Chapter 2
The Density Matrix Renormalization Group

Adrian E. Feiguin

Abstract Since its creation in 1992, the density matrix renormalization group
(DMRG) method has evolved and mutated. From its original formulation in a con-
densed matter context, it has been adapted to study problems in various fields, such
as nuclear physics and quantum chemistry, becoming one of the dominant numer-
ical techniques to simulate strongly correlated systems. In this chapter, we shall
cover many technical aspects of the DMRG, from a “traditional”, or “conventional”
perspective, describing the theoretical fundamentation, as well as the details of the
algorithm.

2.1 Introduction

Variational methods rely on a trial wave function or ansatz derived from some phys-
ical insight. This wave-function may, or may not describe the actual ground state of
a system, but if it does—even in an approximate way—we may gain some enormous
knowledge. The Bethe ansatz is actually exact when applied to an integrable model,
but it can also be an approximation such as in the case of SU(N) models [1-3].
Laughlin’s wave-function for the fractional quantum Hall state at filling fraction
v = 1/3 has more than 95 % accuracy [4]. The Hartree-Fock method can be formu-
lated as a variational ansatz, as well as the BCS theory of superconductivity [5].
The Density Matrix Renormalization Group (DMRG) method [6, 7] is variational,
but relies heavily on exact diagonalization and numerical renormalization group
(NRG) ideas. It was introduced by Steve White in 1992 as a development of Wilson’s
NRG [8, 9]. The premise is to obtain a wave-function that approximates the actual
ground-state in a reduced Hilbert space, minimizing the loss of information. In a
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certain way, it can be considered as an algorithm to compress the wave-function,
same as classical compression algorithms work in digital imaging.

It is variational because the proposed solution has the very peculiar form of a
“matrix-product state” (MPS) [10—-13], and it also involves a truncation of the basis.
However, no a priori assumptions are made about the form of the coefficients, or the
underlying physics. The power of the method is precisely that it is “smart” enough
to be able to find for us the best possible wave-function of that form, without any
“external bias”. Even though the accuracy is finite, it is totally under control, and
we can obtain results that are essentially exact (also referred-to as “quasi-exact”).
Another ingredient is a block decimation process, similar to the one introduced by
Wilson. However, the NRG technique has very limited applicability, while the DMRG
can be used for a wide range of lattice problems.

The DMRG possesses features that make it extremely powerful: it is able to treat
very large systems with hundreds of degrees of freedom, and to provide the most
accurate results for ground-state energies and gaps in low dimensional systems.
Reviews on the DMRG method abound [14-20]. For detailed lecture notes, we refer
the reader to Refs. [18, 20].

2.2 Truncated Diagonalization: The Numerical
Renormalization Group Idea

In this section we introduce the concept of “truncated diagonalization”. The idea is to
diagonalize the Hamiltonian in a constrained Hilbert space. The questions to address
are: how do we pick the states to keep, and the states to discard? Does this choice
depend on the representation? Can we quantify the amount of “information” lost in
the process? We shall start by describing a pretty unconventional diagonalization
procedure that will help us introduce the main tools needed to build the DMRG
algorithm. For illustration purposes we shall consider a one-dimensional chain of
quantum spins described by the Heisenberg Hamiltonian.

2.2.1 Two-Spin Problem

The Hilbert space for the two-spin problem consists of four possible configurations
of two spins

U R N P N, 2.1

The problem is described by the Hamiltonian:

N PO 1ra, A A A
A=5i8+3 58 +575] 2.2)
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The corresponding matrix will have dimensions 4 x 4. In order to compute this
matrix we shall use some simple matrix algebra to first obtain the single-site operators
in the expanded Hilbert space. This is done by the following simple scheme: And
operator O acting on the left spin, will have the matrix form:

01=0181, (2.3)
Similarly, for an operator O, acting on the right spin:
0,=1,® 0, (2.4)

where we introduced the n x n identity matrix 1,. The product of two operators
acting on different sites can be obtained as:

On =030, (2.5)

It is easy to see that the Hamiltonian matrix will be given by:
1
Hi =57 @5+ 5 [ST®S™+5 ®5t] (2.6)

where we used the single spin (2 x 2) matrices S* and S*. We leave as an exercise
for the reader to show that the final form of the matrix is:

/4 0 0 0
0 —1/4 12 0
0 1/2 —1/4 0 |’
0 0 0 1/4

Hyp = 2.7

Obtaining the eigenvalues and eigenvectors is also a straightforward exercise: two
of them are already given, and the entire problem now reduces to diagonalizing a
two by two matrix. We therefore obtain the well known result: The ground state
Is) = 1/4/21[] 1) = | 1)1, has energy E; = —3/4, and the other three eigenstates
{1, 140, 1/32[1 1) +1 L 1)]} form a multiplet with energy E; = 1/4.

2.2.2 Many Spins

Imagine now that we add a third spin to the right of our two spins. We can use the
previous result to obtain the new 8 x 8 Hamiltonian matrix as:

~ 1r1r-~ ~
Hy=Hhoh+5es5+ 2|5 es +5 s 2.8)
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Here we used the single spin S%, Sli, and the ‘tilde’ matrices defined in Eqs. (2.3)
and (2.4): _
S5 =1, ® S°, (2.9)

and ~
SF =1, ® s%, (2.10)

It is easy to see that this leads to a recursion scheme to construct the 2! x 2
Hamiltonian matrix the ith step as:

oz 1 o+ — o +
H, =Hi,1®]12+si_1®52+5[si_1®S +57,®8 ] 2.11)
with 3
§ =1, ® 5, (2.12)
and ~
S =120 8%, (2.13)

This recursion algorithm can be visualized as a left ‘block’, to which we add new
‘sites’ or spins to the right, one at a time, as shown in Fig.2.1. The block has a ‘block
Hamiltonian’, Hy , that is iteratively built by connecting to the new spins through the
corresponding interaction terms.

The process outlined above leads to a simple and elegant recursion scheme that
allows one to construct the Hamiltonian matrix by using simple algebra. However,
this idea is very impractical. The basis size, or the linear dimension of the matrix,
grows with the number of spins N as 2VV. It is clear that this matrix sizes soon
become unmanageable by our computer. One way to deal with this problem is by
using the symmetries of the Hamiltonian and the lattice to reduce the Hamiltonian
into a block form. This leads to powerful algorithms that can diagonalize dozens
of spins. However, this strategy also runs out of steam very soon. Another solution
to deal with this exponential growth of the basis can be traced back to Wilson’s
numerical renormalization group.

Suppose that we are able to diagonalize out Heisenberg spin chain, to obtain the
ground state as:

W)= D agussylS1 52 5N) (2.14)

$1,5250-55N

where the sum runs over all configurations of N spins. If we plot the weights
,,,,, SN |2 in decreasing order, we may find a structure like the one depicted in
the left panel of Fig.2.2: Most of the weight is concentrated on a couple of configu-
rations, in our case | 1 ...)and | {11 ...), and the rest of the weight is spread
over a long tail. Usually only a few important states possess most of the weight,
especially in ground states that resemble a classical state such as the antiferromag-
net. One then might feel inclined to take a pair of scissors, and truncate the basis to a
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Fig. 2.1 Pictorial represen- D DS S W S .
tation of the Hamiltonian
building recursion explained
in the text. At each step, the
block size is increased by
adding a spin at a time

e
e

few dozen states with largest weights, and get rid of the rest. However, this long tail
of states with small weights are responsible for most of the interesting physics: the
quantum fluctuations, and the difference in weight from one state to another in this
tail cannot be necessarily ignored, since they are all of the same order of magnitude.

However, one may notice a simple fact: this is a basis dependent problem! What
if, by some smart choice of basis, we find a representation in which the distribution
of weights is such that all the weight on the tail is ‘shifted to the left’ on the plot, as
shown on the right panel of Fig. 2.2. Then, if we truncate the basis, we would not need
to worry about the loss of ‘information’. Of course, this is a nice and simple concept
that might work in practice, if we knew how to pick the optimal representation. And
as it turns out, this is not in principle an easy task. As we shall learn, what we need
is a method for quantifying ‘information’.

2.2.3 A Simple Geometrical Analogy

Let us consider a vector in two dimensional space v = (x, y), as shown in Fig.2.3.
We need two basis vectors €1 and é; to expand it as v = xé; + yé,. A simple 2D
rotation by an angle ¢ would be represented by an orthogonal matrix
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Fig. 2.2 Schematic picture of the ideal basis truncation. Through a change of basis the ground-state
weights are more concentrated in a few basis states, such that the loose of information after the

truncation is minimal

Fig. 2.3 Rotation by an angle
¢ to a new reference system
in the 2D plane

o~

cos¢ sing¢
—sin¢ cos ¢

)

(2.15)

After such a rotation, the new basis vectors will be ¢] = cos ¢é; + sin ¢és, and
¢y = —singeé; + cos péy. If we pick the angle ¢ such that v is aligned along the
new y-axis, parallel to €5, we find that we need only one component to describe the
vector in the new basis: v = (0, |v|), or v = |v|é}. Therefore, we would feel inclined
to eliminating the vector ¢] from the basis. After truncating the basis, in order to
rotate to the new one-dimensional space, we would use a rotation matrix:
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, cos ¢
U’ = (—sinqb)’ (2.16)

which still is orthogonal. Now, we clearly see that unless a vector is parallel to v,
we would loose all information regarding the component orthogonal to &5. In other
words, this transformation does not preserve the norm, and therefore, it no longer
is unitary. For the case of operators represented by 2 x 2 matrices in the original
basis, we find that they will be reduced to a 1 x 1 matrix, a scalar, or just a simple
change of scale. If we apply an operation on the vector, we have to deal with the
fact that there will be some loss of information as a result. We would like to think
that this loss of information is minimal, meaning that the contributions with support
in the orthogonal manifold are very small. This simplified analogy illustrates the
consequences one has to deal with when the basis is truncated.

2.2.4 The Case of Spins

Let us revisit the case of two spins, and look again at the eigenvectors of the Hamil-
tonian (2.7). By direct inspection we find that the states |+) = | 1) and |—) = | | |)
are already eigenstates with eigenvalues £+ = 1/4. The other eigenstates can be
found by diagonalizing the remaining 2 x 2 matrix, yielding

1

sy =—= 1) =1 ID]
|s) NG I =111
1
1) =—7=0t)+1IM]
NG ™ 1
with eigenvalues E; = —3/4 and E; = 1/4 respectively. The transformation matrix,

to rotate to this new basis is simple given by the eigenvectors in columns as:

1 0 0 0
0 1/v/2 1/4/20
0-1/v/21/420 |
0 0 0 1

U = (2.17)

If we focus on the |s) and |t) states, we see that the 2 x 2 rotation matrix is equivalent
to the geometric rotation Eq. (2.15) with an angle ¢ = —m /4:

N
el = —=€] —

éé: —e1 +
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The full transformation occurs in a four-dimensional space, but the two vectors |+)
and |—) are untouched. Same as in the geometric case, the transformation preserves
the norm (it is unitary!), and angles between basis states (it is an orthogonal transfor-
mation!), and we can use the eigenvectors as a new basis in which the Hamiltonian is
already diagonal. In the course of these lecture we shall use slightly more complicated
rotations, in which the states are eigenstates of a different matrix, not necessarily the
Hamiltonian.

Now, we found that we do not need the basis states |+) and —) to obtain the
ground-state. By discarding these two states we simplify the calculation by reducing
a 4 x 4 eigenvalue problem to a 2 x 2 problem. If we knew in advance that the
ground-state was in the subspace with S7 , = 0 we could have formulated the
problem directly in this subspace. This is a “trivial” truncation: if we are interested
in a state with particular values of the quantum numbers, and if the Hamiltonian
does not mix subspaces with different quantum numbers/symmetries, we can “block
diagonalize” the Hamiltonian in each subspace separately.

Notice that the geometric analogy consists, in terms of spins, in truncating the
Hilbert space to just one basis state |s) in this case, the eigenvector of the Hamiltonian
with the lowest eigenvalue.

2.2.5 The Block Decimation Idea

Let us try a simple idea, using the recursion scheme described above. At every step
in the recursion, we add one spin on the right, and our basis dimension grows by a
factor 2. At some point during this recursion, the matrix will be too large to deal with.
So let us fix a maximum number of states that we want to keep, m. At certain point
during the process, the basis dimension will become larger than m. It is here that we
start applying the truncation rule: diagonalize the Hamiltonian matrix exactly, and
keep only the m states with lowest eigenvalues (see Fig.2.4).

As the system grows, the basis of the left block changes as we rotate to the new
basis of eigenstates of the Hamiltonian. This is done by using a unitary transformation
U. This matrix U is nothing else but the matrix with the eigenstates ordered in
columns. Therefore, adding a spin to the block now involves two steps: (i) we need
to build the ‘tilde’ operators as before, and (ii) rotate the Hamiltonian matrix and the
tilde operators to the new basis (Fig.2.5).

Let us assume that our old block before adding a site has a basis {|o;—1)}, of
dimension D;_1, and the site has a basis {|s;)} of dimension d. The new block basis
{lai—1, i)} has dimension d x D;_1, such that we can easily diagonalize it to obtain
all the eigenvalues and corresponding eigenvectors {|o;11)}. We build the matrix U as
the D;_; x D; unitary matrix with the D; = m eigenvectors with largest eigenvalues
in the columns:

Ua,-,ls,',a,- = (oi—18ilai). (2.18)
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Fig.2.4 Inthe NRG scheme, we truncate the basis by keeping the m eigenstates of the Hamiltonian
with the lowest eigenvalues

Before the rotation, the operators had matrix elements:

19) o= {ai_15i|0la)_ys)). (2.19)

Q18,015 i
We can now rotate all the tilde operators to the new basis as:

Oupa) = (il Olaf) = Z (oot —15) (eri 153 | Olet] _y s} (et) s evi)

1,5 a’

oo

15i

O, 0 —18i 75.,(1. .
= 2 2 WNsar s Oy Va5t (2.20)

o — lsza ]Si
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Fig. 2.5 Adding a site to a block now involves a truncation and a change of basis

where the new matrices will have dimensions m x m. we can now use these matrices
to continue to block-growing process by adding another site. This can be repeated
until the energy per site converges, or until we reach a desired system size.

It may seem that this new basis would be a natural choice is we assume that
the physics of the problem is described by different manifolds with different energy
scales. If we keep the lowest energy states and we get rid of the high energy states we
can expect to get the low energy physics right. This in fact is the case in problems such
as the Kondo and Anderson impurity problems [21]. However, in strongly correlated,
many-body problems such as the Heisenberg chain, this scheme performs poorly.

2.3 The Density Matrix Truncation: The Kernel of the DMRG

The problem was solved by Steve White by using what he called the ‘density matrix
truncation’. He realized (without knowing at the time) that instead of getting rid of
high energy states, one has to redistribute the ‘entanglement’ and minimize the loss
of information. However, the way he formulated the problem did not incorporate the
idea of entanglement, a concept that entered the picture much later after quantum
information ideas were used to understand why and when the DMRG actually works.
Before introducing these ideas, we shall describe the original formulation of the
density matrix truncation [6, 7].

In order to introduce this new concept, we are going to use a new scheme: We are
going to use two blocks instead of one, a left block, and a right block, as shown in
Fig.2.6. We are going to grow both blocks simultaneously using the same procedure
outlined previously: at every step we add one site at the right of the left block, and
one site to the left of the right block. The ground state can then be written as:

W) =D wli)lj), 2.21)
iJ

where the sum runs over all the states of the left block |i) and right block |j), with
the corresponding coefficients ¥;;.

Now the idea is as follows: once we reach the desired basis dimension m, we shall
rotate the left block to a new basis |i) — |«). We want to pick these states |«) in such
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Fig. 2.6 The DMRG modifies the NRG idea by adding a second block

a way that when we truncate the basis, the “distance” between the original ground
state |¥), and the new, truncated, variational approximation |¥), is minimized:

.2

s =1y -1, (2.22)

where

W) =" Wyjla)lj). (2.23)

a=1 j

We are going to anticipate the solution: pick the basis |«) given by the m eigen-
vectors of the reduced density matrix of the left block with the m largest eigenvalues.
In order to justify this result, we first need to introduce some important concepts.

2.3.1 The Reduced Density Matrix

Imagine that we have a bipartite system, composed by subsystem A and subsystem
B, as shown in Fig.2.7. The Hilbert space of the system A 4+ B will be given by
the tensor product of the Hilbert spaces of the two subsystems: Hayp = Ha ® Hp,
and will have dimension D4 p = D4 x Dp. Assume that the state of our system is
described by a normalized wave-function |¥) that has support on H4p. We define

Fig. 2.7 In the DMRG, one
block acts as the environment Universe
for the second one

system environment

i) |/
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the reduced density matrix of subsystem A as
pa = Trp|¥)(¥]. (2.24)

Its corresponding matrix form is

pai = (i1pali’) = D (JIWN W j) = DWW, (2.25)
J J

This operator describes the density matrix of a mixed state, in which the system A
is in contact with a bath or environment B. This is the price we have to pay for our
ignorance of subsystem B.

The reduced density matrix has some nice properties:

e It is Hermitian (or symmetric in case of real matrices). This means that its eigen-
values are real.

Its eigenvalues are non-negative.

The trace equals to unity: Trpa = 1.

Its eigenvectors |o) and eigenvalues w, form an orthonormal basis.

This means that the reduced density matrix can be re-defined in the new eigen-
vector basis as:

pa =D wgla)al; (2.26)

withw, >0and >, wy = 1.
These same considerations are valid for the block B.

Exercise: Givep a state |¥) defined in A + B, show that the meanAvalue of
an observable O 4 acting on subsystem A, can be obtained as (¥|04|¥) =
TrpsO4.

2.3.2 The Singular Value Decomposition

Consider an arbitrary matrix ¥ of dimensions D4 x Dp. One can prove that ¥ can
be factorized as
W =UDV", (2.27)

where U is a (D4 x Dp) unitary matrix, V is a (Dp x Dp) unitary matrix, and D
is a (Dp x Dp diagonal matrix with real non-negative numbers along the diagonal,

and zeroes elsewhere. Since U and V are unitary, they satisfy:

vut =1;
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vvi=1.
Their columns are orthonormal vectors, so U and V can be regarded as rotation

matrices. The diagonal matrix elements X, of D are known as the “singular values”
of ¥.

2.3.3 The Schmidt Decomposition

Let us apply the SVD to our quantum wave-function [¥) (2.21), and for illustration,
let us assume that Dp < D 4. The coefficients ¥;; define a matrix ¥. After a SVD,
they can be re-written as:

Dp Dp
Wij = > Uiaha(V)ej = Z Uiaha V- (2.28)
o

The wave-function can now be expressed as:

D4 Dp Dg

ZZZUWA Vsl
=Z(Zu,~a|i>)xa DVl
o i j
Dp
=D ala)ale)s

where we have defined the states |a)4 = > ; Uiqli) and |o)p = Z V* |j). Due
to the properties of U and V, these states define a new orthogonal bas1s ThlS final
expression is known as the “Schmidt decomposition” of the state ¥, and the bases
|ae) as the “Schmidt bases”.

In general, we have that the state ¥ can be written in the new basis as:

=D Jala)ale)p; r=min(Da, Dp). (2.29)

In the Schmidt basis, the reduced density matrices for the subsystems A and B
are
oa = Tr|¥)( ZA la)a alo (2.30)

and
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pp =D Ale)s (el 2.31)

At this point, we realize some interesting observations:

e The eigenvalues of the reduced density matrices are w, = )\g[, the square of the
singular values.

e The two reduced density matrices share the spectrum.

e The Schmidt bases are the eigenvectors of the reduced density matrices.

2.3.4 Optimizing the Truncated Wave-Function

We here go back to the original problem of optimizing the wave-function in a reduced
basis. In order to solve it, we are going to reformulate the question as: Given a matrix
¥, what is the optimal matrix ¥ with fixed rank m that minimizes the Frobenius
distance between the two matrices? It turns out, this is a well known problem called
the “low ranking approximation”.

If we order the eigenvalues of the reduced density matrix in decreasing order
W1, W2, ... Wy, . ..o itisstraightforward to see that the Frobenius distance between
the two matrices is given by

zzzpi (2.32)

m+1

S:(lp—i/

This proves that the optimal basis is given by the eigenvectors of the reduced density
matrix with the m largest eigenvalues.

2.4 Infinite-Size DMRG

The above considerations allow us now to introduce the DMRG algorithm in a very
natural way. We are going to present it in the traditional formulation, starting with
the infinite-size algorithm, followed by the finite-size scheme.

The main idea behind the infinite-size algorithm consists in growing the left and
right blocks by adding one site at a time. As we add sites, the basis of the blocks
will grow, until we reach the desired maximum number of states m. At this point we
need to start applying the density matrix truncation on both blocks. This process is
repeated until we reach a desired system-size, or the error in the energy is below a
pre-defined tolerance.

The algorithm illustrated in Fig. 2.8 could be outlined as below:



2 The Density Matrix Renormalization Group

Fig. 2.8 Step-by-step illus- (a)
tration of the block-growing
scheme in the infinite-size
DMRG algorithm: After
obtaining the new blocks from
the previous step (a), we add
a new site to each block (b),
we build the superblock and
obtain the ground-state (c),
and we calculate the reduced
density-matrix, and rotate to
the basis of the eigenvectors
with m largest eigenvalues to
build the new blocks for the
next step (d)
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e Build all the operator matrices for a single-site Hamiltonian, and the operators
involved in the interactions between the site an the rest of the system.

e Start growing the blocks by adding single-sites, as outlined in the exact diag-
onalization section. We assume that the Hilbert space for the single site has
dimension d.

e When the size of the bocks become larger than d x m, we start applying the
density matrix truncation as follows:

1.

Using a suitable library routine (Lanczos, Davidson), diagonalize the full
Hamiltonian (sometimes called super-Hamiltonian) of the two blocks
combined (sometimes refereed to as superblock), to obtain the ground

state ) = >, Wili)l j).

. Calculate the reduced density matrix of the left block, and right blocks.

When the system is symmetric under reflections, we only need one of
them.

. For each of the blocks, diagonalize the density matrix to obtain the full

spectrum and eigenvectors.

. Truncate the basis by keeping only the m eigenvectors with the largest

eigenvalues.

. Rotate the Hamiltonian and the operators involved in the interactions

between blocks to the new basis.

. Add a new site to the left and right blocks, to build new blocks of dimen-

sion d x m, and reiterate the diagonalization and truncation steps. Stop
when we reach the desired system-size, or the error in the energy is below
a pre-defined tolerance.
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In the early days of DMRG it was assumed that this scheme would lead to a
good approximation of the system properties in the thermodynamic limit. Today we
know that he best way to reach the thermodynamic limit is by using the finite-size
algorithm on systems of fixed length, and doing a careful finite-size analysis of the
results.

Let us now explain some of these steps in more detail.

2.4.1 Adding a Single Site to the Block

Same as we did in the exact diagonalization section, we can add sites to the blocks
by performing tensor products of the “tilde” operators on the block, and single-site
operators.

Assume that we are in the ith iteration of the algorithm, with our left and right
blocks having length i. Let us label our D basis states for the left block {|¢;)}, and
our d basis states for the single site that comes to the right {|s;+1)} (see Fig.2.9).
When we add the site to the block, we obtain a new basis for the new combined block
as |oj41) = |at) @ siy1)-

Let us assume for illustration purposes that we are dealing once more with the
Heisenberg chain. All these ideas can be easily generalized to arbitrary models. Same
as we did in the exact diagonalization section, we obtain the new Hamiltonian matrix
for the combined block as:

s 1/ -
Hip=Hi®L+5, 05+ (3,05 +5,,85%). @3

In this expression, the “tilde” operators are in the |o;) basis, while the others are
defined in the single-site basis.

A similar expression applies to the right block, which is obtained from the single
site at position i + 2, with basis {|s;42)} and dimension d, and the right block with

0 T |af+|)

|af+l> = Z{ar‘m ‘af+l>|af) @ |s:+1> = Z(Uiﬂ ]«,,,_, PR |a¢ )® |3:+1 )

I. [8te3)
= By
‘ |ﬂ.'q) [ >
[Bis)= : Z.:& (St3Braa |18f+3 }|3:~3) ® | ﬁru} = ; Z (U;‘j )aﬁ.,p,.l..ﬁ_, J"I»:) ® | ﬁu)

Fig. 2.9 Adding sites to the blocks is done in the same way as in the NRG
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basis {|B;i+3)} and dimension Dg:

s 1 . L
Hriv2 = 12@ Hrips+S°® 5y 143+ 3 (ST @37+ 5" ®5F1) - @34

2.4.2 Building the Super-Hamiltonian
We now need to combine the left and right blocks to form the super-Hamiltonian:

7T — H 7 §%. 8¢ ! St s, +8-.st 2.35
H=Hr i1+ Hriv2+ 815, + 5( 1S+ Si18ha) (2.35)

where H L(R) Where obtained above, and only involve terms in the left (right) block.
The single sites at positions i + 1 and i 42 were absorbed by the left and right blocks,
respectively, so in order to build the interactions, we have to rotate the corresponding
operators to the new basis of the blocks. This is again done in the same spirit of the
“tilde” transformation:

H=Hp i+1®1pgx2+1p,x2® Hg 42
+1DL ®SZ®SZ®]1DR

1
+§]1DL®S+®S_®]1DR

1 - o ot
+§]lDL®S ® ST ®@1p,

or:

H=H 11 ®1pyx2+1p,x2® Hgit2
+ 8141 ® Skiso

1., -
+ ESL,i-H ® SR,[+2

1o o+
+ ESL,i+1 ® SR,i+2

2.4.3 Obtaining the Ground-State: Lanczos Diagonalization

Once we have a superblock matrix, we can apply a library routine to obtain the
ground state of the superblock |¥ ). The two algorithms widely used for this purpose
are the Lanczos and Davidson diagonalization. Both are explained to great extent
in Ref. [18], so we refer the reader to this material for further information. In these
notes we will briefly explain the Lanczos procedure.
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The basic idea of the Lanczos method [22, 23] is that a special basis can be
constructed where the Hamiltonian has a tridiagonal representation. This is carried
out iteratively as shown below. First, it is necessary to select an arbitrary seed vector
|¢o) in the Hilbert space of the model being studied. If we are seeking the ground-
state of the model, then it is necessary that the overlap between the actual ground-
state |v), and the initial state |¢g) be nonzero. If no “a priori” information about
the ground state is known, this requirement is usually easily satisfied by selecting
an initial state with randomly chosen coefficients in the working basis that is being
used. If some other information of the ground state is known, like its total momentum
and spin, then it is convenient to initiate the iterations with a state already belonging
to the subspace having those quantum numbers (and still with random coefficients
within this subspace).

After |¢p) is selected, define a new vector by applying the Hamiltonian H, over
the initial state. Subtracting the projection over |¢g), we obtain

. (ol H |¢p0)
=H _ , 2.36
91) = Hlgo) = =2 1) (2.36)

that satisfies (¢g|¢1) = 0. Now, we can construct a new state that is orthogonal to
the previous two as,

A

~ (D11 H 1) (P111)
=H _— —
192 = Hidw = =6y 19~ goido)

|b0).- (2.37)

It can be easily checked that (¢ |¢2) = (¢1]¢2) = 0. The procedure can be general-
ized by defining an orthogonal basis recursively as,

|Gns1) = Hlpn) — anln) — b2 ldn—1), (2.38)
where n =0, 1, 2, ..., and the coefficients are given by
g = GG s Guldn) 239
<¢n|¢n> <¢n—1|¢n—1>

supplemented by by = 0, |¢_1) = 0. In this basis, it can be shown that the
Hamiltonian matrix becomes,

apb1 0 0 ...
byray by 0 ...

H = 0 b2 ay b3... (2.40)
00 byasz...

i.e. it is tridiagonal as expected. Once in this form the matrix can be diagonalized
easily using standard library subroutines. However, note that to diagonalize com-
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pletely a Hamiltonian on a finite cluster, a number of iterations equal to the size of
the Hilbert space (or the subspace under consideration) are needed. In practice this
would demand a considerable amount of CPU time. However, one of the advantages
of this technique is that accurate enough information about the ground state of the
problem can be obtained after a small number of iterations (typically of the order of
~100 or less).

Another way to formulate the problem is by obtaining the tridiagonal form of the
Hamiltonian starting from a Krylov basis, which is spanned by the vectors

{160). Algo). AI0). ... A"I¢0) (241)

and asking that each vector be orthogonal to the previous two. Notice that each new
iteration of the process requires one application of the Hamiltonian. Most of the time
this simple procedure works for practical purposes, but care must be payed to the
possibility of losing orthogonality between the basis vectors. This may happen due
to the finite machine precision. In that case, a re-orthogonalization procedure may
be required.

Notice that the new super-Hamiltonian matrix has dimensions Dy D Rd2 X
Dy Drd?. This could be a large matrix. In state-of-the-art simulations with a large
number of states, one does not build this matrix in memory explicitly, but applies the
operators to the state directly in the diagonalization routine.

2.4.4 Density Matrix Truncation and the Rotation
to the New Basis

The truncation process is similar to the one use in numerical renormalization group,
but instead of using the matrix of eigenvectors of the Hamiltonian, we use the eigen-
vectors {|a)}, {|8)} of the left and right reduced density matrix. Therefore, the new
basis states for the left and right block are related to the states in the previous step
as:

i) = D (isipileirn)leisiv) = . (ULasis e 1isi1)

Si1, Si+1,¢
Bisa) = D (sivaBiralBisdlsivaBins) = D (UR)siapios isalSi2Bivs)
Si+2,Bi+3 Si+2:Bi+3
(2.42)
where
(UL)IX,'S[+1,(X,'+] = (ai5i+]|ai+1) (243)
and

(UR)Sl‘Jrzﬂl‘Jr},ﬂiJrz = <Si+2ﬂi+3|ﬁi+2)' (244)
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If we keep only m states, the matrices Uy gy will have dimensions Dy gyd x m. If
the basis had already been truncated in the previous step, then Dy (R) = m.

We can now use these transformations to obtain the matrix elements for all the
operators in the new truncated basis. For instance, an operator acting on a site inside
the left block will be transformed as:

= (ai+1|0]e, )

P ’ /
Do D> eipilaisi)eisivi| Ol ) afs)y ey,

% Sitl o 5]

(OL,i+1)o{i+1,a;+l

+1

§ -
Z Z (UL)“"H’“I"Y"“ (OL”’)O‘isiero‘;Sﬂl (UL)O(I{S[/+1’O(I{+| ’

®iSi+1 ofs]

+1

(2.45)

and a similar expression can be obtained for operators in the right block.

2.4.5 Storing Matrices and States

In order to optimize memory usage and performance, we can use the symmetries
of the model to store all the matrices in block form. We have already noticed in the
two-spin example that we can store the Hamiltonian in block diagonal form, with
each block corresponding to a well defined symmetry sector, or quantum number. We
can do the same with all our operators, with the main difference being that they may
not be diagonal. For instance, the 8¢ operator is diagonal, meaning that it does not
mix subspaces with different quantum numbers. The S+ operator mixes subspaces
with the quantum number S* differing by +1. So we can label the blocks by a pair of
quantum numbers or, since we know how the operator changes the quantum numbers,
we can use a single index. In the code implementation, we can store the blocks as a
list of matrices. The main drawback is that we need a lookup table to find a block
with given quantum numbers, but this can be done very efficiently. Notice that this
idea can be applied to Hamiltonians that conserve the quantum numbers: if the model
mixes different subspaces, we may need to store the full matrix.

The same idea applies to the state vectors. We can store them in a list of arrays,
or matrices, each corresponding to a subspace with well defined quantum numbers.

2.5 The Finite-Size DMRG

As we mentioned before, the proper way to reach the thermodynamic limit with
DMRG is by studying finite systems and performing a finite-size analysis. In order
to study finite system, a generalization of the above ideas needs to be applied. The
finite-size DMRG (illustrated in Fig.2.10) can be summarized as follows:
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Fig. 2.10 Schematic illustration of the finite-size DMRG algorithm: The infinite-size iteration
stops when we reach the desired system size. Then, we start sweeping from left to right, and right
to left. During the sweeping iterations, one block grows, and the other one “shrinks”. The shrinking
block is retrieved from the blocks obtained in the previous sweep in the opposite direction, which
are stored in memory or disk

e Run the infinite-size algorithm until the desired system size is reached. During
this process, store all the left and right blocks, with their corresponding operators
and basis transformations. This step is typically referred to as the “warmup”.

e Once the desired system size is reached we start performing “DMRG sweeps”,
from right-to-left, and left-to-right to optimize the bases and improve accuracy.
A left-to-right sweep is described as follows:

1. Add asite to the left block using the same idea of the infinite-size DMRG.
Since the total size of the system needs to be kept fixed, we need to “shrink™
the right block. This is done by using the right block from the infinite-size
step, or from the previous right-to-left sweep.

2. Using a suitable library routine (Lanczos, Davidson), diagonalize the super

Hamiltonian of the two blocks combined, same as for the infinite-size

DMRG.

Calculate the reduced density matrix of the left block.

Diagonalize the density matrix to obtain the full spectrum and eigenvectors.

5. Truncate the basis by keeping only the m eigenvectors with the largest
eigenvalues.

6. Rotate the Hamiltonian and the operators of the left block involved in the
interactions between blocks to the new basis.

W
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7. Iterate until reaching the far right end of the system, with a right block
containing a single site. This completes the left-to-right sweep.

e Perform a right-to-left sweep, by growing the right block one site at a time, and
using the left block from the previous left-to-right sweep.

e Re-iterate the sweeping. Stop when the change in the energy is below a pre-
defined tolerance. One typically stops at a point when both blocks have the
same size, the “symmetric configuration”.

This sweeping process works in a similar fashion as a self-consistent loop, where
we iteratively improve the solution. In fact, the DMRG can be formulated as a
variational method, in which the variational parameters are continuously improved
to minimize an energy functional. Intuitively a way to see itis by imagining a “demon”
probing the environment around the block for the optimal states to improve the basis
to represent the ground-state. These states are “absorbed” inside the block by the
density matrix and its eigenvectors.

As described above, the shrinking block is replaced by the block from the previous
sweep in the opposite direction. This means that all the information about the block
and its operators needs to be stored, either in memory, or dumped on disk.

2.5.1 Obtaining Quasi-Exact Results with the Finite-Size DMRG

The DMRG accuracy is parametrized by a quantity called the “truncation error”,
which is nothing but the residue of the trace of the density matrix after the truncation,
Eq.(2.32). This is equal to the sum of the eigenvalues of the discarded states. How
well the DMRG performs for a particular problem, and how many states we need
to keep in order to achieve the desired accuracy will depend on the behavior of the
eigenvalues of the density matrix, something that we will discuss in another section
below. We say that the DMRG results are quasi-exact when the accuracy is strictly
controlled by the truncation error, and can be improved by increasing the number
of states kept m. However, even though the DMRG guarantees that we can obtain
quasi-exact results, there are many other factors that need to be taken into account to
make sure that the simulation has properly converged. Failing to do so may produce
biased results. In order to avoid “mistakes” when using the DMRG, we should pay
attention to the following:

e Applying the infinite-size DMRG to finite systems is not quasi-exact, and this has
been the source of many mistakes in the past. Sweeping is an essential step in
order to get accurate results, and multiple sweeps are typically required. A way to
make sure that convergence is achieved is by looking at observables as we sweep,
and making sure that they respect the symmetries of the problem. For instance, in
a uniform spin chain, correlations from the end sites or the central sites should be
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symmetric under reflections. Typically, observables do not converge as fast as the

energy. Errors in the correlations tend to be higher than errors in the energy.

A typical analysis of the results consists of looking at the behavior of the energy and

observables as a function of the number of states kept m. Sometimes, in challenging

situations that requires large numbers of states to converge, an extrapolation with

m or the truncation error can be attempted.

e In cases where our computer power allows, we can typically guarantee well con-
verged results by fixing the truncation error beforehand. We can ask the algorithm
to automatically increase the number of states m such that the truncation error
always lies within a tolerance.

e A finite-size scaling requires well converged results for every system size. Poor
results for large system sizes can seriously bias the extrapolations and analysis.
In some peculiar cases it may happen that the system gets trapped in a local min-
imum. This may occur for several reasons. A common one is doing the warmup
or infinite-size sweep with too few states. This problem usually arises in calcula-
tions in momentum space, or with large barriers between energy manifolds, or in
proximity to a first order first transition. A way to avoid this “sticking” problem
is by adding a source of randomness in the density matrix that may induce the
fluctuations necessary to escape the meta-stable state. Another possibility is by
introducing fluctuations in some parameter of the model.

e Ultimately, the energy and ground-state are obtained by means of the Lanczos or
Davidson diagonalization. It is essential that the diagonalization step is performed
with an accuracy superior to the truncation error. Otherwise, the diagonalization
errors will dominate over the truncation error, and the ground state will not have
the expected accuracy, and may actually include a mixture of excited states (In
fact, this may always happen to a certain extent, but a poor diagonalization may
magnify the effects of the truncation).

2.5.2 Measuring Observables

Let us assume that we have a one-dimensional chain of certain length, and we want
to measure correlations between observables acting on different sites, O; and 0;..
Two cases can arise: (i) both sites are in separate blocks, or (ii) the two sites are
inside the same block. Whether we find ourselves in situation (i) or (ii) will depend
on the stage of the sweep. Sometimes we may find that the situation (i) will happen,
and sometimes (ii). As we are going to see next, it is more convenient to measure
the observables in case (i).

Operators in Separate Blocks

Let us assume a generic situation during the sweep where we find the two operators
on separate blocks, as illustrated in Fig.2.11. Let us denote the basis states for the
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Fig. 2.11 Setup for measuring observables acting on sites in separate blocks

left block as {|«)}, and for the right block as {|8)}. The ground state wave-function
will be give as:

W) = > (@l¥)ap) = > Waplap). (2.46)
off [75]

It is easy to see that the correlation can be obtained as:
(0:05) = (¥|0;0)|w)
= D WipWupld'10;0'ap)
alg’a/lB/
= D> Wi Waple|Oila)(B'|0]1B)
aﬂ’a/ﬂ/

- Z W 5 Wap (0 aa (0)) ppr. (2.47)
C(ﬂ,a/ﬂ/

Operators in the Same Block

The situation with both operators in the same block is illustrated in Fig.2.12. The
proper way to calculate the correlations it by defining the composite product operator
0ij = 0; O;. The correlation is then expressed as:

(0;0) = (|0, 0}1%) = (¥ 0;;|¥)
= D> Wi Waple|0ijle)(B'B)
C{ﬂqa/ﬂ/
= Z W;/ﬁllfaﬂ(éij)aa/. (2.48)
af,a’

We clearly see that the composite operator has to be stored in the block, together
with the individual operators. We need to represent it in the rotated basis the same
as we do for the Hamiltonian when we do the truncation. Calculating this quantity
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Fig. 2.12 Setup for measuring observables acting on sites in the same block

as the product of two individual operators in the truncated basis is bad practice and
should be avoided.

Clearly, storing and propagating the product operators for all pairs acting on sites
i and j can be computationally very expensive. It is therefore convenient to store the
individual operators, and calculate the correlations only when the operators are in
separate blocks, as illustrated before.

2.5.3 Targeting States

It is important to point out that our basis has been optimized to accurately represent
only the ground state. If we wanted to calculate other states, such as excited states,
we need to build the density matrix using all these states as “target” states:

p =D wl|¥) (¥ (2.49)
t

which is equivalent to the density matrix of a mixed state, with weights wy,, such that
>, w; = 1. Finding a good combination of weights is a matter of trial and error, and
it may depend on the particular problem. Generally, one picks all the weights to be
equal.

When one targets multiple states, the number of DMRG states that we need to
keep in order to represent them with enough accuracy grows in the same proportion.

2.5.4 Calculating Excited States

Sometimes we are interested in calculating excited states in sectors with different
symmetry than the ground state. For instance, we may want to obtain the singlet-
triplet gap by calculating the ground states in sectors with well defined total spin
S = 0and § = 1. If we could use the symmetries of the Hamiltonian to be able
to restrict our calculation to a sector with well-defined quantum numbers, then this
should not be a problem. In these notes we are leaving the discussion on the use of
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symmetries aside for the moment. So the problem now is to obtain the excited states,
regardless of their quantum numbers. In this case we apply a simple trick that is also
used in exact diagonalization calculations: At every step during the simulation, we
target the ground state |¥) of the Hamiltonian of interest H, and the ground state
|¥1) of the modified Hamiltonian:

H =H+ AW)(¥|. (2.50)

We have introduced a projector on the ground state that shifts its energy by an amount
proportional to a constant A, that we pick to be sufficiently large. As a result, the
ground state will be shifted in energy to the top of the spectrum, leaving the first
excited state as the new ground state. As we explained before, in order to accurately
represent both states, we need to use the density matrix:

1 1
p=sI¥)I¥I+ S I¥nWl. (2.51)

2.5.5 Wave-Function Prediction

At every step of the sweep we find that we have to obtain the ground-state of the
Hamiltonian using some suitable diagonalization routine (Lanczos, Davidson). These
algorithms converge iteratively to the ground-state, typically starting from some
random seed. Depending on the accuracy wanted, one would have to perform a
number of iterations, say between 20 and 100, applying the Hamiltonian to a new
state at every iteration, until convergence is achieved. White [24] realized that the
process could be sped up if we use the ground state from the previous step in the
sweeping, as a starting seed for the diagonalization. All one would have to do is
transform the old ground-state to the new basis. This process is usually referred to
as “wave-function prediction” or “wave-function transformation”.

We assume we obtained the ground-state of our Hamiltonian, which before the
change of basis is written as (see Fig.2.13):

W)= D lasivsiaBisWlasinsiafis)  (252)

Qi Si+158i42,Bi+3

Fig. 2.13 Four blocks used
t sent th d-stat
o represent the ground-state |S!+l ‘5“2)

wave-function for the wave-
function transformation
af ¢ ‘r |IB.’+3>
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After the change of basis, we add a site to the left block, and we “spit out” one from
the right block:

V) = > (i r18i428i43Bival W) it 18i428i13Bi+4) (2.53)

Qi 1,8i+2:5i+3,Bi+a

After some algebra, and assuming that Za,- loti ) {eti| &~ 1 and D g 1Bi)(Bil ~ 1 after
the truncation, one can readily obtain:

(ig1sitasiafiral®) X D ligileisivn)(si3Bival Bira)(isivisivaBiss¥)
@i, Si+1Bi+3
)
= D UDasrasios UR)sspos s (@isi18i12Bis3¥)

@i, Si+1Bi+3

(2.54)

This operation has relatively little computational cost, especially after considering
that it will reduce the ground-state calculation to just a few Lanczos or Davidson
iterations.

2.5.6 Generalization to Higher Dimensions and Complex
Geometries

The DMRG method was originally introduced to study one dimensional systems.
However, it can be extended to higher dimensions in a very straightforward way
[25, 26]. Consider for simplicity a system of orbitals in a rectangular arrangement,
as shown in Fig. 2.14, with first neighbor interactions, only. We can draw an imaginary
path that scans through the lattice following a “snake”-like pattern. We can stretch the
snake by putting all the orbitals aligned in a one-dimensional arrangement, and we
obtain a system that we can study with the conventional DMRG. There is, however,
a price tag to this simplification: the interactions now have long-range.

Other possible solutions have been explored in the literature. For instance, one
could choose a vertical band composed by several sites along the y direction, and
use the one-dimensional scheme in this super-site basis [27]. Another possibility is
to use a different snake-like path that still adds one site at a time, but scans through
the lattice more symmetrically [28]. Whatever the preferred solution is, in two-
dimensional systems we always find the same barrier: entanglement grows with the
size of the boundaries between left and right blocks. This affects the behavior of the
density matrix spectrum, and as it turns out, we need to keep more DMRG states
to achieve good results. The justification for this behavior will be explained in the
following sections. For now, we simply point out that using “cylindrical” boundary
conditions, with open boundary conditions along the x direction, and periodic along
v, is the preferred setup for two-dimensional problems.
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Fig. 2.14 Generalizing the DMRG to 2d implies defining a one-dimensional path through the
lattice
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2.6 When and Why Does the DMRG Work?

While experimenting with the newly discovered method, Steve White noticed sys-
tems with periodic boundary conditions were ill-behaved: in order to achieve a given
accuracy for a simple one-dimensional model with periodic boundary conditions
would require, for instance O (10*) states, while for the case of open boundary con-
ditions, one could get away with just a fraction of those, say O (10?). He experimented
with several approaches, but in the end, in seemed as though the only way to deal
with this situation was by brute force, keeping lots of states. The reason for these
different behaviors was somewhat a mystery, and it remained so until recently, when
the quantum information community started exploring algorithms for simulating
quantum many body problems (similar to the DMRG) [29, 30], and this behavior
was finally understood. These ideas rely on the concept of “quantum entanglement”
[31-33], and understanding how much information is needed to represent a quan-
tum state faithfully can be quantified in terms of an “entanglement entropy” [34].
Quantum information could now explain why certain systems behaved in a certain
way, depending on the geometry and topology of the lattice, by understanding the
behavior of the spectrum of the reduced density matrices.

2.6.1 Entanglement

Entanglement is a property of quantum mechanical states composed of two or more
“objects”: since in quantum mechanics the state of a system can be described as a
linear superposition of basis states, we find that most of the time, we cannot describe
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the state of an object, or a part of the system, without knowledge of the rest. To
illustrate this idea let us consider the simple case of two spins, and assume there state
can be described as:

)y =1t + It +1IIn+1D (2.55)

We can readily see that this is equivalent to

Vi=AND+HDedh+1) (2.56)

Therefore, even though we started from a state that seemed to have a complicated
structure, we found that in reality the two spins are not entangled: their wave-function
can be written as the product of the states of the two individual spins. The two spins
carry information individually, and knowing the state of one spin, does not tell us
anything about the state of the second spin.

Instead, the following wave-function

) =1t +111) (2.57)

cannot be separated: if we look at one spin, and it is pointing in one direction, we
know that the other spin will be pointing in the opposite direction. In fact, for this
particular example, the state of one spin carries al/ the information about the state of
the second spin. We are going to see later that this case is referred to as the “maximally
entangled” state of the two spins.

2.6.2 Entanglement and the Schmidt Decomposition

Let us assume that we define a partition in our system into parts A and B, same as we
have been doing it all along during our discussion. The generic state of our system
can be expressed, once more, as:

W) =" wli)lj), (2.58)
ij

where the states {|i)} and {|j)} live on parts A and B, and have dimensions D4 and
Dp, respectively. This means that in order to describe the problem we need to know
Dy x Dp complex coefficients.
Let us re-formulate the original DMRG premise: Can we simplify this state by
changing to anew basis? And... what do we mean by “simplifying” the state, anyway?
We have seen, that through a SVD decomposition, we can re-write the state as:
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W) =D hgla)a) (2.59)
o

where r = min(Dy, Dp), Ay > 0, and the states {|a) 4} and {|«) p} form an orthog-
onal basis for the subsystems.

We notice right away, that if the Schmidt rank » = 1, then the wave-function
reduces to a product state, “disentangling” the two subsystems.

How accurately or faithfully we will be able to represent the state by truncating the
basis, will clearly depend on the behavior of the Schmidt coefficients 1. If we recall
that these are related to the eigenvalues of the reduced density matrices as wy = )%,
we conclude that the efficiency of the DMRG will be completely determined by the
spectrum of the reduced density matrices, the so-called “entanglement spectrum”:

o If the eigenvalues decay very fast (exponentially, for instance), then we introduce
little error by discarding the smaller ones.

e Few coefficients mean less entanglement. In the extreme case of a single non-zero
coefficient, the wave-function is a product state and completely disentangled.

e The same way NRG minimizes the energy... DMRG minimizes the loss of infor-
mation! The closer the state resembles a product state, the more efficient our trun-
cation will be. Let us be clear, the amount of entanglement is in reality always the
same, but when we rotate to a new basis, we pick it in such a way that the Schmidt
coefficients are concentrated in as few states as possible, so we can discard the
rest with a minimum loss of information.

2.6.3 Quantifying Entanglement

In order to quantify the entanglement, we define a quantity called the “entanglement
entropy”. There are many definition, we shall pick the so called “von Neumann
entanglement entropy”’:

S =— Z 22 log A2, (2.60)
o

Or, in terms of the reduced density matrix:

S = —Tr (palogpa) = —Tr (pplog pp) . (2.61)

To illustrate what this quantity represents, let us look again at the normalized
state: |
—= [t + 1D (2.62)
V2

We can obtain the reduced density matrix for the first spin, by tracing over the second
spin

V) =
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o= (1(/)2 1(/)2) (2.63)

We say that the state is “maximally entangled” when the reduced density matrix is
proportional to the identity. The entanglement entropy in this case is:

S ! 1 L1 1 ! log?2 2.64
—20g2 2ogz—og. (2.64)
In general, if the rank of the Schmidt decomposition is r = min (D4, Dp), then
the entanglement spectrum will be w, = 1/r, and the entanglement entropy of the
maximally entangled state will be S = logr.

If the state is a product state:

V) = la)|B). (2.65)

All the eigenvalues of the reduced density matrices will be w, = 0 except for one
w1 = 1, and the entanglement entropy will be S = 0.

2.6.4 The Area Law

We know understand how to quantify the accuracy of the DMRG in terms of entan-
glement. What we still do not understand is why the DMRG performs so well in
one-dimensional cases, and not so-well in two dimensions, and in systems with peri-
odic boundary conditions. We can see that these issues have to be somehow related to
the behavior of the entanglement spectrum, and there must be something that makes
it behave in a particular way for some problems.

The study of the entanglement properties of quantum systems is a relatively new
subject. It has recently become very relevant in condensed matter due to its ability
to characterize quantum many body systems. As it turns out, it can be shown that the
ground states of certain Hamiltonians, under certain conditions, obey what is called
"area laws" for the entanglement entropy [35]. That is why the entanglement entropy
is sometimes also called “geometric entropy”. This is now a topic of intense research
and in these nodes we shall only described the main ideas in a qualitative way.

Consider the ground-state of a local Hamiltonian (with interactions limited to
close neighbors). In two spacial dimensions, that is pictorially shown in Fig.2.15.
This state represents what is commonly known as a valence bond solid, in which
some bonds form strong singlets (2.57). These singlets are represented in the figure
by thick lines. Let us now draw an imaginary partition, as shown with the gray shaded
area. The boundary lines will cut a number of singlets, proportional to the length,
or perimeter of the partition. Since we know that the entanglement entropy between
two spins forming a singlet is log(2), we conclude that the entanglement entropy
between the enclosed region and the outside will be
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Fig. 2.15 Schematic repre-
sentation of a valence bond
solid. Thick lines represent
singlets pa - : N
. \
\
R T L/
S =log(2) x (# of bonds cut) ~ Llog(2) (2.66)

Hence, the entanglement entropy is proportional to the area of the boundary sepa-
rating both regions. This is the prototypical behavior of gaped systems, which we
illustrate with this simple example [36]. The same ideas can be generalized to other
contexts. Notice that this means that in gaped one-dimensional systems, the entan-
glement entropy between two pieces, left and right, is independent of the size of the
partition (again, we are referring to models with short range interactions).

It can be shown using conformal field theory arguments [37, 38], that the entangle-
ment entropy of critical (gapless) one-dimensional system with periodic boundary
conditions obeys the law:

S ~ glog(L) (2.67)

where c is the “central charge” of the system, a measure of the number of gapless
modes. For the case of open boundary conditions, a similar expression is obtained:

S~ glog(L) (2.68)

The factor 2 arises from the simple fact that a system with periodic boundary condi-
tions has rwo boundaries, compared to one in the case of open boundary conditions.

In general, most systems obey the area law, with some exceptions such as free
fermions, or fermionic systems with a 1D Fermi surface [39—42].
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2.6.5 Entanglement and the DMRG

In general, the number of DMRG state that we need to keep to represent a state is
related to the entanglement entropy between the two blocks as [34, 43]:

m ~ exp(S) (2.69)

Therefore, we can predict the behavior or the algorithm for certain classes of systems:

e Gaped systems in 1D: m = const.

e Critical systems in 1D: m ~ L“.

e Gaped systems in 2D: m = exp(L).

e Periodic boundary conditions in 1D: we need to keep the square of the states
needed for open boundary conditions, since the boundary area is now doubled.

These rules of thumb give an idea of the computational cost of a simulation. However,
the entanglement entropy is not the only factor that determines the behavior of the
DMRG, but also the internal structure of the wave function which has the form of a
matrix product state [ 10-13, 44]. This will be discussed in detail in a separate chapter
of the book.

2.7 Outlook: DMRG and Tensor Network Methods

With the advent of matrix product state algorithms, and quantum information ideas,
we have seen a remarkable progress in the computational field. A repeated question
that arises is whether the variational approaches using MPS are more efficient, or
“better” that conventional DMRG. The short answer is “not necessarily”. If one is
interested in studying one-dimensional problems, all methods are basically equiva-
lent. One may argue that MPS algorithms work better for periodic boundary condi-
tions [45, 46], but the drawback is that the implementation of the MPS code suffers
from normalization problems that may lead to some instabilities. It is possible to
reformulate the DMRG as an MPS optimization code [47], that may lead to a hybrid
solution. What is certain is that most of the people that have been working with the
DMRG for decades, have very polished, optimized, state-of-the-art codes that are
hard to beat with existent MPS codes. However, progress is rapidly being made,
and ultimately, it may become a matter of taste. DMRG may be easier to generalize
to arbitrary Hamiltonians, and general purpose codes exist and are freely available,
such as the ALPS DMRG code [48-50]. On the other hand, MPS’s enjoy several
advantages that in the end may make them the favorite choice: They are probably
easier to understand intuitively; one only has to store local matrices; the structure of
the wavefunction is easy to deal with algebraically; they are easy to extend to the
thermodynamic limit in translational invariant problems [51-54]; overlaps between
MPS’s are easy to calculate; and most importantly, the MPS structure makes them
more suitable for massive parallellization, especially for time-evolution [55-57].
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MPS’s are extremely powerful objects, and we have been learning a great deal
about entanglement [43], complexity [58—60], and the structure of the quantum world
through them [61]. The concept can readily be extended to higher dimensions, with
matrices being replaced by tensors, leading to complex structures: tensor networks.
Several ideas exploiting tensor networks have been proposed, such as PEPS (pro-
jected entangled pair states) [54] and MERA (multi-scale entanglement renormaliza-
tion ansatz) [62—65], with very promising results. However, until recent work [66],
DMRG has always been more efficient at studying 2D problems [67]. The main rea-
son for this is, once more, the lack of highly optimized code to deal with the tensor
contractions in PEPS, which is a complex computational problem [68—70], and in the
case of MERA, with the explicit breaking of the translational symmetry. But again,
progress is rapidly being made, and we can anticipate a new wave of computational
methods based on tensor network methods.
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