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Frequency Estimation on Power System
Using Recursive-Least-Squares Approach

Liangliang Li, Wei Xia, Dongyuan Shi and Jianzhuang Li

Abstract An approach based on recursive-least-squares (RLS) algorithm is
applied to the frequency estimation of the instantaneous power system. The three-
phase voltage signal is transformed to a complex form which is easy to be handled
by the proposed approach. When compared with other algorithms, the RLS
algorithm is more suitable for online frequency estimation due to its rapid con-
vergence rate. An arccosine function-free technique is applied to the frequency
estimation approach to reduce computational complexity. The effect of noise,
convergence rate, harmonics and dynamic frequency variation on the performance
of the approach is discussed.
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2.1 Introduction

In a power system, frequency is a quite important parameter that its fast and
precise estimation is vitally necessary. The rapid development of signal processing
technology makes modern frequency measurement flourishing, and many
approaches have been applied to it [1–3]. The Least Mean Square (LMS) algo-
rithm is a typical representative of an adaptive algorithm. Its inherent disadvantage
is slow convergence rate. The LS algorithm is also widely used for frequency
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estimation while it must re-compute every time. To solve these problems, the
Recursive-Least-Squares (RLS) algorithm is applied to frequency estimation.

The RLS algorithm is used extensively in signal processing area. It is an algo-
rithm which recursively finds the coefficients that minimize a weighted linear least
squares cost function related to the input signals [4]. When compared with other
algorithms, the RLS algorithm exhibits the feature of rapid convergence rate.
However, this benefit comes at the cost of high computational complexity. In this
paper, an arccosine function-free technique is applied to the frequency estimation to
reduce the burden of computation with little decline in frequency estimation accu-
racy. Moreover, a complex signal model derived from the three-phase voltage signal
with the transform [5] is also suitable for RLS algorithm. With its fast convergence
and good robustness, the algorithm is fit for online frequency estimation.

This paper is organized as follows. In Sect. 2.2, we present the RLS algorithm
(one-phase case). In Sect. 2.3, inspired by the algorithm of one-phase case, we
extend it to three-phase case. In Sect. 2.4, the performances of these approaches in
different situations are discussed. Finally, in Sect. 2.5, we conclude this paper.

2.2 Proposed Algorithm

In this section, we present the RLS algorithm for online frequency estimation. A
power system signal is sampled by an Analog to Digital Converter (ADC). Hence,
the voltage signal can be described in discrete form as follows:

vðnÞ ¼ A cosðxtn þ u0Þ ¼ A cosðxnTs þ u0Þ ð2:1Þ

where A is the amplitude of fundamental component, x is the actual angular
frequency, u0 is the initial phase, tn is the time, and Ts is the sampling clock
period.

Similarly, vðn� 1Þ and vðnþ 1Þ can be described as follows:

vðn� 1Þ ¼ A cosðxðn� 1ÞTs þ u0Þ
vðnþ 1Þ ¼ A cosðxðnþ 1ÞTs þ u0Þ

ð2:2Þ

Then

vðn� 1Þ þ vðnþ 1Þ ¼ 2A cosðxnTs þ u0Þ cosðxTsÞ ¼ 2vðnÞ cosðxTsÞ ¼ gvðnÞ
ð2:3Þ

where g ¼ 2 cosðxTsÞ. The actual frequency f can be directly estimated with the
relationship below.

f̂ ¼
arccos g

2

� �

2pTs
ð2:4Þ
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Although this frequency estimation approach frequently presents high precision
and speed, it is still unreliable because of two deficiencies. First, derivation of
equation of this algorithm does not take noise effect into account. Second, when
vðnÞ is around zero, the precision of the approach would become poor. Given
vðnÞ ¼ 0, the frequency f cannot be obtained from Eq. (2.3) [6]. Therefore, the
algorithm must be modified to improve the performance. The recursive-least-
squares (RLS) algorithm can be applied to Eq. (2.3) to estimate g and calculate the
frequency f by Eq. (2.4). In Eq. (2.3), vðnÞ is regarded as the input vector, and
vðn� 1Þ þ vðnþ 1Þ is the desired signal, and gðnÞ is the weight vector.

Based on above discussion, the RLS algorithm for frequency estimation can be
described as
Initialization:

gð1Þ ¼ 0 Pð1Þ ¼ d�1I ¼ d�1 ð2:5Þ

Computation: for n ¼ 2; 3; . . .

kðnÞ ¼ Pðn� 1ÞvðnÞ
kþ v2ðnÞPðn� 1Þ

nðnÞ ¼ vðnÞ þ vðn� 2Þ � gðn� 1ÞvðnÞ
gðnÞ ¼ gðn� 1Þ þ kðnÞnðnÞ
PðnÞ ¼ k�1Pðn� 1Þ � k�1kðnÞvðnÞPðn� 1Þ

ð2:6Þ

where k is forgetting factor, d is the value to initialize Pð1Þ. The frequency is
obtained by the Eq. (2.4).

In this algorithm above, there is a high computational complexity so that it will
have a negative effect on the speed of online frequency estimation. Especially, the
arccosine is a transcendental function which needs a time-consuming computation.
Therefore, the arccosine function should be modified for speed as

vðn� 1Þ þ vðnþ 1Þ ¼ 2vðnÞ cosðxTsÞ ¼ 2vðnÞ cosððx0 þ DxÞTsÞ
¼ 2vðnÞ cosðx0TsÞ cosðDxTsÞ � 2vðnÞ sinðx0TsÞ sinðDxTsÞ

ð2:7Þ

where x0 is the normal frequency, Dx is the frequency drift. As we know, the
frequency drift is small in a real power system. And the sampling time interval Ts

is also small. Consequently, DxTs can be regarded as a number that approaches to
zero.

Then

vðn� 1Þ þ vðnþ 1Þ � 2vðnÞ cosðx0TsÞ � 2vðnÞ sinðx0TsÞDxTs ð2:8Þ

Using the relationship of x0 ¼ 2pf0, Ts ¼ 1=fs, Dx ¼ 2pDf , fs ¼ Nf0, we can
obtain
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vðnÞDf ¼
2 cos 2p

N

� �
vðnÞ � vðnþ 1Þ � vðn� 1Þ

4pTs sin 2p
N

� � ð2:9Þ

Similarly, the RLS algorithm can be applied to Eq. (2.9), just like Eq. (2.3). We
recursively find the frequency drift. Finally, the estimated frequency is equal to

f ðnÞ ¼ f0 þ Df ðnÞ ð2:10Þ

So by this method the arccosine function is removed from the algorithm. More-
over, in Eq. (2.9) 4pTs sinð2p=NÞ and 2 cosð2p=NÞ can be calculated offline. It
effectively reduces the computational complexity and improves the speed of the
algorithm.

2.3 Three-Phase Case

In Sect. 2.2, we have discussed the proposed algorithm in one-phase case of a
power system. Now, inspired by [7], we extend the algorithm to three-phase case.
Similarly, the three-phase signal of a power system can be described as follows:

vaðnÞ ¼ A cosðxtn þ u0Þ

vbðnÞ ¼ A cosðxtn �
2p
3
þ u0Þ

vcðnÞ ¼ A cosðxtn þ
2p
3
þ u0Þ

ð2:11Þ

Then we apply the a b transform to Eq. (2.11).

vaðnÞ
vbðnÞ

� �
¼

ffiffiffi
2
3

r
1
0
�1=2ffiffiffi

3
p �

2
�1=2
�

ffiffiffi
3
p �

2

� �
vaðnÞ vbðnÞ vcðnÞ½ �T ð2:12Þ

Finally, a complex voltage VðnÞ can be obtained

VðnÞ ¼ vaðnÞ þ ivbðnÞ ð2:13Þ

Equation (2.3) is a classical relationship that is suitable for sinusoidal signal.
Therefore, it can be proved that Eq. (2.3) is also suitable for the complex signal VðnÞ.

Vðn� 1Þ þ Vðnþ 1Þ ¼ 2VðnÞ cosðxTsÞ ð2:14Þ

With the same principle as one-phase signal, the RLS algorithm can be applied to
a complex form based on Eq. (2.14). The complex form of RLS algorithm for
frequency estimation is described as

14 L. Li et al.



Initialization:

gð1Þ ¼ 0 Pð1Þ ¼ d�1I ¼ d�1 ð2:15Þ

Computation: for n ¼ 2; 3; . . .

kðnÞ ¼ Pðn� 1ÞVðnÞ
kþ V�ðnÞPðn� 1ÞVðnÞ

nðnÞ ¼ VðnÞ þ Vðn� 2Þ � g�ðn� 1ÞVðnÞ
gðnÞ ¼ gðn� 1Þ þ kðnÞn�ðnÞ
PðnÞ ¼ k�1Pðn� 1Þ � k�1kðnÞV�ðnÞPðn� 1Þ

ð2:16Þ

Moreover, due to Eq. (2.14), we can also obtain the complex form of frequency
drift as follows:

VðnÞDf ¼
2 cos 2p

N

� �
VðnÞ � Vðnþ 1Þ � Vðn� 1Þ

4pTs sin 2p
N

� � ð2:17Þ

The RLS algorithm similarly can be applied to this equation to estimate the fre-
quency drift Df , and the unknown frequency can be obtained in Eq. (2.10).

2.4 Simulation Results

In this paper, four approaches for frequency estimation are proposed, i.e., one-
phase arccosine, one-phase arccosine free, three-phase arccosine and three-phase
arccosine free. In this section, we discuss the effect of noise, convergence rate,
harmonics and dynamic frequency variation on the performance of the proposed
approaches. In the simulation, the sampling rate is 1 KHz and the normal fre-
quency is 50 Hz. By default, the parameters of the RLS algorithm in this paper are
d ¼ 0:01 and k ¼ 0:98. Zero-mean Gaussian noise is added to the normal fre-
quency signal to simulate a power system.

Case 1 Noise effect: We study the performance of these approaches by adding
zero-mean Gaussian noise to the fundamental signal. As an index of accuracy, we use

normalized mean square error (MSE), which is define as
X

n
ðf � f̂nÞ2 = f 2

P
n 1

� �
,

where f is the exact and f̂n the estimated frequency at time tn [2]. In this simulation,
the real frequency is 49:5 Hz. The initial weight vector of the arccosine approach is
gð1Þ ¼ 2 cosð2p� 50� TsÞ, while that of the arccosine free approach is gð1Þ ¼ 0.
Figure 2.1 shows the relationship between SNRs and the MSE. It shows that the
performance of these approaches badly declines in highly noisy environment. This is
an inherent defect of many algorithms, which are not inherently filter based [2].
Moreover, the arccosine-free approach can decrease the computation complexity at
the cost of little increasing in the mean of square error of frequency estimation.
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Case 2 Convergence rate: When compared with the LMS algorithm, the RLS
algorithm shows its good convergence rate. Figure 2.2 describes the comparison.
In this simulation, the SNR of the input signal is 40 dB and the initial weight
vectors of both algorithms are zeros. The step size of the LMS algorithm is 0.1.

Case 3 Harmonics effect: In our simulation, the fundamental signal, the SNR
and the initial weight vectors are the same as Case 2. We compare the performance
of the harmonics signal and the filtered signal with the one-phase arccosine-use
approach. The harmonics signal contains 10 % third harmonics, 5 % fifth har-
monic, and 3 % seventh harmonic besides the fundamental signal. A three-order
low-pass Butterworth filter with a cut-off frequency of 100 Hz is performed. It is
observed from Fig. 2.3 that the estimated frequency is quite close to the funda-
mental frequency after pre-filtering.
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Case 4 Dynamic frequency estimation: Voltage signal with �1 Hz frequency
oscillation starting from 49:5 Hz are exposed to the first proposed approach. In this
simulation, the SNR is 40 dB, the forgetting factor is k ¼ 0:95, The step size of the
LMS algorithm is 0.1 and the initial weight vector of both algorithms is
2 cosð2p� 50� TsÞ. We learn from Fig. 2.4 that the estimated frequency which is
calculated in real time is the same as real frequency. Moreover, the performance of
the RLS algorithm is better than that of the LMS algorithm in [6] because of its
faster convergence rate.
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2.5 Conclusion

A new frequency estimating approach based on the RLS algorithm is proposed in
this paper. The approach is derived from a classical formula which holds for every
three consecutive samples. An arccosine-free version of the approach is proposed for
reducing the computational complexity. Moreover, we extend the three-phase signal
to a complex form, and apply the RLS algorithm to it. Simulation results show that
the accuracy and speed of estimation is satisfactory even in the presence of noise,
harmonics, and frequency variation. When compared with other approaches, this
approach shows rapid convergence rate. Therefore, the proposed approach is suit-
able for application in online frequency estimation.
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