
Chapter 1

An Introduction to Requirements Knowledge

W. Maalej and A.K. Thurimella

Abstract Requirements represent a verbalisation of decision alternatives on the

functionality and quality of a system. Engineering, planning, and implementing

requirements are collaborative, problem-solving activities, where stakeholders

consume and produce considerable amounts of knowledge. Managing requirements

knowledge is about efficiently identifying, accessing, externalising, and sharing this

knowledge by and to all stakeholders, including analysts, developers, and users.

This chapter introduces five foundations of managing requirements knowledge,

which are discussed in the book parts. First, identifying requirements knowledge

aims at externalising tacit knowledge such as rationale or presuppositions. Second,

representing requirements knowledge targets an efficient information access and

artefact reuse within and between projects. Third, sharing requirements knowledge

improves stakeholders’ collaboration and ensures that their experiences do not get

lost. Fourth, reasoning about requirements and their interdependencies aims at

detect inconsistencies and deriving new knowledge. Finally, intelligent tool support
reduces the overhead to manage requirements knowledge.

1.1 What Is Requirements Engineering?

We use the term requirements in the context of systems engineering, which is the

discipline concerned by designing, developing, deploying, and maintaining systems.

A system is an organised set of communicating parts designed for a specific purpose

W. Maalej (*)

University of Hamburg, Department of Informatics/MOBIS, Vogt-Kölln-Str. 30, 22527 Hamburg,

Germany

e-mail: maalej@informatik.uni-hamburg.de

A.K. Thurimella

Harman Becker Automotive Systems GmbH, Moosacher Str. 48, 80809, Munich, Germany

e-mail: anil.thurimella@gmail.com

W. Maalej and A.K. Thurimella (eds.), Managing Requirements Knowledge,
DOI 10.1007/978-3-642-34419-0_1, # Springer-Verlag Berlin Heidelberg 2013

1

mailto:maalej@informatik.uni-hamburg.de
mailto:anil.thurimella@gmail.com


[1]. For example, a mobile phone composed of a display, a battery, an antenna,

a microphone, a speaker, and a processor is designed to enable users to make calls,

while they are on the go. In this book we target software engineering, which is a

subdiscipline that focuses on engineering software-intensive systems. Bruegge and

Dutoit characterise software engineering as a modelling and problem-solving

activity, which is knowledge intensive and rationale driven [1].

Participants in a software engineering project create formal and informal models

to (a) reason about software systems, (b) communicate about them, and (c) document

their properties. These might be functional models, object models, dynamic models,

or feature models. A functional model, for example, a use case diagram, describes the

functionality of a system, for instance, dialling a number or terminating a call. An

object model, for example, a class diagram, describes the structure of a system in

terms of components, objects, attributes, and operations. A dynamic model, for

example, a sequence diagram, represents the interactive behaviour of the system or

of its parts, for instance, how the user interacts with the keyboard to dial a number or

how the antenna interacts with the processor to send signals. The high-level descrip-

tion of a system is often communicated to clients and end users in terms of features,

which are prominent or distinctive visible characteristics or qualities of a system [2].

For example, an mp3 player and a multitouch interface are two features of a modern

mobile phone.

The term requirement is similar to the term feature but has a larger scope and

a more technical focus. The IEEE standard glossary of software engineering

terminology defines a requirement [3] as “a statement of what the system must

do, how it must behave, the properties it must exhibit, the qualities it must possess,

and the constraints that the system and its development must satisfy [4]”.

Requirements engineering (RE) is the branch of systems engineering concerned

with the desired properties and constraints of software-intensive systems, the goals

to be achieved in the software’s environment, and assumptions about the environment

[5]. In another frequently cited definition, Sommerville and Sawyer state that

requirements engineering is the activity that emphasises the utilisation of systematic
and repeatable techniques that ensure the completeness, consistency, and relevance

of requirements [6]. We call this the engineering view of requirements. Nuseibeh and

Easterbrook [7] define requirements engineering as the process of discovering the

purpose of the system being developed, by identifying stakeholders and their needs

and documenting these in a form that is amenable to analysis, communication, and

subsequent implementation. We call this the life cycle view of requirements. Finally,

Aurum and Wohlin consider requirements as verbalisation of decision alternatives
regarding the functionality and quality of a system [8]. Requirements engineering can

then be considered as the complex task of dealing with, making, and documenting

these decisions. We call this the decision or the knowledge view of requirements.

Requirements engineering is considered as one of the most critical phases in

software projects [9]. Poorly implemented requirements engineering is a major risk

for projects failure [10]. Today’s software projects still have a high probability to be

cancelled or to significantly exceed available resources [11]. For example,

Leffingwell [12] found that 40 % of the total project costs are associated with

rework triggered by low-quality requirements.

2 W. Maalej and A.K. Thurimella



Requirements engineering rarely receives more than 2–4 % of the overall project

effort [13], even if more effort in getting the requirements right results in signifi-

cantly higher project success rates. A recent Gartner report [14] states that

requirements defects are the third most significant source of product defects after

coding and design but are the first source of delivered defects (i.e. defects delivered

to the user). Fixing a defect in production is approximately 200 times more

expensive for a software project than fixing it during requirements engineering,

Gartner says. The damage and costs caused to the customers and their users when

delivering a defect are excluded from this calculation and cannot be truly quantified

since it depends on the domain and the business. Improving the quality of

requirements and the efficiency requirements engineering can reduce the overall

cost of software, improve its quality, and dramatically shorten the time to market.

1.1.1 Requirements Engineering Activities

Requirements engineering covers several activities, including requirements elicitation,

analysis, specification, verification, and management [15]:

• Requirements elicitation is the process of discovering, reviewing, documenting,

and understanding the user’s needs and constraints for a system.

• The process of refining the user’s needs and constraints is called requirements

analysis.

• Requirements specification is the process of documenting the user’s needs and

constraints clearly and precisely.

• Ensuring that the system requirements are complete, correct, consistent, and

clear is done as a part of requirements verification.

• Scheduling, negotiating, coordinating, and documenting the requirements

engineering activities are called requirements management.

Requirements engineering overlaps with planning. A project plan, including work

packages, releases, iterations, or milestones, is created by analysing requirements.

Later, the plan is detailed further. Tasks and action items are created and assigned to

the project participants. The delivery of requirements is committed to the customer

based on the project plan.

Requirements evolve over time. Change requests are often used to refer to changes

on requirements. Change requests might originate from customers after the initial

requirements elicitation phase, as well as from other sources such as regulators,

development, testing, or marketing. Change requests are decided by analysing

corresponding change impacts on the system. A well-implemented requirements

elicitation often reduces the number of change requests in a project. Similarly,

a large number of change requests are an indicator for poor requirements engineering.

Requirements engineering can also be performed for a product family (or a

family of related systems) for systematically reusing artefacts and assets that are

shared across multiple systems such as requirements, decisions, activities, and

1 An Introduction to Requirements Knowledge 3



processes. Such a product family (e.g. a particular generation of mobile phones

such as data phones or smart phones) is called a software product line.

Clements and Northrop define a software product line (SPL) as a set of software-
intensive systems that share a common, managed set of features satisfying the

specific needs of a particular market segment or mission and that are developed

from a common set of core assets in a prescribed way [4]. Product line engineering

uses variability as an abstraction to deal with customisation and reuse [2, 16].

SPLs offer several benefits such as improved reuse, quicker time to market, and

decreased defect rates, in particular, for manufacturing and mass customisation

companies. These benefits have been reported in the form of experiences and best

practices, for example, in the product line hall of fame [17]. On the other hand,

SPLs need large upfront investments, in particular, when systems have been in

place over decades or in IT service industry where the customers’ needs,

infrastructures, and constraints drive the projects.

1.1.2 Requirements Artefacts

Requirements engineering involves various artefacts and document types. Business

and marketing stakeholders, for instance, typically conduct negotiations with

customers in the early project phases based on customer requirements and feature

catalogues. Detailed requirements can be captured in natural language text, mathe-

matical models, visual models such as UML, or using multimedia. A mathematical

model represents the requirements formally, for example, using the Z specification

language [18] and is used if, for example, the correctness of the system behaviour is

critical. For instance, errors while making an emergency call can cost human lives.

The behaviour of the system should be formally specified and validated in such

cases – in particular if regulators mandate this. UML use case diagrams, sequence

diagrams, and activity diagrams can be used to model requirements semiformally.

For instance, these diagrams might show, respectively, use cases provided by a

phone; interactions between the phone, its user, and its environment (e.g. an

operator network or a Bluetooth device); and the overall process flow from dialling

to getting the invoice.

More recently, the requirements engineering community started exploring and

using multimedia requirements [19], including images (e.g. pictures of a typical

hand positions during a call), drawings (e.g. mock-ups of the screen), or videos (e.g.

showing a typical scenario of a mobile user in the metro). In industry, requirements

are often documented in unstructured or semi-structured natural language

documents [20], called requirements specification documents.

Requirements are classified into functional and non-functional requirements.

A functional requirement expresses functionality (or a functional property) of a

system and is specified based on inputs, outputs, and a process or a functional

behaviour. An example for a mobile phone functional requirement is “the user shall

be able to send and receive SMS to other users of mobile phones”. A functional

requirement can be decomposed into several sub-requirements.

4 W. Maalej and A.K. Thurimella



A non-functional requirement (NFR) also called a quality requirement should

express measurable properties of the system [79]. For example, “when switched on,

the user should be able to dial a number within 3 s”, which constrains the perfor-

mance of the system. Other categories of NFRs include usability, availability,

safety, security, privacy, and maintainability.

Requirements are documented and handled based on their types. Functional

requirements are often described in use case documents or mock-ups, while NFRs

are captured using text documents, in change requests, or as comments in source

code. Different NFRs are handled differently. For instance, safety is often handled

by specifying additional requirements to address hazards and misuse cases

identified by safety engineers.

1.1.3 Stakeholders, Collaboration, and Decisions

Requirements engineering involves people with different backgrounds including

business, marketing, law, project management, design, development, and testing.

These people are called stakeholders. They perform relevant tasks in a requirements

engineering process depending on their backgrounds and collaborate to capture

requirements and make decisions about them and their priorities.

Making decisions is about choosing between alternative solutions for an issue

[21]. An issue can be, for example, which authentication feature should the phone

provide? The alternatives are a username and password, a pin code, a lock screen

pattern, or face recognition. Effective decision-making occurs when stakeholders

select the best choice based on the knowledge available at the time [22].

Rationale is the reasoning behind decisions, that is, the answer to the why question.
Rationale can be described in natural language text or can be structured based on

alternatives, reasons, and justifications. Kunz and Rittel introduced a rhetorical model

to mange rationale called IBIS (issue-based information systems) [23]. IBIS uses

abstractions like issue, option, argument, and resolution. An option is a potential

solution for an issue. An assessment is a stakeholder argument that supports or hinders

an option. A resolution contains a set of options that solve an issue. IBIS allows the

expression of interdependencies between issues, which can lead to complex issue

networks. QOC [24] extends IBISwith criteria, for example, the cost of implementing

the authentication option, or its usability. Dutoit [25] introduced QOC to requirements

engineering by modelling QOC criteria as goals or non-functional requirements,

supporting decision-making in product management meetings.

Research has shown that rationale knowledge is useful inmanyways. For example,

it may be helpful to assess changes [26]. Alternative solutions and arguments

documented in rationale may be used to forecast potential changes. Furthermore,

rationale may be reused when similar issues are raised or when changes in previous

decisions occur. However, rationale is barely managed systematically and often

remains in the mind of people. When people leave the organisation, this knowledge

gets lost [27]. In practice, rationale is found sporadically across documents, emails,

or discussion threads [27].

1 An Introduction to Requirements Knowledge 5



As software projects are getting more distributed and the development cycles are

getting shorter, stakeholders are often located in different places [28], sometimes

even without having the resources to get to know each other in a face to face

meeting. For example, the clients and the users might be in an Asian country with

special regulations and infrastructures for communication systems and where

people present certain habits and preferences in how they use their phones. The

requirements engineers and the developers might be at the development site in a

different country, speaking a different language, knowing different laws, and

having different habits and preferences. Distributed development settings introduce

additional collaboration challenges for stakeholders to understand each other, reach

a common understanding of requirements, and make effective decisions.

1.2 What Is Managing Requirements Knowledge?

We introduce the terms “knowledge”, “knowledge management”, and “requirements

knowledge” and motivate the need for managing requirements knowledge.

1.2.1 What Is Knowledge?

Knowledge is a popular term used in our everyday language as well as in several

disciplines such as philosophy, management science, and computer science.

According to the Oxford Dictionary, the term knowledge refers to facts, informa-

tion, and skills acquired by a person through experience or education. It also refers
to the awareness or familiarity gained by experience of a fact or situation.

In philosophy the study of knowledge is called epistemology. Plato gave one of

the oldest and most famous definitions for knowledge as justified true belief [29].
However, there exists a large and still active debate between philosophers about

Plato’s definition and about the term knowledge and associated concepts [30].

In computer and management science, the term knowledge is often mixed with

data and information. According to Theirauf [31]: “data represents the unstructured
facts and figures, which has the least impact for the typical manager. [. . .] At the
next level information is structured data that is useful to the manager in analysing

and resolving critical problems. [. . .] At the next level there is knowledge, which is

obtained from experts based upon actual experience. While information is data

about data, knowledge is basically information about information”.

In the late 1990s and beginning of the 2000s, a new field called knowledge
management emerged and has become popular amongst people from academia and

industry. Wikipedia defines knowledge management as a range of practices used by
organisations to identify, create, represent, and distribute knowledge for reuse,
awareness and learning across the organisation [32]. In this book we adopt

Hansen’s definition [33]:

6 W. Maalej and A.K. Thurimella



Def. 1. Knowledge management is the dual process of accessing (searching

for and identifying) and sharing (capturing and transferring) knowledge across

organisational subunits.

Knowledge transfer as an aspect of knowledge management has always existed in

one form or another, for example, through on-the-job peer discussions, formal

apprenticeship, corporate libraries, professional training, and mentoring programmes.

However, since the late twentieth century, additional theories and technologies have

been applied to this task, such as knowledge bases, expert systems, and knowledge

repositories. Knowledge management initiatives attempt to manage the process of

creation or identification, accumulation, and application of knowledge or intellectual

capital (i.e. the intangible assets of a company which contribute to its valuation)

across an organisation.

1.2.2 What Is Requirements Knowledge?

Requirements knowledge can be any kind of knowledge, which emerges during

requirements engineering or more generally while working with requirements:

Def. 2. Requirements knowledge consists of the implicit or explicit information

that is created or needed while engineering, managing, implementing, or using

requirements, and that is useful for answering requirements-related questions in any

phase of a software project.

Requirements knowledge is diverse, because requirements affect different engi-

neering activities (including design and implementation) and because requirements

engineering involves different stakeholders. We distinguish between five types of

requirements knowledge:

• Domain knowledge refers to common knowledge in a particular area or a

specialised discipline. This is usually the domain, for which a system should

be developed. Domain knowledge includes a vocabulary, standards used in the

domain (e.g. telecommunication or banking standards), and business rules (i.e.

domain constraints, standards, and regulations to be satisfied when designing or

using the system).

• Engineering knowledge includes requirements “content”, such as the

requirements specifications, dependencies between requirements, as well as

other artefacts needed to understand and implement the requirements such as

models, test cases, or system architecture. Also informal notes and personal

comments typically annotating artefacts such as models, requirements, or plans

might include useful engineering information.

• Management knowledge includes quality measures, templates, and properties of

requirements such as status, priority, and stakeholder preferences. Moreover,

emerging requirements-related issues, decisions, and action items are part of this

1 An Introduction to Requirements Knowledge 7



knowledge. For example, during a requirement review, open issues, decisions,

and action items on requirements might be identified, discussed, and planned.

• Collaboration knowledge includes information about people, their interactions,

discussions, argumentation chains, and presuppositions. Discussions include

information exchanged or shared between different stakeholders on various

problems related to requirements. Discussion might also include requirements

rationale or the reasoning behind the requirements, a crucial piece of knowledge

to understand and implement requirements especially when people leave the

projects. Finally, presuppositions are assumptions for realising a requirement.

The lack of common understanding of presuppositions often leads to misunder-

standing of requirements [34].

• How-to Knowledge includes information on tools, methods, and processes to be

used for a particular situation while engineering and managing requirements.

Organisation or vendor guidelines include information on how to perform

requirements engineering activities or how to use a tool.

Requirements knowledge does necessarily exist in the form of information or

data. A considerable amount of requirements knowledge such as rationale behind

decisions or domain assumptions is tacit and remains in the heads of people. For

example, aspects of the system that seems trivial such as the performance, usability,

or localisation of a mobile phone might not be captured and discussed explicitly

during the requirements engineering work.

Def. 3. Managing requirements knowledge is about efficiently identifying,

accessing, externalising, and sharing all types of requirements knowledge by and

to all stakeholders, including analysts, developers, and users.

Managing requirements knowledge aims at externalising tacit knowledge and

solving requirements-related issues by using the dual process of accessing and

sharing knowledge (see Def. 1). For example, during requirement elicitation a

requirements analyst might spend weeks to access (i.e. searching and identifying)

privacy regulations and laws about mobile telephony. The analyst might then share

this knowledge to other stakeholders such as architects, managers, or users by

capturing and communicating summaries and links to the regulations that are

relevant for the envisioned system.

1.2.3 Why Managing Requirements Knowledge?

Requirements engineering, management, and implementation are complex,

knowledge-intensive activities. Working with requirements involves many

stakeholders from different backgrounds working in different phases and activities.

To make, document, refine, or understand the requirements decisions, stakeholders

need diverse information from diverse sources. For example, requirement analysts

need information on the domain for defining correct and complete requirements.

Change requesters need information on the processes followed for tracking the

8 W. Maalej and A.K. Thurimella



status of their requests. Architects need information on the technologies used in

order to assess the requirements feasibility [35].

Moreover, software engineering is a field where constant changes take place,

making the work of stakeholders extremely dynamic. New problems are discovered

(e.g. users do not want to use an extra pen to enter information to the mobile

phones), new solutions are designed (e.g. new multitouch technology which enable

tracking multiple fingers at same time), and experiences are made (e.g. users prefer

simple user interfaces or that the operator infrastructure API only allows for a

certain error tolerance) on a daily basis. The requirements knowledge in software

projects is diverse and its proportions immense and continuously expanding. Thus,

a systematic way of managing and treating the knowledge and its owners as

valuable assets could help organisations leverage the knowledge they possess.

The need for systematic knowledge management in requirements engineering

has its root in the following:

• Acquiring knowledge about the application domain. This is one of the major

challenges in software engineering, since this discipline supports diverse

industries such as telecom, health care, insurance, or gaming. Many software

vendors are discovering more and more the importance of “mastering” domain

knowledge as a way of distinction from competitors. Knowing programming

languages, application programming interfaces, engineering tools, and

techniques is one half of the assets of a software vendor. The other half is to

know the domain, its customers, and its users.

• Capturing and using process and product knowledge. While process knowledge

describes how particular tasks should be achieved and how to handle certain

issues, product knowledge rather focuses on the work product itself, what it does

and how it does it. Capturing and using process and product knowledge allows

for shortening the time and cost for developing software systems and for

increasing the quality of the delivered software.

• Acquiring knowledge about new technologies, which often affect not only the

design of the system but also its goal and behaviour. New technologies can set

trends and change the behaviour of users and customers and then the goal of the

system itself. For example, modern hardware changed the purpose of a mobile

phone from communication to a personal computing device used for work,

entertainment, and communication.

• Knowing who knows what. Since software organisations get more and more

distributed, this aspect becomes more and more relevant. Software projects are

rarely conducted in an isolated manner and from the scratch. Even small projects

carried on by a few developers often reuse open-source frameworks with

complex functionality, where numerous stakeholders were involved. People

get to know each other due to informal talks in the coffee hall [36]. A colleague

might then report to the others about issues encountered, how they were solved,

and which experiences were gained. Informal knowledge sharing and knowing

“who knows what” becomes difficult in distributed settings [37, 38].

1 An Introduction to Requirements Knowledge 9



Unfortunately, managing requirements knowledge is often pushed to the

extreme, that is, either formalised for the purpose of validation and completeness

or considered as a “second class” citizen, creating requirements documents just

because someone ordered that this task must be done. Our vision of requirements

engineering and managing its knowledge is different. We think that requirements
engineering is a knowledge access and sharing activity. In addition to the valida-
tion, completeness, and formality of requirements, there must be a second dimen-
sion of efficiently capturing this knowledge and sharing it with the right people in
the right context. Managing requirements knowledge is therefore crucial to both

requirements engineers and analysts as well as other stakeholders. Examples of the

questions that should be answered are who needs this information? What exactly

should be implemented in this feature? Why is requirement important? Which

restrictions must be considered? What does this concept mean?

Systematically managing requirements knowledge brings several advantages:

• Improved understandability of requirements [39, 40] and reduced mismatch

between requirements and their implementations [41]

• Identification of new requirements from the knowledge that is captured in the

previous projects [42]

• Solving repetitive problems that occur in requirements engineering by

systematising experiences and guiding stakeholders [43]

• Speeding up decision-making by sharing relevant information [40]

• Increased requirements reuse [44] and hence components reuse in general

• Improved evolvability of requirements by providing rationales helpful to decide

on future changes [26, 45]

• Improved traceability by capturing implicit links [46] and identifying hidden

interdependencies

These advantages are discussed in detail in the following chapters of this book.

1.2.4 Knowledge Management in Software Engineering

Over the last two decades, software engineering researchers have given special

attention to studying developers’ knowledge needs and to suggesting approaches

and tools, which improve the access and sharing of software engineering knowledge

[47, 48]. Some of the popular and early approaches include rationale management

[27], design patterns [49], the experience factory [50], the knowledge dust-to-pearls

approach [51], the personal software process [52], the team software process [53],

and process-based knowledge management support for software engineering [54].

Except rationale management these approaches have been paid little attention to

requirements engineering, focussing on design, implementation, and maintenance.

For example, unlike architecture patterns there has been little research on systemati-

cally collecting, managing, and using requirements patterns, despite their wide usage

in practice.

10 W. Maalej and A.K. Thurimella



Also recent empirical studies on the knowledge needs in software engineering

barely focussed of requirements stakeholders. For instance, Ko et al. [36] studied the

information needs of source code developers at Microsoft and identified 21 questions

such as “What is the programme supposed to do” or “What code could have caused

this behaviour”. Similarly, Sillito et al. [55] observed developers and identified 44

questions specific to software maintenance tasks. Robillard [56] studied obstacles

faced by developers when reusing components. We are unaware of studies on the

knowledge needs of stakeholders and questions encountered while capturing or

implementing requirements. Such studies are essential for understanding the nature

of stakeholders’ work and providing effective tool support.

Finally, knowledge management tools such as document management systems

[57], information retrieval and search tools [58], ontology-based repositories [59],

wikis [60], and recommendation systems [61, 62] are getting more popular in the

software engineering and more recently, also in the requirements engineering

community, as the following chapters of this book show.

1.3 Foundations of Managing Requirements Knowledge

Managing requirements knowledge involves tasks, methods, and tools, which are

scattered across all phases of a software engineering project. We see it as an

integrated, continuous process, which includes two main activities as introduced in

Def. 1: accessing and sharing knowledge [63]. There are however at least five main

foundations for this process, which we introduce below and which correspond to the

parts of this book. These are identifying requirements knowledge, representing

requirements knowledge for reuse, sharing requirements knowledge, reasoning

about requirements, and intelligent tool support. These foundations correspond

roughly to the main research topics of this emergent field.

1.3.1 Identifying Requirements Knowledge (Part I)

The first goal of managing requirements knowledge is the identification of relevant

knowledge, in particular, in its tacit form, answering the following questions:

• What is requirements knowledge and what are its forms and types?

• How can requirements knowledge be identified, extracted, and externalised

systematically?

Identifying tacit requirements knowledge is a complex task. In projects which

evolve over a long period of time, or which reuse existing frameworks and libraries,

information related to requirements remains “unknown” or undocumented for

“historical reasons”. A mobile phone is, for example, developed over decades,

and new generations are based on features of older generations. Often several

1 An Introduction to Requirements Knowledge 11



questions remain in the minds of people or “somewhere” in a non-updated

requirements document: What exactly does this system or this component do and

what it does not? Why is this functionality or quality provided? What are

stakeholders’ preferences? Or who knows more about this requirement? In contrast,

design and engineering questions can at least be partly answered by studying the

source code.

Moreover, requirements engineering tasks are often based on assumptions and

presuppositions [34]. Customers assume that the developers know the domain,

while the developers assume that the customers will tell them about everything

that should be implemented – a vicious circle.

Also identifying requirements knowledge in documents and artefacts is not a

trivial task. The various stakeholders might have different understanding on what is

relevant knowledge, where it should be documented, with which level of detail, and

how. As a result, requirements knowledge can easily get scattered across different

sources including requirements documents, emails, websites, marketing brochures,

contractual documents, and technical documentation. Thus, identifying requirements

knowledge is also about identifying which types of information can be captured and

found where.

In recent years, researchers paid more attention to the importance of (tacit)

requirements knowledge and suggested novel approaches to understand, identify,

externalise, and extract this knowledge. This book will discuss some of these

approaches such as using machine-learning techniques to extract requirements

knowledge [64] from bug repositories or formally capturing requirements using

predicate logic to deduce tacit knowledge. Chapter 2 provides a theoretical founda-

tion for tacit knowledge by considering multidisciplinary views of tacit knowledge.

Chapter 3 reports on an empirical study on how recording knowledge about defects

aids identification of requirements for SPLs. Chapter 4 introduces guidelines to

identify and manage requirements knowledge in practice, for example, by drawing

a knowledge landscape, interacting with external communities, and establishing

a knowledge culture.

1.3.2 Representing Requirements Knowledge for Reuse (Part II)

Knowledge representation is a key issue in successfully applying any knowledge

management programme in an organisation. Representing requirements knowledge

includes two main challenges: (a) the efficient access by all stakeholders and (b) the
support of reuse in case similar issues arise.

Several requirements-related tasks are repetitive, time consuming, and require

a lot of human involvement [39]. For example, requirements analysis for safety

critical systems may include hazard and operability analysis or failure mode and

effect analysis tasks in order to identify potential system hazards and risks and to

mitigate them to acceptable levels before a system is certified. Another example of

repetitive time-consuming tasks can be found in large contract-based projects.

There, requirements elicitation typically includes the creation of a requirements

12 W. Maalej and A.K. Thurimella

http://dx.doi.org/10.1007/978-3-642-34419-0_2
http://dx.doi.org/10.1007/978-3-642-34419-0_3
http://dx.doi.org/10.1007/978-3-642-34419-0_4


specification document, which is used as a contractual document. Large IT service

providers, which conduct similar projects in the same domain, typically spend

valuable time on creating separate requirements specification documents for each

project – with copy and paste as the only reuse instrument if at all. Requirements

knowledge should be represented in a way that allows for reuse to cope with the

repetitive tasks.

There are different approaches to represent requirements knowledge, each with

advantages and disadvantages:

• Natural language: This is perhaps the most widely used approach to capture

requirements knowledge because it is the most convenient for stakeholders. No

tools need to be installed or new techniques learned. The disadvantage is that

both querying and reuse are difficult. A promising approach from the social

computing paradigm is to annotate text with tags (e.g. #screen, #version4,

#issue), which can be either predefined or freely defined and refined by the

stakeholders. Over time a folksonomy of tags emerge [65], which can be used to

easily browse and find particular information related to a tag. One other impor-

tant strength of tagging and folksonomies is that they “directly reflect the

vocabulary of users” [65]. On the other hand, tags might be ambiguous and

allow redundant synonyms.

• Models: Even if the software engineering community has not explicitly considered

modelling as a knowledge representation approach, we think that it provides a

toolkit for externalising, formalising, and communicating knowledge about

complex and manifold software systems. One particular type of requirements

knowledge is rationale to decisions. Researchers have suggested different decision

models such as “Issue-Based Information System”, “Question, Option, and

Criteria”, “Decision Representation Language”, and “NFR Framework” and

identified similarities between them. These models enable the representation of

rationale knowledge but are rarely used in practice, due to the overhead needed to

create them.

• Patterns: Generally speaking, patterns are solution templates to recurring

problems. Patterns can be used in requirements to, for example, guide the

capturing of specific types of requirements (e.g. patterns to capture use cases

or NFRs). Their potential, however, are not yet exploited such as in design or

management. Recurrent business rules, domain-specific issues, user tasks, or

preference conflicts are just a few examples where patterns can be used to

provide solution templates.

• Cases: Capturing requirements as issues with their context enables reuse by

analogy, so-called case-based reasoning. Also machine-learning, heuristics, or

pattern-matching techniques can be used to identify similar requirements

knowledge for the purpose of reuse [64, 66].

• Ontologies: These are formal, explicit specification of shared conceptua-

lisations, which can be understood by both machines and humans. Since the

emergence of the Semantic Web standards, ontologies have become a popular

alternative for representing reusable knowledge, also in requirements engineer-

ing. Several researchers have suggested ontology-based tools and methods to

1 An Introduction to Requirements Knowledge 13



capture and reason about requirements knowledge [67, 68]. This book includes

an experience report on such approaches in Chap. 7.

• Formal approaches: Formal approaches have been studied for decades to capture

and validate requirements. This knowledge representation approach focuses on

the computer rather than on humans as its correctness is typically high but its

usability and understandability is low. These approaches are especially used in

to develop safety critical systems.

This book includes three chapters on representing requirements knowledge for

reuse. Chapter 5 focuses on eliciting, documenting, and reusing requirements based

on patterns. Chapter 6 presents an approach that combines case-based reasoning,

natural language processing, and ontologies to systematise the representation

of NFR knowledge, in particular security and safety. Chapter 7 presents a similar

approach based on ontologies and Web 2.0, focussing on reusing domain know-

ledge between projects within the same domain.

1.3.3 Sharing Requirements Knowledge (Part III)

Sharing requirements knowledge forms the bridge between capture and reuse. This

activity is of particular importance in large distributed projects, where the means for

informal exchange “during the coffee break” or “quickly asking questions to the

neighbour colleague” are limited.

Methods such as agile include instruments, which systematically encourages

knowledge sharing. For instance, the daily stand-up meetings in Scrum enforce

people to share the problems they have encountered and the solutions they used.

Other methods such as code reviews also enforce knowledge sharing but focussing

on design knowledge.

Unfortunately, software engineering processes and tools do not give enough

room for sharing requirements knowledge. Most knowledge sharing occurs in

meetings and during discussions or at best by delivering requirements documents

between stakeholders, which might include hundreds of pages. Distributed settings,

lack of domain knowledge, different vocabularies and background, as well as the

complexity of requirements knowledge frequently lead to misunderstanding of

these documents. It is then more about sharing data and at best information, then

sharing knowledge.

Collaborative approaches such as wikis or social media bring new potentials for

tightening requirements knowledge sharing. Several authors have suggested the use

of wikis to capture and share requirements and related knowledge. For example,

Uenalan et al. [69] argue that traditional features of requirements engineering

such as projects, folders, specification modules, traceability, and baselines may be

provided by simple extensions of wikis. Lohmann et al. [68, 70] introduce a

promising approach based on semantic wikis, which enables all stakeholders to

14 W. Maalej and A.K. Thurimella

http://dx.doi.org/10.1007/978-3-642-34419-0_7
http://dx.doi.org/10.1007/978-3-642-34419-0_5
http://dx.doi.org/10.1007/978-3-642-34419-0_6
http://dx.doi.org/10.1007/978-3-642-34419-0_7


collect and semantically annotate requirements. Underlying ontologies enable

reasoning about various properties of requirements.

This book includes three chapters on sharing requirements knowledge amongst

stakeholders. Chapter 8 focuses on global distributed project and introduces a new

knowledge-sharing method and tool called PANEGA. Chapter 9 reports on an

empirical study about requirements knowledge sharing in agile projects,

distinguishing between performative knowledge, which occurs through actions

such as question asking, gestures, or informal speeches, and lexical knowledge

sharing, which occurs through inscribed texts. Chapter 10 introduces a Web 2.0

approach for identifying and prioritising stakeholders (i.e. who should know what)

and reports on a large empirical evaluation of the approach.

1.3.4 Reasoning About Requirements (Part IV)

Reasoning about requirements means considering the requirements as a set rather

than single entities, analysing their interdependencies to derive a new knowledge

and discover inconsistencies.

Reasoning about requirements and their interdependencies is essential in particular
for consistency and compatibility management as well as for requirements

prioritisation and release planning [71]. Requirements planned for a certain release

should be compatible. Incompatibilities can be triggered by not having enough time

for consistency checking or by stakeholders’ different perceptions and goals. Karlsson

et al. [72] indicate that requirements prioritisation and planning approaches have to

support handling the interdependencies. Requirements should not be treated indepen-

dently: Choosing a low-cost–high-priority requirement may also entail the need to

include a low-priority–high-cost requirement.

A pairwise comparison of requirements becomes infeasible for larger projects.

Ramesh and Jarke [73] point out that traceability maintenance then becomes an

issue and that stakeholders should focus on the traceability maintenance for the

critical requirements. A common problem of traceability tools is that they do a good

job in storing the relationships, but they do not provide clear semantics for the

concepts used, which would enable to reason about the basic properties of a given

set of requirements. Therefore, it is important to provide a means to identify the

most critical dependencies [74].

Especially for informally defined requirements, the complete automation of

consistency management is unrealistic [75], but semiautomated tools can help to

keep the efforts acceptable. For example, Göknil et al. [76] introduce a requirement

meta-model and formalise its language elements. Based on this formalisation,

the authors show how to detect inconsistencies in a given instantiation of the

meta-model (concrete set of requirements and their interdependencies).

A recent promising approach to reason about requirements uses semantic wiki

technologies, enabling all stakeholders (especially in large, distributed settings) to

collect and semantically enrich requirements [68]. In order to establish a conceptual

1 An Introduction to Requirements Knowledge 15

http://dx.doi.org/10.1007/978-3-642-34419-0_8
http://dx.doi.org/10.1007/978-3-642-34419-0_9
http://dx.doi.org/10.1007/978-3-642-34419-0_10


foundation, Lohmann et al. [68] have developed the SoftWiki ontology for RE

(called SWORE [70]). This ontology defines major RE modelling concepts, such as

goal, scenario, or textual descriptions. Furthermore, different types of dependencies

between requirements such as “requirement A1 details requirement A” or “require-

ment A is in conflict with requirement C” are taken into account. Requirements are

associated with stakeholders who define and maintain them. Stakeholders discuss

the requirements and positively or negatively evaluate them [70]. The dependency

types enable the definition of the relationships between requirements and also to

reason about different properties. For example, can requirements A, B, and C be

part of the same release? Existing semantic wiki-based environments applied in RE

require a huge set-up overhead and are limited in the way stakeholders are

supported [77].

This book includes three chapters on reasoning about requirements. Chapter 11

suggests a courteous logic-based approach to resolve inconsistency and

incompleteness issues. Chapter 12 presents a rule-based approach for detecting

dead features and defects in variability. Chapter 13 discusses how reasoning about

requirements and their interdependencies should also be propagated to the other

activities such as design and implementation.

1.3.5 Intelligent Tool Support (Part V)

Requirements knowledge can become huge and scattered across different sources.

Much effort is needed to identify and retrieve relevant information in requirements

repositories. This would entail an overhead of capturing, maintaining, and

accessing requirements knowledge.

To address these problems, researchers started investigating techniques like data

mining, social network analysis, and recommendation technologies and developing

information retrieval tools to enable efficient capture, access, and sharing of

requirements knowledge.

Recently, traditional requirements databases have been enhanced such that data

is modelled and stored in a way that allows learning and querying. Furthermore,

researchers have started investigating how recommendation technologies [64, 78]

can be applied to existing requirements infrastructures and tools.

Intelligent tool support is crucial for the implementation of any requirements

knowledge management programme. Thereby intelligent does not only mean

the ability of the tool to reason about knowledge, derive new knowledge, or deal

with incomplete and scattered knowledge. Intelligent also means integrated and

pragmatic solutions, which neither require additional learning effort, nor impose

heavyweight processes and workflows, nor introduce new interruptions to the

stakeholders workflows, for example, by having to switch back and forth between

tools.

This book includes three chapters on intelligent tool support for managing

requirements knowledge. Chapter 14 introduces various recommendation technologies

16 W. Maalej and A.K. Thurimella

http://dx.doi.org/10.1007/978-3-642-34419-0_11
http://dx.doi.org/10.1007/978-3-642-34419-0_12
http://dx.doi.org/10.1007/978-3-642-34419-0_13
http://dx.doi.org/10.1007/978-3-642-34419-0_14


and relevant discusses visionary scenarios of applying them to support stakeholders’

tasks. Chapter 15 proposes the use of experience-based tools to improve the quality of

software requirements specification by learning from previous experiences. Finally,

Chap. 16 introduces the requirements modelling framework, which is integrated into

the Eclipse Development Environment allowing a traceability of different types of

knowledge such as natural language requirements and formal models.

1.4 Summary

In this chapter, we reviewed the concepts of requirements engineering from the

knowledge management perspective. We discussed the needs for establishing a

new field for managing requirements knowledge and defined its key concepts.

Finally, we introduced five foundations for this field: identifying requirements

knowledge, capturing requirements knowledge for reuse, sharing requirements

knowledge, reasoning about requirements, and intelligent tool support. These

foundations are discussed in detail in the corresponding parts of the book.

Acknowledgements We are grateful to Pete Sawyer, Smita S Ghaisas, Yang Li, and Zardosht

Hodaie for their constructive reviews.

References

1. Bruegge B, Dutoit A (2010) Object-oriented software engineering using UML, Patterns,

and Java, vol 3. Prentice Hall, Upper Saddle River

2. Kang K, Cohen S, Hess J, Nowak W, Peterson S (1990) Feature-oriented domain analysis

(FODA) feasibility study. Technical report, CMU/SEI-90-TR-21. Software Engineering

Institute, Carnegie Mellon University, Pittsburgh

3. Institute of Electrical and Electronic Engineers (1990) IEEE standard glossary of software

engineering terminology (IEEE Std 610.12-1990). Institute of Electrical and Electronics

Engineers, New York

4. Clements P, Northrop L (2006) A framework for software product line practice-version 4.2

(2006). Carnegie Mellon, Software Engineering Institute, Pittsburgh. http://www.sei.cmu.edu/

prodvolnuctlines/framework.html. Last visited Nov 2012

5. Davis A (2003) The art of requirements triage. IEEE Comput 36(3):42–49

6. Sommerville I, Sawyer P (1997) Requirements engineering: a good practice guide. Wiley,

New York

7. Nuseibeh B, Easterbrook S (2000) Requirements engineering: a roadmap. In: Proceedings of

the conference on the future of software engineering (ICSE’00). ACM, New York, pp 35–46

8. Aurum A, Wohlin C (2003) The fundamental nature of requirements engineering activities as

a decision-making process. Inf Softw Technol 45(14):945–954

9. Pohl K (1996) Process-centered requirements engineering. Wiley, New York

10. Hofmann H, Lehner F (2001) Requirements engineering as a success factor in software

projects. IEEE Softw 18(4):58–66

1 An Introduction to Requirements Knowledge 17

http://dx.doi.org/10.1007/978-3-642-34419-0_15
http://dx.doi.org/10.1007/978-3-642-34419-0_16
http://www.sei.cmu.edu/prodvolnuctlines/framework.html
http://www.sei.cmu.edu/prodvolnuctlines/framework.html


11. Yang D, Wu D, Koolmanojwong S, Brown A, Boehm B (2008) Wikiwinwin: a wiki based

system for collaborative requirements negotiation. In: Proceedings of the HICCS, p 24,

Waikoloa

12. Leffingwell D (1997) Calculating the return on investment from more effective requirements

management. Am Program 10(4):13–16

13. Firesmith D (2004) Prioritizing requirements. J Object Technol 3(8):35–47

14. Gartner Group (2011) Hype cycle for application development: requirements elicitation and

simulation. Gartner Group

15. Dorfman M, Thayer RH (1997) Software requirements engineering. IEEE Computer Society

Press, Los Alamitos

16. Pohl K, Böckle G, van der Linder F (2005) Software product line engineering foundations,

principles, and techniques. Springer, New York

17. Software Engineering Institute (2012) Product line hall of fame. http://www.sei.cmu.edu/

productlines/plp_hof.html

18. Smith G (2000) The object-Z specification language, Advances in formal methods series.

Kluwer, Boston

19. Creighton O, Software Cinema (2006) Employing digital video in requirements engineering.

Dissertation, Technische Universtät München

20. Neill CJ, Laplante PA (2003) Requirements engineering: the state of the practice. IEEE Softw

20(6):40–45, IEEE CS

21. Peterson M (2009) An introduction to decision theory. Cambridge University Press,

Cambridge/New York

22. Cooke S, Slack N (1984) Making management decisions. Prentice Hall, Englewood cliffs

23. Kunz W, Rittel H (1970) Issues as elements of information systems. Working paper no. 131.

University of California at Berkeley, Institute of Urban and Regional Development, Berkeley

24. MacLean A, Young RM, Bellotti VME, Moran TP (1991) Questions, options, and criteria:

elements of design space analysis. Hum Comput Interact 6(3):201–250

25. Dutoit AH (1996) Rationale management in requirements engineering. Ph.D. dissertation,

Carnegie Mellon University

26. Dutoit A, Paech B (2003) Eliciting and maintaining knowledge for requirements evolution. In:

Aurum A, Jeffery R, Wohlin C, Handzic M (eds) Managing software engineering knowledge.

Springer, Berlin

27. Dutoit A, McCall R, Mistrik I, Paech B (2006) Rationale management in software engineering.

Springer, Berlin

28. Damian D, Zowghi D (2003) Requirements engineering challenges in multi-site software

development organizations. Requir Eng J 8:149–160

29. Chisholm RM (1982) The foundations of knowing. The University of Minnesota Press,

Minneapolis

30. Resher N (2003) Epistemology: an introduction to the theory of knowledge. State University of

New York Press, Albany

31. Thierauf RJ (1999) Knowledge management systems for business. Praeger

32. Wikipedia, the free encyclopaedia (2012) http://en.wikipedia.org/wiki/Knowledge_management.

Last visited in Nov 2012

33. Hansen MT (1999) The search-transfer problem: the role of weak ties in sharing knowledge

across organization subunits. Adm Sci Q 44(1):82–111

34. Ma L, Nuseibeh B, Piwek P, De Roeck A, Willis A (2009) On presuppositions in requirements.

In: 2nd international workshop on managing requirements knowledge, MaRK’09 IEEE,

Atlanta, USA, pp. 27–31

35. Finkelstein A, Kramer J, Nuseibeh B, Finkelstein L, Goedicke M (1992) Viewpoints:

a framework for integrating multiple perspectives in system development. Int J Softw Eng

Knowl Eng 2–1:31–57

36. Ko AK, DeLine R, Venolia G (2007) Information needs in collocated software development

teams. In: Proceedings of the 29th international conference on software engineering,

Minneapolis, USA, pp 344–353

18 W. Maalej and A.K. Thurimella

http://www.sei.cmu.edu/productlines/plp_hof.html
http://www.sei.cmu.edu/productlines/plp_hof.html
http://en.wikipedia.org/wiki/Knowledge_management


37. Herbsleb JD, Mockus A (2003) An empirical study of speed and communication in globally-

distributed software development. IEEE Trans Softw Eng 29(6):481–494

38. Milewski AE, Tremaine A, Egan R, Zhang S, Kobler F, O’Sullivan P (2008) Guidelines

for effective bridging in global software engineering. In: Proceedings of the 2008 I.E.

international conference on global software engineering, pp 23–32. IEEE Computer Society,

Washington, DC

39. Daramola O, Stålhane T, Omoronyia I, Sindre G (2013) Using ontologies and machine

learning for hazard identification and safety analysis. In: Managing requirements knowledge.

Springer

40. Ghaisas S, Ajmeri N (2013) Knowledge-assisted ontology-based requirements evolution.

In: Managing requirements knowledge (Chapter 7 in this volume). Springer, Heidelberg

41. Soffer A, Dori D (2012) Model-based requirements engineering framework for systems

lifecycle support. In: Managing requirements knowledge (Chapter 13 in this volume).

Springer, Heidelberg

42. Lutz R, Lavin M, Lux J, Peters K, Rouquette NF (2013) Mining requirements from operational

experience. In: Managing requirements knowledge (Chapter 3 in this volume). Springer,

Heidelberg

43. Franch X, Quer C, Renault S, Guerlain C, Palomares C (2012) Constructing and using software

requirements patterns. Springer

44. Carrillo de Gea JM, Nicolás J, Alemán JLF, Toval A, Vizcaı́no A, Ebert C (2013) Reusing

requirements in global software engineering. In:Managing requirements knowledge (Chapter 8

in this volume). Springer, Heidelberg

45. Thurimella AK, Bruegge B (2012) Issue-based variability management. Inf Softw Technol

54(9):933–950

46. Narayan N, Delater A, Paech B, Bruegge B (2011) Enhanced traceability in model-based

CASE tools using ontologies and information retrieval. In: Proceedings of the 4th international

workshop on managing requirements knowledge (MaRK’11), Trento

47. Bjørnson FO, Dingsøyr T (2008) Knowledge management in software engineering: a systematic

reviewof studied concepts, findings and researchmethods used. Inf SoftwTechnol 50:1055–1068

48. Lago P, van Vliet H, Babar MA, Dingsoyr T (eds) (2009) Software architecture knowledge

management: theory and practice, 1st edn. Springer

49. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: elements of reusable

object-oriented software. Addison-Wesley, Reading

50. Basili VR, Caldiera G, Rombach DH (1994) The experience factory, Encyclopedia of software

engineering – 2 volume set. Wiley, New York, pp 469–476

51. Basili V, Costa P, Lindvall M, Mendonca M, Seaman C, Tesoriero R, Zelkowitz M (2001)

An experience management system for a software engineering research organization.

In: Proceedings of the 26th annual NASA Goddard Software engineering workshop.

Greenbelt, Maryland, USA

52. Humphrey WS (2005) PSP: a self-improvement process for software engineers. Addison-

Wesley, Reading. ISBN 03213054931

53. Humphrey WS (1999) Introduction to the team software process. Addison-Wesley, Reading.

ISBN 0-201-47719-X

54. Holz H (2003) Process-based knowledge management support for software engineering.

Doctoral dissertation. University of Kaiserslautern, dissertation.de Online- Press

55. Sillito J, Murphy GC, De Volder K (2008) Asking and answering questions during a program-

ming change task. Trans Softw Eng 34:434–451

56. Robillard MP (2009) What makes APIs hard to learn? Answers from developers. IEEE Softw

26:27–34

57. Rus I, Lindvall M, Sinha SS (2001) Knowledge management in software engineering: a state-

of-the-art-report. Fraunhofer Center for Experimental Software Engineering Maryland and the

University of Maryland for Data and Analysis Center for Software, Department of Defence

58. Bajracharya S, Lopes C (2009) Mining search topics from a code search engine usage log.

In: Proceedings of the 2009 6th IEEE international working conference on mining software

repositories (MSR’09). IEEE Computer Society, Washington, DC, pp 111–120

1 An Introduction to Requirements Knowledge 19



59. Happel H-J, Maalej W, Seedorf S (2010) Applications of ontologies in collaborative software

development. In: Mistrı́k I, Grundy J, van der Hoek A, Whitehead J (Hrsg.) Collaborative

software engineering. Springer, Berlin/Heidelberg. ISBN 978-3642102936

60. Aguiar A, Dekel U, Merson P (2009) Wikis4SE’2009: Wikis for software engineering.

ICSE companion 2009, pp 480–481

61. Happel H-J, Maalej W (2008) Potentials and challenges of recommendation systems for

software development. In: RSSE’08: proceedings of the 2008 international workshop on

recommendation systems for software engineering, ACM

62. Robillard MP, Walker RJ, Zimmermann T (2010) Recommendation systems for software

engineering. IEEE Softw 27(4):80–86

63. Maalej W, Thurimella A (2013) DUFICE – guidelines for a lightweight management of

requirements knowledge. In: Managing requirements knowledge. Springer

64. Dumitru H, Gibiec M, Hariri N, Cleland-Huang J, Mobasher B, Castro-Herrera C,

Mirakhorli M (2011) On-demand feature recommendations derived from mining public

product descriptions. ICSE 2011, pp 181–190

65. Mathes A (2004) Folksonomies: cooperative classification and communication through shared

metadata. In: Computer mediated communication – LIS590CMC http://www.adammathes.

com/academic/computer-mediated-communication/folksonomies.html

66. Jürgens E, Deissenboeck F, Feilkas M, Hummel B, Schätz B, Wagner S, Domann C, Streit J

(2010) Can clone detection support quality assessments of requirements specifications?

ICSE (2): 79–88

67. Ajmeri N, Vidhani K, Bhat M, Ghaisas G (2011) An ontology-based method and tool for cross-

domain requirements visualization. In: Fourth workshop on managing requirements knowl-

edge, MaRK11, pp 22–23, Trento

68. Lohmann S, Heim P, Auer S, Dietzold S, Riechert R (2008) Semantifying requirements

engineering – the softWiki approach, I-SEMANTICS, Graz, pp 182–185

69. Uenalan O, Riegel N, Weber S, Doerr J (2008) Using enhanced wiki-based solutions for

managing requirements. First international workshop on managing requirements knowledge

(MARK), Barcelona, Spain, pp 63–67

70. Lohmann S, Riechert T, Auer S (2008) Collaborative development of knowledge bases in

distributed requirements elicitation. Software engineering (workshops): agile knowledge shar-

ing for distributed software teams, Munich, Germany, pp 22–28

71. Ruhe G, Saliu M (2005) The art and science of software release planning. IEEE Softw

22(6):47–53

72. Karlsson J, Olsson S, Ryan K (1998) Improved practical support for large-scale requirements

prioritization. Require Eng J 2(1):51–60

73. Ramesh B, Jarke M (2001) Toward reference models for requirements traceability. IEEE Trans

Softw Eng 27(1):58–93

74. Dahlstedt A, Persson A (2003) Requirements interdependencies – moulding the state of

research into a research agenda, REFSQ’03, Klagenfurt, pp 71–80

75. Iyer J, Richards D (2004) Evaluation framework for tools that manage requirements inconsis-

tency. In: 9th Australian workshop on requirements engineering (AWRE’04). Adelaide,

Australia

76. Göknil A, Kurtev I, and van den Berg K (2008) A metamodeling approach for reasoning about

requirements. In: 4th European conference on model driven architecture – foundations and

applications, Berlin. LNCS, vol 5095, pp 310–325, Berlin

77. Hoenderboom B, Liang P (2009) A survey of semantic wikis for requirements engineering.

Technical report RUG-SEARCH-09-L03, University of Groningen

78. Mobasher B, Cleland-Huang J (2011) Recommender systems in requirements engineering.

AI Mag 32(3):81–89

79. Glinz M (2007) On non-functional requirements. In: 15th IEEE international requirements

engineering conference, New Delhi, 15–19 Oct 2007, pp 21–26

20 W. Maalej and A.K. Thurimella

http://www.adammathes.com/academic/computer-mediated-communication/folksonomies.html
http://www.adammathes.com/academic/computer-mediated-communication/folksonomies.html


http://www.springer.com/978-3-642-34418-3


	Chapter 1: An Introduction to Requirements Knowledge
	1.1 What Is Requirements Engineering?
	1.1.1 Requirements Engineering Activities
	1.1.2 Requirements Artefacts
	1.1.3 Stakeholders, Collaboration, and Decisions

	1.2 What Is Managing Requirements Knowledge?
	1.2.1 What Is Knowledge?
	1.2.2 What Is Requirements Knowledge?
	1.2.3 Why Managing Requirements Knowledge?
	1.2.4 Knowledge Management in Software Engineering

	1.3 Foundations of Managing Requirements Knowledge
	1.3.1 Identifying Requirements Knowledge (Part I)
	1.3.2 Representing Requirements Knowledge for Reuse (Part II)
	1.3.3 Sharing Requirements Knowledge (Part III)
	1.3.4 Reasoning About Requirements (Part IV)
	1.3.5 Intelligent Tool Support (Part V)

	1.4 Summary
	References


