Chapter 1
The Classification Theorem: Informal
Presentation

1.1 Introduction

Few things are as rewarding as finally stumbling upon the view of a breathtaking
landscape at the turn of a path after a long hike. Similar experiences occur in
mathematics, music, art, etc. When we first read about the classification of the
compact surfaces, we sensed that if we prepared ourself for a long hike, we could
probably enjoy the same kind of exhilaration.

The Problem

Define a suitable notion of equivalence of surfaces so that a complete list of
representatives, one in each equivalence class of surfaces, is produced, each
representative having a simple explicit description called a normal form. By a
suitable notion of equivalence, we mean that two surfaces S| and S, are equivalent
iff there is a “nice” bijection between them.

The classification theorem for compact surfaces says that, despite the fact that
surfaces appear in many diverse forms, surfaces can be classified, which means
that every compact surface is equivalent to exactly one representative surface, also
called a surface in normal form. Furthermore, there exist various kinds of normal
forms that are very concrete, for example, polyhedra obtained by gluing the sides of
certain kinds of regular planar polygons. For this type of normal form, there is also a
finite set of transformations with the property that every surface can be transformed
into a normal form in a finite number of steps.

Of course, in order to make the above statements rigorous, one needs to define
precisely

1. What is a surface.
2. What is a suitable notion of equivalence of surfaces.
3. What are normal forms of surfaces.
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This is what we aim to do in this book!

For the time being, let us just say that a surface is a topological space with the
property that around every point, there is an open subset that is homeomorphic to
an open disc in the plane (the interior of a circle).! We say that a surface is locally
Euclidean. Informally, two surfaces X and X, are equivalent if each one can be
continuously deformed into the other. More precisely, this means that there is a
continuous bijection, f:X; — Xa, such that f~! is also continuous (we say that
f is a homeomorphism). So, by “nice” bijection we mean a homeomorphism, and
two surfaces are considered to be equivalent if there is a homeomorphism between
them.

The Solution

Every proof of the classification theorem for compact surfaces comprises two
steps:

1. A topological step. This step consists in showing that every compact surface can
be triangulated.

2. A combinatorial step. This step consists in showing that every triangulated
surface can be converted to a normal form in a finite number of steps, using
some (finite) set of transformations.

To clarify step 1, we have to explain what is a triangulated surface. Intuitively,
a surface can be triangulated if it is homeomorphic to a space obtained by
pasting triangles together along edges. A technical way to achieve this is to
define the combinatorial notion of a two-dimensional complex, a formalization
of a polyhedron with triangular faces. We will explain thoroughly the notion of
triangulation in Chap. 3 (especially Sect. 3.2).

The fact that every surface can be triangulated was first proved by Radé in 1925
(Fig. 1.1). This proofis also presented in Ahlfors and Sario [1] (see Chap. I, Sect. 8).

The proof is fairly complicated and the intuition behind it is unclear. Other
simpler and shorter proofs have been found and we will present in Appendix E
a proof due to Carsten Thomassen [15] which we consider to be the most easily
accessible (if not the shortest).

There are a number of ways of implementing the combinatorial step. Once one
realizes that a triangulated surface can be cut open and laid flat on the plane, it is
fairly intuitive that such a flattened surface can be brought to normal form, but the

"More rigorously, we also need to require a surface to be Hausdorff and second-countable; see
Definition 2.3.
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Fig. 1.1 Tibor Rado,
1895-1965

details are a bit tedious. We will give a complete proof in Chap. 6 and a preview of
this process in Sect. 1.2.

It should also be said that distinct normal forms of surfaces can be distinguished
by simple invariants:

(a) Their orientability (orientable or non-orientable).
(b) Their Euler—Poincaré characteristic, an integer that encodes the number of
“holes” in the surface.

Actually, it is not easy to define precisely the notion of orientability of a surface
and to prove rigorously that the Euler—Poincaré characteristic is a topological
invariant, which means that it is preserved under homeomorphisms.

Intuitively, the notion of orientability can be explained as follows. Let A and B
be two bugs on a surface assumed to be transparent. Pick any point p, assume that
A stays at p and that B travels along any closed curve on the surface starting from
p dragging along a coin. A memorizes the coin’s face at the beginning of the path
followed by B. When B comes back to p after traveling along the closed curve, two
possibilities may occur:

1. A sees the same face of the coin that he memorized at the beginning of the trip.
2. A sees the other face of the coin.

If case 1 occurs for all closed curves on the surface, we say that it is orientable.
This will be the case for a sphere or a torus. However, if case 2 occurs, then we say
that the surface is nonorientable. This phenomenon can be observed for the surface
known as the Mobius strip, see Fig. 1.2.

Orientability will be discussed rigorously in Sect.4.5 and the Euler—Poincaré
characteristic and its invariance in Chap. 5 (see especially Theorem 5.2).

In the words of Milnor himself, the classification theorem for compact surfaces
is a formidable result. This result was first proved rigorously by Brahana [2] in 1921
but it had been stated in various forms as early as 1861 by Mdbius [12], by Jordan
[8] in 1866, by von Dyck [4] in 1888 and by Dehn and Heegaard [3] in 1907, so it
was the culmination of the work of many (see Appendix D).

Indeed, a rigorous proof requires, among other things, a precise definition of a
surface and of orientability, a precise notion of triangulation, and a precise way of



4 1 The Classification Theorem: Informal Presentation

Fig. 1.2 A Mobius strip in
R3 (K. Polthier of FU Berlin)

determining whether two surfaces are homeomorphic or not. This requires some
notions of algebraic topology such as, fundamental groups, homology groups, and
the Euler—Poincaré characteristic. Most steps of the proof are rather involved and it
is easy to lose track.

One aspect of the proof that we find particularly fascinating is the use of certain
kinds of graphs (called cell complexes) and of some kinds of rewrite rules on these
graphs, to show that every triangulated surface is equivalent to some cell complex in
normal form. This presents a challenge to researchers interested in rewriting, as the
objects are unusual (neither terms nor graphs), and rewriting is really modulo cyclic
permutations (in the case of boundaries). We hope that this book will inspire some
of the researchers in the field of rewriting to investigate these mysterious rewriting
systems.

Our goal is to help the reader reach the top of the mountain [the classification
theorem for compact surfaces, with or without boundaries (also called borders)],
and help him not to get lost or discouraged too early. This is not an easy task!

We provide quite a bit of topological background material and the basic facts of
algebraic topology needed for understanding how the proof goes, with more than an
impressionistic feeling.

We also review abelian groups and present a proof of the structure theorem
for finitely generated abelian groups due to Pierre Samuel. Readers with a good
mathematical background should proceed directly to Sect. 2.2, or even to Sect. 3.1.

We hope that this book will be helpful to readers interested in geometry, and who
still believe in the rewards of serious hiking!

1.2 Informal Presentation of the Theorem

Until Riemann’s work in the early 1850s, surfaces were always dealt with from
a local point of view (as parametric surfaces) and topological issues were never
considered. In fact, the view that a surface is a topological space locally homeo-
morphic to the Euclidean plane was only clearly articulated in the early 1930s by
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Fig. 1.3 James W Alexander, 1888-1971 (left), Hassler Whitney, 1907-1989 (middle) and
Herman K H Weyl, 1885-1955 (right)

Fig. 1.4 Bernhard Riemann, 1826-1866 (left), August Ferdinand Mdobius, 1790-1868 (middle
left), Johann Benedict Listing, 1808—1882 (middle right) and Camille Jordan, 1838—1922 (right)

Alexander and Whitney (although Weyl also adopted this view in his seminal work
on Riemann surfaces as early as 1913) (Fig. 1.3).

After Riemann, various people, such as Listing, Mobius and Jordan, began to
investigate topological properties of surfaces, in particular, topological invariants
(Fig. 1.4). Among these invariants, they considered various notions of connectivity,
such as the maximum number of (non self-intersecting) closed pairwise disjoint
curves that can be drawn on a surface without disconnecting it and, the Euler—
Poincaré characteristic. These mathematicians took the view that a (compact)
surface is made of some elastic stretchable material and they took for granted the
fact that every surface can be triangulated. Two surfaces S| and S, were considered
equivalent if S| could be mapped onto S, by a continuous mapping “without
tearing and duplication” and S, could be similarly be mapped onto S;. This notion
of equivalence is a precursor of the notion of a homeomorphism (not formulated
precisely until the 1900s) that is, an invertible map, f:S; — S, such that both f
and its inverse, f ~! are continuous.

Mobius and Jordan seem to be the first to realize that the main problem about
the topology of (compact) surfaces is to find invariants (preferably numerical) to
decide the equivalence of surfaces, that is, to decide whether two surfaces are
homeomorphic or not.



6 1 The Classification Theorem: Informal Presentation

Fig. 1.5 A cell representing a
a sphere (boundary aa™")

The crucial fact that makes the classification of compact surfaces possible is
that every (connected) compact, triangulated surface can be opened up and laid flat
onto the plane (as one connected piece) by making a finite number of cuts along
well chosen simple closed curves on the surface.

Then, we may assume that the flattened surface consists of convex polygonal
pieces, called cells, whose edges (possibly curved) are tagged with labels associated
with the curves used to cut the surface open. Every labeled edge occurs twice,
possibly shared by two cells.

Consequently, every compact surface can be obtained from a set of convex
polygons (possibly with curved edges) in the plane, called cells, by gluing together
pairs of unmatched edges.

These sets of cells representing surfaces are called cell complexes. In fact, it is
even possible to choose the curves so that they all pass through a single common
point and so, every compact surface is obtained from a single polygon with an even
number of edges and whose vertices all correspond to a single point on the surface.

For example, a sphere can be opened up by making a cut along half of a
great circle and then by pulling apart the two sides (the same way we open a
Chinese lantern) and smoothly flattening the surface until it becomes a flat disk.
Symbolically, we can represent the sphere as a round cell with two boundary curves
labeled and oriented identically, to indicate that these two boundaries should be
identified, see Fig. 1.5.

We can also represent the boundary of this cell as a string, in this case, aa™!, by
following the boundary counter-clockwise and putting an inverse sign on the label
of an edge iff this edge is traversed in the opposite direction.

To open up a torus, we make two cuts: one using any half-plane containing the
axis of revolution of the torus, the other one using a plane normal to the axis of
revolution and tangential to the torus (see Fig. 1.6).

By deformation, we get a square with opposite edges labeled and oriented
identically, see Fig. 1.7. The boundary of this square can be described by a string
obtained by traversing it counter-clockwise: we get aba™'h~!, where the last two
edges have an inverse sign indicating that they are traversed backwards.

A surface (orientable) with two holes can be opened up using four cuts. Observe
that such a surface can be thought of as the result of gluing two tori together: take
two tori, cut out a small round hole in each torus and glue them together along
the boundaries of these small holes. Then, we make two cuts to split the two tori
(using a plane containing the “axis” of the surface) and then two more cuts to open
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Fig. 1.6 Cutting open a
torus, from Hilbert and
Cohn—Vossen [6], p. 264
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FIG. 284.

FIG. 285.

Fig. 1.7 A cell representing a
a torus (boundary aba='h~")

ol ()

f=al

up the surface. This process is very nicely depicted in Hilbert and Cohn—Vossen [7]
(pp- 300-301) and in Fréchet and Fan [5] (pp. 38-39), see Fig. 1.8.

The result is that a surface with two holes can be represented by an octagon with
four pairs of matching edges, as shown in Fig. 1.9.

A surface (orientable) with three holes can be opened up using six cuts and is
represented by a 12-gon with edges pairwise identified as shown in Cohn—Vossen
[71 (pp- 300-301), see Fig. 1.8.

In general, an orientable surface with g holes (a surface of genus g) can be
opened up using 2g cuts and can be represented by a regular 4g-gon with edges
pairwise identified, where the boundary of this 4g-gon is of the form

—1p-1 —17—1 —17—1
arbiay by asbray by ---aghga, b,



8 1 The Classification Theorem: Informal Presentation

FIG. 286 b. FIG. 286 c.

FIG. 286 e. FIG. 286 f.

FIG. 287 a.
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FIG. 287 c. FIG. 287 d.

Fig. 1.8 Constructing a surface with two holes and a surface with three holes by gluing the edges
of a polygon, from Hilbert and Cohn—Vossen [6], p. 265
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Fig. 1.9 A cell representing

ay by
a surface with two holes
(boundary a;bya; by b, \(1,2
e w

called type (I). The sphere is represented by a single cell with boundary

aa™', ore (the empty string);

this cell is also considered of type (I).

The normal form of type (I) has the following useful geometric interpretation: A
torus can be obtained by gluing a “tube” (a bent cylinder) onto a sphere by cutting
out two small disks on the surface of the sphere and then gluing the boundaries of
the tube with the boundaries of the two holes. Therefore, we can think of a surface
of type (I) as the result of attaching g handles onto a sphere. The cell complex,
aba='b™', is called a handle.

In addition to being orientable or nonorientable, surfaces may have boundaries.
For example, the first surface obtained by slicing a torus shown in Fig. 1.6 (FIG. 284)
is a bent cylinder that has two boundary circles. Similarly, the top three surfaces
shown in Fig. 1.8 (FIG. 286b—d) are surfaces with boundaries. On the other hand,
the sphere and the torus have no boundary.

As we said earlier, every surface (with or without boundaries) can be triangulated,
a fact proved by Rad¢ in 1925. Then, the crucial step in proving the classification
theorem for compact surfaces is to show that every triangulated surface can be
converted to an equivalent one in normal form, namely, represented by a 4g-gon
in the orientable case or by a 2g-gon in the nonorientable case, using some simple
transformations involving cuts and gluing. This can indeed be done, and next we
sketch the conversion to normal form for surfaces without boundaries, following a
minor variation of the method presented in Seifert and Threlfall [14].

Since our surfaces are already triangulated, we may assume that they are given
by a finite set of planar polygons with curved edges. Thus, we have a finite set, F,
of faces, each face, A € F, being assigned a boundary, B(A), which can be viewed
as a string of oriented edges from some finite set, E, of edges. In order to deal
with oriented edges, we introduce the set, £ ~1 of “inverse” edges and we assume
that we have a function, B: F — (E U E~'")*, assigning a string or oriented
edges, B(A) = ajay---a,, to each face, A € F, withn > 2.2 Actually, we
also introduce the set, F~1, of inversely oriented faces A~', with the convention
that B(A™') = a,'---ay'a;" if B(A) = aja,---a,. We also do not distinguish

2In Sect. 6.1, we will allow n > 0.
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Fig. 1.10 (a) A projective a @ b “
plane (boundary abab). '
(b) A projective plane
(boundary aa) b m b

a a

between boundaries obtained by cyclic permutations. We call A and A~ oriented
faces. Every finite set, K, of faces representing a surface satisfies two conditions:

(1) Every oriented edge, a € E U E™', occurs twice as an element of a boundary.
In particular, this means that if a occurs twice in some boundary, then it does
not occur in any other boundary.

(2) K is connected. This means that K is not the union of two disjoint systems
satisfying condition (1).

A finite (nonempty) set of faces with an assignment of boundaries satisfying
conditions (1) and (2) is called a cell complex. We already saw examples of cell
complexes at the beginning of this section. For example, a torus is represented by a
single face with boundary aba='h~'. A more precise definition of a cell complex
will be given in Definition 6.1.

Every oriented edge has a source vertex and a target vertex, but distinct edges
may share source or target vertices. Now this may come as a surprise, but the
definition of a cell complex allows other surfaces besides the familiar ones, namely
nonorientable surfaces. For example, if we consider a single cell with boundary
abab, as shown in Fig. 1.10a, we have to construct a surface by gluing the two edges
labeled a together, but this requires first “twisting” the square piece of material by
an angle 7, and similarly for the two edges labeled b.

One will quickly realize that there is no way to realize such a surface without self-
intersection in R?® and this can indeed be proved rigorously although it is nontrivial;
see Note F.1. The above surface is the real projective plane, RP?,

As a topological space, the real projective plane is the set of all lines through the
origin in R3. A more concrete representation of this space is obtained by considering
the upper hemisphere,

S ={(x,y,2) eR* | x*+ 2+ =1,2>0}.

Now, every line through the origin not contained in the plane z =0 intersects the
upper hemisphere, Si, in a single point, whereas every line through the origin
contained in the plane z = 0 intersects the equatorial circle in two antipodal points.
It follows that the projective plane, RIP?, can be viewed as the upper hemisphere, S i ,
with antipodal on its boundary identified. This is not easy to visualize! Furthermore,
the orthogonal projection along the z-axis yields a bijection between Si and the
closed disk,

D={(xy) eR|x*+)* <1},
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so the projective plane, RIP?, can be viewed as the closed disk, D, with antipodal on
its boundary identified. This explains why the cell in Fig. 1.10a yields the projective
plane by identification of edges and so does the circular cell with boundary aa
shown in Fig. 1.10b. A way to realize the projective plane as a surface in R* with
self-intersection is shown in Note F.2. Other methods for realizing RP* are given in
Appendix A.

Let us go back to the notion of orientability. This is a subtle notion and coming
up with a precise definition is harder than one might expect. The crucial idea is that
if a surface is represented by a cell complex, then this surface is orientable if there
is a way to assign a direction of traversal (clockwise or counterclockwise) to the
boundary of every face, so that when we fold and paste the cell complex by gluing
together every edge a with its inverse a !, no tearing or creasing takes place. The
result of the folding and pasting process should be a surface in R3. In particular, the
gluing process does not involve any twist and does not cause any self-intersection.

Another way to understand the notion of orientability is that if we start from
some face Ay and follow a closed path Ay, Ay, ..., A, on the surface by moving
from each face A; to the next face A, if A; and A; 4+, share a common edge, then
when we come back to Ay = A,, the orientation of A, has not changed. Here is a
rigorous way to capture the notion of orientability.

Given a cell complex, K, an orientation of K is a set of faces {A° | A € F},
where each face A€ is obtained by choosing one of the two oriented faces A4, A~ for
every face A € F, thatis, A° = A or A = A~'. An orientation is coherent if every
edge a in E U E~" occurs once in the set of boundaries of the faces in {A¢ | A € F}.
A cell complex, K, is orientable if is has some coherent orientation.

For example, the complex with boundary aba~'h~" representing the torus is
orientable, but the complex with boundary aa representing the projective plane is
not orientable. The cell complex K with two faces A, and A, whose boundaries
are given by B(A;) = abc and B(A;) = bac is orientable since we can pick
the orientation {A, A;'}. Indeed, B(A5') = ¢~'a~'hb~! and every oriented edge
occurs once in the faces in {4, A5 '}; see Fig. 1.11. Note that the orientation of A,
is the opposite of the orientation shown on the Figure, which is the orientation of A;.

It is clear that every surface represented by a normal form of type (I) is orientable.
It turns out that every nonorientable surface (with g > 1 “holes”) can be represented
by a 2g-gon where the boundary of this 2g-gon is of the form

ayayazaz---dgdg,

called type (II). All these facts will be proved in Chap. 6, Sect. 6.3.

The normal form of type (II) also has a useful geometric interpretation: Instead
of gluing g handles onto a sphere, glue g projective planes, i.e. cross-caps, onto a
sphere. The cell complex with boundary, aa, is called a cross-cap (Fig. 1.10(b)).

Another famous nonorientable surface known as the Klein bottle is obtained
by gluing matching edges of the cell shown in Fig. 1.13a. This surface was first
described by Klein [9] (1882) (Fig. 1.12). As for the projective plane, using the
results of Note F.1, it can be shown that the Klein bottle cannot be embedded in R?.
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Fig. 1.11 An orientable cell a
complex with B(A,) = abc
and B(A4,) = bac

Fig. 1.12 Felix C Klein,

1849-1925
Fig. 1.13 (a) A Klein bottle a a b o
(boundary aba™'b). (b) A y
Klein bottle (boundary aacc) L
b L b a c
4
4
a ¢

If we cut the cell shown in Fig. 1.13a along the edge labeled ¢ and then glue the
resulting two cells (with boundaries abc and be~'a™") along the edge labeled b, we
get the cell complex with boundary aacc showed in Fig. 1.13b. Therefore, the Klein
bottle is the result of gluing together two projective planes by cutting out small disks
in these projective planes and then gluing them along the boundaries of these disks.
However, in order to obtain a representation of a Klein bottle in R® as a surface
with a self-intersection it is better to use the edge identification specified by the cell
complex of Fig. 1.13a. First, glue the edges labeled a together, obtaining a tube (a
cylinder), then twist and bend this tube to let it penetrate itself in order to glue the
edges labeled b together, see Fig. 1.14. Other pictures of a Klein bottle are shown in
Fig. 1.15.

In summary, there are two kinds normal forms of cell complexes: these cell com-
plexes K = (F, E, B) in normal form have a single face A (F = {A}), and either

D E={ai,...,ap,b1,...,b,} and
B(A) = alblal_lbl_1 . ~~apbpa;lb;l,

where p > 0, or
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FIG. 295.

FIG. 297.

Fig. 1.14 Construction of a Klein bottle, from Hilbert and Cohn—Vossen [6], pp. 271-272

Fig. 1.15 Klein bottles in R? (K. Polthier of FU Berlin)

I E ={ai,...,a,}and
B(A) =aia,---ayap,,

where p > 1.

Observe that canonical complexes of type (I) are orientable, whereas canonical
complexes of type (II) are not. When p = 0, the canonical complex of type (I)
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Fig. 1.17 Elimination of aa ™"

corresponds to a sphere, and we let B(A) = ¢ (the empty string). The above surfaces
have no boundary; the general case of surfaces with boundaries is covered in
Chap. 6. Then, the combinatorial form the classification theorem for (compact)
surfaces can be stated as follows:

Theorem 1.1. Every cell complex K can be converted to a cell complex in normal
form by using a sequence of steps involving a transformation ( P2) and its inverse:
splitting a cell complex, and gluing two cell complexes together.

Actually, to be more precise, we should also have an edge-splitting and an edge-
merging operation but, following Massey [11], if we define the elimination of pairs
aa™" in a special manner, only one operation is needed, namely:

Transformation P2: Given a cell complex, K, we obtain the cell complex, K’,
by elementary subdivision of K (or cut) if the following operation, (P2), is applied:
Some face A in K with boundary a; ...a,dp41 ...a, is replaced by two faces A’
and A” of K', with boundaries a; ...a,d and d 'a,41 ...a,, where d is an edge
in K’ and not in K. Of course, the corresponding replacement is applied to A™".

Rule (P2) is illustrated in Fig. 1.16.

Proof (Sketch of proof for Theorem 1.1). The procedure for converting a cell
complex to normal form consists of several steps.

Step 1. Elimination of strings aa ™!

Step 2. Vertex Reduction.
The purpose of this step is to obtain a cell complex with a single vertex. We
first perform step 1 repeatedly until all occurrences of the form aa™! have been

in boundaries, see Fig. 1.17.
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Fig. 1.18 Reduction to a single inner vertex

eliminated. If the remaining sequence has no edges left, then it must be of
type (D).

Otherwise, consider an inner vertex « = (by, ..., b,,). If « is not the only inner
vertex, then there is another inner vertex 5. We assume without loss of generality
that b; is the edge that connects § to «. Also, we must have m > 2, since
otherwise there would be a string b1b;"!' in some boundary. Thus, locate the
string b1b; ! in some boundary. Suppose it is of the form 555! X, and using
(P2), we can split it into blbz_lc and ¢~' X (see Fig. 1.18a). Now locate b, in the
boundary, suppose it is of the form b, X,. Since b, differs from by, bl_l, c, el
we can eliminate b, by applying (P2)~!. This is equivalent to cutting the triangle
cbib;! off along edge ¢, and pasting it back with b, identified with b;! (see
Fig. 1.18b).

This has the effect of shrinking «. Indeed, as one can see from Fig. 1.18c, there
is one less vertex labeled «, and one more labeled S.

This procedure can be repeated until @« = (b,), at which stage b, is eliminated
using step 1. Thus, it is possible to eliminate all inner vertices except one. Thus,
from now on, we will assume that there is a single inner vertex.

Step 3. Reduction to a single face and introduction of cross-caps.

We may still have several faces. We claim that for every face A, if there is some
face B such that B # A, B # A~!, and there is some edge a both in the
boundary of A and in the boundary of B, due to the fact that all faces share
the same inner vertex, and thus all faces share at least one edge. Thus, if there
are at least two faces, from the above claim and using (PZ)_I, we can reduce
the number of faces down to one. It it easy to check that no new vertices are
introduced.

Next, if some boundary contains two occurrences of the same edge a, i.e., it is of
the form aXaY, where X, Y denote strings of edges, with X,Y # €, we show
how to make the two occurrences of a adjacent. This is the attempt to group
the cross-caps together, resulting in a sequence that denotes a cell complex of
type (ID).

The above procedure is essentially the same as the one we performed in our
vertex reduction step. The only difference is that we are now interested in
the edge sequence in the boundary, not the vertices. The rule shows that by
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Y b Y ¢
b a b
a a a a
~1
¥ Y
X X
Fig. 1.19 Grouping the cross-caps

introducing a new edge b and its inverse, we can cut the cell complex in two
along the new edge, and then paste the two parts back by identifying the the two
occurrences of the same edge a, resulting in a new boundary with a cross-cap,
as shown in Fig. 1.19¢c. By repeating step 3, we convert boundaries of the form
aXaY to boundaries with cross-caps.

Step 4. Introduction of handles.

The purpose of this step is to convert boundaries of the form aUbVa™'Xb™'Y
to boundaries cdc™'d 'YX VU containing handles. This is the attempt to group
the handles together, resulting in a sequence that denotes a cell complex of
type (I). See Fig. 1.20.

Each time the rewrite rule is applied to the boundary sequence, we introduce a
new edge and its inverse to the polygon, and then cut and paste the same way as
we have described so far. Iteration of this step preserves cross-caps and handles.
Step 5. Transformation of handles into cross-caps.

At this point, one of the last obstacles to the canonical form is that we may still
have a mixture of handles and cross-caps. If a boundary contains a handle and a
cross-cap, the trick is to convert a handle into two cross-caps. This can be done
in a number of ways. Massey [11] shows how to do this using the fact that the
connected sum of a torus and a Mobius strip is equivalent to the connected sum
of a Klein bottle and a M&bius strip. We prefer to explain how to convert a handle
into two cross-caps using four applications of the cut and paste method using rule
(P2) and its inverse, as presented in Seifert and Threlfall [14] (Sect. 38).

The first phase is to split a cell as shown in Fig. 1.21a into two cells using a cut
along a new edge labeled d and then two glue the resulting new faces along the
two edges labeled ¢, obtaining the cell showed in Fig. 1.21b. The second phase
is to split the cell in Fig. 1.21b using a cut along a new edge labeled a; and then
glue the resulting new faces along the two edges labeled b, obtaining the cell
showed in Fig. 1.21c. The third phase is to split the cell in Fig. 1.22c using a cut
along a new edge labeled a, and then glue the resulting new faces along the two
edges labeled a, obtaining the cell showed in Fig. 1.22d. Finally, we split the cell
in Fig. 1.22d using a cut along a new edge labeled a3 and then glue the resulting
new faces along the two edges labeled d, obtaining the cell showed in Fig. 1.22e.
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a b c
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Y Y
U U
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b b

b - b
X X

%4 a 1% a

Fig. 1.21 Step 5, phases 1 and 2
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Fig. 1.22 Step 5, phases 3 and 4

Note that in the cell showed in Fig. 1.22e, the handle aba~'b~" and the cross-cap
cc have been replaced by the three consecutive cross-caps, ajaaxa»asas.

Using the above procedure, every compact surface represented as a cell complex
can be reduced to normal form, which proves Theorem 1.1. O

The next step is to show that distinct normal forms correspond to inequivalent
surfaces, that is, surfaces that are not homeomorphic.

First, it can be shown that the orientability of a surface is preserved by
the transformations for reducing to normal form. Second, if two surfaces are
homeomorphic, then they have the same nature of orientability. The difficulty in
this step is to define properly what it means for a surface to be orientable; this is
done in Sect. 4.5 using the degree of a map in the plane.

Third, we can assign a numerical invariant to every surface, its Euler—Poincaré
characteristic. For a triangulated surface K, if n¢ is the number of vertices, n; is
the number of edges, and 7, is the number of triangles, then the Euler—Poincaré
characteristic of K is defined by

x(K) =no—n; + ny.

Then, we can show that homeomorphic surfaces have the same Euler—Poincaré
characteristic and that distinct normal forms with the same type of orientability
have different Euler—Poincaré characteristics. It follows that any two distinct normal
forms correspond to inequivalent surfaces. We obtain the following version of the
classification theorem for compact surfaces:

Theorem 1.2. Two compact surfaces are homeomorphic iff they agree in character
of orientability and Euler—Poincaré characteristic.

Actually, Theorem 1.2 is a special case of a more general theorem applying to
surfaces with boundaries as well (Theorem 6.2). All this will be proved rigorously
in Chap. 6. Proving rigorously that the Euler—Poincaré characteristic is a topological
invariant of surfaces will require a fair amount of work. In fact, we will have to
define homology groups. In any case, we hope that the informal description of
the reduction to normal form given in this section has raised our reader’s curiosity
enough to entice him to read the more technical development that follows.
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Fig. 1.23 Left: A Mobius
strip (boundary abac). Right:
A Mobius strip in R

(K. Polthier of FU Berlin)

B A

Fig. 1.24 Construction of a Mobius strip

To close this introductory chapter, let us go back briefly to surfaces with
boundaries. Then, there is a well-known nonorientable surface realizable in R, the
Mobius strip. This surface was discovered independently by Listing [10] (1862) and
Mobius [13] (1865).

The Mobius strip is obtained from the cell complex in Fig. 1.23 by gluing the two
edges labeled a together. Observe that this requires a twist by  in order to glue the
two edges labeled a properly.

The resulting surface shown in Fig. 1.23 and in Fig. 1.24 has a single boundary
since the two edges b and ¢ become glued together, unlike the situation where we
do not make a twist when gluing the two edges labeled a, in which case we get a
torus with two distinct boundaries, b and c.

It turns out that if we cut out a small hole into a projective plane we get a Mdbius
strip. This fact is nicely explained in Fréchet and Fan [5] (p. 42) or Hilbert and
Cohn—Vossen [7] (pp. 315-316). It follows that we get a realization of a Mobius
band with a flat boundary if we remove a small disk from a cross-cap. For this
reason, this version of the Mobius strip is often called a cross-cap. Furthermore,
the Klein bottle is obtained by gluing two Mobius strips along their boundaries (see
Fig. 1.25). This is shown in Massey [11] using the cut and paste method, see Chap. 1,
Lemma 7.1.
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A B
C a C
b b
11
B A
A B
B A
b b
I
B A a
C C
I
11
C C

Fig. 1.25 Construction of a Klein bottle from two Mdobius strips
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