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Abstract In this paper we discuss the influence of surface viscoelasticity on the
effective properties of materials such as effective bending stiffness of plates or
shells. Viscoelasticity in the vicinity of the surface can differ from the properties
of the bulk material, in general. This difference influences the behavior of nanosized
thin elements. In particular, the surface viscoelastic stresses are responsible for the
size-depended dissipation of nanosized structures. Extending of the Gurtin-Murdoch
model and using the correspondence principle of the linear viscoelasticity we derive
the expressions of the stress resultant tensors for shear deformable plates and shells.

1 Introduction

The surface effects play an important role for such nanosized materials as films,
nanoporous materials, etc., while in this case the influence of surface is more signif-
icant. The mechanics of solids which takes into account explicitly the phenomenon
of surface stresses was proposed by Gurtin and Murdoch [1]. Within the framework
of the theory of surface stresses an elastic body can be considered as a “usual” elastic
body with elastic membrane glued on its surface. Unlike to classical mechanics of
materials where the surface stresses can be neglected in most cases, at the micro- and
nanoscale the surface stresses play an important role. For example, they influence
the effective or apparent properties of very thin specimens and predict the so-called
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size effect, that is dependence of apparent material properties on a specimen size.
Hence, the classical continuum mechanics can be extended at the nanoscale taking
into account surface stresses acting on the boundary of a nanosized body, see [2, 3].
In the literature are presented various applications of the Gurtin-Murdoch model in
nanomechanics, see, for example, the review [4]. In particular, the theory of elastic-
ity with surface stresses is used in the two-dimensional theories of nanosized plates
and shells, see [5–13]. Let us note that in most of papers the elastic medium is con-
sidered. On the other hand, inelastic behavior analysis is also important in micro-
and nanomechanics. Dissipative processes in the vicinity of the surface are related
to the higher mobility of molecules, surface imperfections, absorbates, etc., see [14]
among others. For the description of surface dissipation of nanosized beams, Ru [15]
was proposed one-dimensional constitutive law that is similar to the model of the
standard viscoelastic solids but formulated for the two-dimensional surface stresses.

Following [16] in this paper we consider the influence of surface viscoelasticity
on the effective or apparent properties of nanosized thin-walled structures. We recall
the basic equations of the continuum with surface stresses and use the more general
constitutive viscoelastic model for the surface stresses than the proposed by Ru
[15]. Using the correspondence principle, we present the governing equations of
plates and shells with viscoelastic surface stresses. Here we assume that the bulk
material is elastic while the surface has viscoelastic properties. We formulate the two-
dimensional (2D) constitutive equations and obtain the 2D relaxation functions for
plates and shells. Finally, we compare the proposed model of shells with viscoelastic
surface stresses with the model of a sandwich plate with viscoelastic faces.

2 Basic Equations of Linear Elasticity with Viscoelastic
Surface Stresses

Let us consider the problem for a deformable body with surface stresses. Let V ∈ R
3

is the volume of the body with the boundary Ω = ∂V . For quasistatic deformations
of solids with surface stresses the boundary-value problem is given by

∇ · σ + ρf = 0, x ∈ V, (1)

u|Ω1 = 0, n · σ |Ω2 = t, x ∈ Ω, (2)

where σ is the stress tensor, u the displacement vector, ∇ the 3D gradient operator
(3D nabla operator), ρ the density, f the density of the volume forces, and n the
external unit normal to Ω = Ω1

⋃
Ω2, Ω1

⋃
Ω2 = ∅. The surface stress vector t is

expressed through a given load ϕ and the stress vector due the surface stresses tS by
the formula [1, 2, 17]

t = ϕ + tS, tS = ∇S · τ .
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Here τ is the surface stress tensor on Ω , ∇S is the surface nabla operator on Ω given
by ∇S = ∇ − n∂/∂z, where z is the coordinate along the normal to Ω .

For the sake of simplicity, we restrict ourselves to an isotropic material. We also
assume that the bulk material is elastic but the surface stresses are viscoelastic. Hence,
we have the Hooke law for the bulk material

σ = 2με + λItr ε with ε = ε(u) ≡ 1

2

(∇u + (∇u)T )
, (3)

where ε is the strain tensor, λ and μ are Lamé’s moduli, and I is the three-dimensional
unit tensor, respectively.

For the surface stresses we assume the following constitutive equation

τ = 2

t∫

−∞
μS(t − τ)ė(τ ) dτ +

t∫

−∞
λS(t − τ)tr ė(τ ) dτA, (4)

e = e(v) ≡ 1

2

(∇Sv · A + A · (∇Sv)T )
,

where e is the surface strain tensor, v the displacement of the surface point x of Ω2,
A ≡ I − n ⊗ n the two-dimensional unit tensors, the overdot denotes differentiation
with respect to time t , and λS and μS are the relaxation functions of the surface film
Ω2, respectively.

Following [1, 17], we state that the displacements of the surface film Ω2 coincide
with the body displacements on the boundary v = u|Ω2 .

The integral constitutive law (4) contains the viscoelastic constitutive equation of
[15] as the special case. If μS and λS are constants then (4) reduces to the elastic
constitutive equations used in [2].

The system of Eqs. (1)–(4) constitute the boundary-value problem (BVP) for the
elastic body with viscoelastic surface stresses. In what follows we use this BVP to
derive two-dimensional (2D) equations of shear-deformable shells.

3 Reduction to the Two-Dimensional Theory

In the literature there are known various approaches of derivation of 2D equations
of plates and shells using the reduction procedure of the equations of 3D continuum
mechanics. Here we apply to the nonclassical BVP (1)–(4) the through-the-thickness
integration procedure described, for example, in [18].

In the case of viscoelastic material we use the correspondence principle which
establishes that if an elastic solution of the problem is known, the corresponding
viscoelastic solution can be obtained by substituting for the elastic quantities the
Laplace transform of the unknown functions [19, 20]. In other words, one can use
the solution of BVP for elastic material as the solution of BVP for viscoelastic
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material but given in terms of Laplace transform. According to this principle we use
the results of 3D to 2D reduction procedure for the elastic shell-like body given by
[6, 7].

In fact, using the Laplace transform one can write (4) as it follows

τ = 2sμS(s)e + sλS(s)(tr e)A, (. . .)(s) =
∞∫

0

(. . .)(t)e−st dt, (5)

which coincides formally with the surface Hooke’s law assumed in [6, 7].
The through-the-thickness integration procedure applied to shell-like bodies with

surface stresses leads to the following 2D equations, see [16],

∇S ·T + q = 0, ∇S ·M + T× + m = 0, (6)

where T is the stress resultant tensor, M the couple stress tensor, T× denotes the
vectorial invariant of second-order tensor T, see [18], q and m are the surface force
and couple vector fields defined as in [6, 7].

Tensors T and M can be represented each as the sums of two terms, see [5–7, 16],

T = Tb + Ts, M = Mb + Ms . (7)

Here Tb and Mb are the stress and couple stress resultant tensors related to the bulk
material while Ts and Ms are the stress and couple stress resultant tensors related to
the surface stresses. With the accuracy of O(h/R) where h is the shell thickness and
R is the maximum of the curvature radius of the shell base surface, one can use the
following formulae for Tb, Mb, Ts , and Ms

Tb = 〈A · σ 〉, Mb = −〈A · zσ × n〉, 〈(. . .)〉 =
h/2∫

−h/2

(. . .) dz, (8)

Ts = τ+ + τ−, Ms = −h

2
(τ+ − τ−) × n, (9)

where τ± are the surface stresses acting at the shell faces, i.e. τ± = τ
∣
∣
z=±h/2.

Equation (8) result in the following component representations

Tb = Tαβρα⊗ρβ + Tα3ρ
α ⊗ n, Mb = −Mαβρα ⊗ ρβ × n, α, β = 1, 2,

(10)

Tαβ = 〈σαβ〉, Tα3 = 〈σα3〉, Mαβ = 〈zσαβ〉,

where σαβ = ρα · σ · ρβ , σα3 = ρα · σ · n, ρα and ρβ are the main and reciprocal
bases on the shell base surface ω with the unit normal vector n.
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In what follows we use the linear approximation of the translation vector u

u(z) = w − zϑ, n·ϑ = 0. (11)

This approximation is used in the theories of shear-deformable plates and shells, see,
e.g., [18], w is the translation vector of the shell base surface ω and ϑ is the rotation
vector of the shell normal. Both are kinematically independent each other.

For the isotropic shell dependence of Tb and Mb on strain measures is given by

Tb = C1ε + C2Atr ε + Γ γ ⊗ n, Mb = − [D1κ + D2Atr κ] × n, (12)

C1 = 2C22, C2 = C11 − C22, D1 = 2D22, D2 = D33 − D22.

where ε, κ , and γ are strain measures introduced by

ε = 1

2

(
∇Sw · A + A · (∇Sw)T

)
, κ = 1

2

(
∇Sϑ · A + A · (∇Sϑ)T

)
,

γ = ∇S(w · n) − ϑ,

and the components C11, C22, D22, D33, and Γ are given by

C11 = Eh

2(1 − ν)
, C22 = Eh

2(1 + ν)
,

D22 = Eh3

24(1 + ν)
, D33 = Eh3

24(1 − ν)
, Γ = kμh,

E = 2μ(1 + ν), ν = λ

2(λ + μ)
,

C ≡ C11 + C22 = Eh

1 − ν2 , D ≡ D11 + D22 = Eh3

12(1 − ν2)
,

where E and ν are the Young modulus and Poisson ratio of bulk material. C and
D are the tangential and bending stiffness of the shell, Γ is the transverse shear
stiffness, and k the transverse shear factor, respectively.

Let us consider the constitutive equations for Ts and Ms . For simplicity we assume
the same viscoelastic behaviour of both shell faces. From (11) it follows the relations

τ± =
t∫

−∞
λS(t − τ)tr ε̇(τ ) dτA + 2

t∫

−∞
μS(t − τ)ε̇(τ ) dτ

∓ h

2

⎛

⎝

t∫

−∞
λS(t − τ)tr κ̇(τ ) dτA +

t∫

−∞
2μS(t − τ)κ̇(τ ) dτ

⎞

⎠ .
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Finally we have, see [16],

Ts =
t∫

−∞

[
C S

1 (t − τ)ε̇(τ ) + C S
2 (t − τ)Atr ε̇(τ )

]
dτ, (13)

Ms = −
t∫

−∞

[
DS

1 (t − τ)κ̇(τ ) + D2(t − τ)SAtr κ̇(τ )
]

dτ × n, (14)

C S
1 = 4μS, C S

2 = 2λS, DS
1 = h2μS, DS

2 = h2λS/2.

As a result from (7), (13), and (14) we derive the constitutive equations of the
shell with viscoelastic surface stresses in the form

T =
t∫

−∞
[C1(t − τ)ε̇(τ ) + C2(t − τ)Atr ε̇(τ )] dτ + Γ γ ⊗ n,

M = −
t∫

−∞
[D1(t − τ)κ̇(τ ) + D2(t − τ)Atr κ̇(τ )] dτ × n,

C1(t) = 2C22 + 4μS(t), C2(t) = C11 − C22 + 2λS(t),

D1(t) = 2D22 + h2μS(t), D2(t) = D33 − D22 + h2

2
λS(t).

The tangential and bending relaxation functions are given by

C = Eh

1 − ν2 + 4μS + 2λS, D = Eh3

12(1 − ν2)
+ h2

2
(2μS + λS). (15)

Let us note that the surface stresses do not influence the transverse shear stiffness.

4 Plate with Surface Stresses as Three-Layered Plate

The presented above model of plates and shells with surface stresses is similar to the
theories of three-layered plates and shells that are widely presented in the literature,
see [7] for the elastic case and [16] for viscoelastic faces. We consider the symmetric
three-layered plate (sandwich plate) with the thickness h = hc + 2hf , where hc is
the thickness of core, hf the thickness of faces, and hc � hf . We assume that the
core is made of elastic material with the Young modulus E or the shear modulus
μ, and Poisson ratio ν while the faces are viscoelastic with the relaxation function
Ef(t) and the constant Poisson ratio νf .
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Using the approach suggested in [7, 21], for the viscoelastic sandwich plate we
obtain the constitutive equations in the form similar to (13) and (14) but with different
expressions for relaxation functions. The tangential and bending relaxation functions
of the three-layered plate are given by

C̃ = C̃11 + C̃22 = 2Ef hf

1 − ν2
f

+ Ehc

1 − ν2 , (16)

D̃ = D̃22 + D̃33 = 1

12

[
Ef(h3 − h3

c)

1 − ν2
f

+ Ech3
c

1 − ν2
c

]

, (17)

C̃11 = 1

2

(
2Ef hf

1 − νf
+ Ehc

1 − ν

)

, C̃22 = 1

2

(
2Ef hf

1 + νf
+ Ehc

1 + ν

)

,

D̃22 = 1

24

[
Ef(h3 − h3

c)

1 + νf
+ Eh3

c

1 + ν

]

, D̃33 = 1

24

[
Ef(h3 − h3

c)

1 − νf
+ Eh3

c

1 − ν

]

Comparing (16) with (15)1 we conclude that the surface relaxation functions λS and
μS can be expressed through the relaxation function of faces Ef , Poisson ratio νf ,
and the thickness hf . With accuracy of O(h2

f ) we obtain that

μS ≈ Ef hf

2(1 + νf)
≡ μf hf , λS ≈ νf Ef hf

1 − ν2
f

≡ λf hf
1 − 2νf

1 − νf
, (18)

where λf is the second relaxation function of faces. Let us note that the comparison
of (15)2 with (17) results in the same formulae. Hence, we get

μS = lim
hf→0

μf hf , λS = lim
hf→0

λf
1 − 2νf

1 − νf
hf . (19)

The latter equations give us the interpretation of the surface viscoelastic functions
μS and λS through the relaxation functions of plate faces and their thickness.

5 Conclusions

Here we discuss the extension of the constitutive relations of elastic thin-walled
structures with surface stresses taking into account the surface viscoelasticity. As
in the Gurtin-Murdoch model of surface elasticity the linear surface viscoelasticity
contains the surface stresses which depend on the surface the prehistory of strains.
In the linear isotropic case these dependencies are given by the relation (4). Using
the correspondence principle and the through-the-thickness integration technique of
reduction of 3D equations to 2D ones we derive the constitutive equations for stress
resultants and analyzed the dependence of the effective properties on bulk and surface
material behaviour.
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