra bC .r0; V /. Let bC .r0; V / denote the vector space
of composite formal series associated with V and D.0; r0/, endowed with the
canonical addition and multiplication by constants, the ultrametric distance

d.by1;by2/ D 2�val.by1�by2/; where val.by/ D minfn � 0 I an or gn 6� 0g (2.6)

and the topology induced by this distance.
Let I denote the canonical inclusion of H .r0/ in bC .r0; V / and, to simplify the

notation, let the same letter denote the inclusion of G .V / in bC .r0; V /. The symbol
� denotes the real number, the function of .x; �/ with value � and the composite
formal series with a single term a1 D 1.

Due to the fact that gn.X/ has an asymptotic expansion when X ! 1, the
operators S and T endow bC .r0; V / with a structure of algebra as follows.

In order to define the product of two composite formal seriesby andbz, we expand

the product term by term: if by.x; �/ D P

n�0
�

an.x/ C gn
�

x
�

�

�

�n andbz.x; �/ D
P

n�0
�

bn.x/C hn
�

x
�

�

�

�n, then we put

by �bz.x; �/ D
X

n�0

 

n
X

�D0

�

I.a�/.x; �/C I.g�/.x; �/
�

�

�
�

I.bn��/.x; �/C I.hn��/.x; �/
�

!

�n:

This is a convergent series with respect to the topology of bC .r0; V / and it remains
to define products of images by I. The sets I

�

H .r0/
�

and I
�

G .V /
�

are naturally
equipped with a structure of algebra, hence we just have to define the product of
an element I.a/.x; �/, a 2 H .r0/, and an element I.g/.x; �/, g 2 G .V /. For this

purpose, with the notation a.x/ D
1
X

�D0
a�x

� and g.X/ �
X

�>0

g�X
�� , we observe
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that a.x/g
�

x
�

� D �

a0 C xSa.x/
�

g
�

x
�

�

and xg
�

x
�

� D
�

g1 C Tg
�

x
�

�

�

�. In other

words, a composite asymptotic expansion of the product of functions a.x/ g
�

x
�

�

with respect to � can be obtained by

a.x/ g
�

x
�

� D a0 g
�

x
�

�C g1 Sa.x/�C Sa.x/Tg
�

x
�

�

�: (2.7)

By iterating this formula, we define with the convention g0 D 0

I.a/.x; �/ I.g/.x; �/ D
X

��0

�

g� .S�a/.x/C a� .T�g/
�

x
�

�

�

��: (2.8)

Remarks. 1. The above formula implies that the product of composite formal
series is again a composite formal series. It also shows the need to have an
asymptotic expansion of g; otherwise we could not define T�g. This is the main
reason why we require the functions gn in Definition 2.1 to have asymptotic
expansions as X ! 1.

2. Classical composite series [4,59] are a special case of our CAsEs: the functions
gn decay exponentially. Recall that a function g W J D ��;C1Œ! R has an
exponential decay if there exist C;A > 0 such that

jg.X/j � C exp.�AX/ for all X 2 J:

A function g with exponential decay satisfies g.X/ D O.X�N /;X ! C1 for
all integer N , so is flat: it admits the zero series as asymptotic expansion.

3. In the case of classical composite series, the slow part of a product depends only
on the slow parts of the factors. This can be seen for example on (2.8): when
all the g� are zero, the product of a slow term and a fast term generates only
fast terms; cf. also Remark 2, p. 11 of [4]. In contrast, for our composite series,
formula (2.8) shows that the product of a slow term and a fast term yields many
slow terms, so that everything is intertwined.
Composite series are also compatible with the left composition.

Lemma 2.2. Letby 2 �bC .r0; V / be a composite formal series without constant
term, i.e. with a0.x/ � 0 and g0.X/ � 0. Let bP 2 bC .r0; V /ŒŒy; ��� be a
formal series in two variables whose coefficients are composite formal series:
bP .x; y; �/ D

X

j;k�0
pj;k.x; �/y

j �k with pj;k 2 bC .r0; V /. Then the expression

bQ.by/.x; �/ D bP .x;by.x; �/; �/ WD
X

j;k�0
pj;k.x; �/by.x; �/

j �k

defines a composite formal series. Moreover, the application bQ W �bC .r0; V / !
bC .r0; V / is well defined and 1-Lipschitz.



22 2 Composite Asymptotic Expansions: General Study

The proof is immediate, thanks to the convergence of the series definingbQ.by/.x; �/
for the ultrametric topology induced by the distance (2.6).

Let us now define the derivative of a composite formal series. Since derivatives
of functions in H .r0/ are not necessarily bounded and those of functions in G .V /
have no longer necessarily an asymptotic expansion, this differentiation is somewhat
more difficult to treat, although the formula is simple. In particular, it is required to
reduce slightly the definition domains of the functions. In the real framework, it is
not always possible to define the derivative of a composite formal series.

Definition 2.3. Ifby 2 bC
�

r0; V .˛; ˇ;1; �/
�

is a composite formal series given by

by.x; �/ D
X

n�0

�

an.x/C gn
�

x
�

�

�

�n;

such that the first fast term g0 is identically zero, then its derivative with respect to

x, dby
dx

, is given by

dby

dx
.x; �/ D

X

n�0

�

a0
n.x/C g0

nC1
�

x
�

�

�

�n

This formula defines an element of bC
�

er0; V .ę;eˇ;1;e�/
�

for anyer0 2 �0; r0Œ, ˛ <
ę<eˇ < ˇ and anye� < �.

Remark. A priori, the derivative of a composite formal series is only defined if the
first fast term g0 is identically zero. The operator � d

dx
D d

dx
.� � /, however, is

defined without condition on g0.

Exercise 2.4. Give a detailed proof of Lemma 2.2.

2.3 Composite Expansions: Definition and Basic Properties

Until now, the objects considered were formal expressions. We now want to define
the composite expansion of a function of two variables x and �. The simplest and
most natural way would be to consider functions defined on a product of sectors in
x and �. For some applications, however, it will be convenient that the x-domain
contains a neighborhood of 0 of size proportional to j�j. For other applications, it
will be necessary to remove a neighborhood of 0. That is why we introduced the
quasi-sectors (2.1) and (2.2).

Definition 2.5. Let V D V.˛; ˇ;1; �/ denote an infinite quasi-sector, let S2 D
S.˛2; ˇ2; �0/ denote a finite sector and let ˛1 < ˇ1 be such that ˛ � ˛1 � ˇ2 <

ˇ1 � ˛2 � ˇ. Let y.x; �/ be a holomorphic function defined for � 2 S2 and x 2
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V.˛1; ˇ1; r0; � j�j/. Finally, letby.x; �/ D
X

n�0

�

an.x/C gn
�

x
�

�

�

�n 2 bC .r0; V /. We

say that y hasby as CAsE and we write

y.x; �/ �by.x; �/; as S2 3 � ! 0; x 2 V.˛1; ˇ1; r0; � j�j/;

if, for any integer N , there exists a constant KN such that for all � 2 S2 and all
x 2 V.˛1; ˇ1; r0; � j�j/

ˇ

ˇ

ˇ

ˇ

ˇ

y.x; �/ �
N�1
X

nD0

�

an.x/C gn
�

x
�

�

�

�n

ˇ

ˇ

ˇ

ˇ

ˇ

� KN j�jN : (2.9)

Again, the functions an are the slow part of the CAsE and the gn are its fast part.
The conditions on the angles ˛j ; ˇj ensure the implication: if � 2 S2 and x 2
V.˛1; ˇ1; r0; � j�j/ then x=� 2 V .

Remarks. 1. In the case of an annulus V D A.r;1/, r > 0, there is no

condition on the angles. A composite expansion y.x; �/ � P

n�0
�

an.x/ C
gn
�

x
�

�

�

�n is then another form of a monomial expansion introduced in Canalis-

Durand/Mozo/Schäfke [8]. If we put u D �=x, then �Dxu and the func-
tion z.x; u/D y.x; xu/ is defined on a sector in xu, defined in [8] after
Definition 3.4, i.e. the set of .x; u/ such that jxj <r0; juj < min

�

1
r
;
�0
r0

�

and

arg.xu/ 2 �˛1; ˇ1Œ, and admits the monomial expansion z.x; u/� P

n�0
�

an.x/

C bn.u/
�

.xu/n defined in [8], Definition 3.6, with bn.u/ D gn.1=u/.
2. For the sake of simplicity, we ask the functions an to be holomorphic in the

whole disk D.0; r0/, while y itself is only defined for x 2 V.˛1; ˇ1; r0; � j�j/.
In Sect. 2.4 we shall have to generalize the definition of CAsE to a situation
where the functions an are holomorphic on a more general domain containing
0, cf. the remark after Proposition 2.20.

3. A function y.x; �/ cannot have two different CAsEs as S2 3 � ! 0 and x 2
V.˛1; ˇ1; r0; � j�j/. Indeed, one has lim

�!0
y.x; �/ D a0.x/ for x 2 S.˛1; ˇ1; r0/,

hence the holomorphic function a0 2 H .r0/ is uniquely determined, therefore
also a0.0/. We continue with lim

�!0
y.�X; �/ D a0.0/ C g0.X/, and so on. It

should be noted that, to prove this uniqueness, only the property that gn.X/
tends to 0 as X ! 1 was used; this will be useful in Sect. 4.1.

It is immediate that CAsEs are compatible with addition and scalar multiplication.
For compatibility with the multiplication of expansions, the only less obvious point
is to show that a product a.x/g

�

x
�

�

, a 2 H .r0/, g 2 G .V / has a CAsE. This is
a consequence of Formula (2.7) and of the fact that S and T are endomorphisms.
Definition (2.8) was made so that we have a.x/ g

�

x
�

� � I.a/.x; �/ I.g/.x; �/.
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Composition. The CAsEs are also compatible with the left and right composition
by a holomorphic function, as expressed in the following proposition. Statement
(a) concerns left composition by a function of three variables, but in the case of a
CAsE without term in �0. Statement (b) treats the case of left composition without
this restriction, but by a function of one variable only. These two statements are
complementary. For the right composition, we have considered only functions of
one variable x for the sake of simplicity, but it is possible to generalize the result
to the case of a function ' of the two variables x and �, such that '.0; 0/ D 0

and @'

@x
.0; 0/ D 1. The Gevrey version of this generalization is given in Sect. 4.6,

Theorem 4.7. We have not formulated any statement concerning a change of the
variable � because we do not need it.

Proposition 2.6. (a) Let P.x; z; �/ be a holomorphic function defined when jzj <
r , � 2 S2 D S.˛2; ˇ2; �0/ and x 2 V.˛1; ˇ1; r0; �j�j/ such that all coefficients
Pn of the expansion P.x; z; �/ D P

n�0 Pn.x; �/zn have a CAsE Pn.x; �/ �
bP n.x; �/ as S2 3 � ! 0, x 2 V.˛1; ˇ1; r0; �j�j/. Let y.x; �/ D O.�/ be a
function having a CAsE by.x; �/ as S2 3 � ! 0 and x 2 V.˛1; ˇ1; r0; �j�j/
without terms in �0. Suppose that supx;� jy.x; �/j < r . Then the function u W
.x; �/ 7! P.x; y.x; �/; �/ has the CAsE

bQ.by/.x; �/ D
X

n�0
bP n.x; �/by.x; �/

n:

as S2 3 � ! 0; x 2 V .
(b) Consider a holomorphic function y defined for � 2 S2 and x 2 V where

V D V.˛1; ˇ1; r0; � j�j/, with range in a bounded set W 	 C and having a
CAsE as � ! 0. Let f be a holomorphic function in a neighborhood of the
closure of W . Then the function z D f ı y has a CAsE as S2 3 � ! 0, x 2 V .

(c) Let ' be a holomorphic function defined for jxj <x1 such that '.0/ D 0 and

' 0.0/ D 1 and let z D z.u; �/ be a function with a CAsE
P

n�0
�

an.u/ C
gn
�

u
�

�

�

�n as S2 3 � ! 0 and u 2 V.˛1; ˇ1; r0; �j�j/, with an 2 H .r0/ and

gn 2 G .V /. Then for all ę1;eˇ1 with ˛1 < ę1 < eˇ1 < ˇ1 and all Q� < � there
areer;e�0 > 0 such that the function y W .x; �/ 7! z

�

'.x/; �
�

has a CAsE as
S.˛2; ˇ2;e�0/ 3 � ! 0 and x 2 V �ę1;eˇ1;er;e�j�j�.

Remark. In (a), the assumption “y bounded by r” is not essential: simply reduce
the �-domain if it is not satisfied.

Proof. (a) For all N 2 N
�, the finite sum

X

0�n�N�1
Pn.x; �/y.x; �/

n has a CAsE

(compatibility with product and sum). It remains to verify that a constant L D
L.N/ exists such that the remainder is bounded by L j�jN . This is evident from
the assumptions.
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(b) By modifying f and y if necessary, we may assume that a0.0/ D 0. Using a
Taylor expansion, it suffices to prove that f

�

a0.x/C g0.
x
�
/
�

has a CAsE.

Set h.u; v/ D f .u C v/. It suffices to show that h
�

a0.x/; g0.
x
�
/
�

has a CAsE as
� tends to 0. To show this, we write

h.x; y/ D h.x; 0/C h.0; y/ � h.0; 0/C xy k.x; y/

with some holomorphic function k of two variables x; y; therefore

h
�

a0.x/; g0.
x
�
/
� Dh.a0.x/; 0/C h

�

0; g0.
x
�
/
� � h.0; 0/

Ca0.x/g0. x� / k
�

a0.x/; g0.
x
�
/
�

:

Since a0.0/ D 0, the product a0.x/g0
�

x
�

�

is of the form O.�/; we obtain a CAsE

for h
�

a0.x/; g0.
x
�
/
�

by iterating this procedure.

Note that the leading term of the CAsE of f
�

y.x; �/
�

(without the reduction to
a0.0/ D 0) has f

�

a0.x/
�

as slow part and f
�

a0.0/Cg0.
x
�
/
��f �a0.0/

�

as fast
part.

(c) Ifer;e�0 are small enough, then '
�

V.ę1;eˇ1;er;e�j�j/� 	 V.˛1; ˇ1; r0; �j�j/ if

� 2 S2; j�j < e�0. It suffices to show that b
�

'.x/

�

�

has a CAsE, if b is in G .V /.

For that purpose, we introduce the functionsh and defined by 1
'.x/

� 1
x

D h.x/

and  .x; t/ D x=
�

1 C txh.x/
�

. The function h can be analytically continued
to a function defined for jxj < x1, still denoted h by abuse of notation, and
 .x; 0/ D x; .x; 1/ D '.x/. The Taylor expansion of b

�

'.x/

�

� D b
�

 .x;1/

�

�

with respect to t gives for all N 2 N

b
�

'.x/

�

� D
N�1
X

nD0
1
nŠ

@n

@tn
b
�

 .x;t/

�

� jtD0C 1
.N�1/Š

Z 1

0

@N

@tN
b
�

 .x;t/

�

� jtD� .1��/n�1 d�:

Using the fact that @
@t

�

f
�

 .x;t/

�

�� D �h.x/.�f /
�

 .x;t/

�

�

with the operator �

defined by .�f /.X/ D �X2f 0.X/, we obtain

b
�

'.x/

�

� D
N�1
X

nD0
�n

nŠ
h.x/n.�nb/

�

x
�

�

C �N

.N�1/Š h.x/
N

Z 1

0

.�Nb/
�

 .x;�/

�

�

.1 � �/n�1 d�
(2.10)

and one can verify that the last term is O.�N /. The compatibility of CAsEs with
addition and multiplication then yields the existence of a CAsE for b

�'.x/

�

�

. ut
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Differentiation. As was the case for composite formal series, CAsEs are compati-
ble with differentiation if the domains are slightly reduced and if the first fast term
is identically zero.

Recall and complete the notation of Definition 2.5: let ˛; ˛1; ˛2; ˇ; ˇ1; ˇ2 2 R

with ˛ � ˛1 � ˇ2 < ˇ1 � ˛2 � ˇ and ˛2 < ˇ2, let �0; r0 > 0 and let � 2
R. Let V D V.˛; ˇ;1; �/, S2 D S.˛2; ˇ2; �0/ and V1.�/ D V.˛1; ˇ1; r0; � j�j/.
Moreover, leter0 2 �0; r0Œ, e� < �, ę1;eˇ1 be such that ˛1 < ę1 < eˇ1 < ˇ1 and
ˇ2 � ˛2 <eˇ1 � ę1 and ę;eˇ such that

˛ < ę�ea1 � ˇ2 < eˇ1 � ˛2 � eˇ < ˇ:

Let eV D V.ę;eˇ;1;e�/ and eV 1.�/ D V.ę1;eˇ1;er0;e� j�j/.
Lemma 2.7. Let y.x; �/ be a function defined for � 2 S2 and x 2 V1 such that

y.x; �/ � P

n�0
�

an.x/C gn
�

x
�

�

�

�n DW by.x; �/ 2 bC .r0; V / as S2 3 � ! 0.

Assume that g0.X/ � 0. Then one has

dy

dx
.x; �/ � dby

dx
.x; �/ D

X

n�0

�

a0
n.x/C g0

nC1
�

x
�

�

�

�n

as S2 3 � ! 0 and x 2 eV 1.�/, where
dby

dx
.x; �/ 2 bC .er0;eV /.

Proof. Let ı D min.j�j.� �e�/; r0 �er0/ and, for N 2 N arbitrary,

RN.x; �/ D y.x; �/ �
X

n<N

�

an.x/C gn
�

x
�

�

�

�n: (2.11)

One has 1
ı

D O
�

1
j�j
�

. The Cauchy formula for the derivative gives

ˇ

ˇ

ˇ

ˇ

dRNC1
dx

.x; �/

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

1

2�i

Z

ju�xjDı
RNC1.u; �/
.u � x/2

du

ˇ

ˇ

ˇ

ˇ

� 1

ı
max

ju�xjDı
jRNC1.u; �/j;

which yields
dRNC1
dx

.x; �/ D O.j�jN /. Since by the Cauchy formula the functions

a0
N and g0

NC1 are bounded in D.0;er0/, resp. in eV , we deduce that
dRN

dx
.x; �/ D

O
�j�jN �. ut

Remark. Lemma 2.7 is not valid in the real framework. For example, it is well-
known that there are small functions with unbounded derivatives. We have the
following result in real framework, however: if the derivative of a function with
CAsE also has a CAsE, then formula (2.12) below implies that the CAsE of the
derivative can be obtained by differentiating the CAsE of the function term by term.



2.3 Composite Expansions: Definition and Basic Properties 27

Integration. Integration of a CAsE does not always yield a CAsE because of
possible terms 1

X
in the expansions of functions in G .V /. If all these terms are

absent, integration poses no problem, as the following statement shows.

Proposition 2.8. Consider a CAsE y.x; �/ � P

n�0
�

an.x/ C gn
�

x
�

�

�

�n defined

for � 2 S2 and x 2 V.˛1; ˇ1; r0; � j�j/, such that all functions gn satisfy gn.X/ D
O.X�2/ as X ! 1. Let r 2 S.˛1; ˇ1; r0/.

Then the function .x; �/ 7!
Z x

r

y.t; �/ dt has a CAsE. More precisely, one has

Z x

r

y.t; �/ dt � bY .x; �/ � bY .r; �/; where

bY .x; �/ D A0.x/C
1
X

nD1

�

An.x/CGn�1
�

x
�

�

�

�n
(2.12)

with An.x/ D
Z x

r

an.t/ dt and Gn.X/ D �
Z 1

X

gn.T / dT .

Here we have identified bY .r; �/ with the formal series in which Gn�1. r� / has been
replaced by its asymptotic expansion as � ! 0. The proof is immediate: one has
An 2 H .r0/ and, by hypothesis, Gn 2 G .V /. Before stating the result in the
general case, we introduce some notation. Let ` be an analytic function in the quasi-
sector V D V.˛; ˇ;1; �/ such that its derivative `0 has an asymptotic expansion at
infinity starting with 1

X
:

`0.X/ �
X

n�1
cnX

�n with c1 D 1:

One can choose e.g. `.X/ D log.X � 	/ with 	 … V . If one wants a function
having real values on the real axis, one may use `.X/ D 1

2
log.X2 C L2/ with L

large enough. Observe that the expression `
�

x
�

�

will not be bounded for � 2 S2 and

x in some quasi-sector V.˛; ˇ; r0; � j�j/, but we have `
�

x
�

�

D O .jlog.j�j/j/ there,

because `.X/ D logX C C C O
�

X�1� as V 3 X ! 1 with some constant C .
The statement in the general case is as follows.

Proposition 2.9. Given a CAsE y.x; �/ � P

n�0
�

an.x/Cgn
�

x
�

�

�

�n, let bR denote

the series of residues of the gn.X/: bR.�/ D P

n�0 gn1�n. Let r 2 S.˛1; ˇ1; r0/.

Then one has
Z x

r

y.t; �/ dt � bY .x; �/ � bY .r; �/, with
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bY .x; �/D�bR.�/
�

`
�

x
�

� � `� r
�

�

�

C A0.x/C
1
X

nD1

�

An.x/CHn�1
�

x
�

�

�

�n;
(2.13)

where An.x/ D
Z x

r

an.t/ dt andHn.X/ D �
Z 1

X

�

gn.T / � gn1`0.T /
�

dT .

Again, we have identified bY .r; �/ with the formal expression obtained by replacing
`
�

r
�

�

and Hn

�

r
�

�

by their expansions as � tends to 0.

Proof. The classical Borel–Ritt theorem (see below) provides a functionR.�/ with
bR.�/ as asymptotic expansion. The difference y.x; �/ � R.�/`0� x

�

�

satisfies the
condition of Proposition 2.8, so its integral has a CAsE. The “generalized CAsE”
for y follows. ut

We also have a statement similar to the classical Borel–Ritt theorem. The
statement of the classical theorem is as follows: given any sequence .an/n2N
of complex numbers and any sector S.˛; ˇ; �0/, there exists a function a D
a.�/ defined and holomorphic on S and having the formal series

P1
nD0 an�n as

asymptotic expansion. The result is also true when .an/n2N is a sequence of bounded
analytic functions of a complex variable x. In the case of our CAsEs, the statement
is as follows.

Lemma 2.10. (Borel–Ritt) Let V D V.˛; ˇ;1; �/ be an infinite quasi-sector
(�>0 or < 0), S2 D S.˛2; ˇ2; �0/ a finite sector, r0 > 0 and let ˛1 < ˇ1 be
such that ˛ � ˛1 � ˇ2 < ˇ1 � ˛2 � ˇ. Given a composite formal seriesby.x; �/ D
P

n�0
�

an.x/C gn
�

x
�

�

�

�n 2 bC .r0; V /, there exists a holomorphic function y.x; �/

defined for � 2 S2 and x 2 V.˛1; ˇ1; r0; � j�j/ such that y.x; �/ � by.x; �/ as
� ! 0.

Proof. Simply use the Borel–Ritt theorem for classical uniform asymptotic expan-
sion twice: once for

P

an.x/�
n, once for

P

gn.X/�
n. ut

Exercise 2.11.

(a) Prove that the equation yC "
y

D 2xC 2x2 in the complex domain has a unique

solution y D y.x; "/ holomorphic on the annulus 2 j"j1=2 � jxj � 1
2

satisfying
y.x; "/ D 2x C 2x2 C o.1/ as " ! 0 uniformly on this annulus.

(b) Using the properties of CAsEs discussed in this section, show that z.x; �/ D
y.x; �2/ has a CAsE in the annulus 2 j�j < jxj < 1

2
, as � ! 0.

Exercise 2.12. Let f Df .x; �/ be a holomorphic function defined when � 2 S2 D
S.˛2; ˇ2; �0/ and x 2 V.˛1; ˇ1; r0; �j�j/ and having a CAsE

f .x; �/ �
X

n�0

�

an.x/C gn
�

x
�

�

�

�n 2 bC .r0; V /:
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(a) Suppose that a0.0/ ¤ 0 and g0 D 0 identically. Prove that the function 1=f has
a CAsE, � 2 S2 D S.˛2; ˇ2; �0/ and x 2 V.˛1; ˇ1; r0; �j�j/ (with the same �).

(b) Assume only a0.0/ ¤ 0 and g0 arbitrary. Prove that 1=f has a CAsE, � 2 S2 D
S.˛2; ˇ2; �0/ and x 2 V.˛1; ˇ1; r0; �j�j/ if a0.0/C g0.X/ does not vanish on
the closure of V.˛1 � ˇ2; ˇ1 � ˛2; �;1/.

Exercise 2.13. Give a detailed proof of Lemma 2.7.

Exercise 2.14. This example comes from Skinner’s book [54]. Prove that the
function z given by z.x; �/ D �

xC2x3C� has a CAsE for � > 0 and x 2���;C1Œ

for any � > �1. Compute an asymptotic expansion (containing a term in ln �) for

F.�/ D
Z 1

0

z.x; �/dx:

Exercise 2.15. Suppose that y.x; �/ is a function holomorphic and bounded on the
set of all complex .x; �/ with j�j < �0, K j�j < jxj < L, where �0;K;L are some
positive numbers. Using the Laurent decomposition of y, prove that y has a CAsE

as � ! 0, uniformly on the given annulus and that this CAsE is actually convergent.
Using this result, solve again the Exercises 2.11(b) and 2.14, except for the value
of �.

2.4 Composite Expansions and Matching

Our concept of composite expansion combines the classical asymptotic expansion
in the sense of Poincaré of the form y.x; �/ � P

n�0 cn.x/�n and an expansion of
the form y.�X; �/ � P

n�0 hn.X/�n. The former expansions are called “outer”, the
latter are called “inner” expansions. These inner and outer expansions are central in
the method of matched asymptotic expansion. Although CAsEs are different from
both, there are close links with inner and outer expansions.

On the one hand, we show that a function with a CAsE also has an inner and an
outer expansion, and that these two expansions have a common region of validity.
In other words, a proof of existence of a CAsE can provide a solid foundation for the
method of matching.

On the other hand, the converse is true: if the method of matching is valid, i.e. if
a function has inner and outer expansions with a common region of validity, and if
moreover such expansions satisfy an additional property, then the function also has
a CAsE.

We emphasize that the results of this section, especially Proposition 2.17, are
not new. They present the classical relations between inner, outer and uniform
expansions adapted to our framework (see Chap. 7 for some more details).

The first result is the following.
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Proposition 2.16. Let .an/n2N be a family of functions of H .r0/ and .gn/n2N a

family of functions of G .V / with V D V.˛; ˇ;1; �/. Let an.x/ D
1
X

mD0
anmx

m and

gn.X/ �
X

m>0

gnmX
�m denote their expansions. Suppose that

y.x; �/ �
X

n�0

�

an.x/C gn
�

x
�

�

�

�n

as S2 3 � ! 0 and x 2 V.˛1; ˇ1; r0; � j�j/ in the sense of Definition 2.5.
Then, for fixed x 2 S.˛1; ˇ1; r0/, one has

y.x; �/ �
X

n�0
cn.x/�

n as S2 3 � ! 0; (2.14)

where cn.x/ D an.x/C
X

0�l�n�1
gl;n�l xl�n. Moreover, for all r > 0, this expansion

is uniform with respect to x on all x 2 S.˛1; ˇ1; r0/ such that jxj > r .
Similarly, if X 2 V and ˛3; ˇ3; �3 are such that � 2 S.˛3; ˇ3; �3/ implies � 2 S2

and �X 2 V.˛1; ˇ1; r0; � j�j/, then one has

y.�X; �/ �
X

n�0
hn.X/�

n as S.˛3; ˇ3; �3/ 3 � ! 0; (2.15)

where hn.X/ D gn.X/C
X

0�l�n
an�l;lXl . The expansion is uniform with respect to

X on compact subsets of V satisfying the above condition.

Remarks. 1. According to the literature, we will call the first expansion (2.14)
outer expansion and the second (2.15) inner expansion. Each function cn of the
outer expansion may have a singularity at x D 0 but only a pole of order at most
n; similarly each function hn of the inner expansion has polynomial growth of
order at most n as X ! 1. Thus the restraint index in the sense of Wasow
[62], Chap. VIII equals 1.

2. One can show that for every 
 2 �0; 1Œ, the outer expansion (2.14) is uniform on
jxj > j�j
 , and that the inner expansion (2.15) is uniform on jX j < j�j�
 , which
justifies the method of matched asymptotic expansions when a CAsE exists.
In both cases, we need to use N

1�
 terms in order to obtain an approximation
with remainder O

�

�N
�

. It is often preferable, however, to have uniform
approximations throughout the domain instead of two different expansions on
overlapping regions. Such uniform approximations seem indispensable if we
want to obtain estimates of Gevrey kind.
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3. In cases where the existence of a composite expansion for a function y.x; �/ can
be shown indirectly, but the functions an and gn are not yet known, one method
for determining them is to apply the preceding proposition. For fixed non-
zero x, one computes the outer expansion y.x; �/ � P

n�0 cn.x/�n, then one
eliminates the terms with negative powers of x to obtain the slow parts an.x/.
Analogously, one computes the inner expansion y.�X; �/ � P

n�0 hn.X/�n
and throws away the terms with non-negative powers of X , which gives gn.X/.
In practice, the calculation of inner and outer expansions often leads to
recurrence equations for their coefficients. This allows to compute an; gn
without having to use the cumbersome formulas for multiplication of composite
formal series.
In the case of singularly perturbed differential equations, as noted by
Gautheron/Isambert [29], the computation of the inner expansion is more
involved than the outer one. The latter only needs algebraic operations (if
the Taylor expansions of the coefficients of the equation are known). The
former, however, requires solving linear differential equations and choosing
the constant of integration such that the solution has a certain asymptotic
behavior; this introduces transcendence. For this reason, Isambert [32] calls
these outer and inner expansions algebraic and transcendental expansions,
respectively.

Proof of Proposition 2.16: Let N 2 N
� be fixed and recall the notation (2.11).

Furthermore, set
rlk.X/ D gl .X/ �

X

0<m<k

glmX
�m:

By hypothesis, there are positive constants CN ; Akn and Clk such that

8� 2 S2 8x 2 V1;� WD V.˛1; ˇ1; r0; �j�j/ jRN.x; �/j � CN j�jN ;

8x 2 V1;�
ˇ

ˇ

ˇak.x/ �
X

l<n

aklx
l
ˇ

ˇ

ˇ � Aknjxjn (2.16)

and 8X 2 V jrlk.X/j � ClkjX j�k: (2.17)

An elementary calculation gives

y.x; �/ �
X

n<N

cn.x/�
n D RN.x; �/C

X

l<N

gl
�

x
�

�

�l �
X

0<n<N

�

X

l<n

gl n�lxl�n
	

�l

D RN .x; �/C
X

l<N

rl N�l
�

x
�

�

�l ; (2.18)

hence, as jxj > r ,

ˇ

ˇ

ˇy.x; �/ �
X

n<N

cn.x/�
n
ˇ

ˇ

ˇ �
�

CN C
X

l<N

Cl N�l r l�N
	

j�jN : (2.19)
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Similarly, one has

y.�X; �/ �P

n<N hn.X/�
nD RN.�X; �/C

X

n<N

�

an.�X/ �
X

l�n
an�l lXl

	

�n

D RN.�X; �/C
X

k<N

�

ak.�X/ �
X

l<N�k
akl �

lXl

	

�k

therefore, for all R > 0 and for jX j � R,

ˇ

ˇ

ˇy.�X; �/ �
X

n<N

hn.X/�
n
ˇ

ˇ

ˇ �
�

CN C
X

k<N

AkN�kRN�k
	

j�jN : (2.20)

ut
Conversely, one has the following statement.

Proposition 2.17. Let y be a function defined for � 2 S2 D S.˛2; ˇ2; �0/ and x 2
V.�/ D V.˛1; ˇ1; r0; � j�j/. Assume that there are real numbers a; b; 
 with 0 <
a < b and 0 < 
 < 1, and for each n 2 N a function cn, cn.x/ D Pn

�

1
x

�C an.x/,
Pn polynomial without constant term, an 2 H .r0/ and a function hn D Qn C gn,
Qn polynomial and gn 2 G .V /, V D V.˛; ˇ;1; �/, ˛ � ˛1 � ˇ2 < ˇ1 � ˛2 � ˇ,
with the following properties.

Assumption 1. For all N 2 N, there is a constant C > 0 such that

ˇ

ˇ

ˇ

ˇ

ˇ

y.x; �/ �
N�1
X

nD0
cn.x/�

n

ˇ

ˇ

ˇ

ˇ

ˇ

� C j�jN.1�
/ (2.21)

for all � 2 S2 and all x 2 V.�/ with jxj > aj�j
 and

ˇ

ˇ

ˇ

ˇ

ˇ

y.�X; �/ �
N�1
X

nD0
hn.X/�

n

ˇ

ˇ

ˇ

ˇ

ˇ

� C j�jN
 (2.22)

for all � 2 S2 and all X 2 V such that �X 2 V.�/ with jX j < bj�j
�1.

Assumption 2. For any n 2 N, the polynomials Pn and Qn have degree less
than nC 1.

Then y has a CAsE for � 2 S2 and x 2 V.�/; precisely

y.x; �/ �
1
X

nD0

�

an.x/C gn
�

x
�

�

�

�n:
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Remarks. 1. As there is a common region for expansions (2.21) and (2.22), these
expansions are necessarily consistent, as shown in the proof, cf. (2.25).

2. In general we cannot get better than j�jN.1�
/ in the remainder of (2.21) and
j�jN
 in that of (2.22), as the first neglected terms have this size when PN and
QN are of degreeN .

3. This statement is a special case of a general theorem of Eckhaus’ book [17].
In the classical method of matched asymptotic expansions, one first establishes
inner and outer expansions on growing domains as � ! 0 having a nonempty
intersection. Then one constructs so-called “composite” expansions of which
our CAsEs are an example, cf. also Chap. 7.

Proof of Proposition 2.17: Let cn.x/ D PC1
mD�n cnmxm and MnN be the largest

integer M such that M
 C n � N.1 � 
/. Then (2.21) implies that for any N 2 N

there exists C2 > 0 such that

ˇ

ˇ

ˇ

ˇ

ˇ

y.x; �/ �
N�1
X

nD0

MnN
X

mD�n
cnmx

m�n

ˇ

ˇ

ˇ

ˇ

ˇ

� C2 j�jN.1�
/

as � 2 S2 and x 2 V.�/, a j�j
 < jxj < b j�j
 . For any integer S , we can find a
constant C3 such that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

y.x; �/ �
X

n�0;m��n;m
Cn<S
cnmx

m�n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

� C3 j�jS (2.23)

as � 2 S2 and x 2 V.�/, a j�j
 < jxj < b j�j
 .
Similarly, noting hn.X/ � PC1

mD�n znmX�m, one can find replacingX by x
�

that
for any integer S there exists a constant C4 such that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

y.x; �/ �
X

p�0;q��p;�q.
�1/Cp<S
zpqx

�q�pCq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

� C4 j�jS (2.24)

as � 2 S2 and x 2 V.�/, a j�j
 < jxj < b j�j
 .
As (2.23) and (2.24) uniquely determine the coefficients cnm and zpq , they must

coincide, i.e. cnm D znCm;�m for any n 2 N andm 2 Z, m � �n. One thus has the
formal equality

1
X

nD0
bhn
�

x
�

�

�n D
1
X

nD0
bcn.x/�

n; (2.25)

wherebhn andbcn denote the series associated with hn and cn.
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Now consider the sum YN .x; �/ D
N
X

nD0

�

an.x/C gn
�

x
�

�

�

�n. When a j�j
 < jxj,

we find with

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

gn
�

x
�

� �
N�n�1
X

qD1
znqx

�q�q
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

� C5 j�j.N�n/.1�
/ and hence with znq D
cnCq;�q

ˇ

ˇy.x; �/ � YN .x; �/
ˇ

ˇ �
ˇ

ˇ

ˇ

ˇ

ˇ

y.x; �/ �
N�1
X

nD0

 

an.x/C
n
X

mD1
cn;�mx�m

!

�n

ˇ

ˇ

ˇ

ˇ

ˇ

C

C6 j�jN.1�
/ :

This implies

ˇ

ˇy.x; �/ � YN .x; �/
ˇ

ˇ�
ˇ

ˇ

ˇy.x; �/ �PN�1
nD0 cn.x/�n

ˇ

ˇ

ˇC C6 j�jN.1�
/
� C7 j�jN.1�
/

(2.26)

as � 2 S2, x 2 V.�/, a j�j
 < jxj.
Using the expansions of the an, we similarly find that

jy.x; �/ � YN .x; �/j � C8 j�jN


also when � 2 S2, x 2 V.�/, jxj < b j�j
 . Together with (2.26), this shows that
for all N , there is a constant C9 such that for all � 2 S2 and x 2 V.�/ one has
jy.x; �/ � YN .x; �/j � C9 j�jN� with � D min.
; 1 � 
/.

The statement to be proven corresponds to j�jN instead of j�jN� in this last
inequality. It is obtained in two steps. On the one hand, this last assertion can also be
written: there is C10 with jy.x; �/ � YS.x; �/j � C10 j�jN , if S� > N . On the other
hand the fact that all functions an.x/ and gn

�

x
�

�

are bounded on all x; � in question

implies that there is a constant C11 such that jYS.x; �/ � YN .x; �/j � C11 j�jN . ut
Exercise 2.18. Add details for Remark 2 after Proposition 2.16.

2.5 Continuation of Composite Expansions

In connection with the inner and outer expansions of the method of matching,
we also have two results of continuation of CAsEs, which will be very useful for
solutions of differential equations.

The first result says essentially that a function with a CAsE for x in a quasi-sector,
whose inner expansion exists on a larger quasi-sector, admits the CAsE also on the
larger quasi-sector. The precise result is as follows.
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Fig. 2.2 Some domains V and˝ with different signs of �, j�j�� and �. Bold line: the boundary
of V , thin line: that of ˝, their intersection in dark gray

Proposition 2.19. Let y be a function defined for � 2 S2 D S.˛2; ˇ2; �0/ and

x 2 V1.�/ D V.˛1; ˇ1; r0; � j�j/ and having a CAsE
P

n�0
�

an.x/ C gn
�

x
�

�

�

�n,

as S2 3 � ! 0 and x 2 V1.�/, with an 2 H .r0/ and gn 2 G .V /, where V D
V.˛; ˇ;1; �/, ˛ D ˛1 � ˇ2 and ˇ D ˇ1 � ˛2. Let � > �. In the case where
� > j�j, set ˝ D D.0; �/, otherwise set ˝ D V.˛; ˇ;�� C 	; �/ with 	 > 0

arbitrarily small (Fig. 2.2).
Assume that the function Y W .X; �/ 7! y.�X; �/ can be analytically continued

on ˝ � S2 and that it has an asymptotic expansion Y.X; �/ � P1
nD0 hn.X/�n as �

tends to 0, uniformly on ˝ .
Then y can be analytically continued to the set of all .x; �/ with � 2 S2 and with

x 2 V.˛1; ˇ1; r0; � j�j/ and has a CAsE there as � ! 0.

Remarks. 1. The domain ˝ has been chosen bounded, with ˝ \ V ¤ ; and
V [˝ D V.˛; ˇ;1; �/. Signs of � and � are arbitrary. We will use this result
particularly in the case � < 0 < �.

2. The assumption on the domain and the asymptotic expansion of Y may be
slightly weakened (the domain with respect to X may depend on the argument
of �), but the version presented is sufficient for our applications to differential
equations.

3. It is possible to show this result using Propositions 2.16 and 2.17, but we prefer
to present an independent proof. One reason for this choice is that this proof
will serve for the Gevrey analog Proposition 3.8. In contrast to this, we have no
Gevrey analog of Proposition 2.17.
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Proof of Proposition 2.19: The expansion of Y in the assumption and the inner
expansion corresponding to the CAsE of y given by Proposition 2.16 coexist on
some open region, hence coincide by the uniqueness of an asymptotic expansion.
Thus, the functions hn.X/ of the assumption are necessarily the analytic continua-
tions of the coefficients of this inner expansion.

The hypothesis implies that y.x; �/ can be analytically continued to the set of
all .x; �/ such that � 2 S2 and x 2 eV 1.�/ D V.˛1; ˇ1; r0; � j�j/, precisely by
putting y.x; �/ D Y

�

x
�
; �
�

. We now use again the notation introduced in the proof
of Proposition 2.16. We have to show that the remainder RN.x; �/ given by (2.11)
is bounded by a constant times j�jN , also for x 2 eV 1.�/ n V1.�/. The assumption
on ˝ ensures that for all � 2 S2 and all x 2 eV 1.�/ n V1.�/, one has x=� 2 ˝ . By
hypothesis, there existsDN such that

ˇ

ˇ

ˇy.x; �/ �
X

n<N

hn
�

x
�

�

�n
ˇ

ˇ

ˇ � DN j�jN :

Now, the equality above (2.20) can be written

RN.x; �/ D y.x; �/ �
X

n<N

hn
�

x
�

�

�n �
X

k<N

�

ak.x/ �
X

l<N�k
aklx

l

	

�k:

Moreover, modifying the constants Akn if necessary, inequality (2.16) is valid for
all x 2 D.0; r0/, hence in particular for x 2 eV 1.�/ n V1.�/. This shows that for all
� 2 S2 and for all x 2 eV 1.�/ n V1.�/

jRN.x; �/j �
�

DN C
X

k<N

Ak N�kMN�k
	

j�jN (2.27)

with M D supX2˝ jX j D ��C ı or �. ut
The second result concerns outward continuation.

Proposition 2.20. Let 0 < r0 < er0 and let y be a function defined for � 2 S2 D
S.˛2; ˇ2; �0/ and x 2 eV 1.�/ D V.˛1; ˇ1;er0; � j�j/. Suppose that y has a CAsE
P

n�0
�

an.x/C gn
�

x
�

�

�

�n, as S2 3 � ! 0 and x 2 V1.�/ D V.˛1; ˇ1; r0; � j�j/,
with an 2 H .r0/ and gn 2 G .V /, V D V.˛; ˇ;1; �/ such that ˛ � ˛1 � ˇ2 <

ˇ1 � ˛2 � ˇ.
Assume moreover that y has an asymptotic expansion y.x; �/ � P1

nD0 cn.x/�n
as � tends to 0, uniformly for x 2 V.˛1; ˇ1; r0 � 	;er0/ with 	 > 0 arbitrarily small.

Then (2.9) is satisfied for all � 2 S2 and all x 2 eV 1.�/.

Remark. By abuse of notation, we say that y has a CAsE for � 2 S2 and x 2 eV 1.�/,
although the functions an are not necessarily defined on the whole disk D.0;er0/.

Proof. First, we can use Proposition 2.16 on the quasi-sector V.˛1; ˇ1; r0 � 	; r0/,
and by comparing (2.14) with the second hypothesis, we obtain that the functions cn
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of the hypothesis are analytic continuations of those of the proposition. Therefore
we can also continue the functions an analytically onD.0; r0/[V.˛1; ˇ1; r0�	;er0/.

It remains to estimate RN for x 2 eV 1.�/ n V1.�/. By (2.18), one has

RN .x; �/ D y.x; �/ �
X

n<N

cn.x/�
n �

X

l<N

rl N�l
�

x
�

�

�l : (2.28)

and by (2.17) jrl N�l .X/j � Cl N�l jX jl�N . By hypothesis, there are AN > 0 such
that

jy.x; �/ �
X

n<N

cn.x/�
nj � AN j�jN

for all � 2 S2 and all x 2 V1.�/ n eV 1.�/. We then obtain jRN .x; �/j � C j�jN with
C D AN CP

l<N Cl N�l r l�N0 . ut
Exercise 2.21. Use Propositions 2.16 and 2.17 to prove Proposition 2.19.

2.6 Quotients of CAsEs

Here we investigate under which conditions the multiplicative inverse of a function
with a CAsE has a CAsE.

If the first slow term a0 is non zero at x D 0, then this inverse has a CAsE thanks
to composition with the function f 7! 1=f , see Exercise 2.12. Here we investigate
a more general situation.

Let yD y.x; �/ be a function defined and analytic for � 2 S D S.�ı; ı; �0/
and x 2 V.˛; ˇ; r0; �j�j/, having a CAsE y.x; �/ � P

n�0
�

an.x/C gn
�

x
�

�

�

�n

as � ! 0. We propose a slightly more general statement, more useful in practice:
it establishes conditions under which there exists k 2 N such that the function
.x; �/ 7! �k=y.x; �/ has a CAsE.

By Proposition 2.16, y has an inner expansion

y.�X; �/ �
X

n�0
hn.X/�

n as S2 3 � ! 0;

uniformly with respect to X on compact subsets of S.˛1; ˇ1;1/ where ˛1 D ˛ �
ı; ˇ1 D ˇ C ı and

hn.X/ D gn.X/C
X

0�l�n
al;n�lXn�l : (2.29)

For all n, let
C1
X

mD�n
hnmX

�m denote the asymptotic expansion of hn at infinity and

let vn D val.hn/ denote the least integerm � �n such that hnm ¤ 0. If hn is flat, we
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put vn D val.hn/ D C1. We say that y is degenerate, if it is flat or if there exists
N 2 N such that h0 D : : : D hN�1 D 0 and hN ¤ 0 is flat. If y is nondegenerate,
let C.y/ denote the pair .N;M/ with N 2 N such that h0 D : : : D hN�1 D 0,
hN ¤ 0 and M D val.hN / � �N .

Proposition 2.22. With the previous notation, the following three conditions are
equivalent.

(a) There exist k 2 N,e�0 < �0,er0 < r0 ande� � � such that the function .x; �/ 7!
�k=y.x; �/ has a CAsE as � ! 0 in eS D S.�ı; ı;e�0/ and x 2 V.˛; ˇ;er0;e�/.

(b) y is non-degenerate and, if C.y/ D .N;M/, one has val.hn/ � M � n C N

for all n � N .
(c) There exist k 2 N, ` 2 Z such that the function .x; �/ 7! ��kx`y.x; �/ has a

CAsE whose first slow coefficientea0 satisfiesea0.0/ ¤ 0.

Remarks. 1. The second condition in (b) can also be written in terms of the outer
expansion and the expansions of its coefficients. This is a consequence of the
relation (2.25).

2. Graphically, the second condition in (b) means that the points with coordinates
.n;m/ such that hnm ¤ 0 (the “support” of the inner expansion) are all in the
quadrant on the right of the vertical line and above the line of slope �1 passing
through C.y/, see Fig. 2.3. Since hn has a polynomial part of degree at most
n, we already know that this support is in the quadrant on the right of the axis
and above the second bisector. The change of variable y ! z W .x; �/ 7!
��kx`y.x; �/ induces a shift of just �C.y/ D .�N;�M/ on the supports, with
N D k � ` and M D `.

3. The proof also provides a procedure to calculate the CAsE for �k=y.x; �/. Using
the above shift, the situation is reduced to the case where y has a first slow term
a0 non-zero at x D 0. Thus we obtain the CAsE by left composition with the
function u 7! 1=u.

Proof of Proposition 2.22: We show the implications (b))(c))(a))(b). Suppose
that condition (b) is satisfied.

If M < 0, first consider z.x; �/ D �

�

x

��M
y.x; �/. As a product of two functions

having CAsEs, z has a CAsE on the same domain as y. The corresponding inner
expansion is that of XMy.�X; �/ and satisfies therefore a condition similar to
(b) with .N; 0/ instead of .N;M/.

If M > 0, consider z.x; �/ D xMy.x; �/. As before, z has a CAsE and the
corresponding inner expansion is that of �MXMy.�X; �/, thus satisfies a condition
similar to (b) with .N CM;0/ instead of .N;M/. Therefore both casesM > 0 and
M < 0 can be reduced to the case M D 0.

IfM D 0, then formula (2.29) and the condition on the hn show that asm D 0 for
0 � s < N and m � 0, and that aN0 ¤ 0. Since the functions as are analytic, this
implies as D 0 for s D 0; : : : ; N � 1. Then the functioney W .x; �/ 7! ��Ny.x; �/
has also a CAsE on the same domain as y and satisfies the condition (c). To sum up,
in the three cases y satisfies condition (c) with k D N CM and ` D M .
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M

N0

C(y)

slope q

Fig. 2.3 In gray, the part of the plane containing the support of the inner expansion of y. In bold,
the boundary of the analogous part for z

Now suppose the condition (c) satisfied and set z.x; �/ D ��kx`y.x; �/. For
er0 ande�0 small enough and e� � � suitable, the function z does not vanish when
� 2 eS D S.�ı; ı;e�0/ and x 2 V.˛; ˇ;er0;e�/. Proposition 2.6(b) applies with the
function f W u 7! 1=u and we deduce that 1z has a CAsE. In the case where ` � 0,
the function .x; �/ 7! x`=z.x; �/ has therefore a CAsE, which proves (a). In the case

` < 0, the function .x; �/ 7! �

x
�

�`
=z.x; �/ has a CAsE, which gives (a) with k � `

instead of k.
Finally, suppose that condition (a) is satisfied, let ey.x; �/ D �k=y.x; �/ and let

ehn denote the coefficients of the inner expansion ofey. Since .yey/.x; �/ D �k , there
is a first term hr which is not identically zero in the inner expansion of y and a
first term ehs for ey, with r C s D k and hrehs D 1. Each of these functions is of
polynomial growth as X ! 1, so none can be flat. Thus the two functions y andey
are nondegenerate. Set .N;M/ D C.y/ and .eN;fM/ D C.ey/.

For a proof by contradiction, suppose there exists n > N such that val.hn/ <
M �nCN . Let q D min

˚ val.hs/�M
s�N I s > N 
 < �1 and M D fs � N I val.hs/�

sq D M � Nqg; it is a set of cardinal at least 2 (containing at least N and some s
for which the minimum q is attained) and finite (since val.hs/ � �s).

If ey satisfies condition (b), we set eq D �1, otherwiseeq is the analog of q for
y. Switching ey and y if necessary, we can assume without loss of generality that
q � eq. Let then K D minfval.ehs/ � sq I s > eN g and N denote the finite and
nonempty set of all s 2 N such that val.ehs/ � sq D K . Note that N D feN g if
eq > q and that the cardinal of N is at least 2 ifeq D q.

Recall that the minimum of M is n1 D N , and let n2 D max M ; let en1 and
en2 denote the minimum and the maximum of N . Consider the inner expansion
of p D yey: p.�X; �/ � P

n�0 pn.X/�n. Thus one has pn D P

rCsDn hrehs for all

n � 0. If n D n1Cen1 then hn1ehen1 has valuationMCen1CK D M �NqCnqCK;

if r C s D n D n1 Cen1 with r ¤ n1, then the valuation of hrehs is greater than that
number because of the choice of n1 anden1. So we obtain pn1Cen1 ¤ 0. Similarly, we
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also get pn2Cen2 ¤ 0. Since n1 < n2 anden1 � en2, this contradicts the assumption
that the product yey is reduced to the monomial �k . ut

2.7 Multiple CAsEs

In this section we call vertex of a function y a point near which y has a CAsE which
is not a classical asymptotic expansion, i.e. at least one of the fast terms gn is non
zero. Here we would like to discuss the case of a domain with two vertices on its
boundary. The following statement shows that it not necessary to generalize the
concept of CAsE for uniform expansions on domains that have several vertices on
their boundary, because we can reduce this situation to the case of a single vertex.
For simplicity, we only study the case of a real interval.

Proposition 2.23. Let a < b < c < d be four real numbers and let y W
�a; d Œ��0; �1� ! R be a function having a CAsE

y.x; �/ �
1
X

nD0

�

an.x/C gn
�

x�a
�

�

�

�n

as � ! 0, uniformly on �a; cŒ, with an holomorphic in a neighborhood of Œa; c� and
gn 2 G .S/, S D S.�ı; ı;1/ with some ı > 0.

Assume that y also has a CAsE

y.x; �/ �
1
X

nD0

�

bn.x/C hn
�

d�x
�

�

�

�n

as � ! 0, uniformly on �b; d Œ, with bn holomorphic in a neighborhood of Œb; d � and
hn 2 G .S/.

Then y has an asymptotic expansion

y.x; �/ �
1
X

nD0

�

cn.x/C gn
�

x�a
�

�C hn
�

d�x
�

�

�

�n (2.30)

as � ! 0, uniform on �a; d Œ with the gn; hn of the previous formulas and with
functions cn holomorphic in a neighborhood of Œa; d �.

More precisely, if gn.X/ � P1
mD1 gnmX�m and hn.X/ � P1

mD1 hnmX�m as
X ! 1, then cn.x/ D an.x/�Pn�1

`D0 h`n�`.d�x/`�n when x is in a neighborhood
of Œa; c� and cn.x/ D bn.x/ �Pn�1

`D0 g` n�`.x � a/`�n when x is in a neighborhood
of Œb; d �.

Remark. The functions cn are the non-polar parts of the functions bn at the point
x D a and the non-polar parts of the functions an at the point x D d .
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Proof. By the classical Borel–Ritt theorem, we construct two functions g; h with
g.X; �/ � P

n�0 gn.X/�n and h.X; �/ � P

n�0 hn.X/�n uniformly on S . Then we

consider the difference z.x; �/ D y.x; �/�g� x�a
�
; �
��h�d�x

�
; �
�

. Proposition 2.16,
applied to h respectively g, shows that z has two slow expansions uniform on Œa; c�
and on Œb; d �. By the uniqueness of asymptotic expansions, they must coincide on
Œb; c�. This implies that their coefficients must be continuations of each other and
we obtain the statement. ut
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