
Chapter 2
Depth Statistics

Karl Mosler

2.1 Introduction

In 1975, John Tukey proposed a multivariate median which is the ‘deepest’ point in
a given data cloud in R

d (Tukey 1975). In measuring the depth of an arbitrary point z

with respect to the data, Donoho and Gasko (1992) considered hyperplanes through
z and determined its ‘depth’ by the smallest portion of data that are separated by
such a hyperplane. Since then, this idea has proved extremely fruitful. A rich sta-
tistical methodology has developed that is based on data depth and, more general,
nonparametric depth statistics. General notions of data depth have been introduced
as well as many special ones. These notions vary regarding their computability and
robustness and their sensitivity to reflect asymmetric shapes of the data. According
to their different properties they fit to particular applications. The upper level sets
of a depth statistic provide a family of set-valued statistics, named depth-trimmed
or central regions. They describe the distribution regarding its location, scale and
shape. The most central region serves as a median; see also the contribution by Oja,
Chap. 1. The notion of depth has been extended from data clouds, that is empirical
distributions, to general probability distributions on R

d , thus allowing for laws of
large numbers and consistency results. It has also been extended from d-variate data
to data in functional spaces. The present chapter surveys the theory and methodol-
ogy of depth statistics.

Recent reviews on data depth are given in Cascos (2009) and Serfling (2006).
Liu et al. (2006) collects theoretical as well as applied work. More on the theory
of depth functions and many details are found in Zuo and Serfling (2000) and the
monograph by Mosler (2002).

The depth of a data point is reversely related to its outlyingness, and the depth-
trimmed regions can be seen as multivariate set-valued quantiles. To illustrate the
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Table 2.1 General government gross debt (% of GDP) and unemployment rate of the EU-27
countries in 2011 (Source: EUROSTAT)

Country Debt % Unempl. % Country Debt % Unempl. %

Belgium 98.0 7.2 Luxembourg 18.2 4.9

Bulgaria 16.3 11.3 Hungary 80.6 10.9

Czech Republic 41.2 6.7 Malta 72.0 6.5

Denmark 46.5 7.6 Netherlands 65.2 4.4

Germany 81.2 5.9 Austria 72.2 4.2

Estonia 6.0 12.5 Poland 56.3 9.7

Ireland 108.2 14.4 Portugal 107.8 12.9

Greece 165.3 17.7 Romania 33.3 7.4

Spain 68.5 21.7 Slovenia 47.6 8.2

France 85.8 9.6 Slovakia 43.3 13.6

Italy 120.1 8.4 Finland 48.6 7.8

Cyprus 71.6 7.9 Sweden 38.4 7.5

Latvia 42.6 16.2 United Kingdom 85.7 8.0

Lithuania 38.5 15.4

notions, we consider bivariate data from the EU-27 countries regarding unemploy-
ment rate and general government debt in percent of the GDP (Table 2.1). In what
follows, we are interested which countries belong to a central, rather homogeneous
group and which have to be regarded as, in some sense, outlying.

Section 2.2 introduces general depth statistics and the notions related to it. In
Sect. 2.3, various depths for d-variate data are surveyed: multivariate depths based
on distances, weighted means, halfspaces or simplices. Section 2.4 provides an ap-
proach to depth for functional data, while Sect. 2.5 treats computational issues. Sec-
tion 2.6 concludes with remarks on applications.

2.2 Basic Concepts

In this section, the basic concepts of depth statistics are introduced, together with
several related notions. First, we provide a general notion of depth functions, which
relies on a set of desirable properties; then a few variants of the properties are dis-
cussed (Sect. 2.2.1). A depth function induces an outlyingness function and a family
of central regions (Sect. 2.2.2). Further, a stochastic ordering and a probability met-
ric are generated (Sect. 2.2.3).

2.2.1 Postulates on a Depth Statistic

Let E be a Banach space, B its Borel sets in E, and P a set of probability distri-
butions on B. To start with and in the spirit of Tukey’s approach to data analysis,
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we may regard P as the class of empirical distributions giving equal probabilities 1
n

to n, not necessarily different, data points in E = R
d .

A depth function is a function D : E × P → [0,1], (z,P ) �→ D(z | P), that sat-
isfies the restrictions (or ‘postulates’) D1 to D5 given below. For easier notation,
we write D(z | X) in place of D(z | P), where X is an arbitrary random variable
distributed as P . For z ∈ E, P ∈ P , and any random variable X having distribution
P it holds:

• D1 Translation invariant: D(z + b | X + b) = D(z | X) for all b ∈ E.
• D2 Linear invariant: D(Az | AX) = D(z | X) for every bijective linear transfor-

mation A : E → E.
• D3 Null at infinity: lim‖z‖→∞ D(z | X) = 0.
• D4 Monotone on rays: If a point z∗ has maximal depth, that is D(z∗ | X) =

maxz∈E D(z | X), then for any r in the unit sphere of E the function α �→
D(z∗ + αr | X) decreases, in the weak sense, with α > 0.

• D5 Upper semicontinuous: The upper level sets Dα(X) = {z ∈ E : D(z | X) ≥ α}
are closed for all α.

D1 and D2 state that a depth function is affine invariant. D3 and D4 mean that the
level sets Dα , α > 0, are bounded and starshaped about z∗. If there is a point of max-
imum depth, this depth will w.l.o.g. be set to 1. D5 is a useful technical restriction.
An immediate consequence of restriction D4 is the following proposition.

Proposition 2.1 If X is centrally symmetric distributed about some z∗ ∈ E, then
any depth function D(· | X) is maximal at z∗.

Recall that X is centrally symmetric distributed about z∗ if the distributions of
X − z∗ and z∗ − X coincide.

Our definition of a depth function differs slightly from that given in Liu (1990)
and Zuo and Serfling (2000). The main difference between these postulates and
ours is that they additionally postulate Proposition 2.1 to be true and that they do
not require upper semicontinuity D5.

D4 states that the upper level set Dα(x1, . . . , xn) are starshaped with respect
to z∗. If a depth function, in place of D4, meets the restriction

• D4con: D(· | X) is a quasiconcave function, that is, its upper level sets Dα(X)

are convex for all α > 0,

the depth is mentioned as a convex depth. Obviously, as a convex set is starshaped
with respect to each of its points, D4con implies D4. In certain settings the restric-
tion D2 is weakened to

• D2iso: D(Az | AX) = D(z | X) for every isometric linear transformation A :
E → E.

Then, in case E = R
d , D is called an orthogonal invariant depth in contrast to an

affine invariant depth when D2 holds. Alternatively, sometimes D2 is attenuated to
scale invariance,

• D2sca: D(λz | λX) = D(z | X) for all λ > 0.
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2.2.2 Central Regions and Outliers

For given P and 0 ≤ α ≤ 1, the level sets Dα(P ) form a nested family of depth-
trimmed or central regions. The innermost region arises at some αmax ≤ 1, which
in general depends on P . Dαmax(P ) is the set of deepest points. D1 and D2 say
that the family of central regions is affine equivariant. Central regions describe a
distribution X with respect to location, dispersion, and shape. This has many ap-
plications in multivariate data analysis. On the other hand, given a nested family
{Cα(P )}α∈[0,1] of set-valued statistics, defined on P , that are convex, bounded and
closed, the function D,

D
(
z | P ) = sup

{
α : z ∈ Cα(P )

}
, z ∈ E, P ∈P, (2.1)

satisfies D1 to D5 and D4con, hence is a convex depth function.
A depth function D orders data by their degree of centrality. Given a sample, it

provides a center-outward order statistic. The depth induces an outlyingness func-
tion R

d → [0,∞[ by

Out
(
z | X) = 1

D(z | X)
− 1,

which is zero at the center and infinite at infinity. In turn, D(z | X) = (1 + Out(z |
X))−1. Points outside a central region Dα have outlyingness greater than 1/α − 1;
they can be regarded as outliers of a specified level α.

2.2.3 Depth Lifts, Stochastic Orderings, and Metrics

Assume αmax = 1 for P ∈ P . By adding a real dimension to the central regions
Dα(P ),α ∈ [0,1], we construct a set, which will be mentioned as the depth lift,

D̂(P ) = {
(α, y) ∈ [0,1] × E : y = αx,x ∈ Dα(P ),α ∈ [0,1]}. (2.2)

The depth lift gives rise to an ordering of probability distributions in P : P ≺D Q

if

D̂(P ) ⊂ D̂(Q). (2.3)

The restriction D̂(P ) ⊂ D̂(Q) is equivalent to Dα(P ) ⊂ Dα(Q) for all α. Thus,
P ≺D Q means that each central set of Q is larger than the respective central set
of P . In this sense, Q is more dispersed than P . The depth ordering is antisymmet-
ric, hence an order, if and only if the family of central regions completely character-
izes the underlying probability. Otherwise it is a preorder only. Finally, the depth D

introduces a probability semi-metric on P by the Hausdorff distance of depth lifts,

δD(P,Q) = δH

(
D̂(P ), D̂(Q)

)
. (2.4)

Recall that the Hausdorff distance δH (C1,C2) of two compact sets C1 and C2 is
the smallest ε such that C1 plus the ε-ball includes C2 and vice versa. Again, the
semi-metric is a metric iff the central regions characterize the probability.
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2.3 Multivariate Depth Functions

Originally and in most existing applications depth statistics are used with data in
Euclidean space. Multivariate depth statistics are particularly suited to analyze non-
Gaussian or, more general, non-elliptical distributions in R

d . Without loss of gen-
erality, we consider distributions of full dimension d , that is, whose convex hull of
support, co(P ), has affine dimension d .

A random vector X in R
d has a spherical distribution if AX is distributed as

X for every orthogonal matrix A. It has an elliptical distribution if X = a + BY

for some a ∈ R
d , B ∈ R

d×d , and spherically distributed Y ; then we write X ∼
Ell(a,BB ′, ϕ), where ϕ is the radial distribution of Y . Actually, on an elliptical
distribution P = Ell(a,BB ′, ϕ), any depth function D(·,P ) satisfying D1 and D2
has parallel elliptical level sets Dα(P ), that is, level sets of a quadratic form with
scatter matrix BB ′. Consequently, all affine invariant depth functions are essentially
equivalent if the distribution is elliptical. Moreover, if P is elliptical and has a uni-
modal Lebesgue-density fP , the density level sets have the same elliptical shape,
and the density is a transformation of the depth, i.e., a function ϕ exists such that
fP (z) = ϕ(D(z | P)) for all z ∈R

d . Similarly, on a spherical distribution, any depth
satisfying postulates D1 and D2iso has analogous properties.

In the following, we consider three principal approaches to define a multivari-
ate depth statistic. The first approach is based on distances from properly defined
central points or on volumes (Sect. 2.3.1), the second on certain L-statistics (viz. de-
creasingly weighted means of order statistics; Sect. 2.3.2), the third on simplices and
halfspaces in R

d (Sect. 2.3.3). The three approaches have different consequences on
the depths’ ability to reflect asymmetries of the distribution, on their robustness to
possible outliers, and on their computability with higher-dimensional data.

Figures 2.1, 2.2, 2.3 and 2.4 below exhibit bivariate central regions for several
depths and equidistant α. The data consist of the unemployment rate (in %) and the
GDP share of public debt for the countries of the European Union in 2011.

Most of the multivariate depths considered are convex and affine invariant, some
exhibit spherical invariance only. Some are continuous in the point z or in the dis-
tribution P (regarding weak convergence), others are not. They differ in the shape
of the depth lift and whether it uniquely determines the underlying distribution.
A basic dispersion ordering of multivariate probability distributions serving as a
benchmark is the dilation order, which says that Y spreads out more than X if
E[ϕ(X)] ≤ E[ϕ(Y )] holds for every convex ϕ : Rd → R; see, e.g., Mosler (2002).
It is interesting whether or not a particular depth ordering is concordant with the
dilation order.

2.3.1 Depths Based on Distances

The outlyingness of a point, and hence its depth, can be measured by a distance
from a properly chosen center of the distribution. In the following notions, this is
done with different distances and centers.
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L2-Depth The L2-depth, DL2 , is based on the mean outlyingness of a point, as
measured by the L2 distance,

DL2
(
z | X) = (

1 + E‖z − X‖)−1
. (2.5)

It holds αmax = 1. The depth lift is D̂L2(X) = {(α, z) : E‖z − αX‖ ≤ 1 − α} and
convex. For an empirical distribution on points xi, i = 1, . . . , n, we obtain

DL2
(
z | x1, . . . , xn

) =
(

1 + 1

n

n∑

i=1

‖z − xi‖
)−1

. (2.6)

Obviously, the L2-depth vanishes at infinity (D3), and is maximum at the spatial
median of X, i.e., at the point z ∈ R

d that minimizes E‖z − X‖. If the distribution
is centrally symmetric, the center is the spatial median, hence the maximum is at-
tained at the center. Monotonicity with respect to the deepest point (D4) as well as
convexity and compactness of the central regions (D4con, D5) derive immediately
from the triangle inequality. Further, the L2-depth depends continuously on z. The
L2-depth converges also in the probability distribution: For a uniformly integrable
and weakly convergent sequence Pn → P it holds limn D(z | Pn) = D(z | P).

However, the ordering induced by the L2-depth is no sensible ordering of disper-
sion, since the L2-depth contradicts the dilation order. As ‖z − x‖ is convex in x,
the expectation E‖z − X‖ increases with a dilation of P . Hence, (2.5) decreases (!)
with a dilation.

The L2-depth is invariant against rigid Euclidean motions (D1, D2iso), but not
affine invariant. An affine invariant version is constructed as follows: Given a posi-
tive definite d × d matrix M , consider the M-norm,

‖z‖M =
√

z′M−1z, z ∈ R
d . (2.7)

Let SX be a positive definite d × d matrix that depends continuously (in weak con-
vergence) on the distribution and measures the dispersion of X in an affine equiv-
ariant way. The latter means that

SXA+b = ASXA′ holds for any matrix A of full rank and any b. (2.8)

Then an affine invariant L2-depth is given by

(
1 + E‖z − X‖SX

)−1
. (2.9)

Besides invariance, it has the same properties as the L2-depth. A simple choice
for SX is the covariance matrix ΣX of X (Zuo and Serfling 2000). Note that the
covariance matrix is positive definite, as the convex hull of the support, co(P ), is
assumed to have full dimension. More robust choices for SX are the minimum vol-
ume ellipsoid (MVE) or the minimum covariance determinant (MCD) estimators;
see Rousseeuw and Leroy (1987), Lopuhaä and Rousseeuw (1991), and the contri-
bution by Rousseeuw and Hubert, Chap. 4.
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Fig. 2.1 Governmental debt (x-axis) and unemployment rate (y-axis); Mahalanobis regions (mo-
ment, left; MCD, right) with α = 0.1(0.1), . . . ,0.9

Mahalanobis Depths Let cX be a vector that measures the location of X in a
continuous and affine equivariant way and, as before, SX be a matrix that satisfies
(2.8) and depends continuously on the distribution. Based on the estimates cX and
SX a simple depth statistic is constructed, the generalized Mahalanobis depth, given
by

DMah(z | X) = (
1 + ‖z − cX‖2

SX

)−1
. (2.10)

Obviously, (2.10) satisfies D1 to D5 and D4con, taking its unique maximum at cX .
The depth lift is the convex set D̂Mah(X) = {(α, z) : ‖z−αcX‖2

SX
≤ α2(α −1)}, and

the central regions are ellipsoids around cX . The generalized Mahalanobis depth is
continuous on z and P . In particular, with cX = E[X] and SX = ΣX the (moment)
Mahalanobis depth is obtained,

DmMah(z | X) = (
1 + (

z − E[X])′
Σ−1

X

(
z − E[X]))−1

. (2.11)

Its sample version is

DmMah(z | x1, . . . , xn
) = (

1 + (z − x̄)′Σ̂−1
x (z − x̄)

)−1
, (2.12)

where x̄ is the mean vector and Σ̂X is the empirical covariance matrix. It is eas-
ily seen that the α-central set of a sample from P converges almost surely to the
α-central set of P , for any α. Figure 2.1 shows Mahalanobis regions for the debt-
unemployment data, employing two choices of the matrix SX , namely the usual
moment estimate ΣX and the robust MCD estimate. As it is seen from the Figure,
these regions depend heavily on the choice of SX . Hungary, e.g., is rather central
(having depth greater than 0.8) with the moment Mahalanobis depth, while it is
much more outlying (having depth below 0.5) with the MCD version.

Concerning uniqueness, the Mahalanobis depth fails in identifying the underly-
ing distribution. As only the first two moments are used, any two distributions which
have the same first two moments cannot be distinguished by their Mahalanobis depth
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functions. Similarly, the generalized Mahalanobis depth does not determine the dis-
tribution. However, within the family of nondegenerate d-variate normal distribu-
tions or, more general, within any affine family of nondegenerate d-variate distribu-
tions having finite second moments, a single contour set of the Mahalanobis depth
suffices to identify the distribution.

Projection Depth The projection depth has been proposed in Zuo and Serfling
(2000):

Dproj(z | X) =
(

1 + sup
p∈Sd−1

|〈p, z〉 − med(〈p,X〉)|
Dmed(〈p,X〉)

)−1

, (2.13)

where Sd−1 denotes the unit sphere in R
d , 〈p, z〉 is the inner product (that is the

projection of z on the line {λp : λ ∈R}), med(U) is the usual median of a univariate
random variable U , and Dmed(U) = med(|U − med(U)|) is the median absolute
deviation from the median. The projection depth satisfies D1 to D5 and D4con.
It has good properties, which are discussed in detail by Zuo and Serfling (2000).
For breakdown properties of the employed location and scatter statistics, see Zuo
(2000).

Oja Depth The Oja depth is not based on distances, but on average volumes of
simplices that have vertices from the data (Zuo and Serfling 2000):

DOja(z | X) =
(

1 + E(vold(co{z,X1, . . . ,Xd}))√
detΣX

)−1

,

where X1, . . . ,Xd are random vectors independently distributed as P , co denotes
the convex hull, Vd the d-dimensional volume, and SX is defined as above. In par-
ticular, we can choose DX = ΣX . The Oja depth satisfies D1 to D5. It is continuous
on z and maximum at the Oja median (Oja 1983), which is not unique; see also the
contribution by Oja, Chap. 1. The Oja depth determines the distribution uniquely
among those measures which have compact support of full dimension.

Figure 2.2 contrasts the projection depth regions with the Oja regions for our
debt-unemployment data. The regions have different shapes, but agree in making
Spain and Greece the most outlying countries.

2.3.2 Weighted Mean Depths

A large and flexible class of depth statistics corresponds to so called weighted-mean
central regions, shortly WM regions (Dyckerhoff and Mosler 2011, 2012). These
are convex compacts in R

d , whose support function is a weighted mean of order
statistics, that is, an L-statistic. Recall that a convex compact K ⊂ R

d is uniquely
determined by its support function hK ,

hK(p) = max
{
p′x : x ∈ K

}
, p ∈ Sd−1.
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Fig. 2.2 Governmental debt and unemployment rate; projection depth regions (left), Oja regions
(right); both with α = 0.1(0.1), . . . ,0.9

To define the WM α-region of an empirical distribution on x1, x2, . . . , xn, we con-
struct its support function as follows: For p ∈ Sd−1, consider the line {λp ∈ R

d :
λ ∈R}. By projecting the data on this line a linear ordering is obtained,

p′xπp(1) ≤ p′xπp(2) ≤ · · · ≤ p′xπp(n), (2.14)

and, by this, a permutation πp of the indices 1,2, . . . , n. Consider weights wj,α for
j ∈ {1,2, . . . , n} and α ∈ [0,1] that satisfy the following restrictions (i) to (iii):

(i)
∑n

j=1 wj,α = 1, wj,α ≥ 0 for all j and α.
(ii) wj,α increases in j for all α.

(iii) α < β implies
∑k

j=1 wj,α ≤ ∑k
j=1 wj,β, k = 1, . . . , n.

Then, as it has been shown in Dyckerhoff and Mosler (2011), the function
hDα(x1,...,xn),

hDα(x1,...,xn)(p) =
n∑

j=1

wj,αp′xπp(j), p ∈ Sd−1, (2.15)

is the support function of a convex body Dα = Dα(x1, . . . , xn), and Dα ⊂ Dβ holds
whenever α > β . Now we are ready to see the general definition of a family of WM
regions.

Definition 2.1 Given a weight vector wα = w1,α, . . . ,wn,α that satisfies the restric-
tions (i) to (iii), the convex compact Dα = Dα(x1, . . . , xn) having support function
(2.15) is named the WM region of x1, . . . , xn at level α, α ∈ [0,1]. The correspond-
ing depth (2.1) is the WM depth with weights wα , α ∈ [0,1].
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It follows that the WM depth satisfies the restrictions D1 to D5 and D4con. More-
over, it holds

Dα

(
x1, . . . , xn

) = conv

{
n∑

j=1

wj,αxπ(j) : π permutation of {1, . . . , n}
}

. (2.16)

This explains the name by stating that a WM region is the convex hull of weighted
means of the data. Consequently, outside the convex hull of the data the WM depth
vanishes. WM depths are useful statistical tools as their central regions have attrac-
tive analytical and computational properties. Sample WM regions are consistent es-
timators for the WM region of the underlying probability. Besides being continuous
in the distribution and in α, WM regions are subadditive, that is,

Dα

(
x1 + y1, . . . , xn + yn

) ⊂ Dα

(
x1, . . . , xn

) ⊕ Dα

(
y1, . . . , yn

)
,

and monotone: If xi ≤ yi holds for all i (in the componentwise ordering of R
d ),

then

Dα

(
y1, . . . , yn

) ⊂ Dα

(
x1, . . . , xn

) ⊕R
d+ and

Dα

(
x1, . . . , xn

) ⊂ Dα

(
y1, . . . , yn

) ⊕R
d−,

where ⊕ signifies the Minkowski sum of sets.
Depending on the choice of the weights wj,α different notions of data depths are

obtained. For a detailed discussion of these and other special WM depths and central
regions, the reader is referred to Dyckerhoff and Mosler (2011, 2012).

Zonoid Depth For an empirical distribution P on x1, . . . , xn and 0 < α ≤ 1 define
the zonoid region (Koshevoy and Mosler 1997)

Dzon
α (P ) =

{
n∑

i=1

λix
i : 0 ≤ λi ≤ 1

nα
,

n∑

i=1

λi = 1

}

.

See Fig. 2.3. The corresponding support function (2.15) employs the weights

wj,α =
⎧
⎨

⎩

0 if j < n − �nα�,
nα−�nα�

nα
if j = n − �nα�,

1
nα

if j > n − �nα�.
(2.17)

Many properties of zonoid regions and the zonoid depth Dzon(z | X) are discussed
in Mosler (2002). The zonoid depth lift equals the so called lift zonoid, which fully
characterizes the distribution. Therefore the zonoid depth generates an antisymmet-
ric depth order (2.3) and a probability metric (2.4). Zonoid regions are not only
invariant to affine, but to general linear transformations; specifically any marginal
projection of a zonoid region is the zonoid region of the marginal distribution. The
zonoid depth is continuous on z as well as P .
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Fig. 2.3 Governmental debt and unemployment rate; zonoid regions (left), ECH∗ regions (right);
both with α = 0.1(0.1), . . . ,0.9

Expected Convex Hull Depth Another important notion of WMT depth is that
of expected convex hull (ECH*) depth (Cascos 2007). Its central region Dα (see
Fig. 2.3) has a support function with weights

wj,α = j1/α − (j − 1)1/α

n1/α
. (2.18)

Figure 2.3 depicts zonoid and ECH∗ regions for our data. We see that the zonoid
regions are somewhat angular while the ECH∗ regions appear to be smoother; this
corresponds, when calculating such regions in higher dimensions, to a considerably
higher computation load of ECH∗.

Geometrical Depth The weights

wj,α =
{

1−α
1−αn αn−j if 0 < α < 1,

0 if α = 1,

yield another class of WM regions. The respective depth is the geometrically
weighted mean depth (Dyckerhoff and Mosler 2011).

2.3.3 Depths Based on Halfspaces and Simplices

The third approach concerns no distances or volumes, but the combinatorics of half-
spaces and simplices only. In this it is independent of the metric structure of Rd .
While depths that are based on distances or weighted means may be addressed as
metric depths, the following ones will be mentioned as combinatorial depths. They
remain constant, as long as the compartment structure of the data does not change.
By this, they are very robust against location outliers. Outside the convex support
co(X) of the distribution every combinatorial depth attains its minimal value, which
is zero.
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Fig. 2.4 Governmental debt and unemployment rate; Tukey regions (left) with α = 2
27 ( 1

27 ),

. . . , 1
1 27, simplicial regions (right) with α = 0.25,0.3(0.1), . . . ,0.9

Location Depth Consider the population version of the location depth,

Dloc(z | X) = inf
{
P(H) : H is a closed halfspace, z ∈ H

}
. (2.19)

The depth is also known as halfspace or Tukey depth, its central regions as Tukey re-
gions. The location depth is affine invariant (D1, D2). Its central regions are convex
(D4con) and closed (D5); see Fig. 2.4. The maximum value of the location depth
is smaller or equal to 1 depending on the distribution. The set of all such points is
mentioned as the halfspace median set and each of its elements as a Tukey median
(Tukey 1975).

If X has an angular symmetric distribution, the location depth attains its max-
imum at the center and the center is a Tukey median; this strengthens Proposi-
tion 2.1. (A distribution is called angular (= halfspace) symmetric about z∗ if
P(X ∈ H) ≥ 1/2 for every closed halfspace H having z∗ on the boundary; equiva-
lently, if (X − z∗)/‖X − z∗‖ is centrally symmetric with the convention 0/0 = 0.)

If X has a Lebesgue-density, the location depth depends continuously on z; oth-
erwise the dependence on z is noncontinuous and there can be more than one point
where the maximum is attained. As a function of P the location depth is obviously
noncontinuous. It determines the distribution in a unique way if the distribution is
either discrete (Struyf and Rousseeuw 1999; Koshevoy 2002) or continuous with
compact support. The location depth of a sample from P converges almost surely to
the location depth of P (Donoho and Gasko 1992). The next depth notion involves
simplices in R

d .

Simplicial Depth Liu (1990) defines the simplicial depth as follows:

Dsim(
z | X) = P

(
z ∈ co

({X1, . . . ,Xd+1}
))

, (2.20)

where X1, . . . ,Xd+1 are i.i.d. by P . The sample version reads as

Dsim(
z | x1, . . . , xn

) = 1
(

n
d+1

) #
{{i1, . . . , id+1} : z ∈ co

({
xi1, . . . , xid+1

})}
. (2.21)
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The simplicial depth is affine invariant (D1, D2). Its maximum is less or equal to 1,
depending on the distribution. In general, the point of maximum simplicial depth
is not unique; the simplicial median is defined as the gravity center of these points.
The sample simplicial depth converges almost surely uniformly in z to its population
version (Liu 1990; Dümbgen 1992). The simplicial depth has positive breakdown
(Chen 1995).

If the distribution is Lebesgue-continuous, the simplicial depth behaves well: It
varies continuously on z (Liu 1990, Theorem 2), is maximum at a center of angular
symmetry, and decreases monotonously from a deepest point (D4). The simplicial
central regions of a Lebesgue-continuous distribution are connected and compact
(Liu 1990).

However, if the distribution is discrete, each of these properties can fail; for coun-
terexamples see, e.g., Zuo and Serfling (2000). The simplicial depth characterizes
an empirical measure if the supporting points are in general position, that is, if no
more than d of the points lie on the same hyperplane.

As Fig. 2.4 demonstrates, Tukey regions are convex while simplicial regions are
only starshaped. The figure illustrates also that these notions are rather insensitive
to outlying data: both do not reflect how far Greece and Spain are from the center.
Whether, in an application, this kind of robustness is an advantage or not, depends
on the problem and data at hand.

Other well known combinatorial data depths are the majority depth (Liu and
Singh 1993) and the convex-hull peeling depth (Barnett 1976; Donoho and Gasko
1992). However, the latter possesses no population version.

2.4 Functional Data Depth

The analysis of functional data has become a practically important branch of statis-
tics; see Ramsay and Silverman (2005). Consider a space E of functions [0,1] →R

with the supremum norm. Like a multivariate data depth, a functional data depth is
a real-valued functional that indicates how ‘deep’ a function z ∈ E is located in a
given finite cloud of functions ∈ E. Let E′ denote the set of continuous linear func-
tionals E → R, and E′d the d-fold Cartesian product of E′. Here, following Mosler
and Polyakova (2012), functional depths of a general form (2.22) are presented.
Some alternative approaches will be addressed below.

Φ-Depth For z ∈ E and an empirical distribution X on x1, . . . , xn ∈ E, define a
functional data depth by

D
(
z | X) = inf

ϕ∈Φ
Dd

(
ϕ(z) | ϕ(X)

)
, (2.22)

where Dd is a d-variate data depth satisfying D1 to D5, Φ ⊂ E′d , and ϕ(X) is the
empirical distribution on ϕ(x1), . . . , ϕ(xn). D is called a Φ-depth. A population
version is similarly defined.
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Each ϕ in this definition may be regarded as a particular ‘aspect’ we are interested
in and which is represented in d-dimensional space. The depth of z is given as the
smallest multivariate depth of z under all these aspects. It implies that all aspects
are equally relevant so that the depth of z cannot be larger than its depth under any
aspect.

As the d-variate depth Dd has maximum not greater than 1, the functional data
depth D is bounded above by 1. At every point z∗ of maximal D-depth it holds
D(z∗ | X) ≤ 1. The bound is attained with equality, D(z∗ | X) = 1, iff Dd(ϕ(z∗) |
ϕ(X)) = 1 holds for all ϕ ∈ Φ , that is, iff

z∗ ∈
⋂

ϕ∈Φ

ϕ−1(Dd
1

(
ϕ(X)

))
. (2.23)

A Φ-depth (2.22) always satisfies D1, D2sca, D4, and D5.
It satisfies D3 if for every sequence (zi) with ‖zi‖ → ∞ exists a ϕ in Φ such that

ϕ(zi) → ∞. (For some special notions of functional data depth this postulate has to
be properly adapted.)

D4con is met if D4con holds for the underlying d-variate depth.
We now proceed with specifying the set Φ of functionals and the multivariate

depth Dk in (2.22). While many features of the functional data depth (2.22) resemble
those of a multivariate depth, an important difference must be pointed out: In a
general Banach space the unit ball B is not compact, and properties D3 and D5 do
not imply that the level sets of a functional data depth are compact. So, to obtain
a meaningful notion of functional data depth of type (2.22) one has to carefully
choose a set of functions Φ which is not too large. On the other hand, Φ should not
be too small, in order to extract sufficient information from the data.

Graph Depths For x ∈ E denote x(t) = (x1(t), . . . , xd(t)) and consider

Φ = {
ϕt : E → R

d : ϕt (x) = (
x1(t), . . . , xd(t)

)
, t ∈ T

}
(2.24)

for some T ⊂ [0,1], which may be a subinterval or a finite set. For Dd use any
multivariate depth that satisfies D1 to D5. This results in the graph depth

GD
(
z | x1, . . . , xn

) = inf
t∈T

Dd
(
z(t) | x1(t), . . . , xn(t)

)
. (2.25)

In particular, with the univariate halfspace depth, d = 1 and T = J we obtain the
halfgraph depth (López-Pintado and Romo 2005). Also, with the univariate simpli-
cial depth the band depth (López-Pintado and Romo 2009) is obtained, but this, in
general, violates monotonicity D4.

Grid Depths We choose a finite number of points in J , t1, . . . , tk , and evaluate a
function z ∈ E at these points. Notate t = (t1, . . . , tk) and z(t) = (z1(t), . . . , zd(t))T.
That is, in place of the function z the k × d matrix z(k) is considered. A grid depth
RD is defined by (2.22) with the following Φ ,

Φ = {
ϕr : ϕr(z) = (〈

r, z1(t)
〉
, . . . ,

〈
r, zd(t)

〉)
, r ∈ Sk−1}, (2.26)
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which yields

RD
(
z | x1, . . . , xn

) = inf
r∈Sk−1

Dd
(〈
r, z(t)

〉 | 〈r, x1(t)
〉
, . . . ,

〈
r, xn(t)

〉)
. (2.27)

A slight extension of the Φ-depth is the principal components depth (Mosler and
Polyakova 2012). However, certain approaches from the literature are no Φ-depths.
These are mainly of two types. The first type employs random projections of the
data: Cuesta-Albertos and Nieto-Reyes (2008b) define the depth of a function as
the univariate depth of the function values taken at a randomly chosen argument t .
Cuevas et al. (2007) also employ a random projection method. The other type uses
average univariate depths. Fraiman and Muniz (2001) calculate the univariate depths
of the values of a function and integrate them over the whole interval; this results
in kind of ‘average’ depth. Claeskens et al. (2012) introduce a multivariate (d ≥ 1)
functional data depth, where they similarly compute a weighted average depth. The
weight at a point reflects the variability of the function values at this point (more
precisely: is proportional to the volume of a central region at the point).

2.5 Computation of Depths and Central Regions

The moment Mahalanobis depth and its elliptical central regions are obtained in any
dimension by calculating the mean and the sample covariance matrix, while robust
Mahalanobis depths and regions are determined with the R-procedures “cov.mcd”
and “cov.mve”. In dimension d = 2, the central regions of many depth notions can
be exactly calculated by following a circular sequence (Edelsbrunner 1987). The
R-package “depth” computes the exact location (d = 2,3) and simplicial (d = 2)
depths, as well as the Oja depth and an approximative location depth for any di-
mension. An exact algorithm for the location depth in any dimension is developed
in Liu and Zuo (2012). Cuesta-Albertos and Nieto-Reyes (2008a) propose to cal-
culate instead the random Tukey depth, which is the minimum univariate location
depth of univariate projections in a number of randomly chosen directions. With
the algorithm of Paindaveine and Šiman (2012), Tukey regions are obtained, d ≥ 2.
The bivariate projection depth is computed by the R-package “ExPD2D”; for the
respective regions, see Liu et al. (2011). The zonoid depth can be efficiently deter-
mined in any dimension (Dyckerhoff et al. 1996). An R-package (“WMTregions”)
exists for the exact calculation of zonoid and general WM regions; see Mosler et al.
(2009), Bazovkin and Mosler (2012). The R-package “rainbow” calculates several
functional data depths.

2.6 Conclusions

Depth statistics have been used in numerous and diverse tasks of which we can
mention a few only. Liu et al. (1999) provide an introduction to some of them. In
descriptive multivariate analysis, depth functions and central regions visualize the
data regarding location, scale and shape. By bagplots and sunburst plots, outliers
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can be identified and treated in an interactive way. In k-class supervised classifi-
cation, each—possibly high-dimensional—data point is represented in [0,1]k by
its values of depth in the k given classes, and classification is done in [0,1]k .
Functions of depth statistics include depth-weighted statistical functionals, such
as

∫
Rd xw(D(x | P))dP/

∫
Rd w(D(x | P))dP for location. In inference, tests for

goodness of fit and homogeneity regarding location, scale and symmetry are based
on depth statistics; see, e.g., Dyckerhoff (2002), Ley and Paindaveine (2011). Ap-
plications include such diverse fields as statistical control (Liu and Singh 1993),
measurement of risk (Cascos and Molchanov 2007), and robust linear programming
(Bazovkin and Mosler 2011). Functional data depth is applied to similar tasks in
description, classification and testing; see, e.g., López-Pintado and Romo (2009),
Cuevas et al. (2007).

This survey has covered the fundamentals of depth statistics for d-variate and
functional data. Several special depth functions in R

d have been presented, metric
and combinatorial ones, with a focus on the recent class of WM depths. For func-
tional data, depths of infimum type have been discussed. Of course, such a survey
is necessarily incomplete and biased by the preferences of the author. Of the many
applications of depth in the literature only a few have been touched, and important
theoretical extensions like regression depth (Rousseeuw and Hubert 1999), depth
calculus (Mizera 2002), location-scale depth (Mizera and Müller 2004), and likeli-
hood depth (Müller 2005) have been completely omitted.

Most important for the selection of a depth statistic in applications are the ques-
tions of computability and—depending on the data situation—robustness. Maha-
lanobis depth is solely based on estimates of the mean vector and the covariance
matrix. In its classical form with moment estimates Mahalanobis depth is efficiently
calculated but highly non-robust, while with estimates like the minimum volume el-
lipsoid it becomes more robust. However, since it is constant on ellipsoids around the
center, Mahalanobis depth cannot reflect possible asymmetries of the data. Zonoid
depth can be efficiently calculated, also in larger dimensions, but has the drawback
that the deepest point is always the mean, which makes the depth non-robust. So, if
robustness is an issue, the zonoid depth has to be combined with a proper prepro-
cessing of the data to identify possible outliers. The location depth is, by construc-
tion, very robust but expensive when exactly computed in dimensions more than
two. As an efficient approach the random Tukey depth yields an upper bound on the
location depth, where the number of directions has to be somehow chosen.

A depth statistics measures the centrality of a point in the data. Besides ordering
the data it provides numerical values that, with some depth notions, have an obvi-
ous meaning; so with the location depth and all WM depths. With other depths, in
particular those based on distances, the outlyingness function has a direct interpre-
tation.
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