
Chapter 2
Governing Equations for Wave
Propagation in a Fluid-Saturated
Porous Medium

Abstract In this chapter the governing equations for wave propagation in a
fluid-saturated porous medium are derived and the involved physical mechanisms
and acoustic parameters are discussed. It is shown that the stress-strain relations
associated with Biot’s theory can be straightforward obtained from constitutive and
continuity equations. Equations of motion are derived by combining these stress-
strain relations with momentum equations. We present the equations of motion in
the two different formulations that are known in the literature.

2.1 Introduction

In this thesis we study the wave propagation in fluid-saturated porous media. We
investigate how various wavemodes can be described mathematically and detected
experimentally (especially the interface wavemodes), and how the various waves can
be used to characterize acoustic parameters of a porous medium. Therefore, in this
chapter we give the theoretical framework for the description of the wave propagation
in a fluid-saturated porous medium. Originally, this theory was developed by Biot
(1956a). Here, we show the derivation of the governing equations and discuss the
physical mechanisms and involved acoustic parameters.

First, we give the definitions of integral transforms and some notation conven-
tions that we use in this chapter and throughout the thesis (Sect. 2.2). Then, we show
that a fluid-saturated porous medium can be considered as a continuum and discuss
the underlying assumptions (Sect. 2.3). In Sect. 2.4 we derive stress-strain relations
associated with Biot’s theory from straightforward constitutive and continuity equa-
tions following Kelder (1998) and Wisse (1999). This shows that the involved elastic
constants are clearly related to physical quantities. Subsequently, we combine the
stress-strain relations with the momentum equations to finally obtain the equations of
motion (Sect. 2.5). We present the equations of motion in two different formulations
that are known in the literature.
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2.2 Definitions

First, we define the integral transforms that are used in this thesis. For frequency-
domain analysis we use the Fourier transform over time t defined as

û(x,ω) =
∫ ∞

−∞
u(x, t) exp(−iωt) dt, (2.1)

where ω denotes angular frequency, i is the imaginary unit and u is a displacement
vector, but the Fourier transform can be applied to any other relevant field quantity.
The vector x = (x1, x2, x3)

T contains the spatial coordinates, where x1 and x2 are
horizontal coordinates and x3 is the vertical coordinate being positive in downward
direction; the superscript T denotes the transpose. Because the time-domain signal
u is real-valued it holds that û(−ω) = û∗(ω), where the asterisk denotes complex
conjugation. Hence it is sufficient to consider ω ≥ 0 only.

The Fourier transform over all spatial coordinates is defined as

˘̄u(k,ω) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
û(x,ω) exp(ik · x) dx1dx2dx3, (2.2)

where k = (k1, k2, k3)
T is the wavenumber vector. Throughout the thesis we often

use slowness p which is related to the wavenumber according to k = ωp (Aki and
Richards 1980). The hat (û) refers to the (x,ω)-domain and the combined bar/breve
( ˘̄u) to the (k,ω)-domain. We use a single breve (ŭ) to indicate the (p,ω)-domain.

Alternatively, when dealing with media that have discontinuities in x3-direction
(interfaces between layers), we apply the Fourier transform over horizontal coordi-
nates only according to

˜̄u(kr , x3,ω) =
∫ ∞

−∞

∫ ∞

−∞
û(x,ω) exp (ikr · r) dx1dx2, (2.3)

where kr = (k1, k2)
T is the horizontal wavenumber vector and r = (x1, x2)

T is
the horizontal space vector. In the case we work with the slowness rather than the
wavenumber we apply kr = ωpr (see above). The combined bar/tilde ( ˜̄u) refers to
the (kr , x3,ω)-domain, and a single tilde (ũ) refers to the (pr , x3,ω)-domain.

When using index notation we invoke the Einstein’s summation convention for
repeated indices. However, the summation convention does not apply to Greek sym-
bols (e.g., α, β) because we use these to indicate different wavemodes. Further, the
Kronecker delta is denoted δi j and is defined as

δi j =
{

1, i = j,
0, i �= j.

(2.4)
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2.3 Continuum Description of a Porous Medium

As a basis for the derivation of the stress-strain relations associated with the theory
for wave propagation in a fluid-saturated porous medium, in this section we give the
underlying assumptions and we define stresses and strains.

The Biot theory describes porous materials as a medium consisting of two inter-
penetrating phases: the solid phase (porous frame) and the fluid phase (Biot 1956a).
The original theory has been developed using a semi-phenomenological macroscopic
approach, based on a set of physically realistic assumptions. This approach means
that the microscopic dimensions of the individual constituents of the saturated porous
medium are not considered, i.e., the medium is considered as a continuum. The
following assumptions were made:

1. The fluid-saturated porous material is constituted in such a way that the fluid
phase is fully interconnected. Any sealed void space is considered as a part of the
solid.

2. A so-called representative elementary volume element is defined, which is small
compared to the relevant wavelength but large compared to the individual grains
and pores of the system. Each volume element is described by its averaged dis-
placement of the solid parts u(x, t) and of the fluid parts U(x, t).

3. The deformation of the elementary volume element is assumed to be linearly
elastic and reversible. This implies that displacements for both fluid and solid
phases are small. The governing equations can be represented in their linearized
form.

4. The solid is considered to have compressibility and shear rigidity, while the fluid
only has compressibility as it is assumed to be a Newtonian fluid: the fluid does
not sustain any shear force for static displacements.

5. The solid and fluid are assumed homogeneous and isotropic, and all possible
dissipation mechanisms related to the solid itself are not taken into account. Only
dissipation due to viscous relative fluid-solid motion is incorporated.

6. Thermoelastic and chemical reaction effects are assumed to be absent and the
system behaves adiabatically.

Following these assumptions, we can now define porosity, stresses and strains
unambiguously. Considering a fluid-filled elastic porous matrix with a statistical
distribution of interconnected pores, the porosity is usually defined by

φ = V f

Vb
, (2.5)

where V f is the volume of the pores contained in a sample of bulk volume Vb, and
the term “porosity” refers to the effective porosity (see assumption 1 above).

Within the restrictions of the linearized theory the (macroscopic) deformation of
solid and fluid are described by the small-strain tensors, ei j and εi j , respectively,
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according to

ei j = 1
2 (∂i u j + ∂ j ui ), (2.6)

εi j = 1
2 (∂iU j + ∂ jUi ), (2.7)

where ∂ j = ∂/∂x j . It is evident that ei j = e ji and εi j = ε j i .
If we consider a cube of unit size of the bulk material (solid and fluid), the total

stress tensor can be defined as

τb,i j =
⎛
⎝ τ11 + τ τ12 τ13

τ21 τ22 + τ τ23
τ31 τ32 τ33 + τ

⎞
⎠ , (2.8)

where τ represents the total normal tension force per unit bulk area Ab applied to the
fluid part of the faces of the cube. The total stress tensor is symmetric, i.e., τb,i j =
τb, j i , which can be shown using the balance of angular momentum (Achenbach
1973). Denoting the pressure of the fluid in the pores by p f we can write

τ = −φp f , (2.9)

where p f is defined positive in compression. The remaining components τi j of the
total stress tensor are the forces per unit bulk area applied to that portion of the cube
faces occupied by the solid. They are a result of both the fluid pressure p f and the
additional intergranular stresses σi j ,

τi j = −σi j − (1 − φ)p f δi j , (2.10)

where the Kronecker delta reflects the assumption that the pore fluid cannot sustain
any shear forces. The intergranular stresses are also defined positive in compression,
and are called “additional” because they add up to the stresses in the solid induced
by the fluid pressure.

For later use, we also define the forces per unit solid area As applied to that portion
of the cube faces occupied by the solid

τi j Ab/As = −σi j/(1 − φ) − p f δi j . (2.11)

Obviously, the total normal tension force per unit fluid area A f applied to the fluid
part of the faces of the cube can be written as

τ Ab/A f = −p f , (2.12)

where A f /Ab = V f /Vb and Eq. (2.5) have been used.
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Using now Eqs. (2.9) and (2.10) the total stress tensor (Eq. (2.8)) in the bulk
material can be written as

τb,i j =
⎛
⎝−σ11 − p f −σ12 −σ13

−σ21 −σ22 − p f −σ23
−σ31 −σ32 −σ33 − p f

⎞
⎠ , (2.13)

where σi j = σ j i (see Eq. (2.8)). This expression for the total stress tensor is also
given by Verruijt (1982), where it must be noted that he has denoted the total stress
tensor as σi j and the intergranular stress as σ̄i j .

2.4 Stress-Strain Relations

We now derive the stress-strain relations for a fluid-saturated porous medium and
relate the elastic coefficients of the model to physical quantities.

Following the assumptions and definitions as mentioned in the previous section,
and by a generalization of the procedure followed in the classical theory of elasticity
(Love 1944), the elastic potential energy density E p for a fluid-saturated porous
medium can be written as Biot (1955)

E p = 1
2 (τ11e11 + τ22e22 + τ33e33 + 2τ12e12 + 2τ13e13 + 2τ23e23 + τε), (2.14)

where ε = εkk . In Eq. (2.14) the symmetry property of the stresses and strains
has been used, τi j = τ j i and ei j = e ji , respectively. Following the generalized
Hooke’s law, here the number of independent elastic coefficients is twenty eight,
which is known as general anisotropic poroelasticity. When the material is isotropic,
i.e., when there are no preferred directions in the material which also means that
the principal stress and strain directions coincide, this is reduced to four distinct
elastic coefficients. Introducing the elastic constants A, Q, R and G, the stress-strain
relations for an isotropic porous medium can be written as Biot (1956a)

τi j = 2Gei j + Aekkδi j + Qεδi j , (2.15)

τ = Qekk + Rε. (2.16)

The elastic constants A, Q, R are generalized elastic coefficients that can be related to
physical quantities such as porosity φ, the fluid bulk modulus K f , the bulk modulus
of the grains Ks , the bulk of the drained matrix Kb, and the (drained) composite
shear modulus G.

The elastic coefficients were related to physical quantities by Gassmann (1951),
Biot and Willis (1957), Geertsema and Smit (1961), Stoll (1974), Brown and Korringa
(1975) and Berryman (1981), using so-called static “Gedanken” experiments on
jacketed and unjacketed porous samples. Here, we discuss these tests following
(Kelder 1998), who derived the stress-strain relations from straightforward continuity
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and constitutive relations. In the gedanken experiments the volume effects caused
by the stresses in the porous medium are investigated. As these stresses can be
expressed in terms of fluid pressure and intergranular stresses (see Eqs. (2.9) and
(2.10)), we discuss two experiments in which the influences of the two stresses are
studied separately. By superposition of the results, and in combination with continuity
equations, we arrive at stress-strain relations in the form equivalent to Eqs. (2.15) and
(2.16).

2.4.1 Effect of Fluid Pressure (Unjacketed Test)

The first experiment is the so-called unjacketed test in which the influence of the fluid
pressure is studied. When a porous sample is fully submerged in a watertank (pressure
change dpe) and the sample is assumed to be fully water-saturated, it is immediately
clear that the fluid pressure must be continuous over the interface (Deresiewicz and
Skalak 1963),

dp f = dpe. (2.17)

For the intergranular stresses at the interface we can write

dσ11 = dσ22 = dσ33 = 0. (2.18)

As there are no changes in the intergranular stresses, the unjacketed test is used to
study the volume effects caused by the pore pressure changes. Defining the bulk
modulus Ka , the bulk volume change dVb is measured in this test,

dVb = − Vb

Ka
dp f . (2.19)

In the case of homogeneous media, either isotropic or not, the application of an
incremental pressure dpe means applying this increment both to the outer and inner
pore surface, which leads to a linear mapping and does not change the poros-
ity φ (dφ = 0). Therefore we may write for the volume change of the matrix
grains

dVs = (1 − φ)dVb = − 1

Ka
Vsdp f . (2.20)

This means that for homogeneous media Ka can also be interpreted as the bulk
modulus of the individual grains, which we denote by Ks . Hence, in Eqs. (2.19) and
(2.20) Ka can be replaced by Ks .
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2.4.2 Effect of Intergranular Stresses (Jacketed Test)

The second experiment is the so-called jacketed test in which the influence of inter-
granular stresses is studied. In this case, a porous sample is jacketed and fully sub-
merged in a watertank (pressure change dpe) and the inside of the jacket is made to
communicate with the atmosphere through a tube to ensure constant internal fluid
pressure. Now we can write Deresiewicz and Skalak (1963)

dpe = dσ11 = dσ22 = dσ33, (2.21)

see also Eq. (2.13) and dp f = 0. As there are no pore pressure changes, the jacketed
test is used to study the volume effects caused by intergranular stresses. Defining the
matrix bulk modulus Kb, the bulk volume change dVb,

dVb = − Vb

Kb
dσ. (2.22)

is measured in this test, where σ is the isotropic component of the intergranular
stress (σ = 1

3σkk). In the literature, it is often assumed that a dry specimen exhibits
the same properties as a fully saturated one and therefore the conventional jacketed
test is usually performed on a dry specimen. Assuming that the response of the
solid particles to a unit increase of the average stress induced by the intergranular
forces equals the response to a unit increase of the uniform stress induced in these
particles by the fluid pressure, we can write for the volume change of the particles
(see Eqs. (2.11) and (2.20))

dVs = − 1

(1 − φ)

1

Ks
Vsdσ. (2.23)

The associated change in porosity dφ can be found using the relation dVs = d[(1 −
φ)Vb)] (cf. Eq. (2.20))

dφ = −
(

1 − φ

Kb
− 1

Ks

)
dσ. (2.24)

It can be argued that a small increase of the intergranular stress must result in
a decrease of the porosity, so ∂φ/∂σ < 0. From Eq. (2.24), we then find that
(1 − φ)Ks > Kb, which was also previously stated by Verruijt (1982).

2.4.3 Combination of Effects

Now, the bulk volume change dVb can be described as a function of both the pore
pressure change and the change of the intergranular stresses, and thus as a summation
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of the effects discussed in both experiments (see Eqs. (2.19) and (2.22))

dVb

Vb
= − 1

Kb
dσ − 1

Ks
dp f . (2.25)

Introducing de = dekk = dVb/Vb, integrating Eq. (2.25) and ignoring the integration
constants, which is allowed because we only consider varying (dynamic) quantities,
we obtain

− σ = Kbe + Kb

Ks
p f . (2.26)

Next, we want to include the effect of shear strain. When we measure the shear
modulus of a dry sample, i.e., p f = 0, the shear modulus G of the matrix can be
incorporated following Hooke’s law for an isotropic solid. As only the intergranular
stress σi j can produce shear strain, it can be seen from Eq. (2.26) that the stress-strain
relation for the bulk can be written as

− σi j =
(

Kb − 2

3
G

)
eδi j + 2Gei j + Kb

Ks
p f δi j . (2.27)

This relation does not yet have the final form of Eqs. (2.10) and (2.15). Therefore, we
proceed with the derivation below. In the literature, the effective stress σ′

i j is often
introduced in such a way that the deformation of the matrix is fully determined by
that stress (Verruijt 1982)

− σ′
i j = −σi j − Kb

Ks
p f δi j =

(
Kb − 2

3
G

)
eδi j + 2Gei j . (2.28)

2.4.4 Relation of Biot’s Elastic Constants to Physical Quantities

We continue with the derivation of stress-strain relations for a fluid-saturated porous
medium by combining the constitutive equations with continuity equations. The
constitutive equation for the solid is found by combination of Eqs. (2.20) and (2.23),
and using dVs/Vs = −dρs/ρs . For the fluid, the bulk modulus K f is introduced.
The constitutive equations read

1

ρs
∂tρs = 1

Ks
∂t p f + 1

(1 − φ)

1

Ks
∂tσ, (2.29)

1

ρ f
∂tρ f = 1

K f
∂t p f . (2.30)
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The linearized continuity equations read (Smeulders 1992)

(1 − φ)∂tρs − ρs∂tφ + (1 − φ)ρs∇ · v = 0, (2.31)

φ∂tρ f + ρ f ∂tφ + φρ f ∇ · V = φ∂tθm, (2.32)

where v = ∂t u and V = ∂t U are the averaged velocities of the solid and fluid,
respectively. For later use we include a source term in the equation for the fluid;
θm denotes the volume density of (fluid) mass injection having dimensions [kgm−3]
(Wapenaar and Berkhout 1989). We do not include a similar source term for the solid
because it is found in the literature only for the fluid (Bonnet 1987). As the physical
meaning of this (fluid) source may not be immediately clear we further discuss its
nature in Chap. 3.

As we are dealing with a linearized theory, in Eqs. (2.31) and (2.32) and all subse-
quent equations the products of quantities (e.g., φ∂tρ f ) are understood as follows: the
quantity preceding the derivative (φ) denotes the unperturbed (background) value,
and the quantity to which the derivative is applied (∂tρ f ) denotes the wave-induced
variation of that quantity.

By combining the solid relations, Eqs. (2.29) and (2.31), and the fluid equations,
Eqs. (2.30) and (2.32), respectively, we eliminate the factors ∂tρs and ∂tρ f and obtain

1 − φ

Ks
∂t p f + 1

Ks
∂tσ − ∂tφ + (1 − φ)∇ · v = 0, (2.33)

φ

K f
∂t p f + ∂tφ + φ∇ · V = φ

ρ f
∂tθm . (2.34)

Elimination of the porosity term (∂φ) by adding the equations yields

(
1 − φ

Ks
+ φ

K f

)
∂t p f + 1

Ks
∂tσ + (1 − φ)∇ · v + φ∇ · V = φ

ρ f
∂tθm, (2.35)

which is usually called the “storage equation”; it forms a basic relationship in con-
solidation problems (Verruijt 1982).

Now we eliminate either σ or p f from the combination of Eqs. (2.26) and (2.35).
Using the identity ∂t e = ∇ · v this yields

φ′∂tσ + φKb∇ · v − φK f
Kb

Ks
∇ · V = φK f ∂tθm, (2.36)

φ′∂t p f + K f

(
1 − φ − Kb

Ks

)
∇ · v + φK f ∇ · V = −φK f

Kb

Ks
∂tθm, (2.37)

where we have introduced

φ′ = φ + K f

Ks

(
1 − φ − Kb

Ks

)
. (2.38)

http://dx.doi.org/10.1007/978-3-642-34845-7_3
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Then, by combining Eqs. (2.27) and (2.37), and Eqs. (2.26) and (2.36), respectively,
we obtain the following set of stress-strain relations for a fluid-saturated porous
medium in a form similar to Eqs. (2.10) and (2.15), and (2.9) and (2.16) (except for
the volume injection source), respectively,

−σi j − (1 − φ)p f δi j = G(∂i u j + ∂ j ui ) + A∂kukδi j + Q(∂kUk − θ)δi j , (2.39)

−φp f = Q∂kuk + R(∂kUk − θ). (2.40)

Here, we note that φ is the unperturbed value of the porosity; cf. Eqs. (2.31) and (2.32).
Further, we have used ρ−1

f ∂tθm = ∂t (ρ
−1
f θm) = ∂tθ, which is possible because ρ f

denotes the unperturbed fluid density; θ denotes the volume density of volume injec-
tion (Wapenaar and Berkhout 1989), which is a dimensionless quantity. Indefinite
integration over time has been applied to obtain Eqs. (2.39) and (2.40), where the inte-
gration constants are ignored because we only consider varying (dynamic) quantities.
In the above derivation of Eqs. (2.39) and (2.40) the generalized elastic constants A,
Q and R (cf. Eqs. (2.15) and (2.16)) are found to be related to the physical quantities
φ, Kb, K f , Ks and G according to

A = Kb − 2

3
G + K f (1 − φ − Kb

Ks
)2

φ′ , (2.41)

Q = φK f (1 − φ − Kb
Ks

)

φ′ , (2.42)

R = φ2 K f

φ′ . (2.43)

In the limit case in which the porous matrix and the fluid are much more compressible
than the grains themselves (i.e., Kb/Ks, K f /Ks → 0), the expressions reduce to

A = Kb − 2

3
G + K f (1 − φ)2

φ
, (2.44)

Q = K f (1 − φ), (2.45)

R = φK f . (2.46)

From Eqs. (2.41)–(2.43) it can be derived that

Kb = A − Q2

R
+ 2

3
G, (2.47)

which shows a similarity with the elastic case, where the well-known Lamé constants
λ and G are related to the bulk modulus according to (Achenbach 1973)

Kb = λ + 2

3
G. (2.48)
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Obviously, the Lamé constant λ of a porous material, under condition of constant
fluid pressure (see Sect. 2.4.2), is found as

λ = A − Q2

R
. (2.49)

2.5 Equations of Motion

Next, we derive the equations of motion by combination of the stress-strain relations
with momentum equations. We derive two different formulations of the equations of
motion and we show that a viscous mechanism can be incorporated, describing the
frequency-dependent interaction between fluid and solid.

The momentum equations for a porous medium have been derived by Biot (1956a)
using Lagrange’s equations. Starting from the linearized Navier-Stokes equations and
the linearized equations of elasticity, Burridge and Keller (1981) arrived at the same
result using a two-space method of homogenization for the case that the viscosity of
the saturating fluid is relatively small. In this section we summarize the derivation
by Biot.

For both the solid and the fluid phase, Lagrange’s equation including dissipation
can be formulated as (Achenbach 1973; Graff 1975; Davis 1988; Allard 1993; Pierce
2007)

∂t

(
∂Ek

∂vi

)
+ ∂Ed

∂vi
= Ts,i + Fs,i , (2.50)

∂t

(
∂Ek

∂Vi

)
+ ∂Ed

∂Vi
= T f,i + F f,i , (2.51)

where Ek is the kinetic energy density of the porous medium, Ed denotes the dissi-
pation function, Ts,i is the elastic force (due to stresses) acting on the solid per unit
volume, T f,i is the elastic force acting on the fluid per unit volume, and Fs,i and F f,i

are the external volume forces acting on the solid and fluid phase, respectively. The
expression for the kinetic energy density reads (Biot 1956a)

Ek = 1
2 (ρ11vivi + ρ22Vi Vi + 2ρ12vi Vi ). (2.52)

The density terms ρ11, ρ22 and ρ12 are related to the density of the solid ρs and that
of the fluid ρ f according to

ρ11 = (1 − φ)ρs − ρ12, (2.53)

ρ22 = φρ f − ρ12, (2.54)

ρ12 = −(α∞ − 1)φρ f . (2.55)
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The latter density term represents a mass coupling parameter between the solid and
the fluid, which exists due to the (infinite-frequency) tortuosity α∞ of the porous
network: α∞ ≥ 0, and hence ρ12 ≤ 0. We discuss α∞ more extensively in Sect. 2.5.1.

Dissipation depends only on the relative motion of the fluid and the solid phases.
Like Eq. (2.52), the dissipation function can be expressed in terms of six velocity
components. For the isotropic case it reads (Biot 1956a)

Ed = 1
2 b0(vi − Vi )(vi − Vi ), (2.56)

where the coefficient b0 is related to the Darcy flow permeability k0 and the dynamic
viscosity η of the saturating fluid as

b0 = ηφ2

k0
. (2.57)

The nature of the dissipation mechanism is discussed in more detail in Sect. 2.5.1.
The forces Ts,i and T f,i are related to spatial derivatives of the stresses. Using

Eqs. (2.39) and (2.40) the expressions read

Ts,i = −∂ jσi j − (1 − φ)∂i p f

= G∂i∂ j u j + G∂2
j ui + A∂i∂ j u j + Q(∂i∂ jU j − ∂iθ), (2.58)

T f,i = −φ∂i p f

= Q∂i∂ j u j + R(∂i∂ jU j − ∂iθ). (2.59)

Now, by combining Eqs. (2.50), (2.52), (2.56) and (2.58), and by combining
Eqs. (2.51), (2.52), (2.56) and (2.59), we obtain the following equations of motion

ρ11∂
2
t u + ρ12∂

2
t U + b0∂t (u − U) = P∇∇ · u − G∇ × ∇ × u

+ Q∇∇ · U + f, (2.60)

ρ12∂
2
t u + ρ22∂

2
t U − b0∂t (u − U) = Q∇∇ · u + R∇∇ · U + F, (2.61)

where P = A+2G and we have used the vector identity ∇2u = ∇∇ ·u−∇ ×∇ ×u
to separate dilatation and rotation terms. The source terms are defined as

f = Fs − Q∇θ, (2.62)

F = F f − R∇θ. (2.63)

Eqs. (2.60) and (2.61) are the equations of motion for wave propagation in a fluid-
saturated porous medium, as originally derived by (Biot 1956a) (without source
terms). The incorporated dissipation mechanism being frequency-independent, how-
ever, simplifies reality too much. Therefore, in the next section we modify the
associated terms in Eqs. (2.60) and (2.61).
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2.5.1 Incorporation of Frequency-Dependent Permeability
or Tortuosity

In this section we discuss the behavior of the dissipation mechanism which describes
the frequency-dependent interaction between the solid and the fluid. Starting from the
low- and high-frequency limits, the behavior in the intermediate frequency band is
obtained for the rigid-frame limit (u = 0). We clarify the relation between frequency-
dependent permeability and tortuosity, illustrate their behavior using a numerical
example, and finally we show how the frequency-dependent dissipation mechanism
can be included in the general equations of motion Eqs. (2.60) and (2.61).

In the rigid-frame limit, after application of the Fourier transform over time
(Eq. (2.1)), the equation of motion for the fluid reduces to

− ∇ p̂ f =
(

−ω2α∞ρ f + iω
ηφ

k0

)
Û, (2.64)

which is obtained from Eq. (2.61) by expressing ∇∇ · U in terms of p f using
Eq. (2.40).

In the low-frequency limit the acceleration term tends to zero and the viscous
forces are dominant. Hence, Eq. (2.64) reduces to

lim
ω→0

(−∇ p̂ f ) = iω
ηφ

k0
Û, (2.65)

which is the well-known Darcy’s law for flow through porous media. In the high-
frequency limit the acceleration term dominates the viscous forces, and we obtain

lim
ω→∞(−∇ p̂ f ) = −ω2α∞ρ f Û. (2.66)

In this equation the tortuosity α∞ appears as a modification of the acceleration term
of the fluid. To understand this, it is important to realize that we are dealing with
a macroscopic (continuum) theory. The macroscopic length scale is related to the
wavelength L at which measurable, continuous and differentiable quantities can be
identified. The microstructure of a random porous medium is generally characterized
by a length scale proportional to the pore size (Smeulders et al. 1992). The direction
of the acceleration on the microscale may very well differ from the macroscopic
acceleration direction. For instance, when the macroscopic flow is one-dimensional,
the microscopic flow is at least two-dimensional. Smeulders et al. (1992) relate the
microscopic flow field to the macroscopic flow field using an averaging technique of
homogenization. In the high-frequency limit they obtain

α∞ = 〈|vp|2〉
|v0|2 , (2.67)
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where 〈〉 denotes the averaging operator, vp is the microscopic potential-flow solution
and v0 is the macroscopic velocity of the fluid. In this way, one can imagine that the
local variations of the flow contribute to the inertia term on the macroscopic level. In
a cylindrical duct the averaged microscopic velocity equals the macroscopic velocity
and, consequently, α∞ = 1.

Considering now Eq. (2.64), we observe that the momentum equation of the fluid
is constituted by superposition of the low- and high-frequency limits described above.
This simple superposition is, however, too simplified a description of the frequency-
dependent dissipation process. A more realistic description has been proposed by
Biot (1956b) and by Johnson et al. (1987). Here, we follow the latter model where
either the concept of dynamic permeability k̂(ω) is introduced, or the concept of
dynamic tortuosity α̂(ω), by reformulations of Eq. (2.64) according to

−∇ p̂ f = iω
ηφ

k̂(ω)
Û, (2.68)

−∇ p̂ f = −ω2α̂(ω)ρ f Û. (2.69)

Obviously, Eqs. (2.68) and (2.69) are alternative descriptions of the same physical
reality and therefore, k̂(ω) and α̂(ω) are related as

α̂(ω) = − iηφ

ωρ f k̂(ω)
. (2.70)

In the low-frequency limit, the dynamic permeability approaches the stationary value
(see Eq. (2.65))

lim
ω→0

k̂(ω) = k0, (2.71)

and, consequently, using Eq. (2.70) for the dynamic tortuosity it follows that

lim
ω→0

α̂(ω) = − iηφ

ωρ f k0
. (2.72)

In this limit the fluid follows a Stokes flow pattern on the pore scale (i.e., the flow
is described by the linearized Navier-Stokes equation with intertia terms neglected).
In the high-frequency limit the fluid obeys a potential flow pattern (i.e., the flow
described by the linearized Navier-Stokes equation with viscosity terms neglected)
on the pore scale, except for a very thin boundary layer δ = √

2η/(ωρ f ) at the pore
walls; hence, tortuosity and permeability are given as

lim
ω→∞ α̂(ω) = α∞, (2.73)

lim
ω→∞ k̂(ω) = − iηφ

ωρ f α∞
, (2.74)
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where we have again used Eq. (2.70). For the intermediate frequency range Johnson
et al. (1987) postulated a branching function connecting the two limiting situations
based on the ratio of the viscous skin depth δ and the characteristic length scale of
the pores Λ according to

k̂(ω) = k0

[(
1 + i

M

2

ω

ωc

) 1
2 + i

ω

ωc

]−1

, (2.75)

α̂(ω) = α∞

[
1 − i

ωc

ω

(
1 + i

M

2

ω

ωc

) 1
2
]

, (2.76)

where Re(1 + i M
2

ω
ωc

)
1
2 ≥ 0 for ω ≥ 0, and

ωc = ηφ

k0ρ f α∞
, M = 8α∞k0

φΛ2 . (2.77)

The rollover frequency ωc denotes the frequency where the inertia effects and the
viscous effects are of the same order of magnitude. The pore-shape factor M is often
close to 1 (Johnson et al. 1987; Smeulders et al. 1992).

Before incorporating the dissipation mechanism in the equations of motion, we
visualize the frequency-dependent behavior of k̂(ω) and α̂(ω). For material properties
related to Sand of Mol (Degrande et al. 1998) (the parameter values are given in
Table 2.1), which is representative of a water-saturated shallow subsurface situation of
loosely packed sand, we show the behavior in Fig. 2.1. We observe that the magnitude
of the dynamic permeability |k̂| reduces to the Darcy permeability k0 in the low-
frequency limit, which agrees with Eq. (2.65). In the low-frequency limit, |α̂| tends
to infinity as ω−1 (see Eq. (2.72)), which can be understood from Eq. (2.69). In
the high-frequency limit, the magnitude of the dynamic tortuosity |α̂| goes to α∞,
which agrees with Eq. (2.66). The value of |k̂| tends to zero (see Eq. (2.74)), which is
because the pressure variation is too fast for the fluid to react (cf. Eq. (2.68)). For the
intermediate frequency range, the behavior is described by the branching functions

Table 2.1 Material
parameters as used for
water-saturated Sand of Mol
(Degrande et al. 1998). We
assume that M = 1 (see
Eq. (2.77))

Solid (frame) density ρs [kgm−3] 2650
Fluid density ρ f [kgm−3] 1000
Tortuosity α∞ 1.789
Porosity φ 0.388
Permeability k0 [μm2] 10.214
Dynamic fluid viscosity η [Pa·s] 0.001
Shear modulus G [MPa] 111.86
Frame bulk modulus Kb [MPa] 298.3
Grain bulk modulus Ks [GPa] 36.5
Fluid bulk modulus K f [GPa] 2.22
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Fig. 2.1 Frequency-dependent permeability and tortuosity according to the viscous attenuation
mechanism of Johnson et al. (1987) (Eqs. (2.75) and (2.76)). Both magnitudes and phases are
shown

of Johnson et al. (1987) (Eqs. (2.75) and (2.76)), showing a point of inflection at
approximately the rollover frequency fc = ωc/(2π) = 3387 Hz. The phases ∠k̂
and ∠α̂ (Fig. 2.1) are also consistent with the low- and high-frequency limits (see
Eqs. (2.71)–(2.74)).

The expression for dynamic permeability (Eq. (2.75)) can be substituted in
Eq. (2.68), and that of the dynamic tortuosity (Eq. (2.76)) in Eq. (2.69). One of these
should be used to incorporate the frequency-dependent dissipation mechanism in
the equations of motion for deformable (non-rigid) porous media (Eqs. (2.60) and
(2.61)). In this thesis we choose to work with dynamic permeability. By rewriting
of the expression Eq. (2.68) to a form comparable with Eq. (2.64), we find that the
effect can be incorporated by simply replacing b0 by b̂(ω) according to

b̂(ω) = b0 (1 + iωτc)
1
2 , (2.78)

where τc = M/(2ωc) and Re(b̂(ω)) ≥ 0 for ω ≥ 0. Then, the (x,ω)-domain
representation of the equations of motion (Eqs. (2.60) and (2.61)) can be written as

−ω2ρ̂11û − ω2ρ̂12Û = P∇∇ · û − G∇ × ∇ × û + Q∇∇ · Û + f̂, (2.79)

−ω2ρ̂12û − ω2ρ̂22Û = Q∇∇ · û + R∇∇ · Û + F̂, (2.80)
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where b̂(ω) shows up in the frequency-dependent density terms that read

ρ̂11 = ρ11 − ib̂/ω, (2.81)

ρ̂22 = ρ22 − ib̂/ω, (2.82)

ρ̂12 = ρ12 + ib̂/ω. (2.83)

The (x, t)-domain equivalents of these terms are time-dependent convolution oper-
ators. Their expressions can be found using a standard inverse Laplace transform
(Prudnikov et al. 1992) and read

ρ11(t) = ρ11δ(t) + b0�(t), (2.84)

ρ22(t) = ρ22δ(t) + b0�(t), (2.85)

ρ12(t) = ρ12δ(t) − b0�(t), (2.86)

where δ(. . .) denotes the Dirac delta function (Abramowitz and Stegun 1972) and

�(t) =
(

exp(−t/τc)√
πt/τc

+ erf
(√

t/τc

))
H(t). (2.87)

Here, H(t) denotes the Heaviside step function, i.e., H(t) = {0, 1
2 , 1} for {t < 0,

t = 0, t > 0}, and erf(. . .) denotes the error function (Abramowitz and Stegun
1972).

Now we have arrived at the general form of the equations of motion that incorpo-
rate the frequency-dependent dissipation mechanism, and which we will often use in
this thesis. We refer to it as the (u, U)-formulation because the equations of motion
are expressed in the field quantities u and U. For completeness, a less well-known
but more compact representation of Biot’s equations of motion is given in the next
section.

2.5.2 Alternative Formulation of the Equations of Motion

An alternative to the (u, U)-formulation of the equations of motion is the so-called
(u, p f )-formulation in which the equations of motion are expressed in terms of û and
p̂ f (Bonnet 1987; Wiebe and Antes 1991; van Dalen et al. 2008; Schanz 2009). The
equations are obtained by rewriting of Eqs. (2.79) and (2.80), and using Eqs. (2.58)
and (2.59) to eliminate U. The result is

ω2ρ̂eq û + (λ + 2G)∇∇ · û − G∇ × ∇ × û = φHS

R
∇ p̂ f − (f̂ + βSF̂), (2.88)

ω2ρ̂22 p̂ f + R∇2 p̂ f = −ω2ρ̂22
HS

φ
∇ · û + R

φ
∇ · F̂. (2.89)
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The Lamé parameter λ has already been defined in Eq. (2.49). Further, the following
definitions hold

ρ̂eq = d0/ρ̂22, (2.90)

d0 = ρ̂11ρ̂22 − ρ̂2
12, (2.91)

HS = Q + RβS, (2.92)

βS = −ρ̂12/ρ̂22, (2.93)

where ρ̂eq reduces to ρ11 + ρ22 + 2ρ12 = ρ (bulk density) for ω → 0; the physical
meaning of βS is given later (below Eq. (3.23)).

The similarity of the equations of motion Eqs. (2.88) and (2.89) with those of
an elastic solid and an acoustic medium, respectively, is obvious (Achenbach 1973;
de Hoop 1995). The difference lies in the definition of the specific density and elastic
constants, and in the coupling terms of the equations that can be interpreted as source
terms.

Bonnet (1987) showed that only four out of the seven field variables (u, U, p f ) are
independent. Therefore, the (u, p f )-formulation provides a set of independent equa-
tions governing wave propagation in a fluid-saturated porous medium. The (u, U)-
formulation, which is the original form of Biot’s equations (Biot 1956a), is used
more often but only four of the six equations are independent.

In wave propagation problems either the (u, U)-formulation or the (u, p f )-
formulation can be used. In Chap. 3 we derive Green’s tensors for both sets of equa-
tions to illustrate the basic properties of the wave propagation process in a porous
medium.

2.6 Conclusions

In this chapter we derived the equations of motion for wave propagation in a fluid-
saturated porous medium. First, we illustrated that the stress-strain relations associ-
ated with Biot’s theory can be obtained from constitutive and continuity equations,
by considering the porous medium as a two-phase continuum. This shows that the
involved elastic constants are clearly related to physical quantities, i.e., the bulk
moduli of the grains, the porous frame and the fluid, to the shear modulus and to the
porosity. By combination of the stress-strain relations with Lagrange’s momentum
equations for the solid and fluid, the equations of motion were found. We presented
the equations of motion in two different formulations that are known in the literature,
i.e., the (u, U)-formulation (solid and fluid particle displacements) and the (u, p f )-
formulation (solid particle displacement and fluid pressure). The latter formulation
shows that an arbitrary wavefield in a fluid-saturated porous medium has only four
independent field quantities.

http://dx.doi.org/10.1007/978-3-642-34845-7_3
http://dx.doi.org/10.1007/978-3-642-34845-7_3
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