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1 Introduction

Is it possible that current utility maximization takes place at the cost of human
lives? This possibility was already implied in the long-run consumer optimization
models of Dasgupta and Heal (1974), Solow (1974), Stiglitz (1974), Krautkraemer
(1985), and Pezzey and Withagen (1998) who argued that the scarcity of natural
resources may lead to ever-decreasing per capita consumption. Per capita consump-
tion may also decrease if excessive pollution impairs production and compromises
life-supporting systems as was argued by Keeler et al. (1971), Plourde (1972), Fos-
ter (1973) and Smulders and Gradus (1996). However, in both types of models the
demographic aspect is deficient as population either keeps constant or grows at a
constant rate in spite of decreasing consumption numbers.

In this paper, I explicitly assume that population is endogenous to the environ-
ment, i.e., there is feedback from the environment to mortality which rises if popu-
lation is not environmentally supported, this feedback being defined as a “positive
check” by Robert Malthus (1914). Positive check may occur either because of the
increasing scarcity of resources or because of the continuing concentration of pollu-
tants. In this paper, I focus on pollutants as emerging evidence on the lethal effects
of the pollutants maintains that the positive check is at work. This evidence consists
of medical and econometric studies, showing that there already is a statistically sig-
nificant increase in mortality due to urban air pollution, and that climate change may
induce further increases in the future. Other global concerns, such as the pollution
of ground waters and oceans, are also possible, but less evidence on their mortality
effects has been received thus far.1

1In spite of my emphasis on pollutants, the model can be generalized to natural resources since
resource depletion can be seen as pollution in the extended sense (Keeler et al. 1971).
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Section 2 of this paper reviews the empirical evidence on the positive check and
Sect. 3 introduces a model of optimal pollution with endogenous population. Sec-
tion 4 discusses the sustainability implications and a new definition for sustainability
is supplied. The role of technical progress is shown to be less positive than what is
usually suggested. Section 5 gives a parametric example and Sect. 6 closes the paper.
To concentrate on population, the simplest model of optimal pollution is provided.
Even so, endogenous population tends to make the model “murky” (Solow 1974)
but excessive complexity can be avoided by modeling in virtual time.

2 The Positive Check—Recent Evidence

This Section reviews the global evidence on environmental mortality with focus on
air pollution and climate change (CO2 emissions). Mortality induced by air pollu-
tion has been debated since the smog in the Meuse Valley in 1930 and London in
1952 took the lives of 60 and 4000 people (Nemery et al. 2001 and Logan 1953).
Recently, the Clean Air for Europe program (CAFE) and WHO have summarized
the European research by collecting 629 peer-reviewed time-series studies and 160
individual or panel studies up to February 2003 (WHO 2004). In the original studies,
daily adult mortality in several European cities was regressed against daily changes
in air pollution as indicated by particular matter (PM) and ozone.2 The summary
estimates show that there is a statistically significant 0.6% and 0.3% increase in
mortality for each 10 µg/m3 increase in PM and ozone respectively.

The study for the effects of long-term PM exposure got its onset in the United
States as Pope et al. (2002) analyzed questionnaires from 1982 which provided data
on sex, race, smoking, alcohol consumption, etc., so that controlling for alternative
risk sources was possible. The mortality data which were collected until 1998 im-
plied that there was 4%, 6%, and 8% increases in all-cause, respiratory, and lung
cancer mortality respectively for each 10 µg/m3 increase in PM. Evans and Smith
have estimated similar increases (Evans and Smith 2005). For a recent review of
long-term study literature, see Raaschou-Nielsen et al. (2011). The estimates of
Pope et al. (2002) were applied to the European data by CAFE and WHO to cal-
culate that the short-term and long-term exposures were together responsible for
370 000 premature deaths in 2000 in Europe (WHO 2004). The infant mortality risk

2Air pollution consists of several components, of which particulate matter (PM) and ozone are the
most dangerous (WHO 2004). The term particulate matter (PM) refers to solid airborne particles of
varying size, chemical composition and origin. For example, the particles in PM10 have a diameter
of less than 10 µm and are mainly combustion-derived, either from traffic or from energy produc-
tion, often from long-distance sources. Existing evidence suggests that the smaller the particles
are, the more deeply into the lung they penetrate (WHO 2004). Air pollution increases mortality
mainly through an increase in respiratory and cardiovascular diseases and lung cancer (Samet et
al. 2000), but an increase in skin cancer is also reported (Brunekreef and Holgate 2002). All age
groups are affected, but unborn and young children as well as the elderly are the most vulnerable
(Pope and Dockery 2006).
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has been studied by for example by Currie and Neidell (2004), Chay and Green-
stone (2003) and Scheers et al. (2011). WHO has summarized that, taken all types
of deaths together, urban outdoor air pollution causes 1.3 million deaths worldwide
per year (WHO 2011).

In climate-change studies, the mortality estimates are based on simulations
(Pitcher et al. 2008). Tanser et al. (2003), for example, have applied the Hadley
Centre’s climate model to estimate that the increase in malaria distribution and
the prolonged malaria season would lead to a 25% increase in the risk of death
from malaria by 2100, mainly in Africa. The abundant literature on climate change
has been collected and analyzed by the UN’s Intergovernmental Panel on Climate
Change (IPCC). Its Third Assessment Report suggests that mortality will increase
because of weather extremes, because of environmental changes which lead to dis-
eases or to water and food shortages, or because of conflicts in displaced populations
(IPCC 2003, updated 2007). Relying on the IPCC, WHO has published a summary
report on human health and climate change (WHO 2003). This report projects a
maximum increase in the risk of 83%, 17%, and 32% for the great killers; malaria,
diarrhoea, and malnutrition, respectively. There is also a great projected risk increase
in coastal floods, but the number of deaths may be low (Gosling et al. 2009). The
mortality effects of climate change are unequally distributed and are particularly se-
vere in countries with already high disease burdens, such as sub-Saharan Africa and
Asia (IPCC 2003). Nevertheless, Deschênes and Greenstone (2011) suggest that,
under a business-as-usual scenario, climate change will also lead to an increase in
the overall U.S. annual mortality rate ranging from 0.5% to 1.7% by the end of the
21st century. WHO has also summarized that, currently, climate change contributes
to 150 000 deaths each year (WHO 2012).

3 The Model

3.1 Modeling the Positive Check

To model the positive check, note that the population growth rate L̇/L = n is the dif-
ference between fertility and mortality. In what follows, I assume that only mortality
depends on pollution while fertility is constant.3

Pollution may increase mortality (decrease population growth) both as emissions
E and as stocks S, but it seems appropriate to model in terms of stocks because their
mortality effects are more longstanding. Hence, let:

n = n(S), n(0) > 0, n′(S) < 0, n(Ŝ) = 0, (1)

3Some studies suggest, however, that fertility may respond to environmental degradation both be-
cause it is causing poverty and because toxins etc. cause miscarriage (Lutz et al. 2005). Because
the emphasis of this paper is on the positive check, the fertility effects are excluded, for simplicity.
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Fig. 1 Possible functional
formulas for the positive
check. Meadows et al. (1972)

where Ŝ is the critical stock beyond which population starts to decrease. Normaliz-
ing the initial level of population to unity it holds

L(t) = exp
∫ t

0
n
[
S(τ)

]
dτ. (2)

Several functional formulas satisfy the assumption of the population growth
function (1). Some alternatives, repeated in Fig. 1, have been suggested already
in the Report of Rome (Meadows et al. 1972). In A population growth decreases
linearly, in C the negative effect is exponential, and in B mortality increases as pol-
lution stock bypasses the threshold level after which the positive check cuts in and
mortality starts to increase (population growth starts to decrease). Section 5 gives a
closer look at these alternative cases.

The accumulation of the pollution stock is dictated by emissions and abatements
which are given by an abatement function δ(S),

Ṡ = E − δ(S). (3)

The first component of (3) can be rewritten as E = (E/L) · L to see that the envi-
ronmental burden of population comes from two sources, namely from per capita
emission E/L and from the number of people L.

The role of the second component, the abatement function δ(S) has been broadly
debated in the literature.4 In this paper, I assume a simple hump-shaped abatement
function which is strictly concave. Thus, let δ(0) = δ(S̃) = 0 and δ′(0) > 0, δ′(S̃) <

0, δ′′(S) < 0 where S̃ > 0 is the carrying capacity of the environment. To allow the
possibility of negative population growth in the area 0 < S < S̃, I assume Ŝ < S̃.

3.2 The Household Optimization

Consider an infinitely living representative household which wants to maximize
its Benthamian total utility. At each instant of time, the total utility then becomes

4For a review, see Tahvonen and Salo (1996).
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u(C/L) · L, where u satisfies the standard concavity properties and Inada condi-
tions.5 In its intertemporal choice, the household faces the discount factor ρ > 0. To
focus on population and pollution in the absence of production problems, I adopt
the simplest formulation for the rest of the model in line with Foster (1973) who
assumes that consumption C takes place directly at the cost of environment, i.e.,
C = E. The representative household then chooses emissions E(t) to maximize

U =
∫ ∞

0
u
[
E(t)/L(t)

]
L(t)e−ρtdt =

∫ ∞

0
u
[
E(t)/L(t)

]
e− ∫ t

0 {ρ−n[S(τ)]}dτ dt, (4)

subject to (3). The mechanism of the model is the following: by choosing the optimal
path for E(t), the household determines S(t), which in turn dictates the optimal
population growth rate n(t) and the optimal population L(t). Finally, per capita
emissions E(t)/L(t) are determined.

Because the discount factor in (4) is not constant, I apply the virtual time tech-
nique suggested by Uzawa (1968). Let us denote

Δ(t) ≡
∫ t

0

{
ρ − n

[
S(τ)

]}
dτ

to get dΔ(t)
dt

= ρ − n[S(t)] and dt = dΔ(t)
ρ−n[S(t)] . The problem can now be rewritten in

virtual time as:

U =
∫ ∞

0

u(E/L)

ρ − n(S)
· e−Δ · dΔ,

S̊ ≡ dS

dΔ
= dS

dt

dt

dΔ
= E − δ(S)

ρ − n(S)
,

where E ≡ E[Δ(t)], S ≡ S[Δ(t)], L ≡ L[Δ(t)]. This concave problem with con-
stant discount factor can be solved in virtual time by using standard methods (Ben-
veniste and Scheinkman 1982). Given that both the population size L and its growth
rate n depend on the pollution stock S through (1) and (2), the current value Hamil-
tonian and the necessary conditions become:

H(S,E,λ) = 1

ρ − n(S)

{
u(E/L) + λ(Δ)

[
E − δ(S)

]}
,

∂H(S,E,λ)

∂E
= 0 ⇐⇒ −u′(E/L) = λ(Δ) · L, (5)

λ̊ ≡ dλ(Δ)

dΔ
= −∂H

∂S
+ λ(Δ), (6)

lim
Δ→∞λ(Δ)e−ΔS = 0. (7)

5Krutilla (1967) and Barbier (2003).
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Taking the derivative in (6) and rearranging one gets

λ̊/λ = −(1/ρ − n)
{
n′H/λ − (

δ′ + ρ − n
)}

. (8)

To eliminate λ, one can follow the usual procedure by taking the derivative of (5)
in terms of (virtual) time. These derivatives are denoted by E̊ ≡ dE/dΔ and L̊ ≡
dL/dT . To simplify the analysis, let us adopt the CIES utility function u(E/L) =
[(E/L)1−θ ]/(1 − θ), θ �= 1 with u′′ · (E/L)/u′ = −θ to give

λ̊/λ = −θE̊/E + (θ − 1)L̊/L, (9)

which together with (8) gives E̊/E = [1/θ(ρ − n)]{−n′H/λ − (δ′ + ρ − θn)},
where L̊/L = n/(ρ −n) is applied. Substituting the expression −n′H/λ = [n′/(ρ −
n)][θE/(θ − 1) − δ] and noting E̊ = Ė/(ρ − n) one finally derives

Ė

E
= 1

θ

{
n′

ρ − n

[
θE

θ − 1
− δ

]
− (

δ′ + ρ − θn
)}

. (10)

The non-linear equations (3) and (10) supply the solution to the model. The phase
lines become:

Ė

E
= 0 ⇔ E = θ − 1

θ

{
δ + ρ − n

n′
(
δ′ + ρ − θn

)}
, (11a)

Ṡ = 0 ⇔ E = δ. (11b)

In the (S,E)-space, the shape of the Ṡ = 0-line is that of δ, i.e., inverted U with
δ(0) = δ(S̃) = 0 (Fig. 2). The shape of the Ė = 0-line depends on the value of θ .
Because Hall has argued that empirical elasticities tend to be large (Hall 1988), I as-
sume θ > 1, but nothing essential is changed if θ < 1 is assumed instead. Even for
θ > 1, there is variety in the shape of the Ė = 0-line. The following is the sufficient
condition for the existence of at least one interior steady state:

Lemma 1 If δ′(0)+θn(0) > ρ and δ′(S̃)+θn(S̃) < ρ then the problem has at least
one steady state S∗ ⊂ (0, S̃).

Proof In the (S,E)-space the Ṡ = 0-line hits the S-axis at S = 0 and at S = S̃. For
S = 0 and S = S̃, (11a) then becomes Ė = 0 ⇔ E = θ−1

θ
{ρ−n

n′ (δ′ + ρ − θn)}. By
assumption, θ − 1 > 0, ρ − n > 0 and n′ < 0. Graphically, if δ′(0) + θn(0) > ρ and
δ′(S̃) + θn(S̃) < ρ, the Ė = 0-line lies below the Ṡ = 0-line for S = 0 and above
it for S = S̃ (Fig. 2). By continuity, the Ė = 0-line intersects the Ṡ = 0-line at least
once. �

To comprehend, consider marginal emissions. If consumed tomorrow, emissions
are discounted by ρ. If consumed today, it adds to the pollution stock S and produces
a change in abatement δ′(S) and population n(S). If the sum of the latter two is
larger, consumption today pays. The first unit of emission is consumed if δ′(0) +
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Fig. 2 The phase diagrams of the model

θn(0) > ρ. On the other hand, if δ′(S̃)+ θn(S̃) < ρ it never pays to pollute until the
carrying capacity S̃.

Depending upon the properties of the population growth function (1), the Ė = 0-
line may be non-linear and the model may have several steady states; I assume that
the number of the steady states is either one or three as shown in Fig. 2. The local
stability analysis in Appendix shows that the single steady state is a saddle with
stable manifolds running from the North-West and South-East, as the left panel of
Fig. 2 illustrates. If the number of the steady states is three (the right panel of Fig. 2),
then the first and third are saddles but the second is an unstable focus or node. The
following lemma characterizes all saddle-stable steady states:

Lemma 2 Inefficient under-accumulation of the pollutant is not possible.

Proof Equations (11a) and (11b) imply that in a steady state

θ − 1

θ

{
δ + ρ − n

n′
[
δ′ + ρ − θn

]} = δ. (12)

The transversality condition is limΔ→∞{λ(Δ)e−ΔS(Δ)} = 0. Because the model
tends to the steady state, S and n(S) go to constants S∗ and n(S∗). In a steady state,
E̊ = 0 so that (9) implies λ̊/λ = (θ − 1)L̊/L, which is a constant in the steady state.
The transversality condition then requires (θ − 1)L̊/L − 1 < 0. Because L̊/L =
n/(ρ − n), we get (θ − 1)n(S∗)/(ρ − n(S∗)) − 1 < 0 and further

ρ − θn
(
S∗) > 0. (13)

Arranging and using (12) we get ρ − θn = n′
(ρ−n)(θ−1)

δ − δ′ > 0. Because
n′

(ρ−n)(θ−1)
δ < 0, it must be δ′(S∗) < 0. Therefore, the steady state is located on

the downwards sloping part of the Ṡ = 0-line. �
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4 Sustainability and Technical Progress

The Brundtland Commission 1987 defines sustainable development as a develop-
ment that “meets the needs of the present without compromising the ability of fu-
ture generations to meet their own needs” (WCED 1987). This definition refers to
non-decreasing consumption or non-decreasing utility, concepts also used by most
economists (for a review, see Pezzey 1992). With the positive check present, the
concept of sustainability needs a redefinition:

Definition An optimal path is sustainable if it provides non-decreasing consump-
tion for a non-decreasing population.

Thus, an optimal path can lose sustainability either because per capita consump-
tion decreases or because population decreases.

Consider first a steady state. Recall that E = C. The growth rate of the per
capita consumption is γC/L = Ė/E − L̇/L. In the steady state, E is constant so that
γC/L = −L̇/L = −n(S∗). Three alternatives are possible. For n(S∗) > 0, the popu-
lation keeps increasing and per capita consumption decreasing. For n(S∗) = 0, both
the population and per capita consumption are constants. For n(S∗) < 0, an ever-
decreasing population enjoys ever-increasing per capita consumption. Note that this
steady state implies limt→∞ L(t) = 0 so that, asymptotically, the size of the popula-
tion vanishes to zero. Thus, of the above alternatives, only n(S∗) = 0 is sustainable.

Which of the above cases realizes? First note that the a priori assumptions ρ > 0
and ρ −n(S) > 0 pose no explicit limit to signn(S∗). Another candidate that would
limit signn(S∗) is the transversality condition in (13) but for the suitable values of
ρ and θ it can hold for positive and negative values of n(S∗). Thus, in the steady
state S∗ the optimal population may be constant, increasing, or decreasing because
the utilitarian objective functional

∫ ∞
0 u(E/L)Le−ρtdt may take its maximum both

at high E/L and low L or vice versa. Therefore, it may well be optimal to increase
consumption at the cost of population.

Some optimists argue, however, that technical progress ultimately warrants sus-
tainability (Neumayer 1999, for example). To see whether this optimism is sup-
ported by the model, let A(t) be the available technology at time t and assume that
technical progress is exogenously running at rate x so that A(t) = ext for A(0) = 1.
Further, let technical progress be consumption augmenting in the meaning that, at
every instant of time t , we have C = extE implying that for given emissions it is
possible to consume more than before (Krautkraemer 1985). Per capita consumption
then becomes

C/L = extE/L. (14)

Per capita consumption C/L grows at rate γC/L = Ė/E + x − n. In a steady state,
Ė/E = 0, so that γC/L is positive if x > n(S∗). It is thus possible to have growing
per capita consumption and growing population together. However, positive popu-
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Fig. 3 Technical progress shifts the Ė = 0-line down and increases the steady state pollution S∗

lation growth is by no means warranted. To see why, apply (14) to (4)–(9) to derive

Ė

E
= 0 ⇔ E = θ − 1

θ

{
δ + ρ − n

n′
[
δ′ + (θ − 1)x + (ρ − θn)

]}
. (15)

The derivative of (15) in terms of x is:

∂E

∂x

∣∣∣∣
Ė=0

= (θ − 1)2(ρ − n)

θn′ < 0.

Therefore, the Ė = 0-line shifts down as the pace of technical progress increases
(Fig. 3).

To comprehend, note that in the equilibrium, the negative utility effect of a
marginal emission through an increase in S and a decrease in population growth,
and its positive utility effect through an increase in consumption are equal and fur-
ther emissions are rejected. Technical progress increases the positive consumption
effect and larger emission are accepted. Given the biologically determined Ŝ, it is
then more likely that Ŝ < S∗ and n(S∗) is negative. Therefore, contrary to conven-
tional wisdom, we find that technical progress does not necessarily save us because
it makes extra consumption and emission pay.

To stipulate γC/L = Ė/E + x − n during the transitional period, write

Ė

E
= n′

(ρ − n)(θ − 1)

{
Ṡ + 1

θ

[
δ − (ρ − n)(θ − 1)

n′
[
δ′ + ρ − θn + (θ − 1)x

]]}
,

where the leftmost element is the positive difference of the Ṡ = 0 and E = 0-lines
indicating Ė/E < 0 along the north-western saddle path. Further, as earlier, we
have limS→S∗ Ė/E = 0. Therefore, the sign of limS→S∗ γC/L depends on the sign
of x − n(S∗). In particular, for n(S∗) < 0 we have x − n(S∗) > 0 for all x and
limS→S∗ γC/L = Ė/E + x − n > 0 implying that per capita consumption increases
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as the economy approaches the steady state n(S∗) < 0.6 The following proposition
summarizes the results:

Proposition If the optimal population growth in the steady state is negative, then
per capita consumption increases as the economy approaches the steady state.
A high rate of technical progress increases the probability for negative steady state
population growth.

5 Parametric Examples

Consider the current pollution-population situation. The population on our planet is
larger than ever and increasing, and many specialists argue that we are running out
of food supply, that air pollution increases, and that global warming is already on
its way. The evidence in Sect. 2 indicates that some signals of the positive check are
already available. The parametric examples of this Section try to illustrate the this
situation and to give some ideas how our demographic and environmental future
looks like.

The abstract style of the model naturally makes its parametric presentation diffi-
cult but not impossible.7 Let us start with the assumption that the carrying capacity
of the environment S̃ takes some arbitrary value, say S̃ = 1000. Since this value
refers to a complete disappearance of life, it seems that, in spite of some alarming
signals, this situation is not very close yet. Thus, let the current pollution stock be
S(0) = 250 which is one quarter of S̃ = 1000. Further, let n(S(0)) = 0.005, indicat-
ing that the current (initial) population growth rate is 0.5%. Next, assume that the
environmental mortality is high enough to push the population growth below zero
if pollution reaches three quarters of S̃ = 1000, implying that the critical value is
Ŝ = 750.

Other parameters of the model are adapted such that they are in line with the
benchmark values above. Consider the population function given in (1) and Fig. 1.
The parametric examples provided here concentrate on cases A and B which refer
to linear and threshold population function respectively (Fig. 1). These functions are
specified as

n(S) = β − ηS, (16a)

n(S) = β − α

1 + (μS)−γ
, (16b)

6The slope of the entire time path for γC/L depends on limS→0 γC/L. This and the cases n(S∗) > 0
and n(S∗) = 0 are not considered for shortness.
7The critical obstacle, preventing a full calibration on real data is that, on order to focus on popula-
tion and pollution, no production function is specified in the model. The main simplification is that
the stock of capital (another state variable) is left away, which makes the optimization procedure
much simpler and the phase portrait much more intuitive.
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where the latter is one of the simplest expressions to produce a threshold function.
In the linear case (16a), the demographic response to pollution is given by a single
parameter, η > 0, whereas this response is more complicated in the threshold case
as β − α gives the lowest population growth reached, μ > 0 multiplies the effect
of pollution such that a large value of μ leads to negative population growth at low
concentrations and γ > 0 gives the curvature of the threshold function with high
values referring to a highly curved shape and severity of the mortality crisis. In
both (16a) and (16b), the parameter β gives the autonomous population growth, i.e.,
the population growth rate which prevails in a complete the absence of pollution
(S = 0).

To meet the benchmark values n(S(0)) = n(250) = 0.005 and S̃ = 750, the pa-
rameters of the linear case (16b) must be β = 0.0075 and η = 0.00001. In the non-
linear case (16b), the autonomous population growth rate β ≈ 0.005 directly war-
rants n(S(0)) = n(250) = 0.005. The choice α ≈ 0.020 indicates that the lowest
population growth reached is −0.15%, a value that seems reasonable even though
it can not be derived from the benchmark values above. Further, if γ = 8 then
μ ≈ 0.00116 warrants the property S̃ = 750 for the threshold case. The top panel in
Fig. 4 illustrates.

The abatement function δ(S) takes the standard logistic formula

δ(S) = rS

(
1 − S

S̃

)
, (17)

in which r is the intrinsic rate of annual decay with an assumed value of r = 0.175.
Conventional values θ = 4 and ρ = 0.03 describe the preferences (see Barro and
Sala-i-Martin 1995, for example). Two rates of technical progress are assumed,
namely x = 0.00 and x = 0.02. All parameters are collected to Table 1. To summa-
rize, there will be four cases, the linear case without and with technical progress,
referred to as A00 and A02, and the threshold case without and with technical
progress, referred to as B00 and B02 respectively.8

Table 2 reports the main steady-state results of the parameterized model and
Fig. 4 illustrates, showing that all cases have a single steady state S∗. Table 2
shows that, in the absence of technical progress we have S∗ < Ŝ both in linear
and threshold cases while, in the presence of technical progress, the opposite is true,
i.e., S∗ > Ŝ. Thus, technical progress makes the steady state population to decrease
both in the linear and threshold case, the half-life times being 3623 and 181 years,
respectively (Table 2). On the other hand, the steady state population increases by
0.17% or 0.45% if there is no technical progress, doubling in 409 and 153 years
(Table 2).

The depicted off-steady-state paths for population in Fig. 5 (left) show that pop-
ulation first rises from the initial value L(0) = 1 in all cases, continues to rise
for A00 and B00, almost levels-off for A02 and starts to decrease for B02. In

8Calculations are performed by Mathematica 7.0. Time-elimination method is used to derive the
saddle paths (Mulligan and Sala-i-Martin 1991).
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Fig. 4 The parametric
population growth functions
A and B (top), the phase
diagram for the case A00
(middle), and a combined
phase diagram for all cases
(bottom)

the latter case, the initial population L = 1 is reached after 160 years. The dif-
ference between the population projections is prominent, indeed. The per capita
emission (per capita consumption) paths, instead, are rather similar initially. But af-
ter some hundred years, per capita emissions along B02 start to rise as the number
of people decreases, meeting the proposition in Sect. 4. Thus, in B02, it is opti-
mal to choose higher and higher per capita consumption at the cost of lower and
lower number of people. Note also that per capita consumption almost levels-off
in A02. Given that population levels-off as well, A02 almost meets the sustain-
ability as defined in Sect. 4, but only by change.9 To summarize, the parametric
example provided here imply that the utility-maximizing path with positive check
may take a large variety of consumption-population combinations depending upon

9Note, that in the presence of technical progress, however, the case with rising per capita consump-
tion and rising population in the steady state is possible, see Sect. 4.
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Table 1 The parameters of
the model Parameter Linear A Threshold B

S̃ 1000 1000

r 0.175 0.175

β 0.0075 0.005

η 0.00001

α 0.020

μ 0.00116

γ 8

θ 4 4

ρ 0.03 0.03

x 0.00 or 0.02 0.00 or 0.02

the parameters of the population growth functions and on the rate of technical
progress.

Several extensions of the current model are both necessary and possible. Maybe
the first of them would be to include a realistic production function in order to
see how the role of population (labor) as a factor of production changes the re-
sults. A more realistic version of technical progress would take this progress as a
response to environmental degradation and overpopulation. This paper assumes that
all technical progress is consumption-augmenting, but technical progress may also

Table 2 The results of the model

Results A00 A02 B00 B02

x 0.00 0.02 0.00 0.02

S∗ 580.7 769.1 545.8 833.8

n(S∗) 0.17% −0.019% 0.45% −0.38%

Doubling/half-life (years) 409 3623 153 181

Fig. 5 The parametric time paths for population and per capita consumption
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save lives and increase longevity. It may be “dirty” or “clean” as it may either in-
crease the number of polluting product variants or rise the consumer’s utility value
of constant-pollution goods (Palokangas 2012; Smulders et al. 2011). Furthermore,
since new ideas and R&D are positively related to the population size (Kremer
1993), the economies should be better equipped to tackle the environmental prob-
lems in the future. Public policies to support technical progress should be modeled
as well. On the consumer’s side, the option to choose between dirty and clean goods
and between lower and higher birth rates should enrich the model. All these exten-
sions should be made in the future. Nevertheless, it seems that they will not change
the basic implication of the model, namely that there is a fundamental trade-off
between per capita consumption and population in the long run optimization. This
trade-off arises because per capita consumption and population are both valuable to
man and because emissions increase the former but decrease the latter. The trade-off
implies that sustainable paths may appear, but are not warranted, indicating that op-
timality and sustainability may conflict for the reasonable parameters and functional
specifications of the model.

6 Discussion

Any article on sustainable growth is, more or less, a wake-up call. Broadly speak-
ing, one wants to predict what happens if the currently shown disturbing behavior
continues and if environmental concerns are not taken seriously. Currently, some
people suffer and die for environmental reasons but the vast majority consumes ever
more. If, however, pollution-related mortality remains tolerable, the worrisome con-
clusion is that, in the real world as well as in the model, the incentives for a change
in economic behavior may not be sufficient.

The long run consumer optimization with endogenous pollution and endogenous
population implies that utility maximization may take place at the cost of human
lives. Solow has suggested that “The theory of optimal growth. . . is thoroughly util-
itarian in conception. It is also utilitarian in the narrow sense that social welfare is
(usually) defined as the sum of the utilities of different individuals or generations”
(Solow 1974). In the case of endogenous pollution and endogenous population, this
utilitarianism may take an extreme expression: a path that ultimately leads to self-
imposed extinction may still be optimal. Naturally, a different result would have
been derived if positive population were posed as an a priori constraint on opti-
mization. However, an emerging empirical evidence suggests that there already is
an increase in mortality because of environmental reasons. Therefore, as a descrip-
tion of the current situation, the utilitarian approach may not be so distorted after
all.
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Appendix: Local Stability of the Steady States

Lets write Ṡ = ϕ(S,E) and Ė = φ(S,E). In a steady state it hods Ṡ = Ė = 0 im-
plying

δ + δ′S + ρ − θn = n′

(ρ − n)(θ − 1)
δS. (18)

The Jacobian of the model is

J =
[
ϕS ϕE

φS φE

]
.

As evaluated around a steady state, its elements become

ϕS = −(
δ + δ′S

)
,

ϕE = 1,

φS = E

θ

{ −n′′(ρ−n)−(n′)2

(ρ−n)2 [ θE
1−θ

+δS]
− n′

ρ−n
[δ + δ′S] − [2δ′ + δ′′S − θn′]

}
,

φE = 1

θ

{
n′

ρ − n

[
θE

θ − 1
+ δS

]
− [

δ + ρ + δ′S − θn
]} + E

θ

{
n′

ρ − n

θ

θ − 1

}

= n′E
(ρ − n)(θ − 1)

,

in which the last row is derived by using (12) and (11b). Because φE contains the
undefined second derivative n(S), we write

DETJ = ϕS · φE − φS · ϕE

=
[(

− ϕS

ϕE

)
−

(
− φS

φE

)]
(−ϕE) · φE.

The expression in the square brackets is the difference in the slopes of the phase
lines Ṡ = 0 and Ė = 0 and (−ϕE) · φE = − n′E

(ρ−n)(θ−1)
is positive for all E > 0. In

steady states 1 and 3 the slope of the Ė = 0-line is steeper than that of the Ṡ = 0-line
(see Fig. 2) making the square brackets negative. Thus, DETJ < 0 and these steady
states are saddles. In steady state 2 the slope of the Ė = 0-line is smaller (possibly
negative) than the slope of the Ṡ = 0-line and the value of the square brackets is
positive. The trace of the Jacobian is

TRJ = ϕS + φE

= −(
δ + δ′S

) + n′E
(ρ − n)(θ − 1)

= −(
δ + δ′S

) + n′δS
(ρ − n)(θ − 1)
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= −(
δ + δ′S

) + n′

(ρ − n)(θ − 1)
· (ρ − n)(θ − 1)

n′ · (δ + δ′S + ρ − θn
)

= ρ − θn > 0.

Therefore, this steady state is an unstable node or focus.
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