
Chapter 1
Introduction

It is hard to overestimate the role of the Jacobian in the theory of smooth complex
projective curves. The celebrated theorem of Torelli says that a curve of genus � 2

is determined, up to isomorphism, by its Jacobian and its theta-divisor. Virtually all
projective geometric features of a curve can be extracted from its Jacobian. But the
Jacobian of a curve has its intrinsic importance and beauty. It is enough to recall
that it is a principally polarized abelian variety with an incredibly rich and beautiful
theory of theta-functions.

When one turns to higher dimensional projective varieties one quickly discovers
that a comparable theory does not exist. However, in the end of 1960s Griffiths
initiated a far reaching theory of Variation of Hodge structure (abbreviated in the
sequel by VHS). Some of its goals include generalizations of the Theorem of Torelli
and a study of algebraic cycles. From Griffiths’ theory emerges a substitute for the
Jacobian—Griffiths’ period domain. This is an open subset of a certain flag variety
(factored out by the action of a certain discrete group). In particular, the theory of
VHS continues to have strong ties with the theory of Lie groups. Furthermore, a
VHS comes with the period map and Griffiths suggested to view its derivative as
a substitute for the principal polarization of the classical Jacobian (see [G] for an
overview and references therein).

In [R1] we proposed a new version of Jacobian for a smooth complex projective
surface X . We suggested to call it nonabelian Jacobian for the simple reason that it
parametrizes a distinguished family of rank 2 bundles on X . More precisely, similar
to its classical counterpart, our nonabelian Jacobian is, on the one hand, related to
the moduli stack of torsion free sheaves1 on X , and, on the other hand, to the Hilbert
scheme of points on X . It also carries a distinguished divisor which can be viewed
as a nonabelian analogue of the classical theta-divisor. But a new feature of our
Jacobian is that it is also related to the Griffiths’ ideas of the VHS and period maps.

1Sheaves are of rank 2, contrary to the classical situation of line bundles.
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2 1 Introduction

One of the consequences of this is an appearance of a sheaf of reductive Lie algebras
canonically attached to our Jacobian. This can be viewed as an analogue of the Lie
algebraic structure of the classical Jacobian. What bearing does this Lie algebraic
structure of the nonabelian Jacobian have on geometry of the underlying surface?
This is the main question explored in this work.

Our study of the sheaf of Lie algebras and its ties to geometry of the underlying
surface is naturally divided into two parts:

1. Establish a dictionary between the properties of the sheaf of reductive Lie
algebras attached to our Jacobian and geometric properties of X .

2. Use the representation theory to define interesting objects (e.g. sheaves, com-
plexes of sheaves) which can serve as new invariants of vector bundles on X as
well as invariants of the surface itself.

For the first part we are able to uncover:

(a) A precise relationship between the center of the reductive Lie algebras in
question and canonical decompositions of configurations of points on X into
disjoint union of subconfigurations.

(b) How to use particular sl2-subalgebras of our reductive Lie algebras to gain an
insight into the geometry of configurations of points on X .

For the second part we show how to use the sheaf of reductive Lie algebras
associated to our nonabelian Jacobian to attach to X :

(a) A distinguished collection of objects in the category of representations of
symmetric groups.

(b) A distinguished collection of objects in the category of perverse sheaves on the
appropriate Hilbert schemes of points on X .

(c) A distinguished collection of irreducible representations of the Langlands dual
group LSLn.C/ D PGLn.C/, for appropriate values of n.

These results come from the fact that our Jacobian connects in a natural way to such
fundamental objects in geometric representation theory as the Springer resolution of
the nilpotent cone of simple Lie algebras (of type An), Springer fibres, loop algebras
and Infinite Grassmannians.

All of the above constitutes a substantial body of evidence that the sheaf of
reductive Lie algebras naturally attached to our nonabelian Jacobian is indeed
useful for revealing various aspects of geometry of surfaces as well as constructing
invariants of the representation theoretic origin.

The ties of Hilbert schemes of points of algebraic surfaces with the representation
theory of (affine) Lie algebras have emerged in the last 15 years through the
influential works of Grojnowski and Nakajima [N]. The representation theoretic
patterns in their works emerge by putting the cohomology rings of all Hilbert
schemes together and by an explicit checking of the bracket relations of some
natural incidence cycles. Until now one has no conceptual understanding why the
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relations hold and hence, why do we obtain representation theoretic patterns on
Hilbert schemes of points of algebraic surfaces.

In our constructions the reductive Lie algebras and their representation theory
emerge naturally as an integral part of the nonabelian Jacobian. As we mentioned
above, the Jacobian is related to the Hilbert scheme of points (more details are
given below) and it could be speculated that the representation theoretic patterns
we observe on the Hilbert schemes are shadows of the representation theory on the
Jacobian. This is something for future to tell. However, what should be clear, and
this is the main message we try to pass across this work, is that the Lie algebraic
structure of our Jacobian allows one to use the representation theory of reductive
Lie algebras/reductive algebraic groups in a systematic way to gain insight into
geometry of smooth projective surfaces. Heuristically speaking, our nonabelian
Jacobian is a mechanism which reveals hidden symmetries of points of an algebraic
surface and those hidden symmetries are useful for gaining insight into various
algebro-geometric properties of smooth projective surfaces.

In the rest of this introduction, following a brief summary of [R1], we give a
more detailed account of the results of this monograph.

1.1 Nonabelian Jacobian J.X I L; d/ (a Summary of [R1])

A new version of the Jacobian for smooth projective surfaces was proposed in [R1].
Our construction is based on viewing the Jacobian of a smooth projective curve as
the parameter space for line bundles with a fixed Chern class. We suggested that
for a smooth projective variety X of dimension n � 2, the Jacobian could be the
parameter space of a distinguished family of vector bundles of rank n D dimCX

with fixed Chern invariants. Using this analogy for a smooth projective surface X ,
we have constructed the scheme J.X I L; d/, whose closed points are pairs .E ; Œe�/,
where E is a torsion free sheaf of rank 2 on X with Chern invariants c1.E/ D L and
c2.E/ D d , where L is a suitably fixed divisor on X and d is a fixed positive integer,
and where Œe� is the homothety class of a global section e of E , whose zero-locus
Ze D .e D 0/ is a subscheme of codimension 2 (equivalently, dimension 0) of X .
We suggested to call J.X I L; d/ a nonabelian Jacobian of X (of type .L; d/).

By definition J.X I L; d/ is a scheme over the Hilbert scheme XŒd�, the scheme
parametrizing the subschemes Z of X having dimension zero and length d . The
natural morphism

� W J.X I L; d/ �! XŒd� (1.1)

sends a pair .E ; Œe�/ to the point ŒZe� 2 XŒd� corresponding to the subscheme Ze D
.e D 0/ of X .
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As in the classical case, J.X I L; d/, over a suitable subscheme of XŒd�, comes
with a distinguished Cartier divisor ‚.X I L; d/, whose closed points parametrize
pairs .E ; Œe�/, where the sheaf E is not locally free. But there is also a new
phenomenon: J.X I L; d/ carries a natural structure resembling a VHS à la Griffiths.
More precisely, for every point .E ; Œe�/ 2 J.X I L; d/, one has a distinguished
filtration on H 0.OZe /

0 D QH0.E ; Œe�/ � QH�1.E ; Œe�/ � : : : � QH�lZe �1.E ; Œe�/ D H 0.OZe / ; (1.2)

where the integer lZe is intrinsically associated to Ze .
Furthermore, if .E ; Œe�/ is in a certain constructible subset MJ of J.X I L; d/, the

filtration (1.2) splits. By this we mean that H 0.OZe / admits a distinguished direct
sum decomposition

H 0.OZe / D
lZeM

pD0

Hp.E ; Œe�/ (1.3)

with a natural identification

Hp.E ; Œe�/ Š QH�.pC1/.E ; Œe�/= QH�p.E ; Œe�/ ;

for p D 0; : : : ; lZe . This direct sum decomposition could be thought of as some
kind of periods for the points in MJ. Thus our nonabelian Jacobian possesses features
of the classical Jacobian as well as a period map in the spirit of Griffiths theory of
VHS.

The decomposition (1.3) together with the obvious ring structure on H 0.OZe /

gives rise to a reductive Lie subalgebra QG.E ; Œe�/ of gl.H 0.OZe //. By varying
.E ; Œe�/ in MJ we obtain the sheaf QG.X I L; d/ of reductive Lie algebras naturally
associated to J.X I L; d/. This could be viewed as a generalization of the Lie
algebraic nature of the classical Jacobian.

One of the features of the sheaf QG.X I L; d/ is that it gives rise to a natural family
of Higgs structures in the sense of Simpson [S]. The parameter space H of this
family turns out to be a toric (singular) Fano variety whose hyperplane sections are,
in general, singular Calabi-Yau varieties. This H could be viewed as a nonabelian
.1; 0/-Dolbeault variety2 of J.X I L; d/.

It should be pointed out that H depends only on the properties of the sheaf
QG.X I L; d/ of reductive Lie algebras and the decomposition (1.3). All this can be

encapsulated in the following trivalent graph

2In [R1], �4, this variety was called “nonabelian Albanese”. This terminology is not quite
appropriate, since classically, the Albanese variety involves taking the dual of the space H 1;0 of
holomorphic 1-forms. The variety H parametrizing Higgs structures is certainly more like a direct
analogue of the space of holomorphic 1-forms itself. Hence the change of terminology.
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(1.4)

where the vertical levels represent the first lZe summands of the decomposition (1.3)
and the slanted arrows represent certain degree ˙1 operators which are among the
generators of QG.X I L; d/.

The features of J.X I L; d/ enumerated above show that our Jacobian relates in a
natural way to

– Lie algebras and their representations (the sheaf of reductive Lie algebras
QG.X I L; d/).

– Toric geometry and Calabi-Yau varieties (the nonabelian .1; 0/-Dolbeault variety
H ).

– Low dimensional topology (trivalent graph (1.4)).

Being such a multifaceted object it seems to us that J.X I L; d/ is worthy of a serious
study.

In this monograph we undertake a study of the Lie algebraic aspect of our
Jacobian with a view toward gaining insights into various algebro-geometric
aspects of underlying surface. In the following subsections of the introduction we
summarize the key results of this work.

1.2 The Center of the Lie Algebra QG.E; Œe�/

and Geometry of Ze

We determine the reductive algebras QG.E ; Œe�/ attached to points of the Jacobian MJ.
It turns out that the center of these algebras completely determines the Lie algebra
QG.E ; Œe�/ and is related to the geometry of the zero-locus Ze D .e D 0/ associated

to .E ; Œe�/ 2 MJ. More precisely, we show
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Theorem 1.1. The zero locus Ze D .e D 0/ decomposes into the disjoint union

Ze D
�[

iD1

Z.i/
e ; (1.5)

where � is the dimension of the center of the Lie algebra QG.E ; Œe�/ attached to
.E ; Œe�/ 2 MJ. Furthermore, the Lie algebra QG.E ; Œe�/ and hence, its center act on
the subspace QH�l� .E ; Œe�/ of the filtration of H 0.OZe / in (1.2). This action of the
center determines the weight decomposition

QH�l� .E ; Œe�/ D
�M

iD1

Vi .E ; Œe�/

which possesses the following properties:

1) H 0.O
Z

.i/
e

/ Š Vi .E ; Œe�/ � H 0.OZe /,
2) one has a natural isomorphism

QG.E ; Œe�/ Š
�M

iD1

gl.Vi .E ; Œe�// : (1.6)

This result establishes a precise dictionary between the decomposition of the
Lie algebra QG.E ; Œe�/ into the direct sum of matrix algebras and the geometric
decomposition of Z into the disjoint union of subschemes in (1.5).

It turns out that the Lie algebra QG.E ; Œe�/ also controls the properties of the
derivative of the period map associated to MJ.

Theorem 1.2. The derivative of the period map attached to MJ is injective precisely
at the points .E ; Œe�/ for which QG.E ; Œe�/ Š gld0.C/, where d 0 D dim. QH�l� .E ; Œe�//

and where QH�l� .E ; Œe�/ is as in the filtration in (1.2).

This is a version of the Infinitesimal Torelli Theorem for J.X I L; d/. Thus in
our story the Infinitesimal Torelli property, i.e. the injectivity of the differential
of the period map, has a precise geometric meaning: it fails exactly when the
decomposition (1.5) is non-trivial.

These results constitute a semisimple aspect of the representation theory of
QG.E ; Œe�/ in a sense that it takes into account the action on the space H 0.OZe / of

the center of QG.E ; Œe�/, which is composed of semisimple elements. There is also a
nilpotent aspect which is much more involved.
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1.3 Nilpotent Aspect of G.E; Œe�/

Let G.E ; Œe�/ be the semisimple part of QG.E ; Œe�/. From the construction of the
Lie algebra G.E ; Œe�/ it follows that we can attach a nilpotent element DC.v/ of
G.E ; Œe�/ to every vertical3 tangent vector v of MJ at a point .E ; Œe�/ 2 MJ. On the
diagrammatic representation (1.4) the elements DC.v/ are depicted by the right-
handed arrows. As v runs through the space T�.E ; Œe�/ of the vertical tangent vectors
of MJ at .E ; Œe�/ we obtain the linear map

DC
.E ;Œe�/ W T�.E ; Œe�/ �! N .G.E ; Œe�// (1.7)

into the nilpotent cone N .G.E ; Œe�// of G.E ; Œe�/.
From the well-known fact that N .G.E ; Œe�// is partitioned into a finite set of

nilpotent orbits we deduce that the map DC
.E ;Œe�/ assigns to .E ; Œe�/ a finite collection

of nilpotent orbits of N .G.E ; Œe�//. These are the orbits intersecting the image of
DC

.E ;Œe�/. Varying .E ; Œe�/ in the suitable subvarieties of MJ we deduce the following.

Theorem 1.3. The Jacobian J.X I L; d/ gives rise to a finite collection V of quasi-
projective subvarieties of XŒd� such that every � 2 V determines a finite collection
O.�/ of nilpotent orbits in sld0

�
.C/, where d 0

� � d is an integer intrinsically
associated to � .

Recalling that nilpotent orbits in sln.C/ are parametrized by the set of partitions
Pn of n, the above result can be rephrased by saying that every � in V distinguishes
a finite collection P.�/ of partitions of d 0

� . Since partitions of n also parametrize
isomorphism classes of irreducible representations of the symmetric group Sn we
obtain the following equivalent version of Theorem 1.3.

Theorem 1.4. The Jacobian J.X I L; d/ gives rise to a finite collection V of quasi-
projective subvarieties of XŒd� such that every � 2 V determines a finite collection
Rd 0

�
.�/ of irreducible representations of the symmetric group Sd 0

�
, where d 0

� � d is
an integer intrinsically associated to � .

One way to express this result is by saying that the Jacobian J.X I L; d/ elevates
a single topological invariant d , the degree of the second Chern class of sheaves
parametrized by certain subvarieties of J.X I L; d/, to the level of modules of
symmetric groups. Thus our Jacobian gives rise to new invariants with values in
the categories of modules of symmetric groups.

But there is more to it. The partitions distinguished by J.X I L; d/ contain a great
deal of geometry of subschemes parametrized by �’s in Theorem 1.3. In down
to earth terms one can say that the partitions picked out by points .E ; Œe�/ of MJ
yield equations defining the image of Ze under certain morphisms into appropriate
projective spaces.

3Throughout the monograph “vertical” means in the direction of the fibres of the projection �

in (1.1).
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The process of obtaining these equations is somewhat evocative of the classical
method of Petri (see [Mu] for an overview). However, the essential ingredient in
our approach is representation theoretic. It turns on the use of sl2-subalgebras of
G.E ; Œe�/ associated to the nilpotent elements DC

.E ;Œe�/.v/, the values of the map

DC
.E ;Œe�/ in (1.7). The operator DC

.E ;Œe�/.v/ in our considerations plays the role of the
operator L in the Lefschetz decomposition in the Hodge theory. Completing it to an
sl2-subalgebra of G.E ; Œe�/ in an appropriate way and considering its representation
on H 0.OZe /, gives a sort of Lefschetz decomposition of H 0.OZe /. This combined
with the orthogonal decomposition in (1.3) yields a bigrading of H 0.OZe / thus
revealing a much finer structure than the initial grading (1.3).

Once this bigrading is in place, writing down the equations defining Ze in a
certain projective space is rather straightforward. This is discussed in details in �10.
The equations themselves can be complicated and, in general, not very illuminating.
What is essential in our approach is that this complicated set of equations is
encoded in an appropriate sl2-decomposition of H 0.OZe /. This in turn can be neatly
“packaged” in the properties of the partitions singled out by the points .E ; Œe�/ of MJ
“polarized” by operators DC

.E ;Œe�/.v/, with v varying in T�.E ; Œe�/ as in (1.7).
To summarize, one can say that the nilpotent aspect of the representation theory

of G.X I L; d/ provides new geometric insights as well as new invariants of the
representation theoretic nature.

This turns out to be only a part of the story. In fact, we can go further by relating
J.X I L; d/ to the category of perverse sheaves on XŒd�.

Theorem 1.5. The Jacobian J.X I L; d/ determines a finite collection P.X I L; d/

of perverse sheaves on XŒd�. These perverse sheaves are parametrized by pairs
.�; �/, where � is a subvariety in V as in Theorem 1.3 and � is a partition in P.�/.

This result subsumes two previous theorems since the perverse sheaves C.�; �/

in P.X I L; d/ have the following properties:

(a) C.�; �/ is the Intersection Cohomology complex IC.�; L�/ associated to the
local system L� on � .

(b) The local system L� corresponds to a representation

��;� W �1.�; ŒZ�/ �! Aut.H �.B�; C// (1.8)

of the fundamental group �1.�; ŒZ�/ of � based at a point ŒZ� 2 � and where
H �.B�; C/ is the cohomology ring (with coefficients in C) of a Springer fibre4

B� over the nilpotent orbit O� of sld 0

�
.C/ corresponding to the partition �.

4 A Springer fibre B� is a fibre of the Springer resolution

	 W QN �! N .sld 0

�
.C//

of the nilpotent cone N .sld 0

�
.C// of sld 0

�
.C/ and where a fibre B� is taken over the nilpotent orbit

O� in N .sld 0

�
.C// corresponding to a partition � of d 0

� .
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(c) The representation ��;� admits the following factorization

��;� W �1.�; ŒZ�/
�0

�! Sd 0

�

sp��! Aut.H �.B�; C// ; (1.9)

where Sd 0

�

sp��! Aut.H �.B�; C// is the Springer representation of the Weyl
group W D Sd 0

�
of sld 0

�
.C/ on the cohomology of a Springer fibre B�.

Taking the irreducible constituents of the perverse sheaves in P.X I L; d/, gives
rise to a distinguished collection, denoted C .X I L; d/, of irreducible perverse
sheaves on XŒd�. This in turn defines the abelian category A.X I L; d/ whose objects
are isomorphic to finite direct sums of complexes of the form CŒn�, where
C 2 C .X I L; d/ and n 2 Z.

This construction parallels the construction of local systems on the classical
Jacobian. Recall that if J.C / is the Jacobian of a smooth projective curve C , then
isomorphism classes of irreducible local systems on J.C / are parametrized by the
group of characters Hom.�1.J.C //; C�/. So we suggest to view the collection of
irreducible perverse sheaves C .X I L; d/ as a nonabelian analogue of the group of
characters of the classical Jacobian, while the abelian category A.X I L; d/ could be
envisaged as an analogue of the group-ring of Hom.�1.J.C //; C�/.

Though objects of A.X I L; d/ are complexes of sheaves on the Hilbert scheme
XŒd�, they really descend from J.X I L; d/ and one of the ways to remember this is
the following

Theorem 1.6. Let
ı
J .X I L; d/ D J.X I L; d/ n ‚.X I L; d/ be the complement of

the theta-divisor ‚.X I L; d/ in J.X I L; d/ and let T �
ı

J.X IL;d/=XŒd�
be the sheaf of

relative differentials of
ı
J .X I L; d/ over XŒd�. Then there is a natural map

exp

�Z �
W H 0.T �

ı

J.X IL;d/=XŒd�
/ �! A.X I L; d/ :

The map in the above theorem could be viewed as a reincarnation of the classical
map

H 0.T �
J.C // �! Hom.�1.J.C //; C�/ ;

where T �
J.C / is the cotangent bundle of J.C /. This map sends a holomorphic 1-form

! on J.C / to the exponential of the linear functional

Z
.!/ W �1.J.C // D H1.J.C /;Z/ �! C

given by integrating ! over 1-cycles on J.C / (the notation “exp.
R

/” in
Theorem 1.6 is an allusion to this classical map).
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Relations of the Hilbert schemes of points of surfaces to partitions is not new.
Notably, Haiman’s work on the Macdonald positivity conjecture [Hai], makes an
essential use of such a relation. The same goes for an appearance of perverse sheaves
on XŒd�: the work of Göttsche and Soergel [Go-So], uses the decomposition theorem
of [BBD] for the direct image of the Intersection cohomology complex IC.XŒd�/

under the Hilbert-Chow morphism to compute the cohomology of Hilbert schemes.
In both of these works the partitions appear from the outset because the authors
exploit the points of the Hilbert scheme corresponding to the zero-dimensional
subschemes Z of X , where the points in Z are allowed to collide according to
the pattern determined by partitions. In our constructions it is essential to work
over the open part Conf d .X/ of XŒd�, parametrizing configurations of d distinct
points of X . So there are no partitions seen on the level of the Hilbert scheme.
The partitions become visible only on the Jacobian J.X I L; d/ via the Lie algebraic
invariants attached to it. One can say that our constructions turn a configuration
of distinct points with no interesting structure on it into a dynamical object. The
dynamics is given by certain linear operators acting on the space of complex valued
functions on a configuration. In particular, the operators DC.v/ obtained as values
of the morphism DC in (1.7) give rise to the “propagations” and “collisions” in the
direct sum decomposition (1.3). This is not an actual, physical, collision of points
in a configuration but rather algebro-geometric constraints for a configuration to
lie on hypersurfaces in the appropriate projective spaces. The partitions attached to
the nilpotent operators DC.v/ can be viewed as a combinatorial (or representation
theoretic) measure of this phenomenon, while the perverse sheaves in Theorem 1.5
could be envisaged as its categorical manifestation.

1.4 From J.X I L; d/ to Affine Lie Algebras

One of the major developments of the last 15 years about the Hilbert schemes of
points of complex projective surfaces is the discovery of Grojnowski and Nakajima
of the action of affine Lie algebras on the direct sum of the cohomology rings
(with rational coefficients) of the Hilbert schemes XŒn�.n 2 ZC/ (see [N] and
the references therein for more details). However, as Nakajima points out in the
Introduction of [N], until now one has no good explanation of this phenomenon. In
this subsection we explain how our Jacobian can be used to address this problem.

It is clear that formally we can replace the Lie algebra G.E ; Œe�/ attached to a
point .E ; Œe�/ 2 J.X I L; d/ by its loop Lie algebra G.E ; Œe�/Œz�1; z�, where z is a
formal variable. However, there is a more natural and explicit reason for appearance
of loop Lie algebras in our story. To explain this we recall that the Lie algebra
QG.E ; Œe�/ is obtained as follows.

For every h in the summand H0.E ; Œe�/ of the decomposition (1.3), we consider
the operator D.h/ of multiplication by h in the ring H 0.OZe /. Decomposing this
operator according to the direct sum in (1.3) yields a triangular decomposition

D.h/ D D�.h/ C D0.h/ C DC.h/ ; (1.10)
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where D˙.h/ are linear operators of degree ˙1 with respect to the grading in (1.3)
and D0.h/ is a grading preserving operator. In particular, the operators DC.h/, for
h 2 H0.E ; Œe�/, are essentially the same as the values of the morphism in (1.7),
due to the canonical identification of the relative tangent space T�.E ; Œe�/ with a
codimension one subspace of H0.E ; Œe�/.

It is quite natural and immediate to turn (1.10) into a loop

D.h; z/ D z�1D�.h/ C D0.h/ C zDC.h/ ; (1.11)

where z is a formal parameter. Morally, this natural one-parameter deformation of
the multiplication in H 0.OZe / is behind the following loop version of the map (1.7):

LDC
.E ;Œe�/ W ı

T � .E ; Œe�/ �! Gr.G.E ; Œe�// ; (1.12)

where Gr.G.E ; Œe�// is the loop or Infinite Grassmannian of the semisimple Lie

algebraG.E ; Œe�/ and
ı
T � .E ; Œe�/ is an appropriate Zariski open subset of the vertical

tangent space T�.E ; Œe�/ of J.X I L; d/ at .E ; Œe�/ . This gives the following “loop”
version of Theorem 1.3

Theorem 1.7. The Jacobian J.X I L; d/ gives rise to a finite collection V (the same
as in Theorem 1.3) of subvarieties � of XŒd�. Every such � determines a finite
collection LO.�/ of orbits of the Infinite Grassmannian Gr.SLd 0

�
.C// of SLd 0

�
.C/,

where d 0
� is the same as in Theorem 1.3.

Taking the Intersection Cohomology complexes IC.O/ of the orbits O in
LO.�/, for every � in V , we pass to the category of perverse sheaves on
Gr.SLd 0

�
.C//. A beautiful and profound result of Ginzburg [Gi], and Mirkovič and

Vilonen [M-V], which establishes an equivalence between the category of perverse
sheaves (subject to a certain equivariance condition) on the Infinite Grassmannian
Gr.G/ of a semisimple Lie group G and the category of finite dimensional
representations of the Langlands dual group LG of G, gives a Langlands dual version
of Theorem 1.3.

Theorem 1.8. For every subvariety � in V in Theorem 1.7 the Jacobian J.X I L; d/

determines a finite collection LR.�/ of irreducible representations of the Langlands
dual group LSLd 0

�
.C/ D PGLd 0

�
.C/.

In retrospect a connection of our Jacobian with the Langlands duality could have
been foreseen. After all, the nature of J.X I L; d/ as the moduli space of pairs .E ; Œe�/

resembles the moduli space of pairs of Drinfeld in [Dr]. The fundamental difference
is that the groups SLd 0

�
.C/ and their Langlands duals in our story have nothing to

do with the structure group (GL2.C/) of bundles parametrized by J.X I L; d/. These
groups rather reflect the geometric underpinnings of our construction related to the
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Hilbert scheme XŒd�. Noting this difference, we also point out one of the key features
of J.X I L; d/:

it transforms the vertical vector fields of J.XI L; d/ (i.e. sections of the relative tangent
sheaf T� D TJ.XIL;d/=XŒd� ) to perverse sheaves on XŒd�.

This feature is essentially the map in Theorem 1.6 and it can be viewed as
a “tangent” version of Grothendieck’s “functions-faisceaux dictionnaire”, which
plays an important role in a reformulation of the classical, number theoretic,
Langlands correspondence into the geometric one (see [Fr], for an excellent
introduction to the subject of the geometric Langlands program).

1.5 Concluding Remarks and Speculations

The results of this work show that the Lie algebraic aspects of our Jacobian
are useful in addressing various issues related to algebro-geometric properties of
configurations of points on surfaces. It also enables us to attach to the degree of
the second Chern class of vector bundles such objects as irreducible representations
of symmetric groups and perverse sheaves of the representation theoretic origin. In
fact, we believe that the tools developed in the monograph allow one to transfer
virtually any object/invariant of the geometric representation theory to the realm of
smooth projective surfaces. For example, one should be able to have a version of
Theorem 1.4, where the representations of the symmetric groups are replaced by
the representations of the corresponding Hecke algebras as well as Affine Hecke
algebras.

To our mind all these invariants fit into a sort of “secondary” type invariants
for vector bundles in the sense of Bott and Chern in [B-C]. Indeed, our construction
begins by replacing the second Chern class of a bundle E (of rank 2) by its geometric
realization, i.e. the zero-locus Z of a suitable global section e of E . This is followed
by a distinguished orthogonal decomposition (1.3) of the space of functions
H 0.OZ/ on Z. The decomposition gives rise to the Lie subalgebra QG.E ; Œe�/ of
gl.H 0.OZ// which is intrinsically associated to the pair .E ; Œe�/. This Lie subalgebra
could be viewed as the “secondary” structure Lie algebra associated to E . While the
structure group (GL2.C/) with its Lie algebra provide the topological invariants
of E , i.e. its Chern classes, the secondary structure Lie algebra detects various
algebro-geometric properties of the subscheme Z. For example, Theorem 1.1 can
be interpreted as a statement of reduction of the secondary structure Lie algebra to a
proper Lie subalgebra of gl.H 0.OZ// [see (1.6)]. A geometric significance of such
a reduction is the decomposition of Z in (1.5). Furthermore, if the structure group
and its Lie algebra yield the Chern invariants of E by evaluating the basic structure
group-invariant polynomials on a curvature form of E , it is plausible to expect
that our secondary Lie algebra should provide many more representation theoretic
invariants of .E ; Œe�/, which would reflect properties of geometric representatives of
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the Chern invariants of E . Other theorems stated in the introduction could be viewed
as a confirmation of this heuristic reasoning.

Theorems 1.4 and 1.5 could also be viewed as two kinds of categorifications
of the second Chern class of rank 2 vector bundles on projective surfaces. The
latter result and the tools developed to obtain it suggest that there might be a
categorification of the representation of affine Lie algebras on the direct sum of
the cohomology rings of the Hilbert schemes discovered by I. Grojnowski and H.
Nakajima (see the discussion in �1.4)

The results of �1.4 indicate a relation of our Jacobian to the Langlands duality. On
the other hand it is conceptually sound to suggest that a formulation of the geometric
Langlands program for higher dimensional varieties could involve correspondences
in the middle dimension.5 Now the very idea of the Jacobian as a tool to study
correspondences goes back to A.Weil (see [W]). In fact, one of our main motivations
for introducing and studying J.X I L; d/ was to study correspondences in the case
of projective surfaces. Thus what emerges from our considerations is the following
triangular relation

J.X I L; d/

Correspondences
of X

Langlands Duality

(1.13)

A precise discussion of these interrelations will appear elsewhere but we hope
that the results and tools developed in this work will convince the reader that the
nonabelian Jacobian J.X I L; d/ exhibits strong ties with the base of the above
triangle.

1.6 Organization of the Monograph

There is a number of different topics discussed in this work and we would like to
summarize here how they fit together in our exposition.

To begin with the work draws heavily on the results of [R1]. For this reason �2
is entirely devoted to a concise summary of the main properties of our nonabelian
Jacobian obtained in that paper. This is also a place to introduce the main notation
and conventions used throughout the monograph.

With these preliminaries out of the way, the development of our theory truly
begins with �3. The essential results here are Lemma 3.1 and its geometric realiza-
tion in Corollary 3.3. These results are of technical nature and are in preparation for
the determination of the Lie algebras attached to points of J.X I L; d/.

5 What we have in mind here is that correspondences in the middle dimension could be taken as a
geometric substitute for the Galois side of the Langlands correspondence.
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In �4 these Lie algebras are explicitly determined. This is done in two stages:

– In �4.1 we consider the center of the Lie algebras in question; the geometric
consequences of this study are given in Corollary 4.13.

– In �4.2 we determine the semisimple part of the Lie algebras attached to points
of J.X I L; d/: the main technical result here is Proposition 4.14.

A combination of these two stages constitutes the results of Theorem 1.1 of the
Introduction.

In �5 we switch to a more geometric point of view on our constructions by defin-
ing the period maps for our Jacobian. We show that the period maps satisfy Griffiths
transversality condition (Proposition 5.4) and compute their differentials in terms of
the operators D˙.h/ of the triangular decomposition in (1.10). This gives a purely
algebraic formulas to compute the derivatives of our period maps (Lemma 5.7,
Proposition 5.9) and links the geometry of the periods maps with the Lie algebraic
considerations of the previous sections.

In �5.3 we define Torelli property for our period maps and show that it is
entirely controlled by the center of the Lie algebras attached to points of J.X I L; d/

(Corollary 5.15, Theorem 5.16).
Next three sections are devoted to sl2-subalgebras associated to the operators

D˙.h/ of the triangular decomposition in (1.10).
In �6.1 we consider sl2-subalgebras associated to the operators DC.h/. This

gives rise to bigraded structures on H 0.OZe / in (1.3). The main properties of these
bigradings and the action of DC.h/ are given in Proposition 6.2. In �6.2 we give a
sheaf version of the above structures.

In �7 we consider the adjoint action of the sl2-subalgebras in �6 on the sheaf of
Lie algebras attached to J.X I L; d/. This results in a bigraded structure of the Lie
algebras attached to points of J.X I L; d/. The properties of this bigrading can be
found in Lemma 7.2 and in Proposition-Definition 7.7.

In �8 we change from operator DC.h/ to D�.h/ and consider sl2-subalgebras
associated to D�.h/. The formalism is of course the same and the main issue here
is the interaction of the two structures. In Proposition 8.5 and Corollary 8.6 it is
shown how the two sl2-structures are related. The result is reminiscent of the Hodge-
Riemann bilinear relations in Hodge theory.

In �9 we return to geometric considerations. In particular, we show how to use
sl2-subalgebras studied in previous sections to define a stratification of the relative
tangent sheaf of J.X I L; d/. The resulting strata are indexed by certain upper trian-
gular, integer-valued matrices which we call multiplicity matrices (Definition 9.5,
Proposition 9.6) or, equivalently, by partitions associated to the nilpotent operators
DC.h/ (Proposition 9.14).

�10 is devoted to applications of the theory built so far to various algebro-
geometric questions concerning configurations of points on X .

In ��10.2–10.3 we present a general method of using sl2-subalgebras con-
sidered in �6 to obtain equations of hypersurfaces cutting out configurations in
an appropriate projective space. In �10.5 the general method is applied to a
particular case: complete intersections on a K3-surface. In this case everything
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can be computed quite explicitly. In particular, one obtains a complete list of very
simple quadratic hypersurfaces (of rank � 4) cutting out complete intersections
(see Proposition 10.16). This gives a hyperplane section version of Mark Green’s
theorem on quadrics of rank 4 in the ideal of a canonical curve in [Gr].

In �10.6 the sl2-subalgebras considered in �8 are put to use to study geometry of
configurations of points on X with respect to the adjoint linear system jL C KX j.
Our considerations show how the partition associated to the nilpotent operator
D�.h/ in (1.10) determines a special subvariety in P.H 0.OX.L CKX //�/, passing
through the image of a configuration under the morphism defined by jL C KX j.
This is Theorem 10.23 which generalizes a well-known classical result saying that
d points (d � 4) in general position in the projective space P

d�3 lie on a rational
normal curve.

In �11 we return to general considerations with the intention to use nilpotent
elements DC.h/ in a more conceptual way. This leads to a relation of J.X I L; d/ to
the nilpotent cone and the Springer resolution of simple Lie algebras of type sln. The
main results in �11.2 are Proposition 11.4 and Theorem 11.5 (which is equivalent to
Theorem 1.3 of the Introduction).

In �11.3 the Springer resolution and Springer fibres are used to construct perverse
sheaves on the Hilbert scheme XŒd� (Theorem 11.9). This yields the collection
P.X I L; d/ of perverse sheaves on XŒd� as in Theorem 1.5 of the Introduction.

In �11.4 the collection P.X I L; d/ is put to use to construct the abelian category
A.X I L; d/ appearing in Theorem 1.6. The relation of relative differentials of
J.X I L; d/ with objects of A.X I L; d/ (the map exp.

R
/ in Theorem 1.6) is given in

Theorem 11.16 (see also Proposition 11.14 and Remark 11.13).
In �12 a relation of J.X I L; d/ and the Infinite Grassmannian of type SLn.C/

is established (Proposition 12.8). This leads to Theorems 1.7 and 1.8 of the
Introduction (stated respectively as Propositions 12.9 and 12.10).
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