
Applications of Pluripotential Theory
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Abstract These lectures are devoted to the study of various contemporary problems
of algebraic geometry, using fundamental tools from complex potential theory,
namely plurisubharmonic functions, positive currents and Monge-Ampère opera-
tors. Since their inception by Oka and Lelong in the mid 1940s, plurisubharmonic
functions have been used extensively in many areas of algebraic and analytic
geometry, as they are the function theoretic counterpart of pseudoconvexity, the
complexified version of convexity. One such application is the theory of L2 esti-
mates via the Bochner-Kodaira-Hörmander technique, which provides very strong
existence theorems for sections of holomorphic vector bundles with positive curva-
ture. One can mention here the foundational work achieved by Bochner, Kodaira,
Nakano, Morrey, Kohn, Andreotti-Vesentini, Grauert, Hörmander, Bombieri, Skoda
and Ohsawa-Takegoshi in the course of more than four decades. Another develop-
ment is the theory of holomorphic Morse inequalities (1985), which relate certain
curvature integrals with the asymptotic cohomology of large tensor powers of line
or vector bundles, and bring a useful complement to the Riemann-Roch formula.

We describe here the main techniques involved in the proof of holomorphic
Morse inequalities (Sect. 1) and their link with Monge-Ampère operators and inter-
section theory. Section 2, especially, gives a fundamental approximation theorem for
closed .1; 1/-currents, using a Bergman kernel technique in combination with the
Ohsawa-Takegoshi theorem. As an application, we study the geometric properties
of positives cones of an algebraic variety (nef and pseudo-effective cone), and
derive from there some results about asymptotic cohomology functionals in Sect. 3.
The last Sect. 4 provides an application to the study of the Green-Griffiths-Lang
conjecture. The latter conjecture asserts that every entire curve drawn on a projective
variety of general type should satisfy a global algebraic equation; via a probabilistic
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curvature estimate, holomorphic Morse inequalities imply that entire curves must at
least satisfy a global algebraic differential equation.

1 Holomorphic Morse Inequalities

Holomorphic Morse inequalities provide asymptotic bounds for the cohomology
of tensor powers of holomorphic line bundles. They are a very useful complement
to the Riemann–Roch formula in many circumstances. They were first introduced
in [25], and were largely motivated by Siu’s solution [85, 86] of the Grauert–
Riemenschneider conjecture, which we reprove here as a special case of a stronger
statement. The basic tool is a spectral theorem which describes the eigenvalue
distribution of complex Laplace–Beltrami operators. The original proof of [25] was
based partly on Siu’s techniques and partly on an extension of Witten’s analytic
proof of standard Morse inequalities [102]. Somewhat later Bismut [8] and Getzler
[49] gave new proofs, both relying on an analysis of the heat kernel in the spirit
of the Atiyah–Bott–Patodi proof of the Atiyah–Singer index theorem [1]. Although
the basic idea is simple, Bismut used deep results arising from probability theory
(the Malliavin calculus), while Getzler relied on his supersymmetric symbolic
calculus for spin pseudodifferential operators [48].

We present here a slightly more elementary and self-contained proof which was
suggested to us by Mohan Ramachandran on the occasion of a visit to Chicago
in 1989. The reader is referred to [25, 27] for more details.

1.1 Introduction

1.1.1 Real Morse Inequalities

Let M be a compact C1 manifold, dimRM D m, and h a Morse function, i.e. a
function such that all critical points are non degenerate. The standard (real) Morse
inequalities relate the Betti numbers bq D dimHq

DR.M;R/ and the numbers

sq D # critical points of index q ;

where the index of a critical point is the number of negative eigenvalues of the
Hessian form .@2h=@xi @xj /. Specifically, the following “strong Morse inequalities”
hold:

bq � bq�1 C � � � C .�1/qb0 � sq � sq�1 C � � � C .�1/qs0 (1)

for each integer q � 0. As a consequence, one recovers the “weak Morse
inequalities” bq � sq and the expression of the Euler–Poincaré characteristic

�.M/ D b0 � b1 C � � � C .�1/mbm D s0 � s1 C � � � C .�1/msm : (2)
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These results are purely topological. They are obtained by showing that M can be
reconstructed from the structure of the Morse function by attaching cells according
to the index of the critical points; real Morse inequalities are then obtained as a
consequence of the Mayer–Vietoris exact sequence (see [74]).

1.1.2 Dolbeault Cohomology

Instead of looking at De Rham cohomology, we want to investigate here Dolbeault
cohomology, i.e. cohomology of the @-complex. Let X be a compact complex
manifold, n D dimCX and E be a holomorphic vector bundle over X with
rankE D r . Let us recall that there is a canonical @-operator

@ W C1.X;�p;qT �
X ˝ E/ �! C1.X;�p;qC1T �

X ˝ E/ (3)

acting on spaces of .p; q/-forms with values in E . By the Dolbeault isomorphism
theorem, there is an isomorphism

H
p;q

@
.X;E/ WD H

q

@
.C1.X;�p;�T �

X ˝ E// ' Hq.X;˝
p
X ˝ O.E// (4)

from the cohomology of the @-complex onto the cohomology of the sheaf of
holomorphic p-forms with values in E . In particular, we have

H
0;q

@
.X;E/ ' Hq.X;O.E//; (5)

and we will denote as usual hq.X;E/ D dimHq.X;O.E//.

1.1.3 Connections and Curvature

Let us consider first a C1 complex vector bundle E ! M on a real differential
manifold M (without necessarily any holomorphic structure at this point). A con-
nectionD on E is a linear differential operator

D W C1.M;�qT �
M ˝ E/ ! C1.M;�qC1T �

M ˝ E/ (6)

satisfying the Leibniz rule

D.f ^ s/ D df ^ s C .�1/deg f f ^Ds (7)

for all forms f 2 C1.X;�pT �
M/, s 2 C1.X;�qT �

M ˝E/. On an open set U � M

where E is trivial, EjU ' U � C
r , the Leibniz rule shows that a connectionD can

be written in a unique way
Ds ' ds C � ^ s (8)
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where � 2 C1.U;�1T �
M ˝ Hom.Cr ;Cr // is an arbitrary r � r matrix of 1-forms

and d acts componentwise. It is then easy to check that

D2s ' .d� C � ^ � / ^ s on U: (9)

Therefore D2s D �D ^ s for some global 2-form �D 2 C1.M;�2T �
M ˝

Hom.E;E//, given by �D ' d�U C �U ^ �U on any trivializing open set U with
a connection matrix �U .

Definition 1. The (normalized) curvature tensor ofD is defined to be�D D i
2�
�D ,

in other words
i

2�
D2s D �D ^ s

for any section s 2 C1.M;�qT �
M ˝ E/.

The main reason for the introduction of the factor i
2�

is the well known formula
for the expression of the Chern classes in the ring of differential forms of even
degree: one has

det.Id C��D/ D 1C �	1.D/C �2	2.D/C : : :C �r	r .D/;

where 	j .D/ is a d -closed differential form of degree 2j . Moreover, 	j .D/ has
integral periods, i.e. the De Rham cohomology class f	j .D/g 2 H2j .M;R/ is the
image of an integral class, namely the j -th Chern class cj .E/ 2 H2j .M;Z/.

1.1.4 Hermitian Connections

Assume now that the fibers of E are endowed with a C1 Hermitian metric h, and
that the isomorphismEjU ' U � C

r is given by a C1 frame .e�/. Then we have a
canonical sesquilinear pairing

C1.M;�pT �
M ˝ E/� C1.M;�qT �

M ˝ E/ �! C1.M;�pCqT �
M/

.u; v/ 7�! fu; vgh
given by

fu; vgh D
X

�;


u� ^ v
he�; e
ih for u D
X

u� ˝ e�; v D
X

v
 ˝ e
:

The connection D is said to be Hermitian (or compatible with the Hermitian
metric h) if it satisfies the additional property

d fu; vgh D fDu; vgh C .�1/deg ufu;Dvgh: (10)
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Assuming that .e�/ is h-orthonormal, one easily checks that D is Hermitian if and
only if the associated connection matrix � is skew-symmetric, i.e. � � D �� . In
this case �D D d� C � ^ � also satisfies ��

D D ��D , thus

�D D i

2�
�D 2 C1.M;�2T �

M ˝ Herm.E;E//: (11)

Special case 2. For a bundle E of rank r D 1, the connection matrix � of a
Hermitian connection D can be more conveniently written � D �iA where A
is a real 1-form. Then we have

�D D i

2�
d� D 1

2�
dA:

Frequently, especially in physics, the real 2-form B D dA D 2��D 2C1
.M;�2T �

M/ is referred to as the magnetic field, and the 1-form A as its potential.
A phase change Qs.x/ D s.x/ei˛.x/ in the isomorphism EjU ' U � C replaces A
with the new connection form QA D AC d˛.

1.1.5 Connections on a Hermitian Holomorphic Vector Bundle

If M D X is a complex manifold, every connectionD can be split in a unique way
as the sum D D D0 CD00 of a .1; 0/-connectionD0 and a .0; 1/-connectionD00 :

D0 W C1.M;�p;qT �
X ˝ E/ �! C1.M;�pC1;qT �

X ˝ E/;

D00 W C1.M;�p;qT �
X ˝ E/ �! C1.M;�p;qC1T �

X ˝E/:

In a local trivialization given by a C1 frame, one can write

D0u D d 0u C � 0 ^ u ;

D00u D d 00u C � 00 ^ u ;

with � D � 0 C� 00 and d 0 D @, d 00 D @. If .E; h/ is a C1 Hermitian structure, the
connection is Hermitian if and only if � 0 D �.� 00/� in any h-orthonormal frame.
Thus there exists a unique Hermitian connection corresponding to a prescribed .0; 1/
part D00.

Assume now that the Hermitian bundle .E; h/ has a holomorphic structure. The
unique Hermitian connection D for which D00 D @ is called the Chern connection
of .E; h/. In a local holomorphic frame .e�/ of EjU , the metric h is given by some
Hermitian matrix H D .h�
/ where h�
 D he�; e
ih. Standard computations yield
the expression of the Chern connection:



148 J.-P. Demailly

8
<̂

:̂

D0s D @s CH
�1
@H ^ s;

D00s D @s;

�D ^ s D D2s D .D0D00 CD00D0/s D �@.H�1
@H/ ^ s:

Definition 3. The Chern curvature tensor of .E; h/ is the curvature tensor of its
Chern connection, denoted

�E;h D D0D00 CD00D0 D �@.H�1
@H/:

In the special case of a rank 1 bundleE , the matrixH is simply a positive function,
and it is convenient to introduce its weight ' such that H D .e�'/ where ' 2
C1.U;R/ depends on the given trivialization EjU ' U � C. We have in this case

�E;h D i

2�
�E;h D i

2�
@@' on U; (12)

and therefore�E;h is a closed real .1; 1/-form.

1.1.6 Fundamental Facts of Hodge Theory

Assume here that M is a Riemannian manifold with metric g D P
gijdxi ˝ dxj .

Given q-forms u, v on M with values in E , we consider the global L2 norm and
inner product

kuk2 D
Z

M

ju.x/j2d�.x/; hhu; vii D
Z

M

hu.x/; v.x/i d�.x/; (13)

where juj is the pointwise Hermitian norm and d� the Riemannian volume form.
The Laplace Beltrami operator associated with the connectionD is

� D DD� CD�D;

acting on any of the spaces C1.M;�qT �
M ˝ E/; here

D� W C1.M;�qT �
M ˝ E/ �! C1.M;�q�1T �

M ˝ E/ (14)

is the (formal) L2 adjoint of D. The complex Laplace operators �0 D D0D0� C
D0�D0 and �00 D D00D00� C D00�D00 are defined similarly when M D X is
a complex manifold. In degree 0 we simply have � D D�D. A well-known
calculation shows that the principal symbol of � is ��.x; 
/ D �j
j2 Id (while
��0.x; 
/ D ��00.x; 
/ D � 1

2
j
j2 Id). As a consequence �, �0, �00 are always

elliptic operators.
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When M is compact, the operator� acting on any of the spaces of the complex
C1.M;��T �

M ˝ E/ has a discrete spectrum

�1 � �2 � � � � � �j � � � �
and corresponding eigenfunctions j 2 C1.M;�qT �

M ˝E/, depending of course
on q.

Our main goal is to obtain asymptotic formulas for the eigenvalues. For this, we
will make an essential use of the heat operator e�t�. In the above setting, the heat
operator is the bounded Hermitian operator associated to the heat kernel

Kt.x; y/ D
C1X

�D1
e��� t �.x/˝  �

� .y/; (15)

i.e.
hhu; e�t�vii D

Z

M�M
hu.x/;Kt.x; y/ � v.y/i d�.x/ d�.y/:

Standard results of the theory of elliptic operators show that

Kt 2 C1. �0;C1Œ �M �M;Hom.E;E//

and that Kt.x; y/ is the solution of the differential equation

@

@t
Kt .x; y/ D ��xKt.x; y/; lim

t!0C

Kt.x; y/ D ıy.x/ (Dirac at y); (16)

as follows formally from the fact that @
@t
e�t� D ��e�t� and e�0� D Id. The

asymptotic distribution of eigenvalues can be recovered from the straightforward
formula C1X

�D1
e���t D

Z

M

trEKt.x; x/d�.x/ : (17)

In the sequel, we are especially interested in the 0-eigenspace:

Definition 4. The space of �-harmonic forms is defined to be

H
q
� .M;E/ D Ker� D ˚

u 2 C1.M;�qT �
M ˝E/ I �u D 0

�
:

When M is compact, an integration by part shows that

hh�u; uii D kDuk2 C kD�uk2;

hence u is�-harmonic if and only if Du DD�u D 0. Moreover, as� is a self-adjoint
operator, standard elliptic theory implies that

C1.M;�qT �
M ˝ E/ D Ker�˚ Im� D H

q
� .M;E/˚ Im�; (18)
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and Ker� D H
q
� .M;E/, Im� are orthogonal with respect to theL2 inner product.

Clearly Im� � ImD C ImD�, and both images ImD, ImD� are orthogonal to
the space of harmonic forms by what we have just seen. As a consequence, we have

Im� D ImD C ImD�: (19)

Hodge isomorphism theorem 5. Assume that M is compact and that D is an
integrable connection, i.e. D2 D 0 (or �D D 0). Then D defines on spaces
of sections C1.M;�qT �

M ˝ E/ a differential complex which can be seen as a
generalization of the De Rham complex. The condition D2 D 0 immediately
implies that ImD ? ImD� and we conclude from the above discussion that there
is an orthogonal direct sum

C1.M;�qT �
M ˝ E/ D H

q
� .M;E/˚ ImD ˚ ImD�: (20)

If we put u D hCDvCD�w according to this decomposition, then Du D DD�w D
0 if and only if kD�wk D hhDD�w;wii D 0, thus

KerD D H q
� .M;E/˚ ImD:

This implies the Hodge isomorphism theorem

H
q
DR.M;E/ WD KerD= ImD ' H

q
� .M;E/: (21)

In case M D X is a compact complex manifold, .E; h/ a Hermitian holomorphic
vector bundle and D D D0 CD00 the Chern connection, the integrability condition
D002 D @2 D 0 is always satisfied. Thus we get an analogous isomorphism

Hq.X;O.E// ' H
0;q

@
.X;E/ ' H

0;q

�00 .M;E/; .22/0;q

and more generally

Hq.X;˝
p
X ˝ O.E// ' H

p;q

@
.X;E/ ' H

p;q

�00 .M;E/; .22/p;q

where H p;q

�00 .M;E/ is the space of �00-harmonic forms of type .p; q/ with values
in E .

Corollary 6 (Hodge decomposition theorem). If .X; !/ is a compact Kähler
manifold and .E; h/ is a flat Hermitian vector bundle over X .i.e. D2

E;h D 0/,
then there is an isomorphism

Hk
DR.M;E/ '

M

pCqDk
H
p;q

@
.X;E/:
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In fact, under the condition that ! is Kähler, i.e. d! D 0, well-known identities of
Kähler geometry imply�0 D �00 D 1

2
�, and as a consequence

H k
� .M;E/ D

M

pCqDk
H

p;q

�00 .X;E/:

1.2 Holomorphic Morse Inequalities

1.2.1 Main Statements

Let X be a compact complex n-dimensional manifold, L ! X a holomorphic line
bundle and E ! X a holomorphic vector bundle of rank r D rankE . We assume
that L is equipped with a smooth Hermitian metric h and denote accordingly �L;h
its curvature form; by definition this is a closed real .1; 1/-form and its cohomology
class c1.L/R D f�L;hg 2 H2

DR.X;R/ is the first Chern class of L.

q-index sets 7. We define the q-index sets and f� qg-index sets of .L; h/ to be

X.L; h; q/ D
�
x 2 X I �L;h.x/ has

q

n � q
negative eigenvalues
positive eigenvalues

�

X.L; h;� q/ D
[

1�j�q
X.L; h; j / :

Clearly X.L; h; q/ andX.L; h;� q/ are open subsets of X , and we have a partition
into “chambers”X D S [ S

0�q�n X.L; h; q/where S D fx 2 X I �L;h.x/ D 0g
is the degeneration set. The following theorem was first proved in [25].

Main Theorem 8. The cohomology groups of tensor powers E ˝ Lk satisfy the
following asymptotic estimates as k ! C1 W
(8)WM Weak Morse inequalities W

hq.X;E ˝ Lk/ � r
kn

nŠ

Z

X.L;h;q/

.�1/q�n
L;h C o.kn/ :

(8)SM Strong Morse inequalities W
X

0�j�q
.�1/q�j hj .X;E ˝ Lk/ � r

kn

nŠ

Z

X.L;h;�q/
.�1/q�n

L;h C o.kn/ :

(8)RR Asymptotic Riemann–Roch formula W

�.X;E ˝ Lk/ WD
X

0�j�n
.�1/j hj .X;E ˝ Lk/ D r

kn

nŠ

Z

X

�n
L;h C o.kn/ :
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The weak Morse form (8)WM follows from strong Morse (8)SM by adding
consecutive inequalities for the indices q � 1 and q, since the signs .�1/q�j and
.�1/q�1�j are opposite. Also, (8)RR is just a weaker formulation of the existence of
the Hilbert polynomial, and as such, is a consequence of the Hirzebruch–Riemann–
Roch formula; it follows formally from (8)SM with q D n and q D n C 1, since
hnC1 D 0 identically and the signs are reversed. Now, by adding (8)SM for the
indices of opposite parity q C 1 and q � 2, we find

hqC1.X;E ˝ Lk/� hq.: : :/C hq�1.: : :/ � r
kn

nŠ

Z

X.L;h;fq�1;q;qC1g/

.�1/qC1�n
L;h C o.kn/;

whereX.L; h; fq�1; q; qC1g/ is meant for the union of chambers of indices q�1,
q, q C 1. As a consequence, we get lower bounds for the cohomology groups:

hq.X;E˝Lk/ � hq�hqC1�hq�1 � r
kn

nŠ

Z

X.L;h;fq�1;q;qC1g/
.�1/q�nL;h�o.kn/: (23)

Another important special case is (8)SM for q D 1, which yields the lower bound

h0.X;E ˝ Lk/ � h0 � h1 � r
kn

nŠ

Z

X.L;h;�1/
�n
L;h � o.kn/: (24)

As we will see later in the applications, this lower bound provides a very useful
criterion to prove the existence of sections of large tensor powers of a line bundle.

ut

1.2.2 Heat Kernel and Eigenvalue Distribution

We introduce here a basic heat equation technique, from which all asymptotic
eigenvalue estimates can be derived via an explicit formula, known as Mehler’s
formula.

We start with a compact Riemannian manifold .M; g/ with dimRM Dm, and
denote by d� its Riemannian volume form. Let .L; hL/ (resp. .E; hE/) be a
Hermitian complex line (resp. vector bundle) on M , equipped with a Hermitian
connectionDL (resp. DE ).

We denote by Dk D DE˝Lk the associated connection on E ˝ Lk , and by
�k D D�

kDk the Laplace–Beltrami operator acting on sections ofE˝Lk (i.e. forms
of degree 0). As in Case 2, we introduce the (local) connection form �L D �iA of
L and the corresponding (global) curvature 2-form B D dA 2 C1.M;�2T �

M/,
i.e. the “magnetic field” (�E and the corresponding curvature tensor �E of DE

will not play a significant role here). Finally, we assume that an additional section
V 2 C1.M;Herm.E;E// is given (“electric field”); for simplicity of notation, we
still denote by V the operator V ˝ IdLk acting on E ˝ Lk .
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If ˝ � M is a smoothly bounded open subset of M , we consider for u in the
Sobolev space W 1

0 .˝;E ˝Lk/ the quadratic form

Qk;˝.u/ D
Z

˝

1

k
jDkuj2 � hV u; ui: (25)

Here W 1
0 .˝;E ˝ Lk/ is the closure of the space of smooth sections with compact

support in˝ , taken in the Hilbert spaceW 1
loc.M;E˝Lk/ of sections that haveL2loc

coefficients as well as their first derivatives. In other words, we consider the densely
defined self adjoint operator

�k D 1

k
D�
kDk � V (26)

acting in the Hilbert spaceW 1
0 .˝;E˝Lk/, i.e. with Dirichlet boundary conditions.

Again, �k acting on W 1
0 .˝;E ˝ Lk/ has a discrete spectrum whenever ˝ is

relatively compact (and also sometimes when ˝ is unbounded, according to the
behavior of B and V at infinity; except otherwise stated, we will assume that we are
in this case later on). Then, there is an associated “localized” heat kernel

Kt;k;˝.x; y/ D
C1X

�D1
e���;k;˝ t �;k;˝.x/˝  �

�;k;˝.y/ (27)

where �;k;˝ 2 W 1
0 .˝;E˝Lk/ are the eigenfunctions and ��;k;˝ their eigenvalues.

We want to study the asymptotic eigenvalue distribution of �k as k ! C1, and
more precisely get an asymptotic formula for the corresponding heat kernel e�t�k .
The basic idea is to decompose the proof in three steps:

.˛/ Convince ourselves that the asymptotic estimates can be “localized”, up to
lower order error terms.

.ˇ/ Show that the local estimates can be obtained by freezing the coefficients of the
operators involved at any given point.

.	/ Compute explicitly the heat kernel in the case of connections with constant
curvature, assuming moreover that ˝ ' R

m with the flat Euclidean metric.

.˛/ In order to see that the situation can be localized, we fix a partition of unity .�j /
relative to an arbitrarily fine finite covering .˝j / of˝ , such that

P
�2j D 1 near˝ .

We consider the continuous injection

I˝;˝j W W 1
0 .˝;E ˝ Lk/ !

M

j

W 1
0 .˝ \˝j ;E ˝Lk/; u 7! .�ju/j ;

the inverse of which is .uj / 7! u D P
�juj . As

P
�j d�j D 0 on ˝ , we find

X

j

Qk;˝j .�j u/�Qk;˝.u/ D 1

k

Z

˝

�X
jd�j j2

�
juj2 � O

� 1
k

�
juj2: (28)
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By the minimax principle, it follows that the eigenvalues of
L
Qk;˝j j Im I˝;˝j

and
those of Qk;˝ differ by at most O.1=k/ as k ! C1. This explains why a
localization process is possible, at least as far as the eigenvalue distribution is
concerned. For the related heat kernels on small geodesic balls, one can use the
following localization principle.

Proposition 9. Let ˝� D B.x0; �/ be a geodesic ball of .M; g/ of radius � where
� < injectivity radius. Then there exist constants C1 and "1 > 0 such that for all
t 2 �0;min.k"1; k�2=2m/� and every x0 2 M we have

ˇ̌
Kt;k;M .x

0; x0/�Kt;k;˝�.x
0; x0/

ˇ̌ � C1

�k
t

�m=2
exp

�
� k�2

4t
C 2t sup

˝�

kV k
�
:

A proof of this technical result is given in Thierry Bouche’s PhD thesis (cf. [17]).
It relies on a use of Kato’s inequality (cf. [54]), which amounts to say that we get
an upper bound of Kt;k;M in the case when the curvature is trivial; one can then use
the calculations given below to get the explicit bound, see e.g. (290).
.ˇ/ Now, let x0 2 M be a given point. We choose coordinates .x1; : : : ; xm/
centered at x0 such that .@=@x1; : : : ; @=@xm/ is orthonormal at x0 with respect to
the Riemannian metric g. By changing the orthonormal frame of L as in Case 2,
we can adjust the connection form �L D �iA of L to be given by any local
potential A.x/ D P

j Aj .x/ dxj such that B D dA, and we can therefore arrange
that A.x0/ D 0. Similarly, we can fix a unitary frame of E such that �E.x0/ D 0.
Set x0 D 0 for simplicity. The first term of our Laplace operator �k D 1

k
D�
kDk �V

is the square of the first order operator

k�1=2Dku.x/ D k�1=2�du.x/C k IdE ˝�L.x/ � u.x/C IdLk ˝�E.x/ � u.x/
�

D k�1=2X

j

� @u

@xj
� ik1=2Aj .x/u.x/

�
dxj C k�1=2 IdLk ˝�E.x/ � u.x/:

If we use a rescaling x D k�1=2 Qx and set Qu. Qx/ D u.x/ D u.k�1=2 Qx/, this operator
takes the form

QDk Qu. Qx/ D
X

j

� @Qu
@ Qxj � ik1=2Aj .k

�1=2 Qx/ Qu. Qx/
�

dxj CO.k�1=2j Qxj/ Qu. Qx/ dx:

As Aj .0/ D 0, the term k1=2Aj .k
�1=2 Qx/ converges modulo O.k�1=2j Qxj2/ terms

to the linearized part QAj . Qx/ D P
i;j

@Aj
@xi
.0/ Qxi . Observe also that the connection

form �E of E only contributes for terms of the form O.k�1=2j Qxj/ (and thus will be
negligible in the end, together with the quadratic terms of Aj ). Our initial operator
�k D 1

k
D�
kDk � V becomes

Q�k D QD�
k

QDk � QV
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where QV . Qx/ D V.k�1=2 Qx/ and where the adjoint is computed with respect to the
rescaled metric Qg.x/ D P

gij.k
�1=2 Qx/ d Qxj d Qxj ; here Qg ! P

.d Qxj /2 as k ! C1
thanks to the assumption that gij.0/ D ıij. Modulo lower order terms O.k�1=2j Qxj2/,
QDk is given by a linear connection form

QA. Qx/ D
X

Bij Qxi d Qxj

associated with the constant magnetic field B.x0/ D P
i;j Bij dxi ^ dxj frozen

at x0 D 0. We can moreover choose orthonormal coordinates so that B.x0/ takes
the standard form

B.x0/ D
sX

jD1
Bj dxj ^ dxjCs

where 2s � m is the rank of the alternate 2-form B.x0/ and Bj the curvature
eigenvalues with respect to g.x0/. The corresponding linearized potential is

QA. Qx/ D
sX

jD1
Bj Qxj d QxjCs:

The intuition from Physics is that the eigenfunctions represent “waves” of heat
propagation of a certain typical wave length � in the coordinates Qx, and of a
corresponding (much shorter) wave length � k�1=2 in the original coordinates.
At that scale, our space behaves as if the metrics were flat and the curvature constant.

.	/ Let us consider the operators obtained by “freezing” the coefficients at any
point x0, as explained at step .ˇ/, although we will not perform the rescaling here.
More specifically, we assume that

• L has constant curvature B D Ps
jD1 Bj dxj ^ dxjCs . Then there is a local

trivialization in which

DLu D du � iA ^ u; A D
sX

jD1
Bj xj dxjCs:

• ˝ ' R
m and the metric g is flat: g D P

dxj ˝ dxj .
• E ' ˝ � C

r is a trivial (flat) Hermitian bundle.
• the Hermitian form V is constant. We choose an orthonormal frame of E in

which V is diagonal, i.e.

hV u; ui D
X

1���r
V�ju�j2:
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In this ideal situation, the connection Dk on E ˝ Lk can be written Dku D du �
ikA ^ u and the quadratic formQk;˝ is given by

Qk;˝.u/ D
Z

Rm

1

k

0

B@
X

1�j�s
1���r

 ˇ̌
ˇ
@u�
@xj

ˇ̌
ˇ
2 C

ˇ̌
ˇ
@u�
@xjCs

� ikBj xj u�
ˇ̌
ˇ
2

!
C

X

j>2s
1���r

ˇ̌
ˇ
du�
dxj

ˇ̌
ˇ
2

1

CA

�
X

1���r
V�ju�j2:

In this situation,Qk;˝ is a direct sum of quadratic forms acting on each component
u� and the computation of e�t�k is reduced to the following model cases (29), (30)
in dimension 1 or 2 :

Q.f / D
Z

R

ˇ̌
ˇ
df

dx

ˇ̌
ˇ
2

; �f D �d
2f

dx2
(29)

As is well known (and although the spectrum is not discrete in that case) the kernel
of the “elementary” heat operator e�t� is given by

Kt;R.x; y/ D 1p
4�t

e�.x�y/2=4t ; (290)

as follows from solving equation (16). The second model case is :

Q.f / D
Z

R2

ˇ̌
ˇ
df

dx1

ˇ̌
ˇ
2 C

ˇ̌
ˇ
df

dx2
� iax1f

ˇ̌
ˇ
2

: (30)

A partial Fourier transform Of .x1; 
2/ D 1p
2�

R
R
f .x1; x2/ e

�ix2
2 dx2 gives

Q.f / D
Z

R2

ˇ̌
ˇ
d Of
dx1

.x1; 
2/
ˇ̌
ˇ
2 C a2

�
x1 � 
2

a

�2j Of .x1; 
2/j2

and the change of variables x0
1 D x1 � 
2=a, x0

2 D 
2 leads (after dropping the
second variable x0

2) to the so called “harmonic oscillator” energy functional

q.g/ D
Z

R

ˇ̌
ˇ
dg

dx

ˇ̌
ˇ
2 C a2x2jgj2 ; � D � d2

dx2
C a2x2: (31)

The heat kernel of this operator is given by Mehler’s formula :

kt;R.x; y/ D
r

a

2� sinh 2at
exp

�
� a

2
.coth 2at/.x � y/2 � a.tanh at/xy

�
;

(310)
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which actually reduces to (290) when a ! 0. One way of obtaining this relation is
to observe that the unitary eigenfunctions of � are

	
2ppŠ

r
�

a


�1=2
˚p.

p
ax/; p D 0; 1; 2; : : : ;

with associated eigenvalues .2p C 1/a, where .˚p/ is the sequence of functions
associated with Hermite polynomials:

˚p.x/ D ex
2=2 d

p

dxp
.e�x2/:

In fact, for a D 1, easy calculations bearing on derivatives of ex
2=2 show that

�
� d2

dx2
C x2

�
˚p.x/

D �ex2=2 d
pC2

dxpC2 .e
�x2/ � 2x ex2=2 d

pC1

dxpC1 .e
�x2/ � ex2=2 d

p

dxp
.e�x2/:

We can now replace the first term by ex
2=2 dpC1

dxpC1 .2x � e�x2/ and use the Leibniz
formula for the differentiation of the product to see that �˚p.x/ D .2pC1/˚p.x/.
Therefore

kt;R.x; y/ D
r
a

�
ea.x

2Cy2/=2
C1X

pD0

e�.2pC1/at

2ppŠap
dp

dxp
.e�ax2 /

dp

dyp
.e�ay2 /:

The above summation ˙.x; y/ D PC1
pD0 : : : can be computed via its Fourier

transform

Ȯ .
; �/ D 1

2a
e�at

C1X

pD0

1

pŠ

�e�2at

2a

�p
.i
/p.i�/pe�
2=4ae��2=4a

D 1

2a
e�at exp

�
� 1

4a
.
2 C �2 C 2 e�2at 
�/

�
;

thus

˙.x; y/ D e�at
p
1 � e�4at exp

�
� a

1 � e�4at .x
2 C y2 � 2 e�2atxy/

�
:
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and Mehler’s formula (310) follows. Through our change of variables, the heat
operator of Q is given by

1Kt;R2f .x1; 
2/ D
Z

R

kt;R

�
x1 � 
2

a
; y1 � 
2

a

� Of .y1; 
2/dy1:

By an inverse partial Fourier transform left to the reader, we obtain the desired heat
kernel expression

Kt;R2 .x1; x2Iy1; y2/ D a

4� sinh at
exp

�
� a

4
.coth at/

�
.x1 � y1/2 C .x2 � y2/

2
��

� exp
� i
2
a.x1 C y1/.x2 � y2/

�
: (300)

The heat kernel associated with a sum of (pairwise commuting) operators
�1; : : : ;�m acting on disjoint sets of variables is the product of the corresponding
heat kernels e�t�j . Let K�

t;k;˝ be the heat kernel of the component of Qk;˝ acting
on each single entry u�. The factor in the heat kernel corresponding to each pair of
variables .xj ; xjCs/, 1 � j � s, is obtained by substituting kBj to a and t=k to t
(the latter rescaling comes from the initial factor 1

k
in the expression of Qk;˝). For

the other coordinates j > 2s where B has no coefficients, the kernel falls back to
the “elementary” heat kernel (290). Finally, the constant term �V�ju�j2 contributes
to multiplying the heat kernel by etV� . Therefore we get for the global heat kernel
on ˝ D R

n the explicit formula

K�
t;k;Rn .x; y/ D

sY

jD1

kBj

4� sinhBj t
exp

�
� kBj

4
.cothBj t/

�
.x2j�1�y2j�1/2C.x2j�y2j /2

�

C i

2
kBj .x2j�1 C y2j�1/.x2j � y2j /

�

� etV� � 1

.4�t=k/m�2s=2 exp
� � k

X

j>2s

.xj � yj /2=4t
�
: (32)

On the diagonal of Rn�R
n, the global heat kernelKt;k;Rn is thus given by the rather

simple (Herm.E/˝ IdLk )-valued tensor depending only on B , V and t=k :

Kt;k;Rn.x; x/ D
� k

4�t

�m=2
etV

sY

jD1

Bj t

sinhBj t
: (33)

Theorem 10. Consider the general .variable coefficient/ case. For ı > 0 small,
the heat kernel of �k overM admits an asymptotic estimate

Kt;k;M .x; x/ D
� k

4�t

�m=2
etV.x/

sY

jD1

Bj .x/ t

sinhBj .x/ t

�
1CO.k�1=2Cı/

�



Applications of Pluripotential Theory to Algebraic Geometry 159

as k ! C1, where O.k�1=2Cı/ is uniform with respect to x 2 M and t in a
bounded interval �0; T � � �0;C1Œ .moreover, for every open set˝ � M , a similar
estimate is valid for Kt;k;˝ on relatively compact subsets of ˝/.

Proof. Notice first that .t; x/ 7! Qs
jD1

Bj .x/ t

sinhBj .x/ t
extends as a smooth positive

function on Œ0;C1Œ � M , equal to 1 when t D 0 : this is in fact the inverse of
the square root of the determinant of the positive definite symmetric matrix

sin.tb.x//

tb.x/
D

C1X

pD0

t2p.�b.x/2/p
.2p C 1/Š

� Id;

where b.x/ is the antisymmetric endomorphism of TM associated with the alternate
2-form B.x/ and �b.x/2 D b.x/�b.x/ � 0.

The only thing one has still to get convinced of is that the kernel of e�t�k �e�t�0
k

is .k=t/m=2O.k�1=2Cı/ uniformly along the diagonal at any point .x0; x0/2M�M ,
where �0

k is the operator �k “freezed” at x0. We can do this in a canonical way by
using normal coordinates from the Riemannian exponential mapping

expx0 W Rm ' TM;x0 ! M;

and trivializations of E and L produced by parallel transport along geodesics from
x0 to any point x 2 B.x0; �0/, where �0 D injectivity radius of M . In this way,
we actually get automatically that �L.x0/ D �E.x

0/ D 0. When Supp u � ˝� WD
B.x0; �/, a Taylor expansion yields Dku � D0

ku D O.jxj C kjxj2/ � u and we get
the estimates

Qk;˝�.u/�Q0
k;˝�

.u/ D
Z

M

1

k

�jDkuj2 � jD0
kuj2� � h.V � V 0/u; ui

D O
� Z

M

1

k

�
.� C k�2/jD0

kujjuj C .�C k�2/2juj2�C �juj2
�

D O
� Z

M

"

k
jD0

kuj2 C
� .�C k�2/2

k"
C �

�
juj2

�
;

D O
�
"Q0

k;˝�
.u/C

� .�C k�2/2

k"
C � C "

�
juj2

�

whenever " < 1, hence there is a constant C�;k;" D O
� .�Ck�2/2

k"
C �C "

�
such that

.1 � "/Q0
k;˝�

.u/� C�;k;"juj2 � Qk;˝�.u/ � .1C "/Q0
k;˝�

.u/C C�;k;"juj2:
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From this, we conclude that e�t�k is squeezed (as a positive bounded self-adjoint
operator) between e�C�;k;"t e�t .1C"/�0

k and eC�;k;"t e�t .1�"/�0
k . By definition of the heat

kernel we have

Kt;k;˝� .x
0; x0/ D lim

�!C1

Z

˝��˝�
Kt;k;˝� .x; y/u�.x/u�.y/ d�.x/ d�.y/

D lim
�!C1hhe�t�ku�; u�ii

when u��!
L1
ıx0 (Dirac measure), thus

e�C�;k;"T K0
.1C"/t;k;˝�.x

0; x0/�K0
t;k;˝�

.x0; x0/

� Kt;k;˝�.x
0; x0/�K0

t;k;˝�
.x0; x0/

� eC�;k;"T K0
.1�"/t;k;˝� .x

0; x0/ �K0
t;k;˝�

.x0; x0/:

We take here � D " D k�1=2Cı , so that C�;k;" D O.k�1=2Cı/. The expected uniform
bounds are then obtained by an application of Proposition 9, where the choice � D
k�1=2Cı � k�1=2 ensures that the relative errors

Kt;k;M �Kt;k;˝� and K0
t;k;Rm �K0

t;k;˝�

are very small, namely of the order of magnitudeO.exp.�kı=4T //. ut
As a consequence, we obtain the following estimate for the eigenvalues:

Corollary 11. The eigenvalues ��;k;˝ of Qk;˝ satisfy for every t > 0 the estimate

C1X

�D1
e�t��;k;˝ D .1CO.k�1=2//

� k

4�t

�m=2 Z

˝

tr.etV .x//
sY

jD1

Bj .x/ t

sinhBj .x/ t
d�.x/:

This result can be also interpreted in terms of the counting function

Nk;˝.�/ D #f� I ��;k;˝ � �g

and of the spectral density measure (a sum of Dirac measures on the real line)


k;˝ D k�m=2 d
d�
Nk;˝.�/:

Notice that the measures 
k;˝ are all supported in the fixed interval Œ�v0;C1Œ,
where v0 is an upper bound for the eigenvalues of V.x/, x 2 M . In these notations,
Corollary 11 can be restated:
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lim
k!C1

Z C1

�1
e�t�d
k;˝.�/ D 1

.4�t/m=2

Z

˝

tr.etV .x//
sY

jD1

Bj .x/ t

sinhBj .x/ t
d�.x/:

We thus see that the sequence of measures 
k;˝ converges weakly to a measure 
˝
whose Laplace transform is given by the right hand side. Inverting the formula, one
obtains:

Corollary 12. For almost all � 2 R

lim
k!C1k�m=2Nk;˝.�/ D 
˝.�� 1; ��/ D

Z

˝

rX

jD1
�B.x/.Vj .x/C �/d�.x/ (34)

where �B.x/.�/ is the function onM � R defined by

�B.�/ D 2s�m��m=2

� .m
2

� s C 1/
B1 � � �Bs

X

.p1;:::;ps /2Ns

h
� �

X
.2pj C 1/Bj

im
2 �s

C : (35)

Proof. We leave as an exercise to the reader to check that the Laplace transform

Z C1

�1
e�t�d�B.v C �/ D etv

Z C1

�1
e�t�d�B.�/

is actually equal to
etv

.4�t/m=2

sY

jD1

Bj .x/ t

sinhBj .x/ t
: ut

1.2.3 Proof of the Holomorphic Morse Inequalities

Let X be a compact complex manifold, L and E holomorphic Hermitian vector
bundles of rank 1 and r over X . If X is endowed with a Hermitian metric !,
Hodge theory shows that the Dolbeault cohomology group Hq.X;E ˝ Lk/ can
be identified with the space of harmonic .0; q/-forms with respect to the Laplace–
Beltrami operator �00

k D @k@
�
k C @

�
k@k acting on E ˝ Lk . We thus have to estimate

the zero-eigenspace of�00
k .

In order to apply Corollary 12, we first have to compute �00
k in terms of the

Hermitian connection rk onE˝Lk˝�0;qT �
X deduced from the Chern connections

of L;E; TX . What plays now the role of E is the (non holomorphic) bundle E ˝
�0;qT �

X .
The relation between �00

k and rk is most easily obtained by means of the
Bochner–Kodaira–Nakano identity. In order to simplify the exposition, we assume
here that the metric ! on X is Kähler. For any Hermitian holomorphic line bundle



162 J.-P. Demailly

G on X , the operators �0 and �00 associated with the Chern connection D D DG

are related by the B-K-N identity (cf. [2, 10, 61, 76])

�00 D �0 C Œi�G;�� (36)

where �G D D2
G 2 C1.X;�1;1T �

X ˝ Hom.G;G// is the curvature tensor and
� D L� is the adjoint of the Lefschetz operatorLu D ! ^ u.

The Leibniz rule implies �E˝Lk D k�L˝IdE C�E˝IdLk (omitting the Hermitian
metrics for simplicity of notation), thus

�00
k D �0

k C kŒi�L;��C Œi�E;��:

At a given point z0 2 X , we can find a coordinate system .z1; : : : ; zn/ such that
.@=@zj / is an orthonormal basis of TX diagonalizing i�L.z0/, in such a way that

!.z0/ D i

2

X

1�j�n
dzj ^ d zj ; i�L.z

0/ D i

2

X

1�j�n
˛j dzj ^ d zj

where ˛1; : : : ; ˛n are the curvature eigenvalues of i�L.z0/. A standard formula gives
the expression of the curvature term Œi�L;��u for any .p; q/-form u. In fact, for
u D P

uI;J;�dzI ^ d zJ ˝ e�, we have

hŒi�L;��u; ui D
X

I;J;�

.˛J � ˛{I /juI;J;�j2

where ˛J D P
j2J ˛j . In the case of a .0; q/-form u D P

uJ;�d zJ ˝ e� we simply
have�0

ku D D0�
k D

0
ku D r 0�

k r 0
ku and

�00
k D r 0�

k r 0
k � kV 0 C Œi�E;�� ; (370)

hV 0u; ui D
X

J;�

˛{J juJ;�j2 (here I D ;/:

This is not yet what was needed, since only the .1; 0/ part r 0
k appears. To get the

.0; 1/ component, we consider u as a .n; q/ form with values in E ˝ Lk ˝ �nTX .
We then get �0

ku D D0
kD

0�
k u where

D0�
k u D �

X
@uI;J;�=@zjdz1 ^ � � � cdzj � � � ^ dzn ^ d zJ ˝ e�

in normal coordinates. Thus�0
ku D r 00�

k r 00
k u and

�00
k D r 00�

k r 00
k C kV 00 C Œi�E˝�nTX ;�� ; (3700)

hV 00u; ui D
X

J;�

˛J juJ;�j2 (here I D f1; : : : ; ng/:
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If the metric ! is non Kähler, we get additional torsion terms, but these terms are
independent of k. A combination of (370) and (3700) yields

2

k
�00
k D 1

k
r�
k rk � V C 1

k
W (38)

whereW is a Hermitian form independent of k and

hV u; ui D
X

J;�

.˛{J � ˛J /juJ;�j2:

Now apply Theorem 10 and observe that W does not give any significant contribu-
tion to the heat kernel as k ! C1. We write here zj D xj C iyj and the “magnetic
field”

B D i�L D
X

1�j�n
˛j dxj ^ dyj :

The curvature eigenvalues are given by Bj D j˛j j. We denote s D s.x/ the rank of
B.x/ and order the eigenvalues so that

j˛1j � � � � � j˛sj > 0 D ˛sC1 D � � � D ˛n:

The eigenvalues of V acting on E ˝ �nT �
X are the coefficients ˛{J � ˛J , counted

with multiplicity r . Therefore

Theorem 13. The heat kernel associated with e� 2t
k �

00

k in bidegree .0; q/ satisfies

Kk
t .x; x/ 	 kn

r
P

jJ jDq et.˛{J .x/�˛J .x//

.4�/ntn�s
sY

jD1

j˛j .x/j
sinh j˛j .x/jt

as k ! C1. In particular, if �k;q1 � �
k;q
2 � � � � are the eigenvalues of 1

k
�00
k in

bidegree .0; q/, we have

C1X

�D1
e�2t�k;q� 	 rkn

X

jJ jDq

Z

X

et.˛{J .x/�˛J .x//

.4�/ntn�s
sY

jD1

j˛j .x/j
sinh j˛j .x/jt

for every t > 0.

At this point, the main idea is to use the eigenspaces to construct a finite dimen-
sional subcomplex of the Dolbeault complex possessing the same cohomology
groups. This was already the basic idea in Witten’s analytic proof of the standard
Morse inequalities [102]. We denote by

H
k;q

� ; resp. H
k;q

��
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the �-eigenspace of 1
k
�00
k acting on C1.X;�0;qT �

X ˝E˝Lk/, resp. the direct sum

of eigenspaces corresponding to all eigenvalues � �. As @k and�00
k commute, we see

that @.H k;q

� / � H
k;qC1
� , thus H k;�

� and H k;�
�� are finite dimensional subcomplexes

of the Dolbeault complex

@ W C1.X;�0;�T �
XE ˝Lk/:

Since @k@
�
k C @

�
k@k D �00

k D k� Id on H k;�
� , we see that H k;�

� has trivial
cohomology for � ¤ 0. Since H k;�

0 is the space of harmonic forms, we see that
H k;�

�� has the same cohomology as the Dolbeault complex for � > 0. We will call

this complex the Witten @-complex. We need an elementary lemma of linear algebra.

Lemma 14. Set hqk D dimHq.X;E ˝ Lk/. Then for every t > 0

h
q

k � h
q�1
k C � � � C .�1/qh0k �

qX

`D0
.�1/q�`

C1X

jD1
e�t�k;`j :

Proof. The left hand side is the contribution of the 0 eigenvalues in the right hand
side. All we have to check is that the contribution of the other eigenvalues is � 0.
The contribution of the eigenvalues such that �k;`j D � > 0 is

e�t�
qX

`D0
.�1/q�` dim H k;`

� :

As H k;�
� is exact, one easily sees that the last sum is equal to the dimension of

@H
k;q

� � H
k;qC1
� , hence � 0. ut

Combining Theorem 13 with Lemma 14, we get

h
q

k � h
q�1
k C � � � C .�1/qh0k

� o.kn/C rkn
qX

`D0
.�1/q�` X

jJ jD`

Z

X

Q
j�s j˛j j � et.˛{J�˛J�P j˛j j/

22n�s�ntn�sQ
j�s.1 � e�2t j˛j j/

:

This inequality is valid for any t > 0, so we can let t tend to C1. It is clear that
˛{J � ˛J � P j˛j j is always � 0, thus the integrand tends to 0 at every point
where s < n. When s D n, we have ˛{J .x/ � ˛J x/ � P j˛j .x/j D 0 if and only
if ˛j .x/ > 0 for every j 2 {J and ˛j .x/ < 0 for every j 2 J . This implies
x 2 X.L; h; `/ ; in this case there is only one multi-index J satisfying the above
conditions and the limit is

.2�/�nj˛1 � � �˛nj D .2�/�nj.i�L;h/nj D j�n
L;hj;
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as�L;h D i
2�
�L;h by definition. By the monotone convergence theorem, our sum of

integrals converges to

qX

`D0
.�1/q�`

Z

X.L;h;`/

.2�/�nj˛1 � � �˛njd� D 1

nŠ

Z

X.L;h;�q/
.�1/q�n

L;h :

The Main Theorem 8 follows. ut

1.3 Applications to Algebraic Geometry

1.3.1 Solution of the Grauert–Riemenschneider Conjecture

Let L be a holomorphic line bundle over a compact connected complex manifold
X of dimension n and Vk D H0.X;Lk/. Denote by Z.Vk/ the set of common
zeroes of all sections in Vk , and fix a basis .�0; : : : ; �N / of Vk . There is a canonical
holomorphic map

˚kL W X XZ.Vk/ �! P.Vk/; x 7! Œ�0.x/ W : : : W �N .x/� (39)

sending a point x 2XXZ.Vk/ to the hyperplaneH �Vk of sections � D P
�j �j 2

Vk such that �.x/ D P
�j �j .x/ D 0; it is therefore given by x 7! Œ�0.x/ W : : : W

�N .x/� in projective coordinates on P.Vk/ ' P
N . The pull-back ˚�

kLO.d/ can be
identified with the restriction of Lkd to X X Z.Vk/; indeed, to any homogeneous
polynomial P.w0; : : : ;wN / 2 H0.PN ;O.d// of degree d , one can associate a
section

s D P.�0; : : : ; �N / 2 H0.X;Lkd/: (40)

WhenL possesses a smooth Hermitian metric hwith�L;h > 0, one can construct
many sections of high tensor powersLk (e.g. by Hörmander’sL2 estimates [56], [4]
for @). For k � k0 large enough, the “base locus” Z.Vk/ is empty, the sections in Vk
separate any two points of X and generate all 1-jets at any point. Then ˚kL gives an
embedding of X in some projective space P

N , for N D N.k/ and k � k0. In this
way, the theory ofL2 estimates implies the Kodaira embedding theorem : a compact
complex manifold X is projective algebraic if and only if X possesses a Hermitian
line bundle .L; h/ with C1 positive curvature.

The Grauert–Riemenschneider conjecture [50] is an attempt to characterize the
more general class of Moishezon varieties in terms of semi-positive line bundles. Let
us first recall a few definitions. The algebraic dimension a.X/ is the transcendence
degree of the field M .X/ of meromorphic functions on X . A well-known theorem
of Siegel [83] asserts that 0 � a.X/ � n (see Corollary 17 below). A compact
manifold or variety X is said to be Moishezon if a.X/ D n.
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By definition, the Kodaira dimension �.L/ is the supremum of the dimension of
the images Yk D ˚kL.X X Z.Vk// � P.V �

k / for all integers k > 0 [one defines
�.L/ D �1 when Vk D 0 for all k, in which case we always have Yk D ;].
Since the field of meromorphic functions on X obtained by restriction of rational
functions of P.V �

k / to Yk has transcendence degree at least equal to dimYk , we infer
that

� 1 � �.L/ D sup dim Yk � a.X/ � n: (41)

Definition 15. The line bundle L ! X is said to be big if �.L/ is maximal, i.e.
�.L/ D n D dimX .

The following standard lemma is needed (cf. [80, 83]).

Lemma 16 (Serre–Siegel). For every line bundle L ! X , there exist constants
C � c > 0 and k0 2 N

� such that

dimH0.X;Lk/ � C k�.L/ for all k � 1;

dimH0.X;Lk/ � c k�.L/ for all k � 1 multiple of k0:

Proof. The lower bound is obtained by taking k0 such that p WD dimYk0 D �.L/.
Then, by the rank theorem, there exists a point x0 2 X X Z.Vk0/ and a basis
.�0; : : : ; �N / of H0.X;Lk0/ such that �0.x0/ ¤ 0 and

�
d.�1=�0/ ^ : : : ^ d.�p=�0/

�
.x0/ ¤ 0:

Then by taking s D P.�0; : : : ; �p; 0; : : : ; 0/ in (40), we obtain an injection of the
space of homogeneous polynomials of degree d in pC1 variables intoH0.X;Lk0d /,
whence

h0.X;Lk0d / �
 
d C p

p

!
� dp=pŠ:

The proof of the upper bound proceeds as follows: select a Hermitian metric
h, on L and a finite family of coordinate balls Bj DB.zj ; rj / such that B 0

j D
B.zj ; rj =2/ coverX , and LjBj is trivial for each j . By moving a little bit the points
zj , we may assume that ˚kL has maximal rank at all points zj for all k (the bad
set is at most a countable union of analytic sets, so it is nowhere dense). If Lk has
many sections, one can solve a linear system in many unknowns to get a section s
vanishing at a high orderm at all centers zj . Then the Schwarz lemma gives

kskh;1 D sup
j

kskh;B0

j
� 2�mC.h/k sup

j

kskh;Bj � 2�mC.h/kkskh;1

where C.h/ is a bound for the oscillation of the metric h on Bj , which we may
assume to be finite after possibly shrinking Bj . Thus m � k logC.h/= log 2
if s ¤ 0. Since the sections of Lk are constant along the fibers of ˚kL, only
mdimYk#fzj g equations transversally to the fibers are needed to make s vanish at
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order m. Therefore we can choose m 
 .h0.X;Lk/=#fzj g/1= dimYk and still get a
non zero section, so that

h0.X;Lk/ 
 #fzj g �mdimYk � C k�.L/: ut

Corollary 17 (Siegel). For every compact complex manifold X

a.X/ WD tr deg
C

M .X/ � n:

Proof. Fix s algebraically independent elements f1; : : : ; fs 2 M .X/ and let D
be the sup of the pole divisors of the fj ’s. To every polynomial P.f1; : : : ; fs/
of degree � k corresponds injectively a section �P D P.f1; : : : ; fs/ 2
H0.X;O.kD//. A dimension count implies

ks

sŠ
�
 
k C s

s

!
� C k�.O.D// � C kn

by Lemma 16. Therefore s � n. ut
Now, the Grauert–Riemenschneider conjecture [50] can be stated as follows.

Grauert-Riemenschneider conjecture 18. A compact complex variety Y is
Moishezon if and only if there is a proper non singular modification X ! Y

and a Hermitian line bundle .L; h/ overX such that the curvature form�L;h is> 0
on a dense open subset of X .

Proof. When Y is Moishezon, it is well known that there exists a projective
algebraic modification X ; therefore we can even take L to be ample and then there
exists h such that �L;h > 0 everywhere on X .

The converse statement was proved by Siu in [85, 86], assuming only �L;h � 0

everywhere and �L;h > 0 in at least one point. Morse inequalities provide in fact a
much stronger criterion, requiring only the positivity of some curvature integral:

Theorem 19. If a Hermitian line bundle .L; h/ onX satisfies the integral condition

Z

X.L;h;�1/
.�L;h/

n > 0;

then �.L/ D n, in particularX is Moishezon.

In fact, the lower bound (24) applied with E D OX implies immediately that
h0.X;Lk/ � c kn, hence �.L/ D n. Now, if X is a modification of Y , we have
M .Y / ' M .X/, so a.X/ D a.Y /, and Y has to be Moishezon. ut
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1.3.2 Cohomology Estimates for nef Line Bundles

On a projective algebraic manifoldX , a line bundle L is said to be nef if L � C � 0

for every algebraic curve C � X . If ! is a given Kähler or Hermitian .1; 1/-form
on X , it can be shown (cf. [26]) that L is nef if and only if for every " > 0 there
exists a smooth Hermitian metric h" such that�L;h" � �"! onX ; in fact, the latter
property clearly implies

L � C D
Z

C

�L;h" � �"
Z

C

! H) L � C � 0

for every curve C . Conversely, if L � C � 0 for every curve C , the well-known
Kleiman criterion (cf. [53]) implies that kL CA is ample for every ample divisor A.
Hence there exists a smooth Hermitian metric hk on L such that

�kLCA D k�L;hk C�A;hA > 0 H) �L;hk � � 1
k
!; where ! D �A;hA > 0:

Therefore, one can introduce the following definition of nefness on an arbitrary
compact complex manifold.

Definition 20. Let X be a compact complex manifold and ! a given smooth
positive .1; 1/-form on X . A line bundle L ! X is said to be nef if for every
" > 0 there exists a smooth Hermitian metric h" on L such that �L;h" � �"!
everywhere on X .

A consequence of holomorphic Morse inequalities 21. If X is compact Kähler
and L is nef, for every holomorphic vector bundle E on X one has

hq.X;O.E/˝ O.kL// D o.kn/ for all q � 1:

Proof. Let ! be a Kähler metric. The nefness ofL implies that there exists a smooth
Hermitian metric h" on L such that �L;h" � �"!. On X.L; h"; 1/ we have exactly
1 negative eigenvalue �1 which is belongs to Œ�"; 0Œ and the other ones �j (j � 2)
are positive. The product �1 � � ��n satisfies j�1 � � ��nj � "

Q
j�2.�j C "/, hence

1

nŠ

ˇ̌
�n
L;h"

ˇ̌ � 1

.n � 1/Š"! ^ .�L;h" C "!/n�1 on X.L; h"; 1/.

By integrating, we find

Z

X.L;h";1/

�n
L;h"

� n"

Z

X

! ^ .c1.L/C "!/n�1

and the result follows. ut
Note 22. When X is non Kähler, D. Popovici [79] has announced bounds for the
Monge–Ampère masses of �L;h" which still imply the result, but the proof is much
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harder in that case. On the other hand, whenX is projective algebraic, an elementary
hyperplane section argument and an induction on dimension easily implies the
stronger upper bounds

hq.X;O.E/˝ O.kL// D O.kn�q/ for all q � 0: (42)

Hint. By Serre duality, it is enough to show that

hq.X;O.F /˝ O.�kL// D O.kq/ for every q � 0

and every holomorphic vector bundle F . Choose a very ample line bundle A so big
that F 0 D F � ˝O.A/ is Nakano positive, and apply the Nakano vanishing theorem
and Serre duality to see that Hq.X;O.F /˝ O.�A/˝ O.�kL// D 0 for all k and
q � 1. Use the exact sequence 0 ! OX.�A/ ! OX ! OA ! 0, take the tensor
product with O.F /˝ O.�kL/ and apply induction. ut
It is unknown whether the accurate bound (42) holds true on a general compact
complex manifold, even when X is assumed to be Kähler.

1.3.3 Distortion Inequalities for Asymptotic Fubini–Study Metrics

Another application of the heat kernel estimates is a generalization of G. Kempf’s
distortion inequalities [58, 60] to all projective algebraic manifolds. In this gener-
ality, the result was obtained by Th. Bouche [17], and in less generality (but with
somewhat stronger estimates) by G. Tian [98].

LetL be a positive Hermitian line bundle over a projective manifoldX , equipped
with a Hermitian metric !. Then Vk D H0.X;Lk/ has a natural Hermitian metric
given by the global L2 norm of sections. For k � k0 large enough, ˚kL is an
embedding and Lk can be identified to the pull-back ˚�

k O.1/. We want to compare
the original metric j � j ofL and the metric j � jFS induced by the Fubini–Study metric
of O.1/.

Let .s1; : : : ; sN / be an orthonormal basis ofH0.X;Lk/. It is not difficult to check
that

j
j2FS D j
j2
js1.x/j2 C � � � C jsN .x/j2 for 
 2 Lkx ;

thus all that we need is to get an estimate of
P jsj .x/j2. However, this sum is the

contribution of the 0 eigenvalue in the heat kernel

Kk
t .x; x/ D

C1X

jD1
e�2t�kj j j .x/j2
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associated to 2
k
�00
k in bidegree .0; 0/. We observe that non zero eigenvalues �kj

are also eigenvalues in bidegree .0; 1/, since @ is injective on the corresponding

eigenspaces. The associated eigenfunctions are @ j =
q
k�kj , for

k@ j k2 D hh�00
k j ;  j ii D k�kj :

Thus the summation
C1X

jD1
e�2t�kj j@ j .x/j2

is bounded by the heat kernel in bidegree .0; 1/, which is itself bounded by kne�ct
with c > 0 (note that ˛{J � ˛J � P j˛j j < 0 on X for jJ j D 1). Taking t D k"

with " small, one can check that all estimates remain uniformly valid and that the
contribution of the non zero eigenfunctions in Kk

t .x; x/ becomes negligible in C0

norm. Then Theorem 13 shows that

X
jsj .x/j2 	 Kk

t .x; x/ 	 kn.2�/�nj˛1.x/ � � �˛n.x/j

as t D k" ! C1. For 
 2 Lkx we get therefore the C0 uniform estimate

j
j2
j
j2FS

	
� k
2�

�nj˛1.x/ � � �˛n.x/j as k ! C1: (43)

As a consequence, the Fubini–Study metric on L induced by ˚kL converges
uniformly to the original metric. G. Tian [98] proved that this last convergence
statement holds in norm C4. It is now known that there is in fact an asymptotic
expansion in 1=k, and thereforeC1 convergence; this holds true even in the almost
complex setting, see [15, 82].

1.3.4 Algebraic Counterparts of the Holomorphic Morse Inequalities

One difficulty in the application of the analytic form of the inequalities is that
the curvature integral is in general quite uneasy to compute, since it is neither
a topological nor an algebraic invariant. However, the Morse inequalities can be
reformulated in a more algebraic setting in which only algebraic invariants are
involved. We give here two such reformulations—after they were found via analysis
in [30], F. Angelini [5] gave a purely algebraic proof (see also [88, 100] for related
ideas).

Theorem 23. Let L D F �G be a holomorphic line bundle over a compact Kähler
manifold X , where F and G are numerically effective line bundles. Then for every
q D 0; 1; : : : ; n D dimX , there is an asymptotic strong Morse inequality
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X

0�j�q
.�1/q�j hj .X; kL/ � kn

nŠ

X

0�j�q
.�1/q�j

 
n

j

!
F n�j �Gj C o.kn/:

Proof. By adding " times a Kähler metric ! to the curvature forms of F and G,
" > 0 one can write �L D Q�F;" � Q�G;" where Q�F;" D i

2�
�F C "! and Q�G;" D

i
2�
�G C "! are positive definite. Let �1 � � � � � �n > 0 be the eigenvalues of Q�G;"

with respect to Q�F;". Then the eigenvalues of i
2�
�L with respect to Q�F;" are the real

numbers 1 � �j and the set X.L; h;� q/ is the set f�qC1 < 1g of points x 2 X

such that �qC1.x/ < 1. The strong Morse inequalities yield

X

0�j�q
.�1/q�j hj .X; kL/ � kn

nŠ

Z

f�qC1<1g
.�1/q

Y

1�j�n
.1 � �j / Q�n

F;" C o.kn/:

On the other hand we have
 
n

j

!
Q�n�j
F;" ^ Q�j

G;" D �jn .�/
Q�n
F;";

where �jn .�/ is the j -th elementary symmetric function in �1; : : : ; �n , hence

X

0�j�q
.�1/q�j

 
n

j

!
F n�j �Gj D lim

"!0

Z

X

X

0�j�q
.�1/q�j �jn .�/ Q�n

F;":

Thus, to prove the lemma, we only have to check that

X

0�j�n
.�1/q�j �jn .�/� �f�qC1<1g.�1/q

Y

1�j�n
.1 � �j / � 0

for all �1 � � � � � �n � 0, where �f:::g denotes the characteristic function of a set.
This is easily done by induction on n (just split apart the parameter �n and write
�
j
n .�/ D �

j
n�1.�/C �

j�1
n�1 .�/ �n). ut

In the case q D 1, we get an especially interesting lower bound (this bound has
been observed and used by S. Trapani [100] in a similar context).

Consequence 24. h0.X; kL/�h1.X; kL/ � kn

nŠ
.F n�nF n�1 �G/�o.kn/. Therefore

some multiple kL has a section as soon as F n � nF n�1 �G > 0.

Remark 25. The weaker inequality

h0.X; kL/ � kn

nŠ
.F n � nF n�1 �G/ � o.kn/
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is easy to prove if X is projective algebraic. Indeed, by adding a small ample
Q-divisor to F andG, we may assume that F ,G are ample. Letm0G be very ample
and let k0 be the smallest integer � k=m0. Then h0.X; kL/ � h0.X; kF � k0m0G/.
We select k0 smooth members Gj , 1 � j � k0 in the linear system jm0Gj and use
the exact sequence

0 ! H0.X; kF �
X

Gj / ! H0.X; kF/ !
M

H0.Gj ; kFjGj /:

Kodaira’s vanishing theorem yields Hq.X; kF/ D 0 and Hq.Gj ; kFjGj / D 0 for
q � 1 and k � k0. By the exact sequence combined with Riemann–Roch, we get

h0.X; kL/ � h0.X; kF �
X

Gj /

� kn

nŠ
F n �O.kn�1/ �

X� kn�1

.n � 1/ŠF
n�1 �Gj �O.kn�2/

�

� kn

nŠ

�
F n � nk

0m0

k
F n�1 �G

�
�O.kn�1/

� kn

nŠ

�
F n � nF n�1 �G

�
�O.kn�1/:

(This simple proof is due to F. Catanese.) ut
Corollary 26. Suppose that F and G are nef and that F is big. Some multiple of
mF �G has a section as soon as

m > n
F n�1 �G
F n

:

In the last condition, the factor n is sharp: this is easily seen by taking X D
P
n
1 and F D O.a; : : : ; a/ and G D O.b1; : : : ; bn/ over Pn1 ; the condition of the

corollary is then m >
P
bj =a, whereas k.mF � G/ has a section if and only if

m � sup bj =a; this shows that we cannot replace n by n.1 � "/.

1.4 Morse Inequalities on q-Convex Varieties

Thierry Bouche [16] has obtained an extension of holomorphic Morse inequalities
to the case of strongly q-convex manifolds. We explain here the main ideas involved.

A complex (non compact) manifold X of dimension n is strongly q-convex in
the sense of Andreotti and Grauert [3] if there exists a C1 exhaustion function  
on X such that i@@ has at least n � q C 1 positive eigenvalues outside a compact
subset ofX . In this case, the Andreotti–Grauert theorem shows that all cohomology
groups Hm.X;F / with values in a coherent analytic sheaf are finite dimensional
form � q.



Applications of Pluripotential Theory to Algebraic Geometry 173

Theorem 27. Let L, E be holomorphic vector bundles over X with rankL D 1,
rankE D r . Assume that X is strongly q-convex and that L has a Hermitian metric
h for which�L;h has at least n� pC 1 nonnegative eigenvalues outside a compact
subsetK � X . Then for allm � pC q � 1 the following strong Morse inequalities
hold:

nX

`Dm
.�1/`�m dimH`.X;E ˝ Lk/ � r

kn

nŠ

Z

X.L;h;�m/
.�1/m�n

L;h C o.kn/:

Proof. For every c 2 R, we consider the sublevel sets

Xc D fx 2 X I  .x/ < cg:

Select c0 such that i@@ has n � q C 1 positive eigenvalues on X X Xc. One can
choose a Hermitian metric!0 onX in such a way that the eigenvalues 	01 � � � � � 	0n
of i@@ with respect to !0 satisfy

� 1

n
� 	01 � � � � � 	0q�1 � 1 and 	0q D � � � D 	0n D 1 on X X Xc0 I (44)

this can be achieved by taking !0 equal to i@@ on a C1 subbundle of TX of
rank n � q C 1 on which i@@ is positive, and !0 very large on the orthogonal
complement. We set ! D e�!0 where � is a function increasing so fast at infinity
that ! will be complete.

More important, we multiply the metric of L by a weight e��ı where � is a
convex increasing function. The resulting Hermitian line bundle is denoted .L�; h�/.
For any .0;m/ form u with values in E ˝Lk , viewed as an .n;m/ form with values
in E ˝ Lk ˝�nTX , the Bochner–Kodaira–Nakano formula implies an inequality

hh�00
ku; uii �

Z

X

khŒi�L�;h�/;��u; ui C hW u; ui

whereW depends only on the curvature of E ˝�nTX and the torsion of !. By the
formulas of Sect. 1.2.3, we have

hŒi�L�;h� /;��u; ui � .˛1 C � � � C ˛m/juj2

where ˛1 � � � � � ˛n are the eigenvalues of

i�L�;h� D i�L;h C i@@.� ı  / � i�L;h C .�0 ı  /i@@ :
If ˇ is the lowest eigenvalue of i�L;h with respect to !, we find

˛j � ˇ C .�0 ı  /	0j =e� ;
˛1 C � � � C ˛m � mˇ C .�0 ı  /.	01 C � � � C 	0m/=e

� ;
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and by (44) we get for all m � q :

˛1 C � � � C ˛m � mˇ C 1

n
e���0 ı  on X X Xc0:

It follows that one can choose � increasing very fast in such a way that the Bochner
inequality becomes

h�00
ku; ui � k

Z

XXXc0
A.x/ju.x/j2 � C1

Z

X

ju.x/j2 (45)

where A � 1 is a function tending to C1 at infinity on X and C1 � 0. Now,
Rellich’s lemma easily shows that�00

k has a compact resolvent. Hence the spectrum
of�00

k is discrete and its eigenspaces are finite dimensional. Standard arguments also
show the following:

Lemma 28. When � increases sufficiently fast at infinity, the space H m.X;Lk� ˝
E/ ofL2-harmonic forms of bidegree .0;m/ for�00

k is isomorphic to the cohomology
groupHm.X;E ˝ Lk/ for all k 2 N andm � q.

For a domain˝ �� X , we consider the quadratic form

Q
k;m
˝ .u/ D 1

k

Z

˝

j@kuj2 C j@�
kuj2

with Dirichlet boundary conditions on @˝ . We denote by H k;m
��;˝ the direct sum of

all eigenspaces of Qk;m
˝ corresponding to eigenvalues � � (i.e. � k� for�00

k).

Lemma 29. For every � � 0 and " > 0, there exists a domain ˝ �� X and an
integer k0 such that

dim H k;m
��;˝ � dim H k;m

��;X � dim H k;m
��C";˝ for k � k0:

Proof. The left hand inequality is a straightforward consequence of the minimax
principle, because the domain of the global quadratic formQ

k;m
˝ is contained in the

domain of Qk;m
X .

For the other inequality, let u 2 H k;m
��;X . Then (45) gives

k

Z

XXXc0
Ajuj2 � C1

Z

Xc0

juj2 � k�

Z

X

juj2:

Choose c2 > c1 > c0 so that A.x/ � a on X X Xc1 and a cut-off function ' with
compact support in Xc2 such that 0 � ' � 1 and ' D 1 on Xc1 . Then we find

Z

XXXc1
juj2 � C1 C k�

ka

Z

X

juj2:
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For a large enough, we get
R
XXXc1 juj2 � "kuk2. Set ˝ D Xc2 . Then

Q
k;m
˝ .'u/ D 1

k

Z

˝

j@' ^ u C '@kuj2 C j'@�
ku � @' uj2

� .1C "/Q
k;m
X .u/C C2

k

�
1C 1

"

�
kuk2

� .1C "/.�C C2

k"
/kuk2:

As k'uk2 � R
Xc1

juj2 � .1 � "/kuk2 , we infer

Q
k;m
˝ .'u/ � 1C "

1 � "

�
�C C2

k"

�
k'uk2:

If " is replaced by a suitable smaller number and k taken large enough, we obtain
Qk;m
˝ .v/ � .� C "/kvk2 for all v 2 'H k;m

��;X . Then the right hand inequality in
Lemma 29 follows by the minimax principle. ut

Now, Corollary 12 easily computes the counting function Nk;m
˝ for the eigen-

values:

lim
�!0C

lim
k!C1k�nN k;m

˝ .�/ D r

nŠ

Z

X.L�;h�;m/

.�1/m
� i

2�
�L�;h� /

�n
:

Applying this to the Witten complex H k;�
��;X , we easily infer the inequality of

Theorem 27, except that c.L/ is replaced by c.L�/. However, up to now, the
inequality is valid for allm � q. Take the convex function � equal to 0 on ��1; c0�.
Then

�L�;h� D i

2�
�L�;h� D �L;h C i

2�
@@.� ı  /

coincides with�L;h onXc0 and has at most .p�1/C.q�1/ negative eigenvalues on
X XXc0 . HenceX.L�; h�;m/ D X.L; h;m/ form � pCq�1 and�L�;h� D �L;h
on these sets. Theorem 27 is proved. ut

As a corollary, one obtains a general a priori estimate for the Monge–Ampère
operator .i@@/n on q-convex manifolds.

Corollary: calculus inequalities 30. Let X be a strongly q-convex manifold and
' a C1 function on X , weakly p-convex outside a compact subset of X . For ` D
0; 1; : : : ; n, letG` be the open set of points where i@@' is non degenerate and admits
` negative eigenvalues. Then for all m � p D q � 1

nX

`Dm

Z

G`

.i@@'/m has the sign of .�1/m:
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This result has been first obtained by Y.T. Siu [87] for q-convex domains in
a Stein manifold. At that time, the q-convex case of the inequalities was not yet
available and Siu had to rely on a rather sophisticated approximation argument
of Stein manifolds by algebraic varieties; the proof could then be reduced to the
compact case.

The general statement given above is in fact a direct consequence of Theorem 27:
take forL the trivial bundleL D OX equipped with the metric defined by the weight
e�' and E D OX . Since Hm.X;Lk/ D Hm.X;OX/ is independent of k and finite
dimensional, Theorem 27 implies

kn
nX

`Dm

Z

G`

.�1/m.i@@'/n � constant � o.kn/

for all k � k0 and m � p C q � 1, whence the result. ut

2 Approximation of Currents and Intersection Theory

2.1 Introduction

Many concepts described in this section (e.g. pseudo-effectivity) are quite general
and make sense on an arbitrary compact complex manifold X—no projective or
Kähler assumption is needed. In this general context, it is better to work with
@@-cohomology classes instead of De Rham cohomology classes: we define the
Bott–Chern cohomology of X to be

H
p;q
BC .X;C/ D ˚

d -closed .p; q/-formsg=˚@@-exact .p; q/-formsg: (46)

It is easily shown that these cohomology groups are finite dimensional and can
be computed either with spaces of smooth forms or with currents ; in fact, they
can be computed by certain complexes of sheaves of forms or currents that both
provide fine resolutions of the same sheaves of holomorphic or anti-holomorphic
forms. Our statement therefore follows formally from general results of sheaf theory.
Also, finiteness can be obtained by the usual Cartan–Serre proof based on Montel’s
theorem for Čech cohomology. In both cases, the quotient topology of Hp;q

BC .X;C/

induced by the Fréchet topology of smooth forms or by the weak topology of
currents is Hausdorff. Clearly, H �

BC.X;C/ is a bigraded algebra, and it is trivial
by definition that there are always canonical morphisms

H
p;q
BC .X;C/ ! H

p;q

@
.X;C/;

M

pCqDk
H
p;q
BC .X;C/ ! Hk

DR.X;C/: (47)
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By Hodge decomposition and by the well-known @@-lemma of Kähler geometry,
these morphisms are isomorphisms whenX is Kähler; especially, we get a canonical
algebra isomorphism

H �
DR.X;C/ '

M

p;q

H
p;q

@
.X;C/ if X is Kähler: (48)

We will see in paragraph 5 (Remark 63) that this is true more generally if X is in
the Fujiki class C , i.e., the class of manifolds bimeromorphic to Kähler manifolds.

2.2 Pseudo-Effective Line Bundles and Singular Hermitian
Metrics

Let L be a holomorphic line bundle on a compact complex manifold X . It is
important for many applications to allow singular Hermitian metrics.

Definition 31. A singular Hermitian metric h on L is a Hermitian metric such that,
for any trivialisation LjU ' U � C, the metric is given by h D e�' , ' 2 L1loc.U /.

The curvature tensor

�L;h D i

2�
@@' D � i

2�
@@ logh (49)

can then be computed in the sense of distributions, and defines in this way a
(global) closed .1; 1/-current on X . It defines a (real) cohomology class f�L;hg 2
H
1;1
BC .X;C/ which is mapped to the first Chern class c1.L/ by the canonical

morphisms (2). We will therefore still denote this Bott–Chern class by c1.L/. The
positive case is of special interest.

Definition 32. We say that L pseudo-effective if c1.L/ 2 H1;1
BC .X;C/ is the

cohomology class of some closed positive current T , i.e. if L can be equipped with
a singular Hermitian metric h with T D �L;h � 0 as a current, in other words, if
the weight functions ' can be chosen to be plurisubharmonic on each trivialization
open set U .

The locus where h has singularities turns out to be extremely important. One way
is to introduce multiplier ideal sheaves following A. Nadel [75]. The main idea
actually goes back to the fundamental works of Bombieri [12] and H. Skoda [94].

Definition 33. Let ' be a psh .plurisubharmonic/ function on an open subset
˝ � X . To ' we associate the ideal subsheaf I .'/ � O˝ of germs of holomorphic
functions f 2 O˝;x such that jf j2e�' is integrable with respect to the Lebesgue
measure in some local coordinates near x.
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The zero variety V.I .'// is thus the set of points in a neighborhood of which
e�' is non integrable. The following result implies that this is always an analytic set.

Proposition 34 ([75]). For any psh function ' on ˝ � X , the sheaf I .'/ is
a coherent sheaf of ideals over ˝ . Moreover, if ˝ is a bounded Stein open set,
the sheaf I .'/ is generated by any Hilbert basis of the L2 space H 2.˝; '/ of
holomorphic functions f on ˝ such that

R
˝

jf j2e�' d� < C1.

Proof. Since the result is local, we may assume that ˝ is a bounded pseudoconvex
open set in C

n. By the strong Noetherian property of coherent sheaves, the family
of sheaves generated by finite subsets of H 2.˝; '/ has a maximal element on each
compact subset of ˝ , hence H 2.˝; '/ generates a coherent ideal sheaf J � O˝ .
It is clear that J � I .'/; in order to prove the equality, we need only check that
Jx C I .'/x \ msC1

˝;x D I .'/x for every integer s, in view of the Krull lemma.
Let f 2 I .'/x be defined in a neighborhood V of x and let � be a cut-off function
with support in V such that � D 1 in a neighborhood of x. We solve the equation
@u D g WD @.�f / by means of Hörmander’s L2 estimates [4, 56], applied with the
strictly psh weight

Q'.z/ D '.z/C .nC s/ log jz � xj2 C jzj2:
We get a solution u such that

R
˝

juj2e�' jz � xj�2.nCs/d� < 1, thus F D �f � u
is holomorphic, F 2 H 2.˝; '/ and fx � Fx D ux 2 I .'/x \ msC1

˝;x . This proves
the coherence. Now, J is generated by any Hilbert basis of H 2.˝; '/, because it
is well-known that the space of sections of any coherent sheaf is a Fréchet space,
therefore closed under local L2 convergence. ut

Another important way of measuring singularities is via Lelong numbers—a
natural generalization of the concept of multiplicity to psh functions. Recall that
the Lelong number of a function ' 2 Psh.˝/ at a point x0 is defined to be

�.'; x0/ D lim inf
z!x0

'.z/

log jz � x0j D lim
r!0C

supB.x0;r/ '

log r
: (50)

In particular, if ' D log jf j with f 2 O.˝/, then �.'; x0/ is equal to the vanishing
order

ordx0.f / D supfk 2 N ID˛f .x0/ D 0; 8j˛j < kg:
The link with multiplier ideal sheaves is provided by the following standard result
due to Skoda [94].

Lemma 35. Let ' be a psh function on an open set ˝ and let x 2 ˝ .

(a) If �.'; x/ < 2, then e�' is Lebesgue integrable on a neighborhood of x, in
particular I .'/x D O˝;x .

(b) More generally, if �.'; x/ � 2.nC s/ for some integer s � 0, then

e�' � cjz � xj�2n�2s ; c > 0
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in a neighborhood of x, and I .'/x � msC1
˝;x , where m˝;x is the maximal ideal

of O˝;x . In particular e�' is non integrable at x if �.'; x/ � 2n.
(c) The zero variety V.I .'// of I .'/ satisfies

V2n.'/ � V.I .'// � E2.'/

where Ec.'/ D fx 2 X I �.'; x/ � cg is the c-upperlevel set of Lelong
numbers of '.

The only non trivial part is Lemma 35(a); the proof relies on the Bochner–
Martinelli representation formula for T D i

�
@@' (see [94]). One should observe

that Lemma 35(a) (resp. (b)) is optimal, as one can see by taking '.z/ D � log jz1j,
resp. '.z/ D � log jzj, on ˝ D C

n.

2.3 Hermitian Metrics with Minimal Singularities
and Analytic Zariski Decomposition

We show here by a general “abstract” method that a pseudo-effective line bundle
always has a Hermitian metric hmin with minimal singularities among those with
nonnegative curvature �L;h � 0 in the sense of currents. The following definition
was introduced in [44].

Definition 36. Let L be a pseudo-effective line bundle on a compact complex
manifoldX . Consider two Hermitian metrics h1, h2 on L with curvature�L;hj � 0

in the sense of currents.

(a) We will write h1 4 h2, and say that h1 is less singular than h2, if there exists a
constant C > 0 such that h1 � Ch2.

(b) We will write h1 	 h2, and say that h1, h2 are equivalent with respect to
singularities, if there exists a constant C > 0 such that C�1h2 � h1 � Ch2.

Of course h1 4 h2 if and only if the associated weights in suitable trivializations
locally satisfy '2 � '1 C C . This implies in particular �.'1; x/ � �.'2; x/ at each
point. The above definition is motivated by the following observation.

Theorem 37. For every pseudo-effective line bundle L over a compact complex
manifold X , there exists up to equivalence of singularities a unique class of
Hermitian metrics h with minimal singularities such that�L;h � 0.

Proof. The proof is almost trivial. We fix once for all a smooth metric h1 (whose
curvature is of random sign and signature), and we write singular metrics ofL under
the form h D h1e� . The condition�L;h � 0 is equivalent to i

2�
@@ � �u where

u D �L;h1
. This condition implies that  is plurisubharmonic up to the addition

of the weight '1 of h1, and therefore locally bounded from above. Since we are
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concerned with metrics only up to equivalence of singularities, it is always possible
to adjust  by a constant in such a way that supX  D 0. We now set

hmin D h1e� min ;  min.x/ D sup
 

 .x/

where the supremum is extended to all functions  such that supX  D 0 and
i
2�
@@ � �u. By standard results on plurisubharmonic functions (see Lelong

[69]),  min still satisfies i
2�
@@ min � �u (i.e. the weight '1 C  min of hmin

is plurisubharmonic), and hmin is obviously the metric with minimal singularities
that we were looking for. [In principle one should take the upper semicontinuous
regularization  �

min of  min to really get a plurisubharmonic weight, but since  �
min

also participates to the upper envelope, we obtain here  min D  �
min automatically].

ut
Remark 38. In general, the supremum  D supj2I  j of a locally dominated
family of plurisubharmonic functions  j is not plurisubharmonic strictly speak-
ing, but its “upper semi-continuous regularization”  �.z/ D lim sup�!z  .�/

is plurisubharmonic and coincides almost everywhere with  , with  � �  .
However, in the context of (41),  � still satisfies  � � 0 and i

2�
@@ � �u, hence

 � participates to the upper envelope. As a consequence, we have � �  and thus
 D  � is indeed plurisubharmonic. Under a strict positivity assumption, namely
if L is a big line bundle (i.e. the curvature can be taken to be strictly positive in
the sense of currents, see Definition 42(d) and Theorem 43(b), then hmin can be
shown to possess some regularity properties. The reader may consult [7] for a rather
general (but certainly non trivial) proof that  min possesses locally bounded second
derivatives @2 min=@zj @zk outside an analytic set Z � X ; in other words, �L;hmin

has locally bounded coefficients on X XZ. ut

Definition 39. Let L be a pseudo-effective line bundle. If h is a singular Hermitian
metric such that �L;h � 0 and

H0.X;mL˝ I .h˝m// ' H0.X;mL/ for all m � 0;

we say that h is an analytic Zariski decomposition of L.

In other words, we require that h has singularities so mild that the vanishing
conditions prescribed by the multiplier ideal sheaves I .h˝m/ do not kill any
sections of L and its multiples.

Exercise 40. A special case is when there is an isomorphism pL D AC E where
A and E are effective divisors such that H0.X;mpL/ D H0.X;mA/ for all m and
O.A/ is generated by sections. ThenA possesses a smooth Hermitian metric hA, and
this metric defines a singular Hermitian metric h on L with poles 1

p
E and curvature

1
p
�A;hA C 1

p
ŒE�. Show that this metric h is an analytic Zariski decomposition.

Note: When X projective and there is a decomposition pL D A C E with A nef
(see Definition 20),E effective andH0.X;mpL/ D H0.X;mA/ for allm, one says
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that the Q-divisor equality L D 1
p
A C 1

p
E is an algebraic Zariski decomposition

ofL. It can be shown that Zariski decompositions exist in dimension 2, but in higher
dimension they do not exist in general. ut
Theorem 41. The metric hmin with minimal singularities provides an analytic
Zariski decomposition.

It follows that an analytic Zariski decomposition always exists (while algebraic
decompositions do not exist in general, especially in dimension 3 and more).

Proof. Let � 2 H0.X;mL/ be any section. Then we get a singular metric h onL by
putting j
jh D j
=�.x/1=mj for 
 2 Lx , and it is clear that j� jhm D 1 for this metric.
Hence � 2 H0.X;mL˝I .h˝m//, and a fortiori � 2 H0.X;mL˝I .h˝m

min // since
hmin is less singular than h. ut

2.4 Description of Positive Cones (Kähler and Projective
Cases)

Let us recall that an integral cohomology class in H2.X;Z/ is the first Chern class
of a holomorphic (or algebraic) line bundle if and only if it lies in the Neron–Severi
group

NS.X/ D Ker
�
H2.X;Z/ ! H2.X;OX/

�
(51)

(this fact is just an elementary consequence of the exponential exact sequence 0 !
Z ! O ! O� ! 0). If X is compact Kähler, as we will suppose from now on in
this section, this is the same as saying that the class is of type .1; 1/ with respect to
Hodge decomposition.

Let us consider the real vector space NSR.X/ D NS.X/˝Z R, which can be
viewed as a subspace of the spaceH1;1.X;R/ of real .1; 1/ cohomology classes. Its
dimension is by definition the Picard number

�.X/ D rankZ NS.X/ D dimR NSR.X/: (52)

We thus have 0 � �.X/ � h1;1.X/, and the example of complex tori shows that all
intermediate values can occur when n D dimX � 2.

The positivity concepts for line bundles considered in Sects. 1.3.2 and 2.2 possess
in fact natural generalizations to .1; 1/ classes which are not necessarily integral
or rational—and this works at least in the category of compact Kähler manifolds
(in fact, by using Bott–Chern cohomology, one could even extend these concepts to
arbitrary compact complex manifolds).

Definition 42. Let .X; !/ be a compact Kähler manifold.

(a) The Kähler cone is the set K � H1;1.X;R/ of cohomology classes f!g of
Kähler forms. This is an open convex cone.
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=

=

=

◦=

¨Kahler cone inH1 1(X R) [open]

pseudo-effective cone in H1 1(X R) [closed]

big cone in H1 1(X R) [interior of ]

nef cone in H1 1(X R) [closure of ]

Fig. 1 Positive cones in a compact Kähler manifold

(b) The closure K of the Kähler cone consists of classes f˛g 2 H1;1.X;R/ such
that for every " > 0 the sum f˛C"!g is Kähler, or equivalently, for every " > 0,
there exists a smooth function '" onX such that ˛C i@@'" � �"!. We say that
K is the cone of nef .1; 1/-classes.

(c) The pseudo-effective cone is the set E � H1;1.X;R/ of cohomology classes
fT g of closed positive currents of type .1; 1/. This is a closed convex cone.

(d) The interior E ı of E consists of classes which still contain a closed positive
current after one subtracts "f!g for " > 0 small, in other words, they are classes
of closed .1; 1/-currents T such that T � "!. Such a current will be called a
Kähler current, and we say that fT g 2 H1;1.X;R/ is a big .1; 1/-class.

The openness of K is clear by definition, and the closedness of E is a
consequence of the fact that bounded sets of currents are weakly compact (as follows
from the similar weak compactness property for bounded sets of positive measures).
It is then clear that K � E .

In spite of the fact that cohomology groups can be defined either in terms of
forms or currents, it turns out that the cones K and E are in general different.
To see this, it is enough to observe that a Kähler class f˛g satisfies

R
Y ˛

p > 0 for
every p-dimensional analytic set. On the other hand, if X is the surface obtained by
blowing-up P

2 in one point, then the exceptional divisorE ' P
1 has a cohomology

class f˛g such that
R
E ˛ D E2 D �1, hence f˛g … K , although f˛g D fŒE�g 2 E .

In case X is projective, all Chern classes c1.L/ of line bundles lie by definition
in NS.X/, and likewise, all classes of real divisors D D P

cjDj , cj 2 R, lie in
NSR.X/. In order to deal with such algebraic classes, we therefore introduce the
intersections

KNS D K \ NSR.X/; ENS D E \ NSR.X/;

and refer to classes of H1;1.X;R/ not contained in NSR.X/ as transcendental
classes.

A very important fact is that all four cones KNS, ENS, K NS, E ı
NS have simple

algebraic interpretations.
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NS

NS

NS
R
(X )Fig. 2 Positive algebraic

classes in a projective
manifold

Theorem 43. Let X be a projective manifold. Then

(a) KNS is equal to the open cone Amp.X/ generated by classes of ample .or very
ample/ divisors A .recall that a divisor A is said to be very ample if the linear
system H0.X;O.A// provides an embedding of X in projective space/.

(b) The interior E ı
NS is the cone Big.X/ generated by classes of big divisors, namely

divisorsD such that h0.X;O.kD// � c kdimX for k large.
(c) ENS is the closure Eff.X/ of the cone generated by classes of effective divisors,

i.e. divisors D D P
cjDj , cj 2 RC.

(d) The closed cone K NS consists of the closure Nef.X/ of the cone generated by
nef divisorsD .or nef line bundlesL/, namely effective integral divisorsD such
that D � C � 0 for every curve C , also equal to Amp.X/.

In other words, the terminology “nef”, “big”, “pseudo-effective” used for classes of
the full transcendental cones appear to be a natural extrapolation of the algebraic
case.

Proof. First notice that since all of our cones C have non empty interior in NSR.X/

(which is a rational vector space in terms of a basis of elements in H2.X;Q/), the
rational points CQ WD C \ NSQ.X/, NSQ.X/ D NS.X/˝Z Q, are dense in each of
them. (a) is therefore just Kodaira’s embedding theorem when we look at rational
points, and properties (b) and (d) are obtained easily by passing to the closure of
the open cones. We will now give details of the proof only for (b) which is possibly
slightly more involved.

By looking at points of E ı
Q

D E ı \ NSQ.X/ and multiplying by a denominator,
it is enough to check that a line bundle L such that c1.L/ 2 E ı is big. However,
this means that L possesses a singular Hermitian metric hL such that �L;hL � "!

for some Kähler metric !. For some integer p0 > 0, we can then produce a
singular Hermitian metric with positive curvature and with a given logarithmic
pole hp0L e

��.z/ log jz�x0j2 in a neighborhood of every point x0 2 X (here � is a
smooth cut-off function supported on a neighborhood of x0). Then Hörmander’s
L2 existence theorem [4, 56] can be used to produce sections of Lk which generate
all jets of order .k=p0/ � n at points x0, so that L is big.
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Conversely, ifL is big andA is a (smooth) very ample divisor, the exact sequence
0 ! OX.kL �A/ ! OX.kL/ ! OA.kL�A/ ! 0 and the estimates

h0.X;OX.kL// � ckn; h0.A;OA.kL�A// D O.kn�1/

imply that OX.kL�A/ has a section for k large, thus kL�A � E for some effective
divisor E . This means that there exists a singular metric hL on L such that

�L;hL D 1

k

�
�A;hA C ŒE�

�
� 1

k
!

where ! D �A;hA , hence c1.L/ 2 E ı. ut
Corollary 44. If L is nef, then L is big .i.e. �.L/ D n/ if and only if Ln > 0.
Moreover, ifL is nef and big, then for every ı > 0,L has a singular metric h D e�'
such that maxx2X �.'; x/ � ı and i�L;h � " ! for some " > 0. The metric h can
be chosen to be smooth on the complement of a fixed divisor E , with logarithmic
poles along E .

Proof. By holomorphic Morse inequalities 21 and the Riemann–Roch formula,
we have

h0.X; kL/ D �.X; kL/C o.kn/ D knLn=nŠC o.kn/;

whence the first statement. By the proof of Theorem 43(b), there exists a singular
metric h1 on L such that

i

2�
�L;h1 D 1

k

� i

2�
�A;hA C ŒE�

�
� 1

k
!; ! D i

2�
�A;hA :

Now, for every " > 0, there is a smooth metric h" on L such that i
2�
�L;h" � �"!.

The convex combination of metrics h0
" D hk"1 h

1�k"
" is a singular metric with poles

along E which satisfies

i

2�
�L;h0

"
� ".! C ŒE�/ � .1 � k"/"! � k"2!:

Its Lelong numbers are "�.E; x/ and they can be made smaller than ı by choosing
" > 0 small. ut
We still need a few elementary facts about the numerical dimension of nef line
bundles.

Definition 45. Let L be a nef line bundle on a compact Kähler manifold .X; !/.
One defines the numerical dimension of L to be

nd.L/ D max
˚
k D 0; : : : ; n I c1.L/k ¤ 0 in H2k.X;R/

�
:
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Notice that if L is nef, each power c1.L/k can be represented by a closed positive
current�k 2 c1.L/k obtained as a weak limit of powers of smooth positive forms

�k D lim
m!C1

�
˛ C 1

m
! C @@'m

�k
; ˛ 2 c1.L/:

Such a weak limit exists since
R
X

�
˛C 1

m
!C @@'m

�k ^!n�k is uniformly bounded
as m ! C1. Then we see that
Z

X

c1.L/
k ^ !n�k D

Z

X

�k ^ !n�k > 0 ” �k ¤ 0 ” c1.L/
k ¤ 0:

By Corollary 44, we have �.L/ D n if and only if nd.L/ D n. In general, we merely
have an inequality.

Proposition 46. If L is a nef line bundle on a compact Kähler manifold .X; !/,
then �.L/ � nd.L/.

Proof. We consider arbitrary irreducible analytic subsets Z � X and prove by
induction on p D dimZ that �.LjZ/ � nd.LjZ/ where nd.LjZ/ is the supremum
of all integers k such that c1.LjZ/k ¤ 0, i.e.

R
X
ŒZ�^ c1.L/k ^!p�k > 0. This will

prove our statement when Z D X , p D n. The statement is trivial if p D 0, so we
suppose now that p > 0. We can also assume that r D �.LjZ/ > 0, otherwise there
is nothing to prove. This implies that a sufficient large multiple m0L has at least
two independent sections �0, �1 on Z. Consider the linear system ja0�0 C a1�1j,
a D Œa0 W a1� 2 P

1
C

, and take Y D Ya � Z to be an irreducible component of the
divisor of �a WD a0�0 C a1�1 which is not a fixed component when a varies. For m
sufficiently divisible, ˚mLjZ

has rank r at a generic (smooth) point of Z, hence the
rank of .˚mLjZ

/jY is � r 0 WD min.r; p � 1/ if a 2 P
1
C

is itself generic. A fortiori
rank.˚mLjY

/ � r 0 (we may even have sections on Y which do not extend to Z).
By the induction hypothesis we find

Z

X

ŒY � ^ c1.L/r 0 ^ !p�1�r 0

> 0:

Now, we use the fact that ŒZ� ^ c1.m0L/ � ŒY � can be represented by an effective
cycle (the sum of all components ¤ Y in the divisor of our generic section �a).
This implies

Z

X

ŒZ� ^ c1.L/r 0C1 ^ !p�1�r 0 � 1

m0

Z

X

ŒY � ^ c1.L/r 0 ^ !p�1�r 0

> 0:

If r D p, we have r 0 D p�1, hence r 0 C1 D r and we are done. If r < p, we have
r 0 D r and then we use the obvious inequality ˛ � C0! for some representative
˛ 2 c1.L/ and some C0 > 0 to conclude that

Z

X

ŒZ� ^ c1.L/r ^ !p�r � 1

C0

Z

X

ŒZ� ^ c1.L/rC1 ^ !p�1�r > 0: ut
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Remark 47. It may happen that �.L/ < nd.L/: take e.g.

L ! X D X1 �X2
equal to the total tensor product of an ample line bundle L1 on a projective
manifold X1 and of a unitary flat line bundle L2 on an elliptic curve X2 given
by a representation �1.X2/ ! U.1/ such that no multiple kL2 with k ¤ 0 is
trivial. Then H0.X; kL/ D H0.X1; kL1/ ˝ H0.X2; kL2/ D 0 for k > 0, and
thus �.L/ D �1. However c1.L/ D pr�

1 c1.L1/ has numerical dimension equal
to dimX1. The same example shows that the Kodaira dimension may increase by
restriction to a subvariety (if Y D X1 � fpointg, then �.L�Y / D dimY ).

2.5 Approximation of Plurisubharmonic Functions via
Bergman Kernels

We prove here, as an application of the Ohsawa–Takegoshi L2 extension
theorem [78], that every psh function on a pseudoconvex open set ˝ � C

n can
be approximated very accurately by functions of the form c log jf j, where c > 0

and f is a holomorphic function. The main idea is taken from [28]. For other
applications to algebraic geometry, see [29] and Demailly–Kollár [38]. We first
recall the statement of the generalized L2 extension theorem; its proof relies on a
subtle enhancement of the Bochner–Kodaira technique, and we refer to the literature
for details.

Theorem 48 (Ohsawa–Takegoshi [78], Manivel [70]). Let X be a complex
n-dimensional manifold possessing a smooth plurisubharmonic exhaustion function
.“weakly pseudoconvex” or “weakly 1-convex” manifold/, and a Kähler metric
!. Let L .resp. E/ be a Hermitian holomorphic line bundle .resp. a Hermitian
holomorphic vector bundle of rank r over X/, and s a global holomorphic section
of E . Assume that s is generically transverse to the zero section, and let

Y D ˚
x 2 X I s.x/ D 0;�rds.x/ 6D 0

�
; p D dimY D n � r:

Finally, let ' be an arbitrary plurisubharmonic function on X . Assume that the
.1; 1/-form�LCr i

2�
@@.log jsj2C'/ is semi-positive and that there is a continuous

function ˛ � 1 such that the following two inequalities hold everywhere on X W

(a) �L C r
i

2�
@@.log jsj2 C '/ � ˛�1 f�Es; sg

jsj2 ;

(b) jsj � e�˛ .

Then for every holomorphic section fY of the line bundle �nT �
X ˝ L over Y such

that
R
Y

jfY j2e�' j�r.ds/j�2dV! < C1, there exists a holomorphic extension fX
of fY over X such that
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Z

X

jfX j2e�'

jsj2r .� log jsj/2 dVX;! � Cr

Z

Y

jfY j2e�'

j�r.ds/j2 dVY;! ;

where Cr is a numerical constant depending only on r .

Theorem 49. Let ' be a plurisubharmonic function on a bounded pseudoconvex
open set ˝ � C

n. For every m > 0, let H˝.m'/ be the Hilbert space of
holomorphic functions f on ˝ such that

R
˝

jf j2e�2m'd� < C1 and let 'm D
1
2m

log
P j�`j2 where .�`/ is an orthonormal basis of H˝.m'/. Then there are

constants C1; C2 > 0 independent ofm such that

(a) '.z/ � C1

m
� 'm.z/ � sup

j��zj<r
'.�/ C 1

m
log

C2

rn
for every z 2 ˝ and r <

d.z; @˝/. In particular, 'm converges to ' pointwise and in L1loc topology on˝
when m ! C1 and

(b) �.'; z/� n

m
� �.'m; z/ � �.'; z/ for every z 2 ˝ .

Proof. (a) Note that
P j�`.z/j2 is the square of the norm of the evaluation linear

form evz W f 7! f .z/ on H˝.m'/, since �`.z/ D evz.�`/ is the `-th coordinate
of evz in the orthonormal basis .�`/. In other words, we have

X
j�`.z/j2 D sup

f 2B.1/
jf .z/j2

where B.1/ is the unit ball of H˝.m'/ (The sum is called the Bergman kernel
associated with H˝.m'/). As ' is locally bounded from above, theL2 topology
is actually stronger than the topology of uniform convergence on compact
subsets of ˝ . It follows that the series

P j�`j2 converges uniformly on ˝ and
that its sum is real analytic. Moreover, by what we just explained, we have

'm.z/ D sup
f 2B.1/

1

m
log jf .z/j:

For z0 2 ˝ and r < d.z0; @˝/, the mean value inequality applied to the psh
function jf j2 implies

jf .z0/j2 � 1

�nr2n=nŠ

Z

jz�z�0j<r
jf .z/j2d�.z/

� 1

�nr2n=nŠ
exp

�
2m sup

jz�z0j<r
'.z/

� Z

˝

jf j2e�2m'd�:

If we take the supremum over all f 2 B.1/ we get

'm.z0/ � sup
jz�z0j<r

'.z/C 1

2m
log

1

�nr2n=nŠ
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and the second inequality in (a) is proved—as we see, this is an easy conse-
quence of the mean value inequality. Conversely, the Ohsawa–Takegoshi L2

extension Theorem 48 applied to the 0-dimensional subvariety fz0g � ˝ and to
the trivial bundlesL D ˝ �C andE D ˝ �C

n, with the section s.z/ D z � z0
of E , shows that for any a 2 C there is a holomorphic function f on ˝ such
that f .z0/ D a and

Z

˝

jf j2e�2m'd� � C3jaj2e�2m'.z0/;

where C3 only depends on n and diam˝ . We fix a such that the right hand side
is 1. Then kf k � 1 and so we get

'm.z0/ � 1

m
log jf .z0/j D 1

m
log jaj D '.z/ � logC3

2m
:

The inequalities given in (a) are thus proved. Taking r D 1=m, we find that

lim
m!C1 sup

j��zj<1=m
'.�/ D '.z/

by the upper semicontinuity of ', and so lim'm.z/ D '.z/, since
lim 1

m
log.C2mn/ D 0.

(b) The above estimates imply

sup
jz�z0j<r

'.z/ � C1

m
� sup

jz�z0j<r
'm.z/ � sup

jz�z0j<2r
'.z/C 1

m
log

C2

rn
:

After dividing by log r < 0 when r ! 0, we infer

supjz�z0j<2r '.z/C 1
m

log C2
rn

log r
� supjz�z0j<r 'm.z/

log r
� supjz�z0j<r '.z/ � C1

m

log r
;

and from this and definition (50), it follows immediately that

�.'; x/� n

m
� �.'m; z/ � �.'; z/: ut

Theorem 49 implies in a straightforward manner the deep result of [84] on the
analyticity of the Lelong number upperlevel sets.

Corollary 50 ([84]). Let ' be a plurisubharmonic function on a complex mani-
fold X . Then, for every c > 0, the Lelong number upperlevel set

Ec.'/ D ˚
z 2 X I �.'; z/ � c

�

is an analytic subset of X .
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Proof. Since analyticity is a local property, it is enough to consider the case of a
psh function ' on a pseudoconvex open set ˝ � C

n. The inequalities obtained in
Theorem 49(b) imply that

Ec.'/ D
\

m�m0
Ec�n=m.'m/:

Now, it is clear that Ec.'m/ is the analytic set defined by the equations �.˛/` .z/ D 0

for all multi-indices ˛ such that j˛j < mc. Thus Ec.'/ is analytic as a (countable)
intersection of analytic sets. ut
Remark 51. It can be easily shown that the Lelong numbers of any closed positive
.p; p/-current coincide (at least locally) with the Lelong numbers of a suitable
plurisubharmonic potential ' (see [94]). Hence Siu’s theorem also holds true for
the Lelong number upperlevel sets Ec.T / of any closed positive .p; p/-current T .

Theorem 49 motivates the following definition.

Definition 52. A plurisubharmonic function ' on a complex manifold X is said to
have analytic singularities if it can be written locally near every point x0 2 X as

'.z/ D c log
X

1�j�N
jgj .z/j2 CO.1/; i.e. up to equivalence of singularities;

with a family of holomorphic functions .gj / defined near x0 and c > 0. Also,
a closed positive .1; 1/ current T is said to have analytic singularities if its
plurisubharmonic potential has analytic singularities. We also refer to this situation
by saying that ' or T have logarithmic poles. When X is algebraic, we say that the
singularities are algebraic if c 2 QC and the .gj / are sections of some algebraic
line bundle O.D/, x0 … SuppD.

Notice that by Noetherianity, a convergent series log
P

j2N jgj j2 can be replaced by
a finite sum up to equivalence of singularities, thus Theorem 49 always produces
plurisubharmonic functions 'm with analytic singularities.

2.6 Global Approximation of Closed (1,1)-Currents
on a Compact Complex Manifold

We take hereX to be an arbitrary compact complex manifold (no Kähler assumption
is needed). Now, let T be a closed .1; 1/-current on X . We assume that T is quasi-
positive, i.e. that there exists a .1; 1/-form 	 with continuous coefficients such
that T � 	 ; the case of positive currents (	 D 0) is of course the most important.
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Lemma 53. There exists a smooth closed .1; 1/-form ˛ representing the same @@-
cohomology class as T and a quasi-psh function ' on X such that T D ˛ C i

�
@@'.

.We say that a function ' is quasi-psh if its complex Hessian is bounded below by a

.1; 1/-form with locally bounded coefficients, that is, if i@@' is quasi-positive/.

Proof. Select an open covering .Uj / ofX by coordinate balls such that T D i
�
@@'j

over Uj , and construct a global function ' D P
�j 'j by means of a partition of

unity f�j g subordinate to Uj . Now, we observe that '�'k is smooth on Uk because
all differences 'j � 'k are smooth in the intersections Uj \ Uk, and we have the
equality ' � 'k D P

�j .'j � 'k/. Therefore ˛ WD T � i
�
@@' is smooth. ut

By replacing T with T � ˛ and 	 with 	 � ˛, we can assume without loss of
generality that fT g D 0, i.e. that T D i

�
@@' with a quasi-psh function ' on X such

that i
�
@@' � 	 .

Our goal is to approximate T in the weak topology by currents Tm D i
�
@@'m

such their potentials 'm have analytic singularities in the sense of Definition 52,
more precisely, defined on a neighborhood Vx0 of any point x0 2 X in the form
'm.z/ D cm log

P
j j�j;mj2 C O.1/, where cm > 0 and the �j;m are holomorphic

functions on Vx0 .
We select a finite covering .W�/ of X with open coordinate charts, and shrink

them a little to be on the safe side. Given ı > 0, we take in eachW� a maximal family
of points with (coordinate) distance to the boundary � 3ı and mutual distance �
ı=2. In this way, we get for ı > 0 small a finite covering of X by open balls U 0

j

of radius ı (actually every point is even at distance � ı=2 of one of the centers,
otherwise the family of points would not be maximal), such that the concentric
ball Uj of radius 2ı is relatively compact in the corresponding chart W� . Let �j W
Uj �! B.aj ; 2ı/ be the isomorphism given by the coordinates of W� ; by taking
ı > 0 small enough, we can assume that the coordinates of Uj extend to Uj [ Uk
whenever Uj \ Uk ¤ ;. Let ".ı/ be a modulus of continuity for 	 on the sets Uj ,
such that limı!0 ".ı/ D 0 and 	x �	x0 � 1

2
".ı/ !x for all x; x0 2 Uj . We denote by

	j the .1; 1/-form with constant coefficients on B.aj ; 2ı/ such that ��
j 	j coincides

with 	 � ".ı/ ! at ��1
j .aj /. Then we have

0 � 	 � ��
j 	j � 2".ı/ ! on Uj (53)

for ı > 0 small. We set 'j D ' ı ��1
j on B.aj ; 2ı/ and let qj be the homogeneous

quadratic function in z � aj such that i
�
@@qj D 	j on B.aj ; 2ı/. Then 'j � qj is

plurisubharmonic on B.aj ; 2ı/ since

i

�
@@..'j � qj / ı �j / D T � ��

j 	j � 	 � ��
j 	j � 0: (54)

We let U 0
j �� U 00

j �� Uj be the concentric balls of radii ı, 1:5 ı, 2ı respectively.
On each open set Uj the function  j WD ' � qj ı �j D .'j � qj / ı �j is
plurisubharmonic, so Theorem 49 applied with ˝ D Uj ' B.aj ; 2ı/ produces
functions
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 j;m D 1

2m
log

X

`

j�j;`j2; .�j;`/ D basis of HUj .m j /: (55)

The functions  j;m C qj ı �j on Uj then have to be glued together by a partition of
unity technique. For this, we rely on the following “discrepancy” lemma, estimating
the variation of the approximating functions on overlapping balls.

Lemma 54. There is a constant C independent of m and ı such that the quasi-psh
functions wj;m D 2m. j;m C qj ı �j /, i.e.

wj;m.x/ D 2m qj ı �j .x/C log
X

`

ˇ̌
�j;`.x/

ˇ̌2
; x 2 U 00

j ;

satisfy
jwj;m � wk;mj � C

�
log ı�1 Cm".ı/ı2

�
on U 00

j \ U 00
k :

Proof. The details will be left as an exercise to the reader. The main idea is the
following: for any holomorphic function fj 2 HUj .m j /, a @ equation @u D
@.�fj / can be solved on Uk, where � is a cut-off function with support in U 00

j \U 00
k ,

on a ball of radius < ı=4, equal to 1 on the ball of radius ı=8 centered at a given
point x0 2 U 00

j \ U 00
k , with j@� j D O.ı�1/. We apply the L2 estimate with respect

to the weight .n C 1/ log jx � x0j2 C 2m k , where the first term is picked up so
as to force the solution u to vanish at x0, in such a way that Fk D u � �fj is
holomorphic and Fk.x0/ D fj .x0/. The discrepancy between the weights on U 00

j

and U 00
k is given by

 j �  k D ��qj ı �j � qk ı �k
�
:

By re-centering the quadratic functions at �j .x0/, resp. �k.x0/, we can write

qj ı �j � qk ı �k D ReGjk CRjk

where Gjk is holomorphic on Uj [ Uk [equal to a difference of linear forms in the
coordinates of B.aj ; 2ı/ and B.ak; 2ı/], Gjk.x0/ D qj ı �j .x0/ � qk ı �k.x0/ and
Rjk D O.".ı/ı2/ is a remainder term coming from the change of coordinates and
the slight discrepancy between @@.qj ı �j / and @@.qk ı �k/ at the common point x0,
with Rjk.x0/ D 0. In this way, we get

jemGjk j2e�m k D e�m j�2mRjk ;

so that we have a uniform control of the L2 norm of the solution fk D emGjkFk D
emGjk .u � �fj / of the form

Z

Uk

jfkj2e�2m k � Cı�2n�4emO.".ı/ı2/
Z

Uj

jfj j2e�2m j :
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The required estimate follows, using the equality

e2m j;m.x/ D
X

`

j�j;`.x/j2 D sup
f 2HUj .m j /; kf k�1

jf .x/j2 on Uj ;

and the analogous equality on Uk . ut
Now, the actual gluing of our quasi-psh functions is performed using the

following elementary partition of unity calculation.

Lemma 55. Let U 0
j �� U 00

j be locally finite open coverings of a complex manifold
X by relatively compact open sets, and let �j be smooth nonnegative functions with
support in U 00

j , such that �j � 1 on U 00
j and �j D 1 on U 0

j . Let Aj � 0 be such that

i.�j @@�j � @�j ^ @�j / � �Aj! on U 00
j X U 0

j

for some positive .1; 1/-form!. Finally, let wj be quasi-psh functions onUj with the
property that i@@wj � 	 for some real .1; 1/-form 	 onM , and let Cj be constants
such that

wj .x/ � Cj C sup
k¤j;U 0

k3x
wk.x/ on U 00

j X U 0
j :

Then the function w D log
�P

�2j e
wj
�

is quasi-psh and satisfies

i@@w � 	 � 2
�X

j

�U 00

j XU 0

j
Aj e

Cj
�
!:

Proof. If we set ˛j D �j @wj C 2@�j , a straightforward computation shows that

@w D
P
.�2j @wj C 2�j @�j /e

wj

P
�2j e

wj
D
P
�j e

wj ˛jP
�2j e

wj
;

@@w D
P�

˛j ^ ˛jC�2j @@wjC2�j @@�j�2@�j^@�j
�
ewj

P
�2j e

wj
�
P
j;k �j e

wj �ke
wk˛j^˛k

�P
�2j e

wj
�2

D
P
j<k

ˇ̌
�j ˛k��k˛j

ˇ̌2
ewj ewk

�P
�2j e

wj
�2 C

P
�2j e

wj @@wj
P
�2j e

wj
C
P�

2�j @@�j�2@�j^@�j
�
ewj

P
�2j e

wj

by using the Legendre identity. The first term in the last line is nonnegative and the
second one is � 	 . In the third term, if x is in the support of �j @@�j � @�j ^ @�j ,
then x 2 U 00

j X U 0
j and so wj .x/ � Cj C wk.x/ for some k ¤ j with U 0

k 3 x and
�k.x/ D 1. This gives

i

P�
2�j @@�j � 2@�j ^ @�j

�
ewj

P
�2j e

wj
� �2

X

j

�U 00

j XU 0

j
eCj Aj!:

The expected lower bound follows. ut
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We apply Lemma 55 to functions Qwj;m which are just slight modifications of the
functions wj;m D 2m. j;m C qj ı �j / occurring in Lemma 54:

Qwj;m.x/ D wj;m.x/C 2m
�C1
m

C C3".ı/.ı
2=2 � j�j .x/j2/

�

D 2m
�
 j;m.x/C qj ı �j .x/C C1

m
C C3".ı/.ı

2=2� j�j .x/j2/
�

where x 7! z D �j .x/ is a local coordinate identifying Uj to B.0; 2ı/, C1 is the
constant occurring in Lemma 54 and C3 is a sufficiently large constant. It is easy to
see that we can take Aj D C4ı

�2 in Lemma 55. We have

Qwj;m � wj;m C 2C1 Cm
C3

2
".ı/ı2 on B.xj ; ı=2/ � U 0

j ;

since j�j .x/j � ı=2 on B.xj ; ı=2/, while

Qwj;m � wj;m C 2C1 �mC3".ı/ı
2 on U 00

j X U 0
j :

Form � m0.ı/ D .log ı�1=.".ı/ı2/, Lemma 54 implies jwj;m�wk;mj � C5m".ı/ı
2

on U 00
j \ U 00

k . Hence, for C3 large enough, we get

Qwj;m.x/ � sup
k¤j;B.xk;ı=2/3x

wk;m.x/ � sup
k¤j;U 0

k3x
wk;m.x/ on U 00

j X U 0
j ;

and we can take Cj D 0 in the hypotheses of Lemma 55. The associated function
w D log

�P
�2j e

Qwj;m� is given by

w D log
X

j

�2j exp
�
2m
�
 j;m C qj ı �j C C1

m
C C3".ı/.ı

2=2� j�j j2/�
�
:

If we define 'm D 1
2m

w, we get

'm.x/ WD 1

2m
w.x/ �  j;m.x/C qj ı �j .x/C C1

m
C C3

4
".ı/ı2 > '.x/

in view of Lemma 54, by picking an index j such that x 2 B.xj ; ı=2/. In the
opposite direction, the maximum number N of overlapping balls Uj does not
depend on ı, and we thus get

w � logN C 2m
�

max
j

˚
 j;m.x/C qj ı �j .x/

�C C1

m
C C3

2
".ı/ı2

�
:
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By definition of  j we have supj��xj<r  j .�/ � supj��xj<r '.�/� qj ı �j .x/CC5r

thanks to the uniform Lipschitz continuity of qj ı �j , thus by Lemma 54 again we
find

'm.x/ � logN

2m
C sup

j��xj<r
'.�/C C1

m
C 1

m
log

C2

rn
C C3

2
".ı/ı2 C C5r:

By taking for instance r D 1=m and ı D ım ! 0, we see that 'm converges to '.
On the other hand (53) implies i

�
@@qj ı �j .x/ D ��

j 	j � 	 � 2".ı/!, thus

i

�
@@ Qwj;m � 2m

�
	 � C6".ı/!

�
:

Lemma 55 then produces the lower bound

i

�
@@w � 2m

�
	 � C6".ı/!

�� C7ı
�2!;

whence
i

�
@@'m � 	 � C8".ı/!

for m � m0.ı/ D .log ı�1/=.".ı/ı2/. We can fix ı D ım to be the smallest value
of ı > 0 such that m0.ı/ � m, then ım ! 0 and we have obtained a sequence of
quasi-psh functions 'm satisfying the following properties.

Theorem 56. Let ' be a quasi-psh function on a compact complex manifold X
such that i

�
@@' � 	 for some continuous .1; 1/-form 	 . Then there is a sequence

of quasi-psh functions 'm such that 'm has the same singularities as a logarithm
of a sum of squares of holomorphic functions and a decreasing sequence "m > 0

converging to 0 such that

(a) '.x/ < 'm.x/ � sup
j��xj<r

'.�/C C
� j log r j

m
C r C "m

�

with respect to coordinate open sets covering X . In particular, 'm converges to
' pointwise and in L1.X/ and

(b) �.'; x/� n

m
� �.'m; x/ � �.'; x/ for every x 2 X I

(c)
i

�
@@'m � 	 � "m!.

In particular, we can apply this to an arbitrary positive or quasi-positive closed
.1; 1/-current T D ˛ C i

�
@@'.

Corollary 57. Let T be a quasi-positive closed .1; 1/-current on a compact
complex manifoldX such that T � 	 for some continuous .1; 1/-form 	 . Then there
is a sequence of currents Tm whose local potentials have the same singularities
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as 1=m times a logarithm of a sum of squares of holomorphic functions and a
decreasing sequence "m > 0 converging to 0 such that

(a) Tm converges weakly to T ,

(b) �.T; x/� n

m
� �.Tm; x/ � �.T; x/ for every x 2 X ;

(c) Tm � 	 � "m!.

We say that our currents Tm are approximations of T with logarithmic poles.

By using blow-ups of X , the structure of the currents Tm can be better understood.
In fact, consider the coherent ideals Jm generated locally by the holomorphic

functions .�.k/j;m/ on Uk in the local approximations

'k;m D 1

2m
log

X

j

j�.k/j;mj2 CO.1/

of the potential ' of T on Uk . These ideals are in fact globally defined, because
the local ideals J

.k/
m D .�

.k/
j;m/ are integrally closed, and they coincide on the

intersections Uk \ U` as they have the same order of vanishing by the proof of
Lemma 54. By Hironaka [55], we can find a composition of blow-ups with smooth
centers 
m W QXm ! X such that 
�

mJm is an invertible ideal sheaf associated with
a normal crossing divisor Em. Now, we can write


�
m'k;m D 'k;m ı 
m D 1

m
log jsEm j C Q'k;m

where sEm is the canonical section of O.�Em/ and Q'k;m is a smooth potential. This
implies


�
mTm D 1

m
ŒEm�C ˇm (56)

where ŒEm� is the current of integration over Em and ˇm is a smooth closed .1; 1/-
form which satisfies the lower bound ˇm � 
�

m.	 �"m!/. (Recall that the pull-back
of a closed .1; 1/-current by a holomorphic map f is always well-defined, by taking
a local plurisubharmonic potential ' such that T D i@@' and writing f �T D
i@@.' ı f /). In the remainder of this section, we derive from this a rather important
geometric consequence, first appeared in [42]). We need two related definitions.

Definition 58. A Kähler current on a compact complex spaceX is a closed positive
current T of bidegree .1; 1/ which satisfies T � "! for some " > 0 and some
smooth positive Hermitian form ! on X .

Definition 59. A compact complex manifold is said to be in the Fujiki class C
if it is bimeromorphic to a Kähler manifold .or equivalently, using Hironaka’s
desingularization theorem, if it admits a proper Kähler modification/.

Theorem 60. A compact complex manifoldX is bimeromorphic to a Kähler mani-
fold .i.e. X 2 C / if and only if it admits a Kähler current.
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Proof. IfX is bimeromorphic to a Kähler manifold Y , Hironaka’s desingularization
theorem implies that there exists a blow-up QY of Y (obtained by a sequence of
blow-ups with smooth centers) such that the bimeromorphic map from Y to X can
be resolved into a modification
 W QY ! X . Then QY is Kähler and the push-forward
T D 
� Q! of a Kähler form Q! on QY provides a Kähler current on X . In fact, if !
is a smooth Hermitian form on X , there is a constant C such that 
�! � C Q!
(by compactness of QY ), hence

T D 
� Q! � 
�.C�1
�!/ D C�1!:

Conversely, assume that X admits a Kähler current T � "!. By Corollary 57(c),
there exists a Kähler current QT D Tm � "

2
! (with m � 1 so large that "m � "=2)

in the same @@-cohomology class as T , possessing logarithmic poles. Observation
(56) implies the existence of a composition of blow-ups 
 W QX ! X such that


� QT D Œ QE�C Q̌ on QX;

where QE is a Q-divisor with normal crossings and Q̌ a smooth closed .1; 1/-form
such that Q̌ � "

2

�!. In particular Q̌ is positive outside the exceptional locus of 
.

This is not enough yet to produce a Kähler form on QX , but we are not very far.
Suppose that QX is obtained as a tower of blow-ups

QX D XN ! XN�1 ! � � � ! X1 ! X0 D X;

where XjC1 is the blow-up of Xj along a smooth center Yj � Xj . Denote by
SjC1 � XjC1 the exceptional divisor, and let 
j W XjC1 ! Xj be the blow-up
map. Now, we use the following simple

Lemma 61. For every Kähler current Tj onXj , there exists "jC1 > 0 and a smooth
form ujC1 in the @@-cohomology class of ŒSjC1� such that

TjC1 D 
�
j Tj � "jC1ujC1

is a Kähler current on XjC1.

Proof. The line bundle O.�SjC1/jSjC1 is equal to OP.Nj /.1/ where Nj is the
normal bundle to Yj in Xj . Pick an arbitrary smooth Hermitian metric on Nj , use
this metric to get an induced Fubini–Study metric on OP.Nj /.1/, and finally extend
this metric as a smooth Hermitian metric on the line bundle O.�SjC1/. Such a
metric has positive curvature along tangent vectors of XjC1 which are tangent to
the fibers of SjC1 D P.Nj / ! Yj . Assume furthermore that Tj � ıj!j for some
Hermitian form !j on Xj and a suitable 0 < ıj � 1. Then


�
j Tj � "jC1ujC1 � ıj


�
j !j � "jC1ujC1
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where 
�
j !j is semi-positive on XjC1, positive definite on XjC1 X SjC1, and also

positive definite on tangent vectors of TXjC1jSjC1
which are not tangent to the fibers

of SjC1 ! Yj . The statement is then easily proved by taking "jC1 � ıj and
by using an elementary compactness argument on the unit sphere bundle of TXjC1

associated with any given Hermitian metric. ut
End of proof of Theorem 60. If Quj is the pull-back of uj to the final blow-up QX , we
conclude inductively that 
� QT �P "j Quj is a Kähler current. Therefore the smooth
form

Q! WD Q̌ �
X

"j Quj D 
� QT �
X

"j Quj � Œ QE�
is Kähler and we see that QX is a Kähler manifold. ut
Remark 62. A special case of Theorem 60 is the following characterization of
Moishezon varieties (i.e. manifolds which are bimeromorphic to projective alge-
braic varieties or, equivalently, whose algebraic dimension is equal to their complex
dimension): A compact complex manifoldX is Moishezon if and only ifX possesses
a Kähler current T such that the De Rham cohomology class fT g is rational, i.e.
fT g 2 H2.X;Q/. In fact, in the above proof, we get an integral current T if we take
the push forward T D 
� Q! of an integral ample class f Q!g on Y , where 
 W Y ! X

is a projective model of Y . Conversely, if fT g is rational, we can take the "j ’s to be
rational in Lemma 61. This produces at the end a Kähler metric Q! with rational De
Rham cohomology class on QX . Therefore QX is projective by the Kodaira embedding
theorem. This result was already observed in [59] (see also [13,14] and Sect. 3.7 for
a more general perspective based on a singular holomorphic Morse inequalities).

Remark 63. Hodge decomposition also holds true for manifolds X 2 C . In fact
let 
 W QX ! X be a modification such that QX is Kähler. Then there are natural
morphisms


� W Hp;q

@
.X;C/ ! H

p;q

@
. QX;C/; 
� W Hp;q

@
. QX;C/ ! H

p;q

@
.X;C/

induced respectively by the pull-back of smooth forms (resp. the direct image of
currents). Clearly, 
� ı 
� D Id, therefore 
� is injective and 
� surjective, and
similar results hold true for Bott–Chern cohomology or De Rham cohomology.
It follows easily from this that the @@-lemma still holds true for X 2 C , and that
there are isomorphisms

H
p;q
BC .X;C/ ! H

p;q

@
.X;C/;

M

pCqDk
H
p;q
BC .X;C/ ! Hk

DR.X;C/:

2.7 Zariski Decomposition and Mobile Intersections

Let X be compact Kähler and let ˛ 2 E ı be in the interior of the pseudo–effective
cone. In analogy with the algebraic context such a class ˛ is called “big”, and it
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can then be represented by a Kähler current T , i.e. a closed positive .1; 1/-current
T such that T � ı! for some smooth Hermitian metric ! and a constant ı � 1.
We first need a variant of the approximation theorem proved in Paragraph 5.

Regularization theorem for currents 64. Let X be a compact complex manifold
equipped with a Hermitian metric !. Let T D ˛ C i@@' be a closed .1; 1/-current
on X , where ˛ is smooth and ' is a quasi-plurisubharmonic function. Assume that
T � 	 for some real .1; 1/-form 	 on X with real coefficients. Then there exists a
sequence Tm D ˛ C i@@'m of closed .1; 1/-currents such that

(a) 'm .and thus Tm/ is smooth on the complement X XZm of an analytic set Zm,
and the Zm’s form an increasing sequence

Z0 � Z1 � � � � � Zm � � � � � X:

(b) There is a uniform estimate Tm � 	 � ım! with lim # ım D 0 as m tends to
C1.

(c) The sequence .'m/ is non increasing, and we have lim # 'm D '. As a
consequence, Tm converges weakly to T as m tends to C1.

(d) Near Zm, the potential 'm has logarithmic poles, namely, for every x0 2 Zm,
there is a neighborhood U of x0 such that 'm.z/ D �m log

P
` jgm;`j2 C O.1/

for suitable holomorphic functions .gm;`/ on U and �m > 0. Moreover, there
is a .global/ proper modification 
m W QXm ! X of X , obtained as a sequence
of blow-ups with smooth centers, such that 'm ı 
m can be written locally on
QXm as

'm ı 
m.w/ D �m
�X

n` log j Qg`j2 C f .w/
�

where . Qg` D 0/ are local generators of suitable .global/ divisors E` on QXm
such that

P
E` has normal crossings, n` are positive integers, and the f ’s are

smooth functions on QXm.

Sketch of proof. We essentially repeat the proofs of Theorems 49 and 56 with
additional considerations. One fact that does not follow readily from these proofs
is the monotonicity of the sequence 'm (which we will not really need anyway—
it can be obtained by applying Theorem 49 with 2m instead of m, and by using
the Ohsawa–Takegoshi L2 extension theorem 48 for potentials 2m'.x/ C 2m'.y/

on the diagonal of X � X , so that the restriction is 2mC1'.x/ on the diagonal; we
refer e.g. to [44] for details). The map 
m is obtained by blowing-up the (global)
ideals Jm defined by the holomorphic functions .gj;m/ in the local approximations
'm 	 1

2m
log

P
j jgj;mj2. By Hironaka [55], we can achieve that 
�

mJm is an
invertible ideal sheaf associated with a normal crossing divisor. ut
Corollary 65. If T is a Kähler current, then one can write T D lim Tm for a
sequence of Kähler currents Tm which have logarithmic poles with coefficients in
1
m
Z, i.e. there are modifications 
m W Xm ! X such that


�
mTm D ŒEm�C ˇm
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NS

NS

NSR(Xm)

α

[Em]
βm

α = μ∗
mα = [Em]+ βm

Fig. 3 Approximate Zariski decomposition

where Em is an effective Q-divisor onXm with coefficients in 1
m
Z .the “fixed part”/

and ˇm is a closed semi-positive form .the “mobile part”/.

Proof. We apply Theorem 64 with 	 D "! and m so large that ım � "=2. Then
Tm has analytic singularities and Tm � "

2
!, so we get a composition of blow-ups


m W Xm ! X such

�
mTm D ŒEm�C ˇm;

where Em is an effective Q-divisor and ˇm � "
2

�
m!. In particular, ˇm is strictly

positive outside the exceptional divisors, by playing with the multiplicities of the
components of the exceptional divisors in Em, we could even achieve that ˇm is a
Kähler class onXm. Notice also that by construction,
m is obtained by blowing-up
the multiplier ideal sheaves I .mT / D I .m'/ associated to a potential ' of T .

ut
The more familiar algebraic analogue would be to take ˛ D c1.L/ with a big

line bundle L and to blow-up the base locus of jmLj, m � 1, to get a Q-divisor
decomposition


�
mL 	 Em CDm; Em effective; Dm base point free: (57)

(One says that Dm is base point free if H0.X;O.Dm/ is generated by sections, in
other words if Dm is entirely “mobile” in the linear system jDmj). Such a blow-up
is usually referred to as a “log resolution” of the linear system jmLj, and we say
that Em CDm is an approximate Zariski decomposition of L. We will also use this
terminology for Kähler currents with logarithmic poles.

Definition 66. We define the volume, or mobile self-intersection of a class ˛ 2
H1;1.X;R/ to be

Vol.˛/ D sup
T2˛

Z

XXSing.T /
T n D sup

T2˛

Z

QX
ˇn > 0;
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where the supremum is taken over all Kähler currents T 2 ˛ with logarithmic
poles, and 
�T D ŒE� C ˇ with respect to some modification 
 W QX ! X .
Correspondingly, we set

Vol.˛/ D 0 if ˛ … E ı.

In the special case where ˛ D c1.L/ is an integral class, we have the following
interpretation of the volume.

Theorem 67. If L is a big line bundle and 
�
mL 	 Em C Dm is a log resolution

of jmLj, we have

Vol.c1.L// D lim
m!C1Dn

m D lim
m!C1

nŠ

mn
h0.X;mL/;

Sketch of proof. Given a Kähler current T 2 c1.L/ with logarithmic pole, we can
always take a blow-up 
 W QX ! X so that 
�T D ŒE�C ˇ where E is an effective
R-divisor and ˇ � 0. By using a perturbation technique as in Lemma 61, we can
always assume that E is a Q-divisor and that ˇ is Kähler. Then fˇg D 
�c1.L/ �
fŒE�g is a rational class and therefore ˇ is the first Chern class c1.A/ of an ample
Q-divisor on QX . When m is a multiple of a suitable denominator m0 and m D
qm0 C r , 0 � r < m0, we get by the elementary Riemann–Roch formula

h0.X;mL/ � h0. QX;m
�L �m0Œm=m0�E/ D h0. QX;m0Œm=m0�AC r
�L/

	 mn

nŠ

Z

QX
ˇn;

hence lim inf nŠ
mn
h0.X;mL/ � Vol.c1.L// by taking the supremum over all such

currentsT . In the other direction, the inequality lim sup nŠ
mn
h0.X;mL/ � Vol.c1.L//

is obtained by subtracting a small rational multiple "A of an ample line bundle A.
One shows that multiples of L � "A roughly have the same number of sections
as those of L by an exact sequence argument similar to what was done in the
proof of Theorem 43(b). By a result of Fujita [47] (cf. also [37]), the volume of
the base point free part Dm;" in a log resolution of jm.L � "A/j approximates
lim sup nŠ

mn
h0.X;m.L � "A//, so we get 
�

m;"L D Em;" C .Dm;" C "A/ where
Dm;" CA is ample. The positive .1; 1/-current Tm;" D .
m;"/��Dm;"C"A is a Kähler
current with logarithmic poles and its volume approaches lim sup nŠ

mn
h0.X;mL/

when " � 1 andm is large. ut
In these terms, we get the following statement.

Proposition 68. LetL be a big line bundle on the projective manifoldX . Let " > 0.
Then there exists a modification
 W X" ! X and a decomposition
�.L/ D ECˇ

with E an effective Q-divisor and ˇ a big and nef Q-divisor such that

Vol.L/ � " � Vol.ˇ/ � Vol.L/:
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It is very useful to observe that the supremum in Definition 66 is actually achieved
by a collection of currents whose singularities satisfy a filtering property. Namely,
if T1 D ˛ C i@@'1 and T2 D ˛ C i@@'2 are two Kähler currents with logarithmic
poles in the class of ˛, then

T D ˛ C i@@'; ' D max.'1; '2/ (58)

is again a Kähler current with weaker singularities than T1 and T2. One could define
as well

T D ˛ C i@@'; ' D 1

2m
log.e2m'1 C e2m'2/; (580)

where m D lcm.m1;m2/ is the lowest common multiple of the denominators
occurring in T1, T2. Now, take a simultaneous log-resolution 
m W Xm ! X for
which the singularities of T1 and T2 are resolved as Q-divisors E1 and E2. Then
clearly the associated divisor in the decomposition 
�

mT D ŒE� C ˇ is given by
E D min.E1;E2/. By doing so, the volume

R
Xm
ˇn gets increased, as we shall see

in the proof of Theorem 69 below.

Theorem 69 (Boucksom [18]). Let X be a compact Kähler manifold. We denote
here by Hk;k

�0 .X/ the cone of cohomology classes of type .k; k/ which have non-
negative intersection with all closed semi-positive smooth forms of bidegree .n �
k; n � k/.
(a) For each integer k D 1; 2; : : : ; n, there exists a canonical “mobile intersection

product”

E � � � � � E ! Hk;k
�0 .X/; .˛1; : : : ; ˛k/ 7! h˛1 � ˛2: � � � :˛k�1 � ˛ki

such that Vol.˛/ D h˛ni whenever ˛ is a big class.

(b) The product is increasing, homogeneous of degree 1 and superadditive in each
argument, i.e.

h˛1 � � � .˛0
j C ˛00

j / � � �˛ki � h˛1 � � �˛0
j � � �˛ki C h˛1 � � �˛00

j � � �˛ki:

It coincides with the ordinary intersection product when the ˛j 2 K are nef
classes.

(c) The mobile intersection product satisfies the Hovanskii–Teissier inequalities
[57, 96, 97]

h˛1 � ˛2: � � � :˛ni � .h˛n1 i/1=n � � � .h˛nni/1=n .with h˛nj i D Vol.˛j //:

(d) For k D 1, the above “product” reduces to a .non linear/ projection operator

E ! E1; ˛ ! h˛i
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onto a certain convex subcone E1 of E such that K � E1 � E . Moreover, there
is a “divisorial Zariski decomposition”

˛ D fN.˛/g C h˛i

where N.˛/ is a uniquely defined effective divisor which is called the “negative
divisorial part” of ˛. The map ˛ 7! N.˛/ is homogeneous and subadditive,
and N.˛/ D 0 if and only if ˛ 2 E1.

(e) The components of N.˛/ always consist of divisors whose cohomology classes
are linearly independent, especially N.˛/ has at most � D rankZ NS.X/
components.

Proof. We essentially repeat the arguments developed in [18], with some simplifi-
cations arising from the fact that X is supposed to be Kähler from the beginning.

(a) First assume that all classes ˛j are big, i.e. ˛j 2 E ı. Fix a smooth closed
.n � k; n � k/ semi-positive form u on X . We select Kähler currents Tj 2 ˛j
with logarithmic poles, and a simultaneous log-resolution
 W QX ! X such that


�Tj D ŒEj �C ˇj :

We consider the direct image current
�.ˇ1^� � �^ˇk/ (which is a closed positive
current of bidegree .k; k/ on X ) and the corresponding integrals

Z

QX
ˇ1 ^ � � � ^ ˇk ^ 
�u � 0:

If we change the representative Tj with another current T 0
j , we may always

take a simultaneous log-resolution such that 
�T 0
j D ŒE 0

j � C ˇ0
j , and by using

(580) we can always assume that E 0
j � Ej . Then Dj D Ej � E 0

j is an
effective divisor and we find ŒEj �C ˇj � ŒE 0

j �C ˇ0
j , hence ˇ0

j � ˇj C ŒDj �.
A substitution in the integral implies

Z

QX
ˇ0
1 ^ ˇ2 ^ � � � ^ ˇk ^ 
�u

D
Z

QX
ˇ1 ^ ˇ2 ^ � � � ^ ˇk ^ 
�u C

Z

QX
ŒD1� ^ ˇ2 ^ � � � ^ ˇk ^ 
�u

�
Z

QX
ˇ1 ^ ˇ2 ^ � � � ^ ˇk ^ 
�u:

Similarly, we can replace successively all forms ˇj by the ˇ0
j , and by doing so,

we find
Z

QX
ˇ0
1 ^ ˇ0

2 ^ � � � ^ ˇ0
k ^ 
�u �

Z

QX
ˇ1 ^ ˇ2 ^ � � � ^ ˇk ^ 
�u:
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We claim that the closed positive currents 
�.ˇ1 ^ � � � ^ ˇk/ are uniformly
bounded in mass. In fact, if ! is a Kähler metric in X , there exists a constant
Cj � 0 such that Cj f!g�˛j is a Kähler class. Hence Cj!�Tj � 	j for some
Kähler form 	j onX . By pulling back with 
, we find Cj
�!� .ŒEj �Cˇj / �

�	j , hence

ˇj � Cj

�! � .ŒEj �C 
�	j /:

By performing again a substitution in the integrals, we find

Z

QX
ˇ1 ^ � � � ^ ˇk ^ 
�u � C1 � � �Ck

Z

QX

�!k ^ 
�u D C1 � � �Ck

Z

X

!k ^ u

and this is true especially for u D !n�k . We can now arrange that for each of the
integrals associated with a countable dense family of forms u, the supremum is
achieved by a sequence of currents .
m/�.ˇ1;m ^ � � � ^ ˇk;m/ obtained as direct
images by a suitable sequence of modifications 
m W QXm ! X . By extracting a
subsequence, we can achieve that this sequence is weakly convergent and we set

h˛1 � ˛2: � � � :˛ki D lim "
m!C1

f.
m/�.ˇ1;m ^ ˇ2;m ^ � � � ^ ˇk;m/g

(the monotonicity is not in terms of the currents themselves, but in terms of
the integrals obtained when we evaluate against a smooth closed semi-positive
form u). By evaluating against a basis of positive classes fug 2 Hn�k;n�k.X/,
we infer by Serre duality that the class of h˛1 � ˛2: � � � :˛ki is uniquely defined
(although, in general, the representing current is not unique).

(b) It is indeed clear from the definition that the mobile intersection product is
homogeneous, increasing and superadditive in each argument, at least when the
˛j ’s are in E ı. However, we can extend the product to the closed cone E by
monotonicity, by setting

h˛1 � ˛2 � � �˛ki D lim #
ı#0

h.˛1 C ı!/ � .˛2 C ı!/: � � � :.˛k C ı!/i

for arbitrary classes ˛j 2 E (again, monotonicity occurs only where we
evaluate against closed semi-positive forms u). By weak compactness, the
mobile intersection product can always be represented by a closed positive
current of bidegree .k; k/.

(c) The Hovanskii–Teissier inequalities are a direct consequence of the fact that
they hold true for nef classes, so we just have to apply them to the classes ˇj;m
on QXm and pass to the limit.

(d) When k D 1 and ˛ 2 E 0, we have

˛ D lim
m!C1f.
m/�Tmg D lim

m!C1.
m/�ŒEm�C f.
m/�ˇmg
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and h˛i D limm!C1f.
m/�ˇmg by definition. However, the images Fm D
.
m/�Fm are effective Q-divisors in X , and the filtering property implies that
Fm is a decreasing sequence. It must therefore converge to a (uniquely defined)
limit F D limFm WD N.˛/ which is an effective R-divisor, and we get the
asserted decomposition in the limit.

Since N.˛/ D ˛� h˛i we easily see thatN.˛/ is subadditive and thatN.˛/ D 0

if ˛ is the class of a smooth semi-positive form. When ˛ is no longer a big class,
we define

h˛i D lim
ı#0

# h˛ C ı!i; N.˛/ D lim
ı#0

" N.˛ C ı!/

(the subadditivity of N implies N.˛ C .ı C "/!/ � N.˛ C ı!/). The divisorial
Zariski decomposition follows except maybe for the fact that N.˛/ might be a
convergent countable sum of divisors. However, this will be ruled out when (e) is
proved. AsN.�/ is subadditive and homogeneous, the set E1 D f˛ 2 E I N.˛/ D 0g
is a closed convex cone, and we find that ˛ 7! h˛i is a projection of E onto E1
(according to [18], E1 consists of those pseudo-effective classes which are “nef in
codimension 1”).

(e) Let ˛ 2 E ı, and assume thatN.˛/ contains linearly dependent componentsFj .
Then already all currents T 2 ˛ should be such that 
�T D ŒE� C ˇ where
F D 
�E contains those linearly dependent components. Write F D P

�jFj ,
�j > 0 and assume that X

j2J
cjFj � 0

for a certain non trivial linear combination. Then some of the coefficients cj
must be negative (and some other positive). ThenE is numerically equivalent to

E 0 � E C t
�
�X

�jFj

�
;

and by choosing t > 0 appropriate, we obtain an effective divisor E 0 which
has a zero coefficient on one of the components 
�Fj0 . By replacing E with
min.E;E 0/ via (580), we eliminate the component
�Fj0 . This is a contradiction
since N.˛/ was supposed to contain Fj0 . ut

Definition 70. For a class ˛ 2 H1;1.X;R/, we define the numerical dimension
nd.˛/ to be nd.˛/ D �1 if ˛ is not pseudo-effective, and

nd.˛/ D maxfp 2 N I h˛pi ¤ 0g; nd.˛/ 2 f0; 1; : : : ; ng
if ˛ is pseudo-effective.

By the results of [42], a class is big (˛ 2 E ı) if and only if nd.˛/ D n. Classes
of numerical dimension 0 can be described much more precisely, again following
Boucksom [18].
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Theorem 71. Let X be a compact Kähler manifold. Then the subset D0 of
irreducible divisors D in X such that nd.D/ D 0 is countable, and these
divisors are rigid as well as their multiples. If ˛ 2 E is a pseudo-effective
class of numerical dimension 0, then ˛ is numerically equivalent to an effective
R-divisor D D P

j2J �jDj , for some finite subset .Dj /j2J � D0 such that
the cohomology classes fDj g are linearly independent and some �j > 0. If such
a linear combination is of numerical dimension 0, then so is any other linear
combination of the same divisors.

Proof. It is immediate from the definition that a pseudo-effective class is of
numerical dimension 0 if and only if h˛i D 0, in other words if ˛ D N.˛/. Thus
˛ � P

�jDj as described in Theorem 71, and since �j hDj i � h˛i, the divisors
Dj must themselves have numerical dimension 0. There is at most one such divisor
D in any given cohomology class in NS.X/\ E � H2.X;Z/, otherwise two such
divisors D � D0 would yield a blow-up 
 W QX ! X resolving the intersection,
and by taking min.
�D;
�D0/ via (580), we would find 
�D � E C ˇ, ˇ ¤ 0,
so that fDg would not be of numerical dimension 0. This implies that there are at
most countably many divisors of numerical dimension 0, and that these divisors are
rigid as well as their multiples. ut
Remark 72. If L is an arbitrary holomorphic line bundle, we define its numerical
dimension to be nd.L/ D nd.c1.L//. Using the canonical maps ˚jmLj and pulling-
back the Fubini–Study metric it is immediate to see that nd.L/ � �.L/.

The above general concept of numerical dimension leads to a very natural formula-
tion of the abundance conjecture for Kähler varieties.

Generalized Abundance Conjecture 73. Let X be an arbitrary compact Kähler
manifold X .

(a) The Kodaira dimension of X should be equal to its numerical dimension:
�.KX/ D nd.KX/.

(b) More generally, let � be a Q-divisor which is klt .Kawamata log terminal, i.e.
such that cX.�/ > 1/. Then �.KX C�/ D nd.KX C�/.

Remark 74. It is obvious that abundance holds in the case nd.KX/ D �1 (if L is
not pseudo-effective, no multiple of L can have sections), or in the case nd.KX/ D
n which implies KX big (the latter property follows e.g. from the solution of the
Grauert–Riemenschneider conjecture in the form proven in [25], see also [42]).

In the remaining cases, the most tractable situation is the case when nd.KX/ D 0.
In fact Theorem 71 then gives KX � P

�jDj for some effective divisor with
numerically independent components, nd.Dj / D 0. It follows that the �j are
rational and therefore

KX 	
X

�jDj C F where �j 2 Q
C; nd.Dj / D 0 and F 2 Pic0.X/: (*)
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If we assume additionally that q.X/ D h0;1.X/ is zero, then mKX is linearly
equivalent to an integral divisor for some multiplem, and it follows immediately that
�.X/ D 0. The case of a general projective manifold with nd.KX/ D 0 and positive
irregularity q.X/ > 0 has been solved by Campana–Peternell [23], Proposition 46.
It would be interesting to understand the Kähler case as well.

2.8 The Orthogonality Estimate

The goal of this section is to show that, in an appropriate sense, approximate Zariski
decompositions are almost orthogonal.

Theorem 75. LetX be a projective manifold, and let ˛ D fT g 2 E ı
NS be a big class

represented by a Kähler current T . Consider an approximate Zariski decomposition


�
mTm D ŒEm�C ŒDm�

Then
.Dn�1

m �Em/2 � 20 .C!/n
�

Vol.˛/ �Dn
m

�

where ! D c1.H/ is a Kähler form and C � 0 is a constant such that ˙˛ is
dominated by C! .i.e., C!˙˛ is nef /. In other words, Em andDm become “more
and more orthogonal” asDn

m approaches the volume.

Proof. For every t 2 Œ0; 1�, we have

Vol.˛/ D Vol.Em CDm/ � Vol.tEm CDm/:

Now, by our choice of C , we can write Em as a difference of two nef divisors

Em D 
�˛ �Dm D 
�
m.˛ C C!/� .Dm C C
�

m!/: ut

Lemma 76. For all nef R-divisors A, B we have

Vol.A� B/ � An � nAn�1 � B

as soon as the right hand side is positive.

Proof. In case A and B are integral divisors, this is a consequence of holomorphic
Morse inequalities (cf. Consequence 24). If A and B are Q-divisors, we conclude
by the homogeneity of the volume. The general case of R-divisors follows by
approximation (actually, as it is defined to be a supremum, the volume function
can easily be shown to be lower semi-continuous, but it is in fact even continuous,
cf. [[18], 3.1.26]). ut
Remark 77. We hope that Lemma 76 also holds true on an arbitrary Kähler
manifold for arbitrary nef (non necessarily integral) classes. This would follow from
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Conjecture 95 generalizing holomorphic Morse inequalities to non integral classes,
exactly by the same proof as Theorem 23.

Lemma 78. Let ˇ1; : : : ; ˇn and ˇ0
1; : : : ; ˇ

0
n be nef classes on a compact Kähler

manifold QX such that each difference ˇ0
j � ˇj is pseudo-effective. Then the n-th

intersection products satisfy

ˇ1 � � �ˇn � ˇ0
1 � � �ˇ0

n:

Proof. We can proceed step by step and replace just one ˇj by ˇ0j � ˇj C Tj
where Tj is a closed positive .1; 1/-current and the other classes ˇ0

k D ˇk , k ¤ j

are limits of Kähler forms. The inequality is then obvious. ut
End of proof of Theorem 75. In order to exploit the lower bound of the volume, we
write

tEm CDm D A� B; A D Dm C t
�
m.˛ C C!/; B D t.Dm C C
�

m!/:

By our choice of the constant C , both A and B are nef. Lemma 76 and the binomial
formula imply

Vol.tEm CDm/ � An � nAn�1 � B

D Dn
m C nt Dn�1

m � 
�
m.˛ C C!/C

nX

kD2
tk

 
n

k

!
Dn�k
m � 
�

m.˛ C C!/k

� nt Dn�1
m � .Dm C C
�

m!/

� nt2
n�1X

kD1
tk�1

 
n � 1
k

!
Dn�1�k
m � 
�

m.˛ C C!/k � .Dm C C
�
m!/:

Now, we use the obvious inequalities

Dm � 
�
m.C!/; 
�

m.˛ C C!/ � 2
�
m.C!/; Dm C C
�

m! � 2
�
m.C!/

in which all members are nef (and where the inequality � means that the difference
of classes is pseudo-effective). We use Lemma 78 to bound the last summation in
the estimate of the volume, and in this way we get

Vol.tEm CDm/ � Dn
m C ntDn�1

m �Em � nt2
n�1X

kD1
2kC1tk�1

 
n� 1

k

!
.C!/n:

We will always take t smaller than 1=10n so that the last summation is bounded by
4.n� 1/.1C 1=5n/n�2 < 4ne1=5 < 5n. This implies

Vol.tEm CDm/ � Dn
m C nt Dn�1

m �Em � 5n2t2.C!/n:
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Now, the choice t D 1
10n
.Dn�1

m �Em/..C!/n/�1 gives by substituting

1

20

.Dn�1
m �Em/2
.C!/n

� Vol.Em CDm/ �Dn
m � Vol.˛/ �Dn

m

(and we have indeed t � 1
10n

by Lemma 78), whence Theorem 75. Of course, the
constant 20 is certainly not optimal. ut
Corollary 79. If ˛ 2 ENS, then the divisorial Zariski decomposition ˛DN.˛/Ch˛i
is such that

h˛n�1i �N.˛/ D 0:

Proof. By replacing ˛ with ˛C ıc1.H/, one sees that it is sufficient to consider the
case where ˛ is big. Then the orthogonality estimate implies

.
m/�.Dn�1
m / � .
m/�Em D Dn�1

m � .
m/�.
m/�Em
� Dn�1

m �Em � C.Vol.˛/ �Dn
m/

1=2:

Since h˛n�1i D lim.
m/�.Dn�1
m /, N.˛/ D lim.
m/�Em and limDn

m D Vol.˛/,
we get the desired conclusion in the limit. ut

2.9 Dual of the Pseudo-Effective Cone

We consider here the Serre duality pairing

H1;1.X;R/�Hn�1;n�1.X;R/ �! R; .˛; ˇ/ 7�! ˛ � ˇ D
Z

X

˛ ^ ˇ: (59)

When restricted to real vector subspaces generated by integral classes, it defines a
perfect pairing

NSR � NSn�1;n�1
R

.X/ �! R (60)

where NSR � H1;1.X;R/ and NSn�1;n�1
R

.X/ � Hn�1;n�1.X;R/. Next, we intro-
duce the concept of mobile curves.

Definition 80. Let X be a smooth projective variety.

(a) One defines NE.X/ � NSn�1;n�1
R

.X/ to be the convex cone generated by
cohomology classes of all effective curves in Hn�1;n�1.X;R/.

(b) We say that C is a mobile curve if C D Ct0 is a member of an analytic family
fCtgt2S such that

S
t2S Ct D X and, as such, is a reduced irreducible 1-cycle.

We define the mobile cone ME.X/, to be the convex cone generated by all
mobile curves.
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(c) If X is projective, we say that an effective 1-cycle C is a strongly mobile if we
have

C D 
�. QA1 \ � � � \ QAn�1/

for suitable very ample divisors QAj on QX , where 
 W QX ! X is a modification.
We let MEs.X/ be the convex cone generated by all strongly mobile effective
1-cycles .notice that by taking QAj general enough these classes can be
represented by reduced irreducible curves; also, by Hironaka, one could just
restrict oneself to compositions of blow-ups with smooth centers/.

Clearly, we have

MEs.X/ � ME.X/ � NE.X/ � NSn�1;n�1
R

.X/: (61)

Another simple observation is:

Proposition 81. One has ˛ �C � 0 whenever f˛g 2 E and fC g 2 ME.X/. In other
words ENS D E \ NSR.X/ is contained in the dual cone .ME.X//_.

Proof. If the class f˛g is represented by a closed positive current T and C D Ct0
belongs to a covering family .Ct/t2S , it is easy to see that TjCt is locally well defined
and nonnegative as soon as Ct is not contained in the set of poles of a local potential
' of T . However, this occurs only when t belongs to a pluripolar set P � S , hence
for t 2 S X P we have

˛ � C D
Z

Ct

TjCt � 0: ut

The following statement was first proved in [19].

Theorem 82. If X is projective, the cones ENS D Eff.X/ and MEs.X/ are dual
with respect to Serre duality, and we have MEs.X/ D ME.X/.

In other words, a line bundle L is pseudo-effective if (and only if) L � C � 0

for all mobile curves, i.e., L � C � 0 for every very generic curve C (not
contained in a countable union of algebraic subvarieties). In fact, by definition
of MEs.X/, it is enough to consider only those curves C which are images of
generic complete intersection of very ample divisors on some variety QX , under a
modification 
 W QX ! X . By a standard blowing-up argument, it also follows that
a line bundle L on a normal Moishezon variety is pseudo-effective if and only if
L � C � 0 for every mobile curve C .

Proof. By Proposition 81 we have ENS � .ME.X//_ and (61) implies .ME.X//_ �
.MEs.X//_, therefore

ENS � .MEs.X//_: (62)

If we show that ENS D .MEs.X//_, we get at the same time .MEs.X//_ D
.ME.X//_, and therefore by biduality (Hahn–Banach theorem) we will infer
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ω

Γ

Nn−1
NS (X)

Fig. 4 Duality theorem for positive cones

MEs.X/ D ME.X/. Now, if the inclusion were strict in (62), there would be an
element ˛ 2 @ENS on the boundary of ENS which is in the interior of MEs.X/_.
Let ! D c1.H/ be an ample class. Since ˛ 2 @ENS, the class ˛Cı! is big for every
ı > 0, and since ˛ 2 ..MEs.X//_/ı we still have ˛ � "! 2 .MEs.X//_ for " > 0

small. Therefore
˛ � � � "! � � (63)

for every strongly mobile curve � , and therefore for every � 2 MEs.X/. We are
going to contradict (63). Since ˛ C ı! is big, we have an approximate Zariski
decomposition


�
ı .˛ C ı!/ D Eı CDı:

We pick � D .
ı/�.Dn�1
ı / 2 MEs.X/. By the Hovanskii–Teissier concavity

inequality
! � � � .!n/1=n.Dn

ı /
.n�1/=n:

On the other hand

˛ � � D ˛ � .
ı/�.Dn�1
ı /

D 
�
ı ˛ �Dn�1

ı � 
�
ı .˛ C ı!/ �Dn�1

ı

D .Eı CDı/ �Dn�1
ı D Dn

ı CDn�1
ı �Eı:

By the orthogonality estimate, we find

˛ � �
! � � � Dn

ı C �
20.C!/n.Vol.˛ C ı!/ �Dn

ı /
�1=2

.!n/1=n.Dn
ı /
.n�1/=n

� C 0.Dn
ı /
1=n C C 00 .Vol.˛ C ı!/ �Dn

ı /
1=2

.Dn
ı /
.n�1/=n :

However, since ˛ 2 @ENS, the class ˛ cannot be big so

lim
ı!0

Dn
ı D Vol.˛/ D 0:
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We can also takeDı to approximate Vol.˛Cı!/ in such a way that .Vol.˛Cı!/�
Dn
ı /
1=2 tends to 0 much faster than Dn

ı . Notice that Dn
ı � ın!n, so in fact it is

enough to take
Vol.˛ C ı!/�Dn

ı � ı2n;

which gives .˛ � � /=.! � � / � .C 0 C C 00/ı. This contradicts (63) for ı small. ut

3 Asymptotic Cohomology Functionals and Monge–Ampère
Operators

The goal of this section is to show that there are strong relations between
certain Monge–Ampère integrals appearing in holomorphic Morse inequalities, and
asymptotic cohomology estimates for tensor powers of holomorphic line bundles.
Especially, we prove that these relations hold without restriction for projective
surfaces, and in the special case of the volume, i.e. of asymptotic 0-cohomology,
for all projective manifolds. These results can be seen as a partial converse to the
Andreotti–Grauert vanishing theorem.

3.1 Introduction and Main Definitions

Throughout this section, X denotes a compact complex manifold, n D dimCX its
complex dimension and L ! X a holomorphic line bundle. In order to estimate the
growth of cohomology groups, it is interesting to consider appropriate “asymptotic
cohomology functions”. Following partly notation and concepts introduced by
A. Küronya [46, 63], we introduce

Definition 83. Let X be a compact complex manifold and let L ! X be a
holomorphic line bundle.

(a) The q-th asymptotic cohomology functional is defined as

Ohq.X;L/ WD lim sup
k!C1

nŠ

kn
hq.X;L˝k/:

(b) The q-th asymptotic holomorphic Morse sum of L is

Oh�q.X;L/ WD lim sup
k!C1

nŠ

kn

X

0�j�q
.�1/q�j hj .X;L˝k/:

When the lim sup’s are limits, we have the obvious relation

Oh�q.X;L/ D
X

0�j�q
.�1/q�j Ohj .X;L/:



212 J.-P. Demailly

Clearly, Definition 83 can also be given for a Q-line bundleL or a Q-divisorD, and
in the case q D 0 one gets by Theorem 67 what is called the volume of L (see also
[18, 37, 67]):

Vol.X;L/ WD Oh0.X;L/ D lim sup
k!C1

nŠ

kn
h0.X;L˝k/: (64)

3.2 Extension of the Functionals to Real Cohomology Classes

We are going to show that the Ohq functional induces a continuous map

DNSR.X/ 3 ˛ 7! OhqDNS.X; ˛/; (65)

which is defined on the “divisorial Néron–Severi space” DNSR.X/ � H1;1
BC .X;R/,

i.e. the vector space spanned by real linear combinations of classes of divisors in the
real Bott–Chern cohomology group of bidegree .1; 1/. Here Hp;q

BC .X;C/ is defined
as the quotient of d -closed .p; q/-forms by @@-exact .p; q/-forms, and there is a
natural conjugation Hp;q

BC .X;C/ ! H
q;p
BC .X;C/ which allows us to speak of real

classes when q D p. Notice that Hp;q
BC .X;C/ coincides with the usual Dolbeault

cohomology group Hp;q.X;C/ when X is Kähler, and that DNSR.X/ coincides
with the usual Néron–Severi space

NSR.X/ D R ˝Q

�
H2.X;Q/\H1;1.X;C/

�
(66)

when X is projective (the inclusion can be strict in general, e.g. on complex 2-tori
which only have indefinite integral .1; 1/-classes, cf. [BL04]).

For ˛ 2 NSR.X/ (resp. ˛ 2 DNSR.X/), we set

OhqNS.X; ˛/
�

resp. OhqDNS.X; ˛/
�

D lim sup
k!C1; 1k c1.L/!˛

nŠ

kn
hq.X;L/

D inf
">0; k0>0

sup
k�k0;k 1k c1.L/�˛k�"

nŠ

kn
hq.X;L/: (67)

when the pair .k; L/ runs over N
� � Pic.X/, resp. over N

� � PicD.X/ where
PicD.X/ � Pic.X/ is the subgroup generated by “divisorial line bundles”, i.e.
line bundles of the form OX.D/. Similar definitions can be given for the Morse
sum functionals Oh�q

NS .X; ˛/ and Oh�q
DNS.X; ˛/. Clearly Oh�q

DNS.X; ˛/ � Oh�q
NS .X; ˛/ on

DNSR.X/, but we do not know at this point whether this is always an equality. From
the very definition, OhqNS , Oh�q

NS (and likewise OhqDNS , Oh�q
DNS) are upper semi-continuous

functions which are positively homogeneous of degree n, namely
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OhqNS.X; �˛/ D �n OhqNS.X; ˛/ (68)

for all ˛ 2 NSR.X/ and all � � 0. Notice that OhqNS.X; ˛/ and Oh�q
NS .X; ˛/ are always

finite thanks to holomorphic Morse inequalities (see below).

Proposition 84.

(a) For L 2 PicD.X/, one has Ohq.X;L/ D Ohq.X; c1.L//, Oh�q.X;L/ D
Oh�q

DNS.X; c1.L//, in particular asymptotic cohomology depends only on the
numerical class of L.

(b) The map ˛ 7! OhqDNS.X; ˛/ is .locally/ Lipschitz continuous on DNSR.X/.

(c) When q D 0, Oh0DNS.X; ˛/ and Oh0NS.X; ˛/ coincide on DNSR.X/ and the limsups
are limits.

The proof is derived from arguments quite similar to those already developed
in [63] (see also [34] for the non projective situation). If D D P

pjDj is an
integral divisor, we define its norm to be kDk D P jpj j Vol!.Dj /, where the
volume of an irreducible divisor is computed by means of a given Hermitian
metric ! on X ; in other words, this is precisely the mass of the current of
integration ŒD� with respect to !. Clearly, since X is compact, we get equivalent
norms for all choices of Hermitian metrics ! on X . We can also use ! to fix a
normalized metric on H1;1

BC .X;R/. Elementary properties of potential theory show
that kc1.O.D//k � CkDk for some constant C > 0 (but the converse inequality
is of course wrong in most cases). Proposition 84 is a simple consequence of the
more precise cohomology estimates (1.9) which will be obtained below. The special
case q D 0 is easier, in fact, one can get non zero values for Oh0.X;L/ only when
L is big, i.e. when X is Moishezon (so that we are always reduced to the divisorial
situation); the fact that limsups are limits was proved in Theorem 67. We postpone
the proof to Sect. 19, which will provide stronger results based on approximate
Zariski decomposition.

Lemma 85. Let X be a compact complex n-fold. Then for every coherent sheaf F
on X , there is a constant CF > 0 such that for every holomorphic line bundle L
on X we have

hq.X;F ˝ OX.L// � CF .kc1.L/k C 1/p

where p D dim Supp F .

Proof. We prove the result by induction on p ; it is indeed clear for p D 0 since we
then have cohomology only in degree 0 and the dimension of H0.X;F ˝ OX.L//

does not depend on L when F has finite support. Let us consider the support Y
of F and a resolution of singularity 
 W OY ! Y of the corresponding (reduced)
analytic space. Then F is an OY -module for some non necessarily reduced complex
structure OY D OX=J on Y . We can look at the reduced structure OY;red D
OX=I , I D p

J , and filter F by I kF , k � 0. Since I kF=I kC1F is a
coherent OY;red-module, we can easily reduce the situation to the case where Y is
reduced and F is an OY -module. In that case the cohomology
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Hq.X;F ˝ OX.L// D Hq.Y;F ˝ OY .LjY //

just lives on the reduced space Y .
Now, we have an injective sheaf morphism F ! 
�
�F whose cokernel G

has support in dimension < p. By induction on p, we conclude from the exact
sequence that

ˇ̌
hq.X;F ˝ OX.L// � hq.X;
�
�F ˝ OX.L//

ˇ̌ � C1.kc1.L/k C 1/p�1:

The functorial morphisms


� W Hq.Y;F ˝ OY .LjY // ! Hq. OY ;
�F ˝ O OY .

�L/jY /;


� W Hq. OY ;
�F ˝ O OY .

�L/jY / ! Hq.Y; 
�
�F ˝ OY .LjY //

yield a composition


� ı 
� W Hq.Y;F ˝ OY .LjY // ! Hq.Y; 
�
�F ˝ OY .LjY //

induced by the natural injection F ! 
�
�F . This implies

hq.Y;F ˝ OY .LjY // � hq. OY ;
�F ˝ O OY .

�LjY //C C1.kc1.L/k C 1/p�1:

By taking a suitable modification 
0 W Y 0 ! Y of the desingularization OY , we
can assume that .
0/�F is locally free modulo torsion. Then we are reduced to
the case where F 0 D .
0/�F is a locally free sheaf on a smooth manifold Y 0,
and L0 D .
0/�LjY . In this case, we apply Morse inequalities to conclude that
hq.Y 0;F 0 ˝ OY 0.L0// � C2.kc1.L0/k C 1/p. Since kc1.L0/k � C3kc1.L/k by
pulling-back, the statement follows easily. ut
Corollary 86. For every irreducible divisor D on X , there exists a constant CD
such that

hq.D;OD.LjD// � CD.kc1.L/k C 1/n�1

Proof. It is enough to apply Lemma 85 with F D .iD/�OD where iD W D ! X is
the injection. ut
Remark 87. It is very likely that one can get an “elementary” proof of Lemma 85
without invoking resolutions of singularities, e.g. by combining the Cartan–Serre
finiteness argument along with the standard Serre–Siegel proof based ultimately
on the Schwarz lemma. In this context, one would invoke L2 estimates to get
explicit bounds for the homotopy operators between Čech complexes relative to
two coverings U D .B.xj ; rj //, U 0 D .B.xj ; rj =2// of X by concentric balls.
By exercising enough care in the estimates, it is likely that one could reach an
explicit dependence CD � C 0kDk for the constant CD of Corollary 86. The proof
would of course become much more technical than the rather naive brute force
approach we have used.
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Theorem 88. Let X be a compact complex manifold. Fix a finitely generated
subgroup � of the group of Z-divisors on X . Then there are constants C , C 0
depending only on X , its Hermitian metric ! and the subgroup � , satisfying the
following properties.

(a) Let L and L0 D L˝ O.D/ be holomorphic line bundles on X , where D 2 �
is an integral divisor. Then

ˇ̌
hq.X;L0/ � hq.X;L/ˇ̌ � C.kc1.L/k C kDk/n�1kDk:

(b) On the subspace DNSR.X/, the asymptotic q-cohomology function OhqDNS
satisfies a global estimate

ˇ̌ OhqDNS.X; ˇ/� OhqDNS.X; ˛/
ˇ̌ � C 0.k˛k C kˇk/n�1kˇ � ˛k:

In particular .without any further assumption on X/, OhqDNS is locally Lipschitz
continuous on DNSR.X/.

Proof. (a) We want to compare the cohomology of L and L0 D L˝ O.D/ on X .
For this we write D D DC �D�, and compare the cohomology of the pairs L
and L1 D L˝ O.�D�/ one hand, and of L0 and L1 D L0 ˝ O.�DC/ on the
other hand. Since kc1.O.D//k � CkDk by elementary potential theory, we see
that is enough to consider the case of a negative divisor, i.e. L0 D L˝ O.�D/,
D � 0. If D is an irreducible divisor, we use the exact sequence

0 ! L˝ O.�D/ ! L ! OD ˝ LjD ! 0

and conclude by Corollary 86 that

ˇ̌
hq.X; L˝ O.�D// � hq.X; L/

ˇ̌ � hq.D;OD ˝ LjD/C hq�1.D;OD ˝ LjD/

� 2CD.kc1.L/k C 1/n�1:

ForD D P
pjDj � 0, we easily get by induction

ˇ̌
hq.X; L˝ O.�D// � hq.X; L/ˇ̌ � 2

X

j

pjCDj

�
kc1.L/k C

X

k

pkkrkk C 1
�n�1

:

If we knew that CD � C 0kDk as expected in Remark 1.6, then the argument
would be complete without any restriction on D. The trouble disappears if we
fixD in a finitely generated subgroup � of divisors, because only finitely many
irreducible components appear in that case, and so we have to deal with only
finitely many constants CDj . Property 9(a) is proved.
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(b) Fix once for all a finite set of divisors .�j /1�j�t providing a basis of
DNSR.X/ � H

1;1
BC .X;R/. Take two elements ˛ and ˇ in DNSR.X/, and fix

" > 0. Then ˇ � ˛ can be "-approximated by a Q-divisor
P
�jDj , �j 2 Q,

and we can find a pair .k; L/ with k arbitrary large such that 1
k
c1.L/ is "-close

to ˛ and nŠ=knhq.X;L/ approaches OhqDNS.X; ˛/ by ". Then 1
k
L C P

�j�j

approachesˇ as closely as we want. When approximatingˇ�˛, we can arrange
that k�j is an integer by taking k large enough. Then ˇ is approximated by
1
k
c1.L

0/ with L0 D L˝ O.
P
k�j�j /. Property (a) implies

hq.X;L0/� hq.X;L/ � �C
�
kc1.L/k C

���
X

k�j�j

���
�n�1���

X
k�j�j

���

� �Ckn�k˛k C "C kˇ � ˛k C "/n�1.kˇ � ˛k C "/:

We multiply the previous inequality by nŠ=kn and get in this way

nŠ

kn
hq.X;L0/ � OhqDNS.X; ˛/ � " � C 0�k˛k C kˇk C "/n�1.kˇ � ˛k C "/:

By taking the limsup and letting " ! 0, we finally obtain

OhqDNS.X; ˇ/� OhqDNS.X; ˛/ � �C 0�k˛k C kˇk/n�1kˇ � ˛k:

Property 9(b) follows by exchanging the roles of ˛ and ˇ. ut

3.3 Transcendental Asymptotic Cohomology Functions

Our ambition is to extend the function OhqNS in a natural way to the full cohomology
group H1;1

BC .X;R/. The main trouble, already when X is projective algebraic,
is that the Picard number �.X/ D dimR NSR.X/ may be much smaller than
dimRH

1;1
BC .X;R/, namely, there can be rather few integral classes of type .1; 1/

on X . It is well known for instance that �.X/ D 0 for a generic complex torus of
dimension n � 2, while dimRH

1;1
BC .X;R/ D n2. However, if we look at the natural

morphism
H1;1

BC .X;R/ ! H2
DR.X;R/ ' H2.X;R/

to de Rham cohomology, then H2.X;Q/ is dense in H2.X;R/. Therefore, given
a class ˛ 2 H1;1

BC .X;R/ and a smooth d -closed .1; 1/-form u in ˛, we can find
an infinite sequence 1

k
Lk (k 2 S � N) of topological Q-line bundles, equipped

with Hermitian metrics hk and compatible connections rk such that the curvature
forms 1

k
�rk

converge to u. By using Kronecker’s approximation with respect to
the integral lattice H2.X;Z/=torsion � H2.X;R/, we can even achieve a fast
diophantine approximation

k�rk
� kuk � Ck�1=b2 (69)
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for a suitable infinite subset k 2 S � N of multipliers. Then in particular

k�0;2
rk

k D k�0;2
rk

� k u0;2k � Ck�1=b2 ; (70)

and we see that .Lk; hk;rk/ is a C1 Hermitian line bundle which is extremely
close to being holomorphic, since .r0;1

k /2 D �
0;2
rk

is very small. We fix a Hermitian
metric ! on X and introduce the complex Laplace–Beltrami operator

k;q D .r0;1
k /.r0;1

k /� C .r0;1
k /�.r0;1

k / acting on L2.X;�0;qT �
X ˝ Lk/.

We look at its eigenspaces with respect to the L2 metric induced by ! on X and
hk on Lk . In the holomorphic case, Hodge theory tells us that the 0-eigenspace
is isomorphic to Hq.X;O.Lk//, but in the “almost holomorphic case” the
0-eigenvalues deviate from 0, essentially by a shift of the order of magnitude of
k�0;2

rk
k 	 k�1=b2 (see also the PhD thesis of L. Laeng [64, Chap. 4], for more

details). It is thus natural to introduce in this case

Definition 89. Let X be a compact complex manifold and ˛ 2 H1;1
BC .X;R/

an arbitrary Bott–Chern .1; 1/-class. We define the “transcendental” asymptotic
q-cohomology functions to be

(a) Ohqtr.X; ˛/ D inf
u2˛ lim sup

"!0; k!C1; Lk ; hk ;rk;
1
k �rk

!u

nŠ

kn
N. k;q;� k"/

(b) Oh�q
tr .X; ˛/ D inf

u2˛ lim sup
"!0; k!C1;Lk ; hk ;rk;

1
k �rk

!u

nŠ

kn

X

0�j�q
.�1/q�jN. k;j ;�

k"/

where the lim sup runs over all 5-tuples ."; k; Lk; hk;rk/, and where
N. k;q; k"/ denotes the sum of dimensions of all eigenspaces of eigenvalues at

most equal to k" for the Laplace–Beltrami operator k;q on L2.X;�0;qT �
X ˝

Lk/ associated with .Lk; hk;rk/ and the base Hermitian metric !.

The word “transcendental” refers here to the fact that we deal with classes ˛ of
type .1; 1/ which are not algebraic or even analytic. Of course, in the definition,
we could have restricted the limsup to families satisfying a better approximation
property k 1

k
�rk

� uk � Ck�1�1=b2 for some large constant C (this would lead a
priori to a smaller limsup, but there is enough stability in the parameter dependence
of the spectrum for making such a change irrelevant). The minimax principle easily
shows that Definition 36 does not depend on !, as the eigenvalues are at most
multiplied or divided by constants under a change of base metric. When ˛ 2
NSR.X/, by restricting our families f."; k; Lk; hk;rk/g to the case of holomorphic
line bundles only, we get the obvious inequalities

OhqNS.X; ˛/ � Ohqtr.X; ˛/; 8˛ 2 NSR.X/; (71)

Oh�q
NS .X; ˛/ � Oh�q

tr .X; ˛/; 8˛ 2 NSR.X/: (72)
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It is natural to raise the question whether these inequalities are always equalities.
Hopefully, the calculation of the quantities limk!C1 nŠ

kn
N. k;q ;� k"/ is a problem

of spectral theory which is completely understood thanks to Sect. 1 (see also
[25, 91]). In fact, by Corollary I (1.13), the above limit can be evaluated explicitly
for any value of " 2 R, except possibly for a countable number of values of " for
which jumps occur; one only has to take care that the non-integrability of @ due to
the diophantine approximation does not contribute asymptotically to the eigenvalue
distribution, a fact which follows immediately from (40) (cf. [64]).

Theorem 90. With the above notations and assumptions, let us introduce at each
point x in X the “spectral density function”, defined as a finite sum

�u.�/ D nŠ .4�/s�n

.n � s/Š ju1j : : : jusj
X

.p1;:::;ps /2Ns

�
� �

sX

jD1
.2pj C 1/juj j

�n�s
C

where s D s.x/ is the rank of the real .1; 1/-form u at x, and uj , 1 � j � s, its non
zero eigenvalues with respect to the base Hermitian metric !, and usC1 D : : : D
un D 0. For each multi-index J � f1; 2; : : : ; ng, let us set uJ D P

j2J uj . Then the
asymptotic spectrum of k;q admits the estimate

lim
k!C1

nŠ

kn
N. k;q;� k�/ D

Z

X

X

jJ jDq
�u.�C u{J � uJ / dV!

except possibly for a countable number of values of � which are discontinuities of
the right hand integral as an increasing integral of �.

Corollary 91. We have .as a limit rather than just a lim sup / the spectral estimate

lim
"!0; k!C1; Lk; hk ;rk ;

1
k �rk

!u

nŠ

kn
N. k;q;� k"/ D

Z

X.u;q/
.�1/qun:

Coming back to the transcendental asymptotic cohomology functions, we get the
following fundamental result, which gives in some sense an explicit formula for
Ohqtr.X; ˛/ and Oh�q

tr .X; ˛/ in terms of Monge–Ampère operators.

Theorem 92. The lim sup’s defining Ohqtr.X; ˛/ and Oh�q
tr .X; ˛/ are limits, and we

have

(a) Ohqtr.X; ˛/ D inf
u2˛

Z

X.u;q/
.�1/qun .u smooth/:

(b) Oh�q
tr .X; ˛/ D inf

u2˛

Z

X.u;�q/
.�1/qun .u smooth/:

Now, if L ! X is a holomorphic line bundle, we have by definition

Oh�q.X;L/ � Oh�q
DNS.X; c1.L// � Oh�q

NS .X; c1.L// � inf
u2c1.L/

Z

X.u;�q/
.�1/qun (73)
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(u smooth), where the last inequality is a consequence of holomorphic Morse
inequalities. We hope for the following conjecture which would imply that we
always have equalities.

Conjecture 93. For every holomorphic line bundle L ! X on a compact complex
manifoldX , we have

(a) Ohq.X;L/ D inf
u2˛

Z

X.u;q/
.�1/qun; u smooth;

(b) Oh�q.X;L/ D inf
u2˛

Z

X.u;�q/
.�1/qun; u smooth:

Since the right hand side is easily seen to depend continuously on ˛ 2 H1;1
BC .X;C/,

one would get:

Corollary of the conjecture 94. If Conjecture 93 holds true, then

.a/ OhqNS.X; ˛/ D Ohqtr.X; ˛/ and (b) Oh�q
NS .X; ˛/ D Oh�q

tr .X; ˛/

for all classes ˛ 2 NSR.X/.

In general, equalities 93(a, b) seem rather hard to prove. In some sense, they
would stand as an asymptotic converse of the Andreotti–Grauert theorem [3]:
under a suitable q-convexity assumption, the latter asserts the vanishing of related
cohomology groups in degree q; here, conversely, assuming a known growth of
these groups in degree q, we expect to be able to say something about the q-index
sets of suitable Hermitian metrics on the line bundles under consideration. The only
cases where we have a positive answer to Question 2.8 are when X is projective
and q D 0 or dimX � 2 (see Theorems 97 and 98 below). In the general setting of
compact complex manifolds, we also hope for the following “transcendental” case
of holomorphic Morse inequalities.

Conjecture 95. LetX be a compact complex n-fold and ˛ an arbitrary cohomology
class in H1;1

BC .X;R/. Then the volume, defined as the supremum

Vol.˛/ WD sup
0<T2˛

Z

XXSing.T /
T n; (74)

extended to all Kähler currents T 2 ˛ with analytic singularities .see Definition
II (4.4)/, satisfies

Vol.˛/ � sup
u2˛

Z

X.u;0/[X.u;1/
un (75)

where u runs over all smooth closed .1; 1/ forms. In particular, if the right hand side
is positive, then ˛ contains a Kähler current.

By the holomorphic Morse inequalities, Conjecture 95 holds true in case ˛ is an
integral class. Our hope is that the general case can be attained by the diophantine
approximation technique described earlier; there are however major hurdles, see
[64] for a few hints on these issues.
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3.4 Invariance by Modification

We end this section by the observation that the asymptotic cohomology functions
are invariant by modification, namely that for every modification 
 W QX ! X and
every line bundle L we have e.g.

Ohq.X;L/ D Ohq. QX;
�L/: (76)

In fact the Leray spectral sequence provides an E2 term

E
p;q
2 D Hp.X;Rq
�O QX.


�L˝k// D Hp.X;OX.L
˝k/˝Rq
�O QX/:

Since Rq
�O QX is equal to OX for q D 0 and is supported on a proper analytic
subset of X for q � 1, one infers that hp.X;OX.L

˝k ˝Rq
�O QX/ D O.kn�1/ for
all q � 1. The spectral sequence implies that

hq.X;L˝k/� Ohq. QX;
�L˝k/ D O.kn�1/:

We claim that the Morse integral infimums are also invariant by modification.

Proposition 96. Let .X; !/ be a compact Kähler manifold, ˛ 2 H1;1.X;R/ a real
cohomology class and 
 W QX ! X a modification. Then

(a) inf
u2˛

Z

X.u;q/
.�1/qun D inf

v2
�˛

Z

X.v;q/

.�1/qvn;

(b) inf
u2˛

Z

X.u;�q/
.�1/qun D inf

v2
�˛

Z

X.v;�q/
.�1/qvn:

Proof. Given u 2 ˛ on X , we obtain Morse integrals with the same values by
taking v D 
�u on QX , hence the infimum on QX is smaller or equal to what is on X .
Conversely, we have to show that given a smooth representative v 2 
�˛ on QX , one
can find a smooth representative u 2 X such that the Morse integrals do not differ
much. We can always assume that QX itself is Kähler, since by Hironaka [55] any
modification QX is dominated by a composition of blow-ups of X . Let us fix some
u0 2 ˛ and write

v D 
�u0 C ddc'; d c D i

4�
.@ � @/; dd c D i

2�
@@;

where ' is a smooth function on QX . We adjust ' by a constant in such a way that
' � 1 on QX . There exists an analytic set S � X such that
 W QXX
�1.S/ ! XXS
is a biholomorphism, and a quasi-psh function  S which is smooth on X X S and
has �1 logarithmic poles on S (see e.g. [24]). We define

Qu D 
�u0Cddc max"0 .'Cı  S ı
; 0/ D vCddc max"0.ı  S ı
; �'/ (77)
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where max"0 , 0 < "0 < 1, is a regularized max function and ı > 0 is very small.
By construction Qu coincides with 
�u0 in a neighborhood of 
�1.S/ and therefore
Qu descends to a smooth closed .1; 1/-form u on X which coincides with u0 near S ,
so that Qu D 
�u. Clearly Qu converges uniformly to v on every compact subset of
QX X 
�1.S/ as ı ! 0, so we only have to show that the Morse integrals are small

(uniformly in ı) when restricted to a suitable small neighborhood of the exceptional
set E D 
�1.S/. Take a sufficiently large Kähler metric Q! on QX such that

�1
2

Q! � v � 1

2
Q!; �1

2
Q! � ddc' � 1

2
Q!; � Q! � ddc S ı 
:

Then Qu � � Q! and Qu � Q! C ı ddc S ı 
 everywhere on QX . As a consequence

jQunj � � Q! C ı. Q! C ddc S ı 
/�n

� Q!n C nı. Q! C ddc S ı 
/ ^ � Q! C ı. Q! C ddc S ı 
/�n�1

thanks to the inequality .a C b/n � an C nb.a C b/n�1. For any neighborhood V
of 
�1.S/ this implies

Z

V

jQunj �
Z

V

Q!n C nı.1C ı/n�1
Z

QX
Q!n

by Stokes formula. We thus see that the integrals are small if V and ı are small.
The reader may be concerned that Monge–Ampère integrals were used with an
unbounded potential  S , but in fact, for any given ı, all the above formulas and
estimates are still valid when we replace  S by max"0. S ;�.M C 2/=ı/ with
M D max QX ', especially formula (77) shows that the form Qu is unchanged.
Therefore our calculations can be handled by using merely smooth potentials. ut

3.5 Proof of the Infimum Formula for the Volume

We prove here

Theorem 97. Let L ! X be a holomorphic line bundle on a projective algebraic
manifold X . Then

Vol.X;L/ D inf
u2c1.L/

Z

X.u;0/
un:

It is enough to show the inequality

inf
u2c1.L/

Z

X.u;0/
un � Vol.X;L/ (78)
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and for this, we have to construct metrics approximating the volume. Let us first
assume that L is a big line bundle, i.e. that Vol.X;L/ > 0. We have seen
in Definition 66 and Theorem 67 (cf. also [18]) that Vol.X;L/ is obtained as
the supremum of

R
XXSing.T / T

n for Kähler currents T D � i
2�
@@h with analytic

singularities in c1.L/; this means that locally h D e�' where ' is a strictly
plurisubharmonic function which has the same singularities as c log

P jgj j2 where
c > 0 and the gj are holomorphic functions. By [28], there exists a blow-up

 W QX ! X such that 
�T D ŒE� C ˇ where E is a normal crossing divisor
on QX and ˇ � 0 smooth. Moreover, by [19] we have the orthogonality estimate

ŒE� � ˇn�1 D
Z

E

ˇn�1 � C
�

Vol.X;L/� ˇn
�1=2

; (79)

while

ˇn D
Z

QX
ˇn D

Z

XXSing.T /
T n approaches Vol.X;L/: (80)

In other words,E and ˇ become “more and more orthogonal” as ˇn approaches the
volume (these properties are summarized by saying that 
�T D ŒE� C ˇ defines
an approximate Zariski decomposition of c1.L/, cf. also [47]). By subtracting to ˇ
a small linear combination of the exceptional divisors and increasing accordingly
the coefficients of E , we can achieve that the cohomology class fˇg contains a
positive definite form ˇ0 on QX (i.e. the fundamental form of a Kähler metric); we
refer e.g. to [42, proof of Lemma 29] for details. This means that we can replace T
by a cohomologous current such that the corresponding form ˇ is actually a Kähler
metric, and we will assume for simplicity of notation that this situation occurs right
away for T . Under this assumption, there exists a smooth closed .1; 1/-form v

belonging to the Bott–Chern cohomology class of ŒE�, such that we have identically
.v � ıˇ/ ^ ˇn�1 D 0 where

ı D ŒE� � ˇn�1

ˇn
� C 0.Vol.X;L/� ˇn�1=2 (81)

for some constant C 0 > 0. In fact, given an arbitrary smooth representative v0 2
fŒE�g, the existence of v D v0 C i@@ amounts to solving a Laplace equation
� D f with respect to the Kähler metric ˇ, and the choice of ı ensures that we
have

R
X f ˇ

n D 0 and hence that the equation is solvable. Then Qu WD v C ˇ is
a smooth closed .1; 1/-form in the cohomology class 
�c1.L/, and its eigenvalues
with respect to ˇ are of the form 1 C �j where �j are the eigenvalues of v. The
Laplace equation is equivalent to the identity

P
�j D nı. Therefore

X

1�j�n
�j � C 00.Vol.X;L/� ˇn�1=2: (82)
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The inequality between arithmetic means and geometric means implies

Y

1�j�n
.1C �j / �

�
1C 1

n

X

1�j�n
�j

�n � 1C C3.Vol.X;L/� ˇn�1=2

whenever all factors .1C �j / are nonnegative. By 2.2(i) we get

inf
u2c1.L/

Z

X.u;0/
un �

Z

QX.Qu;0/
Qun

�
Z

QX
ˇn
�
1C C3.Vol.X;L/� ˇn�1=2�

� Vol.X;L/C C4.Vol.X;L/� ˇn�1=2:

As ˇn approaches Vol.X;L/, this implies inequality (4.1).
We still have to treat the case when L is not big, i.e. Vol.X;L/ D 0. Let A

be an ample line bundle and let t0 � 0 be the infimum of real numbers such that
L C tA is a big Q-line bundle for t rational, t > t0. The continuity of the volume
function implies that 0 < Vol.X;L C tA/ � " for t > t0 sufficiently close to t0.
By what we have just proved, there exists a smooth form ut 2 c1.LC tA/ such thatR
X.ut ;0/

unt � 2". Take a Kähler metric ! 2 c1.A/ and define u D ut � t!. Then
clearly Z

X.u;0/
un �

Z

X.ut ;0/
unt � 2";

hence

inf
u2c1.L/

Z

X.u;0/
un D 0:

Inequality (4.1) is now proved in all cases. ut

3.6 Estimate of the First Cohomology Group on a Projective
Surface

Our goal here is to show the following result.

Theorem 98. Let L ! X be a holomorphic line bundle on a complex projective
surface. Then both weak and strong inequalities (23)(i) and (23)(ii) are equalities
for q D 0; 1; 2, and the lim sup’s involved in Ohq.X;L/ and Oh�q.X;L/ are limits.

We start with a projective non singular variety X of arbitrary dimension n, and
will later restrict ourselves to the case whenX is a surface. The proof again consists
of using (approximate) Zariski decomposition, but now we try to compute more
explicitly the resulting curvature forms and Morse integrals; this will turn out to be
much easier on surfaces.
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Assume first that L is a big line bundle on X . As in Sect. 3, we can find an
approximate Zariski decomposition, i.e. a blow-up 
 W QX ! X and a current T 2
c1.L/ such 
�T D ŒE�C ˇ, whereE an effective divisor and ˇ a Kähler metric on
QX such that

Vol.X;L/� � < ˇn < Vol.X;L/; � � 1: (83)

(On a projective surface, one could even get exact Zariski decomposition, but we
want to remain general as long as possible). By blowing-up further, we may assume
that E is a normal crossing divisor. We select a Hermitian metric h on O.E/ and
take

u" D i

2�
@@ log.j�E j2h C "2/C�O.E/;h C ˇ 2 
�c1.L/ (84)

where �E 2 H0. QX;O.E// is the canonical section and�O.E/;h the Chern curvature
form. Clearly, by the Lelong–Poincaré equation, u" converges to ŒE�Cˇ in the weak
topology as " ! 0. Straightforward calculations yield

u" D i

2�

"2D
1;0
h �E ^D1;0

h �E

."2 C j�E j2/2 C "2

"2 C j�E j2�E;h C ˇ:

The first term converges to ŒE� in the weak topology, while the second, which is
close to �E;h near E , converges pointwise everywhere to 0 on QX X E . A simple
asymptotic analysis shows that

� i

2�

"2D
1;0
h �E ^D1;0

h �E

."2 C j�E j2/2 C "2

"2 C j�E j2�E;h
�p ! ŒE� ^�p�1

E;h

in the weak topology for p � 1, hence

lim
"!0

un" D ˇn C
nX

pD1

 
n

p

!
ŒE� ^�p�1

E;h ^ ˇn�p: (85)

In arbitrary dimension, the signature of u" is hard to evaluate, and it is also non
trivial to decide the sign of the limiting measure lim un" . However, when n D 2,
we get the simpler formula

lim
"!0

u2" D ˇ2 C 2ŒE� ^ ˇ C ŒE� ^�E;h:

In this case, E can be assumed to be an exceptional divisor (otherwise some part
of it would be nef and could be removed from the poles of T ). Hence the matrix
.Ej �Ek/ is negative definite and we can find a smooth Hermitian metric h on O.E/
such that .�E;h/jE < 0, i.e. �E;h has one negative eigenvalue everywhere along E .

Lemma 99. One can adjust the metric h of O.E/ in such a way that �E;h is
negative definite on a neighborhood of the support jEj of the exceptional divisor,
and �E;h C ˇ has signature .1; 1/ there. .We do not care about the signature far
away from jEj/.
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Proof. At a given point x0 2 X , let us fix coordinates and a positive quadratic
form q on C

2. If we put  ".z/ D "�.z/ log.1 C "�1q.z// with a suitable cut-off
function �, then the Hessian form of  " is equal to q at x0 and decays rapidly to
O." log "/jdzj2 away from x0. In this way, after multiplying h with e˙ ".z/, we can
replace the curvature �E;h.x0/ with �E;h.x0/˙ q without substantially modifying
the form away from x0. This allows to adjust �E;h to be equal to (say) � 1

4
ˇ.x0/

at any singular point x0 2 Ej \ Ek in the support of jEj, while keeping �E;h
negative definite alongE . In order to adjust the curvature at smooth points x 2 jEj,
we replace the metric h with h0.z/ D h.z/ exp.�c.z/j�E.z/j2/. Then the curvature
form�E;h is replaced by �E;h0 .x/ D �Eh.x/C c.x/jd�E j2 at x 2 jEj (notice that
d�E.x/ D 0 if x 2 SingjEj), and we can always select a real function c so that
�E;h0 is negative definite with one negative eigenvalue between �1=2 and 0 at any
point of jEj. Then�E;h0 C ˇ has signature .1; 1/ near jEj. ut

With this choice of the metric, we see that for " > 0 small, the sum

"2

"2 C j�E j2�E;h C ˇ

is of signature .2; 0/ or .1; 1/ (or degenerate of signature .1; 0/), the non positive
definite points being concentrated in a neighborhood of E . In particular the index
set X.u"; 2/ is empty, and also

u" � i

2�

"2D
1;0
h �E ^D1;0

h �E

."2 C j�E j2/2 C ˇ

on a neighborhood V of jEj, while u" converges uniformly to ˇ on QX X V . This
implies that

ˇ2 � lim inf
"!0

Z

X.u";0/
u2" � lim sup

"!0

Z

X.u";0/
u2" � ˇ2 C 2ˇ �E:

Since
R

QX u2" D L2 D ˇ2 C 2ˇ �E C E2 we conclude by taking the difference that

�E2 � 2ˇ �E � lim inf
"!0

Z

X.u";1/
�u2" � lim sup

"!0

Z

X.u";1/
�u2" � �E2:

Let us recall that ˇ � E � C.Vol.X;L/� ˇ2/1=2 D 0.�1=2/ is small by (84) and the
orthogonality estimate. The asymptotic cohomology is given here by Oh2.X;L/ D
0 since h2.X;L˝k/ D H0.X;KX ˝ L˝�k/ D 0 for k � k0, and we have by
Riemann–Roch

Oh1.X;L/ D Oh0.X;L/� L2 D Vol.X;L/�L2 D �E2 � ˇ �E CO.�/:



226 J.-P. Demailly

Here we use the fact that nŠ
kn
h0.X;L˝k/ converges to the volume when L is big.

All this shows that equality occurs in the Morse inequalities (67) when we pass to
the infimum. By taking limits in the Neron–Severi space NSR.X/ � H1;1.X;R/,
we further see that equality occurs as soon as L is pseudo-effective, and the same
is true if �L is pseudo-effective by Serre duality. It remains to treat the case
when neither L nor �L are pseudo-effective. Then Oh0.X;L/ D Oh2.X;L/ D 0,
and asymptotic cohomology appears only in degree 1, with Oh1.X;L/ D �L2 by
Riemann–Roch. Fix an ample line bundle A and let t0 > 0 be the infimum of real
numbers such that L C tA is big for t rational, t > t0, resp. let t 00 > 0 be the
infimum of real numbers t 0 such that �L C t 0A is big for t 0 > t 00. Then for t > t0
and t 0 > t 00, we can find a modification 
 W QX ! X and currents T 2 c1.LC tA/,
T 0 2 c1.�LC t 0A/ such that


�T D ŒE�C ˇ; 
�T 0 D ŒF �C 	

where ˇ, 	 are Kähler forms andE ,F normal crossing divisors. By taking a suitable
linear combination t 0.LC tA/ � t.�LC t 0A/ the ample divisor A disappears, and
we get

1

t C t 0
�
t 0ŒE�C t 0ˇ � t ŒF � � t	

�
2 
�c1.L/:

After replacingE , F , ˇ, 	 by suitable multiples, we obtain an equality

ŒE� � ŒF �C ˇ � 	 2 
�c1.L/:

We may further assume by subtracting that the divisors E , F have no common
components. The construction shows that ˇ2 � Vol.X;L C tA/ can be taken
arbitrarily small (as well of course as 	2), and the orthogonality estimate implies
that we can assume ˇ �E and 	 � F to be arbitrarily small. Let us introduce metrics
hE on O.E/ and hF on O.F / as in Lemma 99, and consider the forms

u" D C i

2�

"2D
1;0
hE
�E ^D1;0

hE
�E

."2 C j�E j2/2 C "2

"2 C j�E j2�E;hE C ˇ

� i

2�

"2D1;0
hF
�F ^D1;0

hF
�F

."2 C j�F j2/2 � "2

"2 C j�F j2�F;hF � 	 2 
�c1.L/:

Observe that u" converges uniformly to ˇ � 	 outside of every neighborhood of
jEj [ jF j. Assume that �E;hE < 0 on VE D fj�E j < "0g and �F;hF < 0 on
VF D fj�F j < "0g. On VE [ VF we have

u" � i

2�

"2D
1;0
hE
�E ^D1;0

hE
�E

."2 C j�E j2/2 � "2

"2 C j�F j2�F;hF C ˇ C "2

"20
�C
E;hE
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where �C
E;hE

is the positive part of �E;hE with respect to ˇ. One sees immediately
that this term is negligible. The first term is the only one which is not uniformly
bounded, and actually it converges weakly to the current ŒE�. By squaring, we find

lim sup
"!0

Z

X.u";0/
u2" �

Z

X.ˇ�	;0/
.ˇ � 	/2 C 2ˇ �E:

Notice that the term � "2

"2Cj�F j2 �F;hF does not contribute to the limit as it converges
boundedly almost everywhere to 0, the exceptions being points of jF j, but this set is
of measure zero with respect to the current ŒE�. Clearly we have

R
X.ˇ�	;0/.ˇ�	/2 �

ˇ2 and therefore

lim sup
"!0

Z

X.u";0/
u2" � ˇ2 C 2ˇ �E:

Similarly, by looking at �u", we find

lim sup
"!0

Z

X.u";2/
u2" � 	2 C 2	 � F:

These lim sup’s are small and we conclude that the essential part of the mass is
concentrated on the 1-index set, as desired. ut
Remark 100. It is interesting to put these results in perspective with the algebraic
version Theorem 23 of holomorphic Morse inequalities. When X is projective, the
algebraic Morse inequalities used in combination with the birational invariance of
the Morse integrals imply the inequalities

(a) inf
u2c1.L/

Z

X.u;q/
.�1/qun � inf


�.L/'O.F�G/

 
n

q

!
F n�q �Gq ;

(b) inf
u2c1.L/

Z

X.u;�q/
.�1/qun � inf


�.L/'O.F�G/
X

0�j�q
.�1/q�j

 
n

j

!
F n�j �Gj ;

where the infimums on the right hand side are taken over all modifications

 W QX ! X and all decompositions 
�L D O.F �G/ of 
�L as a difference
of two nef Q-divisors F; G on QX . Again, a natural question is to know
whether these infimums derived from algebraic intersection numbers are equal
to the asymptotic cohomology functionals Ohq.X;L/ and Oh�q.X;L/. A positive
answer would of course automatically yield a positive answer to the equality
cases in 2.9(a) and (b). However, the Zariski decompositions involved in our
proofs of equality for q D 0 or n � 2 produce certain effective exceptional
divisors which are not nef. It is unclear how to write those effective divisors as
a difference of nef divisors. This fact raises a lot of doubts upon the sufficiency
of taking merely differences of nef divisors in the infimums (a) and (b), and it
is likely that one needs a more subtle formula. ut
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3.7 Singular Holomorphic Morse Inequalities

The goal of this short section is to extend holomorphic Morse inequalities to the
case of singular Hermitian metrics, following Bonavero’s PhD thesis [13] (cf. also
[14]).We always assume that our Hermitian metrics h are given by quasi-psh
weights '. By Theorem 88, one can always approximate the weight by an arbitrary
close quasi-psh weight ' with analytic singularities, modulo smooth functions.

Theorem 101. Let .L; h/ be a holomorphic line bundle on a compact complex
n-fold X , and let E be an arbitrary holomorphic vector bundle of rank r . Assume
that locally h D e�' has analytic singularities, and that ' is quasi-psh of the form

h D c log
X

jgj j2 modC1; c > 0;

in such a way that for a suitable modification
 W QX !X one has
��L;h D ŒD�Cˇ
where D is an effective divisor and ˇ a smooth form on QX . Let S D 
.SuppD/
be the singular set of h. Then we have the following asymptotic estimates for the
cohomology twisted by the appropriate multiplier ideal sheaves:

(a) hq.X;E ˝ Lk ˝ I .hk// � r
kn

nŠ

Z

X.L;h;q/XS
.�1/q�n

L;h C o.kn/ :

(b)
X

0�j�q
.�1/q�j hj .X;E˝Lk˝I .hk// � r

kn

nŠ

Z

X.L;h;�q/XS
.�1/q�n

L;hCo.kn/ :

Proof. For this, we observe that the Morse integrals are given by

Z

QX.ˇ;q/
.�1/qˇn;

thanks to a change of variable z D 
.x/. In fact, by our assumption �L;h is
smooth on X X S , and its pull-back 
��L;h coincides with the smooth form ˇ

on the complement QX X SuppD (and SuppD is a negligible set with respect to the
integration of the smooth .n; n/ formˇn on QX .) Now, a straightforwardL2 argument
in the change of variable (cf. [33]) yields the direct image formula

KX ˝ I .hk/ D 
�
�
K QX ˝ I .
�hk/

�
: (86)

Let us introduce the relative canonical sheafK QX=X DK QX˝
�K�1
X D O.div.Jac
//

and let us put

QL D 
�L; Qh D 
�h; QE D 
�E ˝K QX=X:
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Then Qh has divisorial singularities and therefore I . Qhk/ D O.�bkDc/ where b: : :c
means the integral part of a divisor. The projection formula for direct images yields


�
� QE ˝ QLk ˝ I . Qhk/� D E ˝ Lk ˝ I .hk/;

Rq
�
� QE ˝ QLk ˝ I . Qhk/� D E ˝ Lk ˝K�1

X ˝Rq
�
�
K QX ˝ I . Qhk/�:

However, for k � k0 large enough, the multiplicities of bkDc are all > 0 for each of
the components of D, hence I .hk/ D O.�bkDc/ is relatively ample with respect
to the morphism 
 W QX ! X . From this, e.g. by an application of Hörmander’s L2

estimates (see [13] for more details), we conclude that Rq
�
�
K QX ˝ I . Qhk/� D 0

for k � k0. The Leray spectral sequence then implies

Hq
�
X;E ˝ Lk ˝ I .hk/

� ' Hq
� QX; QE ˝ QLk ˝ I . Qhk/�: (87)

This reduces the proof to the case of divisorial singularities. Let us next assume that
D is a Q-divisor. Let a be a denominator forD, and put k D a`Cb, 0 � b � a�1.
Then

QE ˝ QLk ˝ I . Qhk/ D QE ˝ QLa`Cb ˝ O.�a`D � bbDc/ D Fb ˝G`

where
Fb D QE ˝ QLb ˝ O.�bbDc/; G D QLa ˝ O.�aD/:

By construction, we get a smooth Hermitian metric hG onG such that�G;hG D aˇ.
In this case, the proof is reduced to the standard case of holomorphic Morse
inequalities, applied to the smooth Hermitian line bundle .G; hG/ on QX and the
finite family of rank r vector bundles Fb , 0 � b � a � 1. The result is true even
whenD is a real divisor. In fact, we can then perturb the coefficients of D by small
"’s to get a rational divisorD", and we then have to change the smooth part of� QL; Qh
to ˇ" D ˇ C O."/ (again smooth); actually ˇ" � ˇ can be taken to be a linear
combination by coefficients O."/ of given smooth forms representing the Chern
classes c1.O.Dj // of the components ofD. The Morse integrals are then perturbed
by O."/. On the other hand, Theorem 88 shows that the cohomology groups in the
right hand side of (87) are perturbed by "kn. The result follows as " ! 0, thanks to
the already settled rational case. ut

4 Morse Inequalities and the Green–Griffiths–Lang
Conjecture

The goal of this section is to study the existence and properties of entire curves
f W C ! X drawn in a complex irreducible n-dimensional variety X , and more
specifically to show that they must satisfy certain global algebraic or differential
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equations as soon as X is projective of general type. By means of holomorphic
Morse inequalities and a probabilistic analysis of the cohomology of jet spaces,
we are able to prove a significant step of a generalized version of the Green–
Griffiths–Lang conjecture on the algebraic degeneracy of entire curves.

4.1 Introduction

Let X be a complex n-dimensional manifold ; most of the time we will assume
that X is compact and even projective algebraic. By an “entire curve” we always
mean a non constant holomorphic map defined on the whole complex line C, and
we say that it is algebraically degenerate if its image is contained in a proper
algebraic subvariety of the ambient variety. If 
 W QX ! X is a modification and
f W C ! X is an entire curve whose image f .C/ is not contained in the image

.E/ of the exceptional locus, then f admits a unique lifting Qf W C ! QX .
For this reason, the study of the algebraic degeneration of f is a birationally
invariant problem, and singularities do not play an essential role at this stage.
We will therefore assume thatX is non singular, possibly after performing a suitable
composition of blow-ups. We are interested more generally in the situation where
the tangent bundle TX is equipped with a linear subspace V � TX , that is,
an irreducible complex analytic subset of the total space of TX such that (0.1) all

fibers Vx WD V \ TX;x are vector subspaces of TX;x . Then the problem is to study

entire curves f W C ! X which are tangent to V , i.e. such that f�TC � V .
We will refer to a pair .X; V / as being a directed variety (or directed manifold).
A morphism of directed varieties ˚ W .X; V / ! .Y;W / is a holomorphic map
˚ W X ! Y such that ˚�V � W ; by the irreducibility, it is enough to check this
condition over the dense open subset X X Sing.V / where V is actually a subbundle.
Here Sing.V / denotes the indeterminacy set of the associated meromorphic map
˛ W X > Gr.TX/ to the Grassmannian bundle of r-planes in TX , r D rankV ;
we thus have VjXXSing.V / D ˛�S where S ! Gr.TX/ is the tautological subbundle
of Gr.TX/. In that way, we get a category, and we will be mostly interested in the
subcategory whose objects .X; V / are projective algebraic manifolds equipped with
algebraic linear subspaces. Notice that an entire curve f W C ! X tangent to V is
just a morphism f W .C; TC/ ! .X; V /.

The case where V D TX=S is the relative tangent space of some fibrationX ! S

is of special interest, and so is the case of a foliated variety (this is the situation
where the sheaf of sections O.V / satisfies the Frobenius integrability condition
ŒO.V /;O.V /� � O.V /); however, it is very useful to allow as well non integrable
linear subspaces V . We refer to V D TX as being the absolute case. Our main
target is the following deep conjecture concerning the algebraic degeneracy of entire
curves, which generalizes similar statements made in [51] (see also [65, 66]).

Generalized Green-Griffiths-Lang conjecture 102. Let .X; V / be a projective
directed manifold such that the canonical sheaf KV is big .in the absolute case
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V D TX , this means that X is a variety of general type, and in the relative case
we will say that .X; V / is of general type/. Then there should exist an algebraic
subvariety Y ¨ X such that every non constant entire curve f W C ! X tangent to
V is contained in Y .

The precise meaning of KV and of its bigness will be explained below—our
definition does not coincide with other frequently used definitions and is in our view
better suited to the study of entire curves of .X; V /. One says that .X; V / is Brody-
hyperbolic when there are no entire curves tangent to V . According to (generalized
versions of) conjectures of Kobayashi [Kob70, Kob76] the hyperbolicity of .X; V /
should imply that KV is big, and even possibly ample, in a suitable sense. It would
then follow from Conjecture 102 that .X; V / is hyperbolic if and only if for every
irreducible variety Y � X , the linear subspace V QY D T QYXE \ 
��1V � T QY has
a big canonical sheaf whenever 
 W QY ! Y is a desingularization and E is the
exceptional locus.

The most striking fact known at this date on the Green–Griffiths–Lang conjecture
is a recent result of Diverio et al. [41] in the absolute case, confirming the statement
when X � P

nC1
C

is a generic non singular hypersurface of large degree d , with a
(non optimal) sufficient lower bound d � 2n

5
. Their proof is based in an essential

way on a strategy developed by Siu [90, 91], combined with techniques of [31].
Notice that if the Green–Griffiths–Lang conjecture holds true, a much stronger and
probably optimal result would be true, namely all smooth hypersurfaces of degree
d � n C 3 would satisfy the expected algebraic degeneracy statement. Moreover,
by results of Clemens [21] and Voisin [101], a (very) generic hypersurface of
degree d � 2n C 1 would in fact be hyperbolic for every n � 2. Such a generic
hyperbolicity statement has been obtained unconditionally by McQuillan [71, 72]
when n D 2 and d � 35, and by Demailly-El Goul [36] when n D 2 and d � 21.
Recently Diverio–Trapani [45] proved the same result when n D 3 and d � 593. By
definition, proving the algebraic degeneracy means finding a non zero polynomialP
on X such that all entire curves f W C ! X satisfy P.f / D 0. All known methods
of proof are based on establishing first the existence of certain algebraic differential
equations P.f I f 0; f 00; : : : ; f .k// D 0 of some order k, and then trying to find
enough such equations so that they cut out a proper algebraic locus Y ¨ X .

Let JkV be the space of k-jets of curves f W .C; 0/ ! X tangent to V . One
defines the sheaf O.EGG

k;mV
�/ of jet differentials of order k and degree m to be

the sheaf of holomorphic functions P.zI 
1; : : : 
k/ on JkV which are homogeneous
polynomials of degreem on the fibers of J kV ! X with respect to local coordinate
derivatives 
j D f .j /.0/ (see below in case V has singularities). The degree m
considered here is the weighted degree with respect to the natural C� action on J kV
defined by � � f .t/ WD f .�t/, i.e. by reparametrizing the curve with a homothetic
change of variable. Since .� � f /.j /.t/ D �jf .j /.�t/, the weighted action is given
in coordinates by

� � .
1; 
2; : : : ; 
k/ D .�
1; �
2
2; : : : ; �

k
k/: (88)
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One of the major tool of the theory is the following result due to Green–Griffiths
[51] (see also [9, 31, 32, 89, 92, 93]).

Fundamental vanishing theorem 103. Let .X; V / be a directed projective variety
and f W .C; TC/ ! .X; V / an entire curve tangent to V . Then for every global
section P 2 H0.X;EGG

k;mV
� ˝ O.�A// where A is an ample divisor of X , one has

P.f I f 0; f 00; : : : ; f .k// D 0.

Let us give the proof of vanishing Theorem 103 in a special case. We interpret
here EGG

k;mV
� ˝ O.�A/ as the bundle of differential operators whose coefficients

vanish along A. By a well-known theorem of Brody [20], for every entire curve
f W .C; TC/ ! .X; V /, one can extract a convergent “renormalized” sequence
g D limf ı h� where h� are suitable homographic functions, in such a way that
g is an entire curve with bounded derivative supt2C kg0.t/k! < C1 (with respect
to any given Hermitian metric ! on X ); the image g.C/ is then contained in the
cluster set f .C/, but it is possible that g.C/ ¨ f .C/. Then Cauchy inequalities
imply that all derivatives g.j / are bounded, and therefore, by compactness of X ,
u D P.g I g0; g00; : : : ; g.k// is a bounded holomorphic function on C. However,
after raising P to a power, we may assume that A is very ample, and after moving
A 2 jAj, that SuppA intersects g.C/. Then u vanishes somewhere, hence u � 0 by
Liouville’s theorem. The proof for the general case is more subtle and makes use of
Nevanlinna’s second main theorem (see the above references).

It is expected that the global sections ofH0.X;EGG
k;mV

� ˝ O.�A// are precisely
those which ultimately define the algebraic locus Y ¨ X where the curve f should
lie. The problem is then reduced to the question of showing that there are many non
zero sections ofH0.X;EGG

k;mV
� ˝O.�A//, and further, understanding what is their

joint base locus. The first part of this program is the main result of this section.

Theorem 104. Let .X; V / be a directed projective variety such that KV is big
and let A be an ample divisor. Then for k � 1 and ı 2 QC small enough,
ı � c.log k/=k, the number of sections h0.X;EGG

k;mV
� ˝ O.�mıA// has maximal

growth, i.e. is larger that ckmnCkr�1 for somem � mk, where c; ck > 0, n D dimX
and r D rankV . In particular, entire curves f W .C; TC/ ! .X; V / satisfy .many/
algebraic differential equations.

The statement is very elementary to check when r D rankV D 1, and therefore
when n D dimX D 1. In higher dimensions n � 2, only very partial results
were known at this point, concerning merely the absolute case V D TX . In
dimension 2, Theorem 104 is a consequence of the Riemann–Roch calculation
of Green–Griffiths [51], combined with a vanishing theorem due to Bogomolov
[11]—the latter actually only applies to the top cohomology group Hn, and things
become much more delicate when estimates of intermediate cohomology groups are
needed. In higher dimensions, Diverio [39, 40] proved the existence of sections of
H0.X;EGG

k;mV
� ˝ O.�1// whenever X is a hypersurface of PnC1

C
of high degree

d � dn, assuming k � n andm � mn. More recently, Merker [73] was able to treat
the case of arbitrary hypersurfaces of general type, i.e. d � nC3, assuming this time
k to be very large. The latter result is obtained through explicit algebraic calculations
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of the spaces of sections, and the proof is computationally very intensive. Bérczi [6]
also obtained related results with a different approach based on residue formulas,
assuming d � 27n log n.

All these approaches are algebraic in nature, and use only the algebraic version
of holomorphic Morse inequalities (Sect. 1.3.4). Here, however, our techniques are
based on more elaborate curvature estimates in the spirit of Cowen–Griffiths [22].
They require the stronger analytic form of holomorphic Morse inequalities (see
Sects. 1 and 3.7)—and we do not know how to translate our method in an algebraic
setting. Notice that holomorphic Morse inequalities are essentially insensitive to
singularities, as we can pass to non singular models and blow-up X as much as
we want: if 
 W QX ! X is a modification then 
�O QX D OX and Rq
�O QX is
supported on a codimension 1 analytic subset (even codimension 2 if X is smooth).
As already observed in Sect. 3.4, it follows from the Leray spectral sequence that
the cohomology estimates for L on X or for QL D 
�L on QX differ by negligible
terms, i.e.

hq. QX; QL˝m/ � hq.X;L˝m/ D O.mn�1/:

Finally, singular holomorphic Morse inequalities (see Sect. 3.7) allow us to work
with singular Hermitian metrics h; this is the reason why we will only require to
have big line bundles rather than ample line bundles. In the case of linear subspaces
V � TX , we introduce singular Hermitian metrics as follows.

Definition 105. A singular Hermitian metric on a linear subspace V � TX is a
metric h on the fibers of V such that the function logh W 
 7! log j
j2h is locally
integrable on the total space of V .

Such a metric can also be viewed as a singular Hermitian metric on the tauto-
logical line bundle OP.V /.�1/ on the projectivized bundle P.V / D V X f0g=C�,
and therefore its dual metric h� defines a curvature current�OP.V /.1/;h� of type .1; 1/
on P.V / � P.TX/, such that

p��OP.V /.1/;h� D i

2�
@@ logh; where p W V X f0g ! P.V /:

If logh is quasi-plurisubharmonic .or quasi-psh, which means psh modulo addition
of a smooth function/ on V , then logh is indeed locally integrable, and we have
moreover

�OP.V /.1/;h� � �C! (89)

for some smooth positive .1; 1/-form on P.V / and some constant C >0; con-
versely, if (89) holds, then logh is quasi-psh.

Definition 106. We will say that a singular Hermitian metric h on V is admissible if
h can be written as h D e'h0jV where h0 is a smooth positive definite Hermitian on
TX and ' is a quasi-psh weight with analytic singularities onX , as in Definition 105.
Then h can be seen as a singular Hermitian metric on OP.V /.1/, with the property
that it induces a smooth positive definite metric on a Zariski open set X 0 � X X
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Sing.V / I we will denote by Sing.h/ 
 Sing.V / the complement of the largest such
Zariski open set X 0.

If h is an admissible metric, we define Oh.V
�/ to be the sheaf of germs of

holomorphic sections of V �
jXXSing.h/ which are h�-bounded near Sing.h/; by the

assumption on the analytic singularities, this is a coherent sheaf (as the direct image
of some coherent sheaf on P.V /), and actually, since h� D e�'h�

0 , it is a subsheaf
of the sheaf O.V �/ WD Oh0.V

�/ associated with a smooth positive definite metric
h0 on TX . If r is the generic rank of V andm a positive integer, we define similarly
Km
V;h to be sheaf of germs of holomorphic sections of .detV �

jX 0
/˝m D .�rV �

jX 0
/˝m

which are deth�-bounded, and Km
V WD Km

V;h0
.

If V is defined by ˛ W X > Gr.TX/, there always exists a modification

 W QX ! X such that the composition ˛ ı 
 W QX ! Gr.


�TX/ becomes
holomorphic, and then 
�Vj
�1.XXSing.V // extends as a locally trivial subbundle of

�TX which we will simply denote by 
�V . If h is an admissible metric on V , then

�V can be equipped with the metric 
�h D e'ı

�h0 where 
�h0 is smooth and
positive definite. We may assume that ' ı 
 has divisorial singularities (otherwise
just perform further blow-ups of QX to achieve this). We then see that there is an
integerm0 such that for all multiplesm D pm0 the pull-back
�Km

V;h is an invertible
sheaf on QX , and deth� induces a smooth non singular metric on it (when h D h0, we
can even take m0 D 1). By definition we always have Km

V;h D 
�.
�Km
V;h/ for any

m � 0. In the sequel, however, we think of KV;h not really as a coherent sheaf, but
rather as the “virtual” Q-line bundle 
�.
�Km0

V;h/
1=m0 , and we say thatKV;h is big if

h0.X;Km
V;h/ � cmn for m � m1, with c > 0 , i.e. if the invertible sheaf 
�Km0

V;h is
big in the usual sense.

At this point, it is important to observe that “our” canonical sheafKV differs from
the sheaf KV WD i�O.KV / associated with the injection i W X X Sing.V / ,! X ,
which is usually referred to as being the “canonical sheaf”, at least when V is the
space of tangents to a foliation. In fact, KV is always an invertible sheaf and there
is an obvious inclusion KV � KV . More precisely, the image of O.�rT �

X / ! KV

is equal to KV ˝OX J for a certain coherent ideal J � OX , and the condition
to have h0-bounded sections on X X Sing.V / precisely means that our sections
are bounded by Const

P jgj j in terms of the generators .gj / of KV ˝OX J , i.e.
KV D KV ˝OX J where J is the integral closure of J . More generally,

Km
V;h D K m

V ˝OX J
m=m0

h;m0

where J
m=m0

h;m0
� OX is the .m=m0/-integral closure of a certain ideal sheaf

Jh;m0 � OX , which can itself be assumed to be integrally closed; in our previous
discussion, 
 is chosen so that 
�Jh;m0 is invertible on QX .

The discrepancy already occurs e.g. with the rank 1 linear space V � TPn
C

consisting at each point z ¤ 0 of the tangent to the line .0z/ (so that necessarily
V0 D TPn

C
;0). As a sheaf (and not as a linear space), i�O.V / is the invertible sheaf

generated by the vector field 
 D P
zj @=@zj on the affine open set Cn � P

n
C

,
and therefore KV WD i�O.V �/ is generated over Cn by the unique 1-form u such



Applications of Pluripotential Theory to Algebraic Geometry 235

that u.
/ D 1. Since 
 vanishes at 0, the generator u is unbounded with respect
to a smooth metric h0 on TPn

C
, and it is easily seen that KV is the non invertible

sheaf KV D KV ˝ mP
n
C
;0. We can make it invertible by considering the blow-up


 W QX ! X of X D P
n
C

at 0, so that 
�KV is isomorphic to 
�KV ˝ O QX.�E/
where E is the exceptional divisor. The integral curves C of V are of course
lines through 0, and when a standard parametrization is used, their derivatives do
not vanish at 0, while the sections of i�O.V / do—another sign that i�O.V / and
i�O.V �/ are the wrong objects to consider. Another standard example is obtained
by taking a generic pencil of elliptic curves �P.z/C 
Q.z/ D 0 of degree 3 in P

2
C

,
and the linear space V consisting of the tangents to the fibers of the rational map
P
2
C

> P
1
C

defined by z 7! Q.z/=P.z/. Then V is given by

0 �! i�O.V / �! O.T
P
2
C

/
PdQ�QdP�������! O

P
2
C

.6/˝ JS �! 0

where S D Sing.V / consists of the nine points fP.z/ D 0g \ fQ.z/ D 0g, and
JS is the corresponding ideal sheaf of S . Since det O.TP2/ D O.3/, we see that
KV D O.3/ is ample, which seems to contradict (2) since all leaves are elliptic
curves. There is however no such contradiction, because KV D KV ˝ JS is not
big in our sense (it has degree 0 on all members of the elliptic pencil). A similar
example is obtained with a generic pencil of conics, in which case KV D O.1/ and
cardS D 4.

For a given admissible Hermitian structure .V; h/, we define similarly the
sheaf EGG

k;mV
�
h to be the sheaf of polynomials defined over X X Sing.h/

which are “h-bounded”. This means that when they are viewed as polynomials
P.z I 
1; : : : ; 
k/ in terms of 
j D .r1;0

h0
/j f .0/ where r1;0

h0
is the .1; 0/-component

of the induced Chern connection on .V; h0/, there is a uniform bound

ˇ̌
P.z I 
1; : : : ; 
k/

ˇ̌ � C
�X

k
j k1=jh
�m

(90)

near points ofX XX 0 (see Sect. 2 for more details on this). Again, by a direct image
argument, one sees that EGG

k;mV
�
h is always a coherent sheaf. The sheaf EGG

k;mV
� is

defined to beEGG
k;mV

�
h when h D h0 (it is actually independent of the choice of h0, as

follows from arguments similar to those given in Sect. 2). Notice that this is exactly
what is needed to extend the proof of the vanishing Theorem 103 to the case of a
singular linear space V ; the value distribution theory argument can only work when
the functions P.f I f 0; : : : ; f .k//.t/ do not exhibit poles, and this is guaranteed
here by the boundedness assumption.

Our strategy can be described as follows. We consider the Green–Griffiths bundle
of k-jets XGG

k D J kV X f0g=C�, which by (88) consists of a fibration in weighted
projective spaces, and its associated tautological sheaf

L D OXGG
k
.1/;
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viewed rather as a virtualQ-line bundle OXGG
k
.m0/

1=m0 withm0 D lcm.1; 2; : : : ; k/.
Then, if �k W XGG

k ! X is the natural projection, we have

EGG
k;m D .�k/�OXGG

k
.m/ and Rq.�k/�OXGG

k
.m/ D 0 for q � 1:

Hence, by the Leray spectral sequence we get for every invertible sheaf F on X the
isomorphism

Hq.X;EGG
k;mV

� ˝ F / ' Hq.XGG
k ;OXGG

k
.m/˝ ��

k F /: (91)

The latter group can be evaluated thanks to holomorphic Morse inequalities. In fact
we can associate with any admissible metric h on V a metric (or rather a natural
family) of metrics on L D OXGG

k
.1/. The space XGG

k always possesses quotient
singularities if k � 2 (and even some more if V is singular), but we do not really care
since Morse inequalities still work in this setting. As we will see, it is then possible
to get nice asymptotic formulas as k ! C1. They appear to be of a probabilistic
nature if we take the components of the k-jet (i.e. the successive derivatives

j D f .j /.0/, 1 � j � k) as random variables. This probabilistic behaviour was
somehow already visible in the Riemann–Roch calculation of [51]. In this way,
assuming KV big, we produce a lot of sections �j D H0.XGG

k ;OXGG
k
.m/˝ ��

k F /,
corresponding to certain divisors Zj � XGG

k . The hard problem which is left in
order to complete a proof of the generalized Green–Griffiths–Lang conjecture is to
compute the base locus Z D T

Zj and to show that Y D �k.Z/ � X must be a
proper algebraic variety. Unfortunately we cannot address this problem at present.

4.2 Hermitian Geometry of Weighted Projective Spaces

The goal of this section is to introduce natural Kähler metrics on weighted projective
spaces, and to evaluate the corresponding volume forms. Here we put dc D i

4�
.@�@/

so that ddc D i
2�
@@. The normalization of the dc operator is chosen such that we

have precisely .dd c log jzj2/n D ı0 for the Monge–Ampère operator in C
n; also, for

every holomorphic or meromorphic section � of a Hermitian line bundle .L; h/ the
Lelong–Poincaré can be formulated

ddc log j� j2h D ŒZ� � ��L;h; (92)

where �L;h D i
2�
D2
L;h is the .1; 1/-curvature form of L and Z� the zero divisor

of � . The closed .1; 1/-form�L;h is a representative of the first Chern class c1.L/.
Given a k-tuple of “weights” a D .a1; : : : ; ak/, i.e. of integers as > 0 with
gcd.a1; : : : ; ak/ D 1, we introduce the weighted projective space P.a1; : : : ; ak/
to be the quotient of Ck X f0g by the corresponding weighted C

� action:
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P.a1; : : : ; ak/ D C
k X f0g=C�; � � z D .�a1z1; : : : ; �

ak zk/: (93)

As is well known, this defines a toric .k � 1/-dimensional algebraic variety with
quotient singularities. On this variety, we introduce the possibly singular (but almost
everywhere smooth and non degenerate) Kähler form !a;p defined by

��
a !a;p D ddc'a;p; 'a;p.z/ D 1

p
log

X

1�s�k
jzs j2p=as ; (94)

where �a W Ck X f0g ! P.a1; : : : ; ak/ is the canonical projection and p > 0 is a
positive constant. It is clear that 'p;a is real analytic on C

kXf0g if p is an integer and
a common multiple of all weights as . It is at least C2 if p is real and p � max.as/,
which will be more than sufficient for our purposes (but everything would still work
for any p > 0). The resulting metric is in any case smooth and positive definite
outside of the coordinate hyperplanes zs D 0, and these hyperplanes will not matter
here since they are of capacity zero with respect to all currents .dd c'a;p/`. In order
to evaluate the volume

R
P.a1;:::;ak/

!k�1
a;p , one can observe that

Z

P.a1;:::;ak/

!k�1
a;p D

Z

z2Ck; 'a;p.z/D0
��
a !

k�1
a;p ^ dc'a;p

D
Z

z2Ck; 'a;p.z/D0
.dd c'a;p/

k�1 ^ dc'a;p

D 1

pk

Z

z2Ck; 'a;p.z/<0
.dd cep'a;p /k: (95)

The first equality comes from the fact that f'a;p.z/ D 0g is a circle bundle over
P.a1; : : : ; ak/, together with the identities 'a;p.� � z/ D 'a;p.z/ C log j�j2 andR

j�jD1 d
c log j�j2 D 1. The third equality can be seen by Stokes formula applied

to the .2k � 1/-form

.dd cep'a;p /k�1 ^ dcep'a;p D ep'a;p .dd c'a;p/
k�1 ^ dc'a;p

on the pseudoconvex open set fz 2 C
k I 'a;p.z/ < 0g. Now, we find

.dd cep'a;p /k D
�
ddc

X

1�s�k
jzsj2p=as

�k D
Y

1�s�k

� p
as

jzs j
p
as

�1�.dd cjzj2/k; (96)

Z

z2Ck; 'a;p.z/<0
.dd cep'a;p /k D

Y

1�s�k

p

as
D pk

a1 : : : ak
: (97)

In fact, (96) and (97) are clear when p D a1 D : : : D ak D 1 (this is just the
standard calculation of the volume of the unit ball in C

k); the general case follows
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by substituting formally zs 7! zp=ass , and using rotational invariance together with
the observation that the arguments of the complex numbers zp=ass now run in the
interval Œ0; 2�p=asŒ instead of Œ0; 2�Œ (say). As a consequence of (95) and (97), we
obtain the well known value

Z

P.a1;:::;ak /

!k�1
a;p D 1

a1 : : : ak
; (98)

for the volume. Notice that this is independent of p (as it is obvious by Stokes
theorem, since the cohomology class of !a;p does not depend on p). When p tends
to C1, we have 'a;p.z/ 7! 'a;1.z/ D log max1�s�k jzsj2=as and the volume form
!k�1
a;p converges to a rotationally invariant measure supported by the image of the

polycircle
Qfjzsj D 1g in P.a1; : : : ; ak/. This is so because not all jzsj2=as are equal

outside of the image of the polycircle, thus 'a;1.z/ locally depends only on k � 1

complex variables, and so !k�1
a;1 D 0 there by log homogeneity.

Our later calculations will require a slightly more general setting. Instead of
looking at Ck , we consider the weighted C

� action defined by

C
jr j D C

r1 � : : : � C
rk ; � � z D .�a1z1; : : : ; �

ak zk/: (99)

Here zs 2 C
rs for some k-tuple r D .r1; : : : ; rk/ and jr j D r1 C : : :C rk . This gives

rise to a weighted projective space

P.a
Œr1�
1 ; : : : ; a

Œrk �

k / D P.a1; : : : ; a1; : : : ; ak; : : : ; ak/;

�a;r W Cr1 � : : : � C
rk X f0g �! P.a

Œr1�
1 ; : : : ; a

Œrk �

k / (100)

obtained by repeating rs times each weight as . On this space, we introduce the
degenerate Kähler metric !a;r;p such that

��
a;r!a;r;p D ddc'a;r;p; 'a;r;p.z/ D 1

p
log

X

1�s�k
jzsj2p=as (101)

where jzsj stands now for the standard Hermitian norm .
P

1�j�rs jzs;j j2/1=2 on C
rs .

This metric is cohomologous to the corresponding “polydisc-like” metric !a;p
already defined, and therefore Stokes theorem implies

Z

P.a
Œr1 �
1 ;:::;a

Œrk �

k /

!jr j�1
a;r;p D 1

a
r1
1 : : : a

rk
k

: (102)

Since .dd c log jzs j2/rs D 0 on C
rs X f0g by homogeneity, we conclude as before

that the weak limit limp!C1 !
jr j�1
a;r;p D !

jr j�1
a;r;1 associated with

'a;r;1.z/ D log max
1�s�k jzsj2=as (103)
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is a measure supported by the image of the product of unit spheres
Q
S2rs�1 in

P.a
Œr1�
1 ; : : : ; a

Œrk �

k /, which is invariant under the action of U.r1/ � : : : � U.rk/ on
C
r1 � : : :�C

rk , and thus coincides with the Hermitian area measure up to a constant
determined by condition (30). In fact, outside of the product of spheres, 'a;r;1
locally depends only on at most k � 1 factors and thus, for dimension reasons,
the top power .dd c'a;r;1/jr j�1 must be zero there. In the next section, the following
change of variable formula will be needed. For simplicity of exposition we restrict
ourselves to continuous functions, but a standard density argument would easily
extend the formula to all functions that are Lebesgue integrable with respect to the
volume form !

jr j�1
a;r;p .

Proposition 107. Let f .z/ be a bounded function on P.aŒr1�1 ; : : : ; a
Œrk �

k / which is
continuous outside of the hyperplane sections zs D 0. We also view f as a C

�-
invariant continuous function on

Q
.Crs X f0g/. Then

Z

P.a
Œr1 �

1 ;:::;a
Œrk �

k /
f .z/ !jr j�1

a;r;p

D .jr j � 1/ŠQ
s a

rs
s

Z

.x;u/2�k�1�QS2rs�1
f .x

a1=2p
1 u1; : : : ; x

ak=2p
k

uk/
Y

1�s�k

x
rs�1
s

.rs � 1/Š
dx d
.u/

where �k�1 is the .k � 1/-simplex fxs � 0,
P
xs D 1g, dx D dx1 ^ : : : ^ dxk�1

its standard measure, and where d
.u/ D d
1.u1/ : : : d
k.uk/ is the rotation
invariant probability measure on the product

Q
s S

2rs�1 of unit spheres in C
r1 �

: : : � C
rk . As a consequence

lim
p!C1

Z

P.a
Œr1 �
1 ;:::;a

Œrk �

k /

f .z/ !jr j�1
a;r;p D 1Q

s a
rs
s

Z
Q
S2rs�1

f .u/ d
.u/:

Proof. The area formula of the disc
R

j�j<1dd
cj�j2 D 1 and a consideration of the unit

disc bundle over P.aŒr1�1 ; : : : ; a
Œrk �

k / imply that

Ip WD
Z

P.a
Œr1 �
1 ;:::;a

Œrk �

k /

f .z/ !jr j�1
a;r;p D

Z

z2Cjrj;'a;r;p.z/<0
f .z/ .dd c'a;r;p/

jr j�1^ddce'a;r;p :

Now, a straightforward calculation on C
jr j gives

.dd cep'a;r;p /jr j D
�
ddc

X

1�s�k
jzsj2p=as

�jr j

D
Y

1�s�k

� p
as

�rsC1jzs j2rs.p=as�1/.dd cjzj2/jr j:
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On the other hand, we have .dd cjzj2/jr j D jr jŠ
r1Š:::rk Š

Q
1�s�k.dd cjzsj2/rs and

.dd cep'a;r;p /jr j D �
p ep'a;r;p .dd c'a;r;p C p d'a;r;p ^ dc'a;r;p/

�jr j

D jr jpjr jC1ejr jp'a;r;p .dd c'a;r;p/jr j�1 ^ d'a;r;p ^ dc'a;r;p
D jr jpjr jC1e.jr jp�1/'a;r;p .dd c'a;r;p/jr j�1 ^ ddce'a;r;p ;

thanks to the homogeneity relation .dd c'a;r;p/jr j D 0. Putting everything together,
we find

Ip D
Z

z2Cjrj; 'a;r;p.z/<0

.jr j � 1/Š pk�1f .z/
.
P

s jzsj2p=as /jr j�1=p
Y

s

.dd cjzsj2/rs
rsŠ a

rsC1
s jzsj2rs.1�p=as /

:

A standard calculation in polar coordinates with zs D �sus, us 2 S2rs�1, yields

.dd cjzsj2/rs
jzsj2rs D 2rs

d�s

�s
d
s.us/

where 
s is the U.rs/-invariant probability measure on S2rs�1. Therefore

Ip D
Z

'a;r;p.z/<0

.jr j � 1/Š pk�1f .�1u1; : : : ; �kuk/

.
P

1�s�k �
2p=as
s /jr j�1=p

Y

s

2�
2prs=as
s

d�s
�s
d
s.us/

.rs � 1/Š a
rsC1
s

D
Z

us2S2rs�1;P ts<1

.jr j � 1/Š p�1f .ta1=2p1 u1; : : : ; t
ak=2p

k uk/

.
P

1�s�k ts/jr j�1=p
Y

s

t rs�1s dts d
s.us/

.rs � 1/Š arss

by putting ts D jzsj2p=as D �
2p=as
s , i.e. �s D t

as=2p
s , ts 2 �0; 1�. We use still another

change of variable ts D txs with t D P
1�s�k ts and xs 2 �0; 1�,

P
1�s�k xs D 1.

Then

dt1 ^ : : : ^ dtk D tk�1 dxdt where dx D dx1 ^ : : : ^ dxk�1:

The C� invariance of f shows that

Ip D
Z

us2S2rs�1

˙xsD1; t2�0;1�

.jr j � 1/Šf .xas=2p1 u1; : : : ; x
ak=2p

k uk/
Y

1�s�k

xrs�1s d
s.us/

.rs � 1/Š a
rs
s

dxdt

p t1�1=p

D
Z

us2S2rs�1

˙xsD1

.jr j � 1/Šf .xas=2p1 u1; : : : ; x
ak=2p

k uk/
Y

1�s�k

xrs�1s d
s.us/

.rs � 1/Š a
rs
s

dx:

This is equivalent to the formula given in Proposition 107. We have x2as=ps ! 1 as
p ! C1, and by Lebesgue’s bounded convergence theorem and Fubini’s formula,
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we get

lim
p!C1 Ip D .jr j � 1/ŠQ

s a
rs
s

Z

.x;u/2�k�1�QS2rs�1
f .u/

Y

1�s�k

xrs�1s

.rs � 1/Š dxd
.u/:

It can be checked by elementary integrations by parts and induction on k; r1; : : : ; rk
that

Z

x2�k�1

Y

1�s�k
xrs�1s dx1 : : : dxk�1 D 1

.jr j � 1/Š
Y

1�s�k
.rs � 1/Š : (104)

This implies that .jr j � 1/Š
Q
1�s�k

x
rs�1
s

.rs�1/Š dx is a probability measure on �k�1 and
that

lim
p!C1 Ip D 1Q

s a
rs
s

Z

u2QS2rs�1
f .u/ d
.u/:

Even without an explicit check, (33) also follows from the fact that we must have
equality for f .z/ � 1 in the latter equality, if we take into account the volume
formula (30). ut

4.3 Probabilistic Estimate of the Curvature of k-Jet Bundles

Let .X; V / be a compact complex directed non singular variety. To avoid any
technical difficulty at this point, we first assume that V is a holomorphic vector
subbundle of TX , equipped with a smooth Hermitian metric h.

According to the notation already specified in the introduction, we denote by
J kV the bundle of k-jets of holomorphic curves f W .C; 0/ ! X tangent to V
at each point. Let us set n D dimCX and r D rankC V . Then J kV ! X is an
algebraic fiber bundle with typical fiber C

rk (see below). It has a canonical C�-
action defined by � � f W .C; 0/ ! X , .� � f /.t/ D f .�t/. Fix a point x0 in X and
a local holomorphic coordinate system .z1; : : : ; zn/ centered at x0 such that Vx0 is
the vector subspace h@=@z1; : : : ; @=@zri at x0. Then, in a neighborhood U of x0, V
admits a holomorphic frame of the form

@

@zˇ
C

X

rC1�˛�n
a˛ˇ.z/

@

@z˛
; 1 � ˇ � r; a˛ˇ.0/ D 0: (105)

Let f .t/ D .f1.t/; : : : ; fn.t// be a k-jet of curve tangent to V starting from a
point f .0/ D x 2 U . Such a curve is entirely determined by its initial point and
by the projection Qf .t/ WD .f1.t/; : : : ; fr .t// to the first r-components, since the
condition f 0.t/ 2 Vf.t/ implies that the other components must satisfy the ordinary
differential equation
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f 0̨.t/ D
X

1�ˇ�r
a˛ˇ.f .t//f

0̌.t/:

This implies that the k-jet of f is entirely determined by the initial point x and the
Taylor expansion

Qf .t/ � Qx D 
1t C 
2t
2 C : : :C 
kt

k CO.tkC1/ (106)

where 
s D .
s˛/1�˛�r 2 C
r . The C

� action .�; f / 7! � � f is then expressed in
coordinates by the weighted action

� � .
1; 
2; : : : ; 
k/ D .�
1; �
2
2; : : : ; �

k
k/ (107)

associated with the weight a D .1Œr�; 2Œr�; : : : ; kŒr�/. The quotient projectivized k-jet
bundle

XGG
k WD .J kV X f0g/=C� (108)

considered by Green and Griffiths [51] is therefore in a natural way a
P.1Œr�; 2Œr�; : : : ; kŒr�/ weighted projective bundle over X . As such, it possesses a
canonical sheaf OXGG

k
.1/ such that OXGG

k
.m/ is invertible when m is a multiple of

lcm.1; 2; : : : ; k/. Under the natural projection �k W XGG
k ! X , the direct image

.�k/�OXGG
k
.m/ coincides with the sheaf of sections of the bundle EGG

k;mV
� of jet

differentials of order k and degreem, namely polynomials

P.z I 
1; : : : ; 
k/ D
X

˛`2Nr ; 1�`�k
a˛1:::˛k .z/ 


˛1
1 : : : 


˛k
k (109)

of weighted degree j˛1j C 2j˛2j C : : : C kj˛kj D m on J kV with holomorphic
coefficients. The jet differentials operate on germs of curves as differential operators

P.f /.t/ D
X

a˛1:::˛k .f .t// f
0.t/˛1 : : : f .k/.t/˛k : (110)

In the sequel, we do not make any further use of coordinate frames as (105), because
they need not be related in any way to the Hermitian metric h of V . Instead, we
choose a local holomorphic coordinate frame .e˛.z//1�˛�r of V on a neighborhood
U of x0, such that

he˛.z/; eˇ.z/i D ı˛ˇ C
X

1�i;j�n;1�˛;ˇ�r
cij˛ˇzi zj CO.jzj3/ (111)

for suitable complex coefficients .cij˛ˇ/. It is a standard fact that such a normalized
coordinate system always exists, and that the Chern curvature tensor i

2�
D2
V;h of

.V; h/ at x0 is then given by

�V;h.x0/ D � i

2�

X

i;j;˛;ˇ

cij˛ˇ dzi ^ d zj ˝ e�̨ ˝ eˇ: (112)
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Also, instead of defining the vectors 
s 2 C
r as in (40), we consider a local

holomorphic connection r on VjU (e.g. the one which turns .e˛/ into a parallel
frame), and take 
k D rkf .0/ 2 Vx defined inductively by r1f D f 0 and
rsf D rf 0.rs�1f /. This is just another way of parameterizing the fibers of J kV
over U by the vector bundle V k

jU . Notice that this is highly dependent on r (the
bundle J kV actually does not carry a vector bundle or even affine bundle structure);
however, the expression of the weighted action (107) is unchanged in this new
setting. Now, we fix a finite open covering .U˛/˛2I of X by open coordinate charts
such that VjU˛ is trivial, along with holomorphic connections r˛ on VjU˛ . Let �˛ be
a partition of unity of X subordinate to the covering .U˛/. Let us fix p > 0 and
small parameters 1 D "1 � "2 � : : : � "k > 0. Then we define a global weighted
exhaustion on J kV by putting for any k-jet f 2 J kx V

�h;p;".f / WD
�X

˛2I
�˛.x/

X

1�s�k
"2ps krs

˛f .0/k2p=sh.x/

�1=p
(113)

where k kh.x/ is the Hermitian metric h of V evaluated on the fiber Vx , x D f .0/.
The function �h;p;" satisfies the fundamental homogeneity property

�h;p;".� � f / D �h;p;".f / j�j2 (114)

with respect to the C
� action on J kV , in other words, it induces a Hermitian metric

on the dual L� of the tautological Q-line bundle Lk D OXGG
k
.1/ over XGG

k . The
curvature of Lk is given by

��
k �Lk;��

h;p;"
D ddc log�h;p;" (115)

where �k W J kV X f0g ! XGG
k is the canonical projection. Our next goal is to

compute precisely the curvature and to apply holomorphic Morse inequalities to
L ! XGG

k with the above metric. It might look a priori like an untractable problem,
since the definition of �h;p;" is a rather unnatural one. However, the “miracle” is
that the asymptotic behavior of �h;p;" as "s="s�1 ! 0 is in some sense uniquely
defined and very natural. It will lead to a computable asymptotic formula, which is
moreover simple enough to produce useful results.

Lemma 108. On each coordinate chart U equipped with a holomorphic connec-
tion r of VjU , let us define the components of a k-jet f 2 J kV by 
s D rsf .0/,
and consider the rescaling transformation

�r;".
1; 
2; : : : ; 
k/ D ."11
1; "
2
2
2; : : : ; "

k
k
k/ on J kx V , x 2 U

.it commutes with the C
�-action but is otherwise unrelated and not canonically

defined over X as it depends on the choice of r/. Then, if p is a multiple of
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lcm.1; 2; : : : ; k/ and "s="s�1 ! 0 for all s D 2; : : : ; k, the rescaled function
�h;p;" ı ��1r;".
1; : : : ; 
k/ converges towards

	 X

1�s�k
k
sk2p=sh


1=p

on every compact subset of J kVjU X f0g, uniformly in C1 topology.

Proof. Let U � X be an open set on which VjU is trivial and equipped with some
holomorphic connection r. Let us pick another holomorphic connection Qr D rC�
where � 2 H0.U;˝1

X ˝ Hom.V; V /. Then Qr2f D r2f C � .f /.f 0/ � f 0, and
inductively we get

Qrsf D rsf C Ps.f I r1f; : : : ;rs�1f /

where P.x I 
1; : : : ; 
s�1/ is a polynomial with holomorphic coefficients in x 2 U

which is of weighted homogeneous degree s in .
1; : : : ; 
s�1/. In other words,
the corresponding change in the parametrization of J kVjU is given by a C

�-
homogeneous transformation

Q
s D 
s C Ps.x I 
1; : : : ; 
s�1/:

Let us introduce the corresponding rescaled components

.
1;"; : : : ; 
k;"/ D ."11
1; : : : ; "
k
k
k/; . Q
1;"; : : : ; Q
k;"/ D ."11

Q
1; : : : ; "kk Q
k/:

Then

Q
s;" D 
s;" C "ss Ps.x I "�1
1 
1;"; : : : ; "

�.s�1/
s�1 
s�1;"/

D 
s;" CO."s="s�1/s O.k
1;"k C : : :C k
s�1;"k1=.s�1//s

and the error terms are thus polynomials of fixed degree with arbitrarily small
coefficients as "s="s�1 ! 0. Now, the definition of �h;p;" consists of gluing the
sums X

1�s�k
"2ps k
kk2p=sh D

X

1�s�k
k
k;"k2p=sh

corresponding to 
k D rs
˛f .0/ by means of the partition of unity

P
�˛.x/ D 1. We

see that by using the rescaled variables 
s;" the changes occurring when replacing
a connection r˛ by an alternative one rˇ are arbitrary small in C1 topology, with
error terms uniformly controlled in terms of the ratios "s="s�1 on all compact subsets
of V k X f0g. This shows that in C1 topology, �h;p;" ı ��1r;".
1; : : : ; 
k/ converges
uniformly towards .

P
1�s�k k
kk2p=sh /1=p , whatever the trivializing open set U and

the holomorphic connection r used to evaluate the components and perform the
rescaling are. ut
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Now, we fix a point x0 2 X and a local holomorphic frame .e˛.z//1�˛�r
satisfying (111) on a neighborhoodU of x0. We introduce the rescaled components

s D "ssrsf .0/ on J kVjU and compute the curvature of

�h;p;" ı ��1r;".z I 
1; : : : ; 
k/ '
	 X

1�s�k
k
sk2p=sh


1=p

(by Lemma 108, the errors can be taken arbitrary small in C1 topology). We write

s D P

1�˛�r 
s˛e˛. By (111) we have

k
sk2h D
X

˛

j
s˛j2 C
X

i;j;˛;ˇ

cij˛ˇzi zj 
s˛
sˇ CO.jzj3j
j2/:

The question is to evaluate the curvature of the weighted metric defined by

�.z I 
1; : : : ; 
k/ D
	 X

1�s�k
k
sk2p=sh


1=p

D
	 X

1�s�k

�X

˛

j
s˛j2 C
X

i;j;˛;ˇ

cij˛ˇzi zj 
s˛
sˇ
�p=s
1=pCO.jzj3/:

We set j
sj2 D P
˛ j
s˛j2. A straightforward calculation yields

log�.z I 
1; : : : ; 
k/ D

D 1

p
log

X

1�s�k
j
sj2p=s C

X

1�s�k

1

s

j
sj2p=sP
t j
t j2p=t

X

i;j;˛;ˇ

cij˛ˇzi zj

s˛
sˇ

j
sj2 CO.jzj3/:

By (115), the curvature form of Lk D OXGG
k
.1/ is given at the central point x0 by

the following formula.

Proposition 109. With the above choice of coordinates and with respect to the
rescaled components 
s D "ssrsf .0/ at x0 2 X , we have the approximate
expression

�Lk;��

h;p;"
.x0; Œ
�/ ' !a;r;p.
/C i

2�

X

1�s�k

1

s

j
sj2p=sP
t j
t j2p=t

X

i;j;˛;ˇ

cij˛ˇ

s˛
sˇ

j
sj2 dzi ^ dzj

where the error terms areO.max2�s�k."s="s�1/s/ uniformly on the compact variety
XGG
k . Here !a;r;p is the .degenerate/ Kähler metric associated with the weight a D

.1Œr�; 2Œr�; : : : ; kŒr�/ of the canonical C� action on J kV .
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Thanks to the uniform approximation, we can (and will) neglect the error terms
in the calculations below. Since !a;r;p is positive definite on the fibers ofXGG

k ! X

(at least outside of the axes 
s D 0), the index of the .1; 1/ curvature form
�Lk;��

h;p;"
.z; Œ
�/ is equal to the index of the .1; 1/-form

	k.z; 
/ WD i

2�

X

1�s�k

1

s

j
sj2p=sP
t j
t j2p=t

X

i;j;˛;ˇ

cij˛ˇ.z/

s˛
sˇ

j
sj2 dzi ^ d zj (116)

depending only on the differentials .dzj /1�j�n on X . The q-index integral of
.Lk; �

�
h;p;"/ on XGG

k is therefore equal to

Z

XGG
k .Lk;q/

�nCkr�1
Lk;�

�

h;p;"

D

D .nC kr � 1/Š

nŠ.kr � 1/Š

Z

z2X

Z


2P.1Œr�;:::;kŒr�/
!kr�1
a;r;p .
/�	k ;q.z; 
/	k.z; 
/

n

where �	k ;q.z; 
/ is the characteristic function of the open set of points where
	k.z; 
/ has signature .n � q; q/ in terms of the dzj ’s. Notice that since 	k.z; 
/n

is a determinant, the product �	k ;q.z; 
/	k.z; 
/
n gives rise to a continuous function

onXGG
k . Formula (104) with r1 D : : : D rk D r and as D s yields the slightly more

explicit integral
Z

XGG
k .Lk;q/

�nCkr�1
Lk;�

�

h;p;"

D .nC kr � 1/Š
nŠ.kŠ/r

�

�
Z

z2X

Z

.x;u/2�k�1�.S2r�1/k
�gk ;q.z; x; u/gk.z; x; u/

n .x1 : : : xk/
r�1

.r � 1/Šk dxd
.u/;

where gk.z; x; u/ D 	k.z; x
1=2p
1 u1; : : : ; x

k=2p

k uk/ is given by

gk.z; x; u/ D i

2�

X

1�s�k

1

s
xs

X

i;j;˛;ˇ

cij˛ˇ.z/ us˛usˇ dzi ^ d zj (117)

and �gk ;q.z; x; u/ is the characteristic function of its q-index set. Here

d�k;r .x/ D .kr � 1/Š .x1 : : : xk/
r�1

.r � 1/Šk
dx (118)

is a probability measure on �k�1, and we can rewrite
Z

XGG
k .Lk;q/

�nCkr�1
Lk ;�

�

h;p;"

D .nC kr � 1/Š

nŠ.kŠ/r .kr � 1/Š �

�
Z

z2X

Z

.x;u/2�k�1�.S2r�1/k
�gk;q.z; x; u/gk.z; x; u/

n d�k;r .x/ d
.u/: (119)
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Now, formula (117) shows that gk.z; x; u/ is a “Monte Carlo” evaluation of the
curvature tensor, obtained by averaging the curvature at random points us 2 S2r�1
with certain positive weights xs=s ; we should then think of the k-jet f as some sort
of random parameter such that the derivatives rkf .0/ are uniformly distributed
in all directions. Let us compute the expected value of .x; u/ 7! gk.z; x; u/ with
respect to the probability measure d�k;r .x/ d
.u/. Since

R
S2r�1

us˛usˇd
.us/ D
1
r
ı˛ˇ and

R
�k�1

xs d�k;r .x/ D 1
k

, we find

E.gk.z; �; �// D 1

kr

X

1�s�k

1

s
� i

2�

X

i;j;˛

cij˛˛.z/ dzi ^ d zj :

In other words, we get the normalized trace of the curvature, i.e.

E.gk.z; �; �// D 1

kr

�
1C 1

2
C : : :C 1

k

�
�det.V �/;deth� ; (120)

where�det.V �/;det h� is the .1; 1/-curvature form of det.V �/ with the metric induced
by h. It is natural to guess that gk.z; x; u/ behaves asymptotically as its expected
value E.gk.z; �; �// when k tends to infinity. If we replace brutally gk by its
expected value in (119), we get the integral

.nC kr � 1/Š
nŠ.kŠ/r .kr � 1/Š

1

.kr/n

�
1C 1

2
C : : :C 1

k

�n Z

X

��;q�
n;

where � WD �det.V �/;det h� and ��;q is the characteristic function of its q-index set
inX . The leading constant is equivalent to .log k/n=nŠ.kŠ/r modulo a multiplicative
factor 1CO.1= logk/. By working out a more precise analysis of the deviation, we
will prove the following result.

Probabilistic estimate 110. Fix smooth Hermitian metrics h on V and ! D
i
2�

P
!ijdzi ^ d zj on X . Denote by �V;h D � i

2�

P
cij˛ˇdzi ^ d zj ˝ e�̨ ˝ eˇ

the curvature tensor of V with respect to an h-orthonormal frame .e˛/, and put

�.z/ D �det.V �/;det h� D i

2�

X

1�i;j�n
�ijdzi ^ d zj ; �ij D

X

1�˛�r
cij˛˛:

Finally consider the k-jet line bundle Lk D OXGG
k
.1/ ! XGG

k equipped with the
induced metric ��

h;p;" .as defined above, with 1 D "1 � "2 � : : : � "k > 0/.
When k tends to infinity, the integral of the top power of the curvature of Lk on its
q-index set XGG

k .Lk; q/ is given by

Z

XGG
k .Lk;q/

�nCkr�1
Lk;�

�

h;p;"

D .log k/n

nŠ .kŠ/r

	Z

X

��;q�
n CO..log k/�1/
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for all q D 0; 1; : : : ; n, and the error term O..log k/�1/ can be bounded explicitly
in terms of �V , � and !. Moreover, the left hand side is identically zero for q > n.

The final statement follows from the observation that the curvature of Lk is
positive along the fibers of XGG

k ! X , by the plurisubharmonicity of the weight
(this is true even when the partition of unity terms are taken into account, since they
depend only on the base); therefore the q-index sets are empty for q > n. We start
with three elementary lemmas.

Lemma 111. The integral

Ik;r;n D
Z

�k�1

	 X

1�s�k

xs

s


n
d�k;r .x/

is given by the expansion

(a) Ik;r;n D
X

1�s1;s2;:::;sn�k

1

s1s2 : : : sn

.kr � 1/Š

.r � 1/Šk

Q
1�i�k.r � 1C ˇi /Š

.kr C n � 1/Š :

where ˇi D ˇi .s/ D cardfj I sj D ig,
P
ˇi D n, 1 � i � k. The quotient

Ik;r;n

�
rn

kr.kr C 1/ : : : .kr C n � 1/

�
1C 1

2
C : : :C 1

k

�n

is bounded below by 1 and bounded above by

(b) 1C 1

3

nX

mD2

2mnŠ

.n�m/Š

	
1C 1

2
C : : :C 1

k


�m
D 1CO..log k/�2/:

As a consequence
(c)

Ik;r;n D 1

kn

��
1C 1

2
C : : :C 1

k

�n CO..log k/n�2/
�

D .log k C 	/n CO..logk/n�2/
kn

where 	 is the Euler–Mascheroni constant.

Proof. Let us expand the n-th power
�P

1�s�k
xs
s

�n
. This gives

Ik;r;n D
X

1�s1;s2;:::;sn�k

1

s1s2 : : : sn

Z

�k�1

x
ˇ1
1 : : : x

ˇk
k d�k;r .x/

and by definition of the measure �k;r we have

Z

�k�1

x
ˇ1
1 : : : x

ˇk
k d�k;r .x/ D .kr � 1/Š

.r � 1/Šk

Z

�k�1

x
rCˇ1�1
1 : : : x

rCˇk�1
k dx1 : : : dxk:
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By formula (33), we find

Z

�k�1

x
ˇ1
1 : : : x

ˇk
k d�k;r .x/ D .kr � 1/Š

.r � 1/Šk
Q
1�i�k.r C ˇi � 1/Š

.kr C n � 1/Š

D rn
Q
i; ˇi�1.1C 1

r
/.1C 2

r
/ : : : .1C ˇi�1

r
/

kr.kr C 1/ : : : .kr C n � 1/
;

and Lemma 111(a) follows from the first equality. The final product is minimal when
r D 1, thus

rn

kr.kr C 1/ : : : .kr C n � 1/
�
Z

�k�1

x
ˇ1
1 : : : x

ˇk
k d�k;r .x/

� rn
Q
1�i�k ˇi Š

kr.kr C 1/ : : : .kr C n � 1/ : (121)

Also, the integral is maximal when all ˇi vanish except one, in which case one gets

Z

�k�1

xnj d�k;r .x/ D r.r C 1/ : : : .r C n � 1/
kr.kr C 1/ : : : .kr C n� 1/

: (122)

By (121), we find the lower and upper bounds

Ik;r;n � rn

kr.kr C 1/ : : : .kr C n � 1/

�
1C 1

2
C : : :C 1

k

�n
; (123)

Ik;r;n � rn

kr.kr C 1/ : : : .kr C n � 1/

X

1�s1;:::;sn�k

ˇ1Š : : : ˇkŠ

s1 : : : sn
: (124)

In order to make the upper bound more explicit, we reorganize the n-tuple
.s1; : : : ; sn/ into those indices t1 < : : : < t` which appear a certain number of times
˛i D ˇti � 2, and those, say t`C1 < : : : < t`Cm, which appear only once. We have
of course

P
ˇi D n � m, and each choice of the ti ’s corresponds to nŠ=˛1Š : : : ˛`Š

possibilities for the n-tuple .s1; : : : ; sn/. Therefore we get

X

1�s1;:::;sn�k

ˇ1Š : : : ˇkŠ

s1 : : : sn
� nŠ

nX

mD0

X

`; ˙˛iDn�m

X

.ti /

1

t
˛1
1 : : : t

˛`
`

1

t`C1 : : : t`Cm
:

A trivial comparison series vs. integral yields

X

s<t<C1

1

t˛
� 1

˛ � 1
1

s˛�1
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and in this way, using successive integrations in t`, t`�1, : : : , we get inductively

X

1�t1<:::<t`<C1

1

t
˛1
1 : : : t

˛`
`

� 1Q
1�i�`.˛`�iC1 C : : :C ˛` � i/

� 1

`Š
;

since ˛i � 2 implies ˛`�iC1 C : : :C ˛` � i � i . On the other hand

X

1�t`C1<:::<t`Cm�k

1

t`C1 : : : t`Cm
� 1

mŠ

X

1�s1;:::;sm�k

1

s1 : : : sm
D 1

mŠ

	
1C 1

2
C: : :C 1

k


m
:

Since partitions ˛1 C : : :C ˛` D n �m satisfying the additional restriction ˛i � 2

correspond to ˛0
i D ˛i � 2 satisfying

P
˛0
i D n �m � 2`, their number is equal to

 
n �m � 2`C ` � 1

` � 1

!
D
 
n �m � ` � 1

` � 1

!
� 2n�m�`�1

and we infer from this

X

1�s1;:::;sn�k

ˇ1Š : : : ˇkŠ

s1 : : : sn
�

X

`�1
2`Cm�n

2n�m�`�1nŠ
`ŠmŠ

	
1C 1

2
C : : :C 1

k


m
C
	
1C 1

2
C : : :C 1

k


n

where the last term corresponds to the special case ` D 0, m D n. Therefore

X

1�si�k

ˇ1Š : : : ˇkŠ

s1 : : : sn
� e1=2 � 1

2

n�2X

mD0

2n�mnŠ
mŠ

	
1C1

2
C : : :C 1

k


m
C
	
1C1

2
C : : :C 1

k


n

� 1

3

nX

mD2

2mnŠ

.n�m/Š

	
1C1

2
C : : :C 1

k


n�m
C
	
1C1

2
C : : :C 1

k


n
:

This estimate combined with (123), (124) implies the upper bound Lemma 111(b)
(the lower bound 1 being now obvious). The asymptotic estimate Lemma 111(c)
follows immediately. ut
Lemma 112. If A is a Hermitian n � n matrix, set �A;q to be equal to 1 if A has
signature .n � q; q/ and 0 otherwise. Then for all n � n Hermitian matrices A, B
we have the estimate

ˇ̌
�A;q detA � �B;q detB

ˇ̌ � kA � Bk
X

0�i�n�1
kAkikBkn�1�i ;

where kAk, kBk are the Hermitian operator norms of the matrices.

Proof. We first check that the estimate holds for j detA� detBj. Let �1 � : : : � �n
be the eigenvalues of A and �0

1 � : : : � �0
n be the eigenvalues of B . We have
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j�i j � kAk, j�0
i j � kBk and the minimax principle implies that j�i��0

i j � kA�Bk.
We then get the desired estimate by writing

detA� detB D �1 : : : �n � �0
1 : : : �

0
n D

X

1�i�n
�1 : : : �i�1.�i � �0

i /�
0
iC1 : : : �0

n:

This already implies Lemma 112 if A or B is degenerate. If A and B are non
degenerate we only have to prove the result when one of them (say A) has signature
.n � q; q/ and the other one (say B) has a different signature. If we put M.t/ D
.1 � t/AC tB , the already established estimate for the determinant yields

ˇ̌
ˇ
d

dt
detM.t/

ˇ̌
ˇ � nkA � Bk kM.t/k � nkA � Bk�.1� t/kAk C tkBk�n�1

:

However, since the signature of M.t/ is not the same for t D 0 and t D 1, there
must exist t0 2 �0; 1Œ such that .1 � t0/A C t0B is degenerate. Our claim follows
by integrating the differential estimate on the smallest such interval Œ0; t0�, after
observing that M.0/ D A, detM.t0/ D 0, and that the integral of the right hand
side on Œ0; 1� is the announced bound. ut
Lemma 113. Let QA be the Hermitian quadratic form associated with the Hermi-
tian operatorA on C

n. If 
 is the rotation invariant probability measure on the unit
sphere S2n�1 of Cn and �i are the eigenvalues of A, we have

Z

j�jD1
jQA.�/j2d
.�/ D 1

n.nC 1/

�X
�2i C

�X
�i

�2�
:

The norm kAk D max j�i j satisfies the estimate

1

n2
kAk2 �

Z

j�jD1
jQA.�/j2d
.�/ � kAk2:

Proof. The first identity is an easy calculation, and the inequalities follow by
computing the eigenvalues of the quadratic form

P
�2i C �P

�i
�2 � c�2i0 , c > 0.

The lower bound is attained e.g. for QA.�/ D j�1j2 � 1
n
.j�2j2 C : : : C j�nj2/ when

we take i0 D 1 and c D 1C 1
n

. ut
Proof of the Probabilistic estimate 110. Take a vector � 2 TX;z, � D P

�i
@
@zi

,
with k�k! D 1, and introduce the trace free sesquilinear quadratic form

Qz;�.u/ D
X

i;j;˛;ˇ

Qcij˛ˇ.z/ �i �j u˛uˇ; Qcij˛ˇ D cij˛ˇ � 1

r
�ijı˛ˇ; u 2 C

r
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where �ij D P
1�˛�r cij˛˛ . We consider the corresponding trace free curvature

tensor

Q�V D i

2�

X

i;j;˛;ˇ

Qcij˛ˇ dzi ^ d zj ˝ e�̨ ˝ eˇ: (125)

As a general matter of notation, we adopt here the convention that the cano-
nical correspondence between Hermitian forms and .1; 1/-forms is normalized
as
P
aijdzi ˝ d zj $ i

2�

P
aijdzi ^ d zj , and we take the liberty of using the

same symbols for both types of objects; we do so especially for gk.z; x; u/ and
�.z/ D i

2�

P
�ij.z/dzi ^ d zj D Tr�V .z/. First observe that for all k-tuples of unit

vectors u D .u1; : : : ; uk/ 2 .S2r�1/k , us D .us˛/1�˛�r , we have

Z

.S2r�1/k

ˇ̌
ˇ̌ X

1�s�k

1

s
xs

X

i;j;˛;ˇ

Qcij˛ˇ.z/ �i �jus˛usˇ

ˇ̌
ˇ̌
2

d
.u/ D
X

1�s�k

x2s
s2

V.Qz;�/

where V.Qz;�/ is the variance of Qz;� on S2r�1. This is so because we have a sum
over s of independent random variables on .S2r�1/k , all of which have zero mean
value (Lemma 113 shows that the variance V.Q/ of a trace free Hermitian quadratic
formQ.u/ D P

1�˛�r �˛ju˛j2 on the unit sphere S2r�1 is equal to 1
r.rC1/

P
�2˛ , but

we only give the formula to fix the ideas). Formula (122) yields

Z

�k�1

x2s d�k;r .x/ D r C 1

k.kr C 1/
:

Therefore, according to notation (117), we obtain the partial variance formula
Z

�k�1�.S2r�1/k
ˇ̌
gk.z; x; u/.�/� gk.z; x/.�/j2d�k;r .x/d
.u/

D .r C 1/

k.kr C 1/

	 X

1�s�k

1

s2



�h. Q�V .�; �//2

in which

gk.z; x/.�/ D
X

1�s�k

1

s
xs
1

r

X

ij˛

cij˛˛�i �j D
	 X

1�s�k

1

s
xs



1

r
�.z/.�/;

�h. Q�V .�; �//2 D V
�
u 7! h Q�V .�; �/u; uih

� D
Z

u2S2r�1
ˇ̌h Q�V .�; �/u; uih

ˇ̌2
d
.u/:

By integrating over � 2 S2n�1 � C
n and applying the left hand inequality in

Lemma 113 we infer
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Z

�k�1�.S2r�1/k
��gk.z; x; u/ � gk.z; x/k2!d�k;r .x/d
.u/

� n2.r C 1/

k.kr C 1/

	 X

1�s�k

1

s2



�!;h. Q�V /2 (126)

where �!;h. Q�V / is the standard deviation of Q�V on S2n�1 � S2r�1 :

�!;h. Q�V /2 D
Z

j�j!D1; jujhD1

ˇ̌h Q�V .�; �/u; uih
ˇ̌2
d
.�/ d
.u/:

On the other hand, brutal estimates give the Hermitian operator norm estimates

kgk.z; x/k! �
	 X

1�s�k

1

s
xs



1

r
k�.z/k!; (127)

kgk.z; x; u/k! �
	 X

1�s�k

1

s
xs



k�V k!;h (128)

where

k�V k!;h D sup
j�j!D1; jujhD1

ˇ̌h�V .�; �/u; uih
ˇ̌
:

We use these estimates to evaluate the q-index integrals. The integral associated
with gk.z; x/ is much easier to deal with than gk.z; x; u/ since the characteristic
function of the q-index set depends only on z. By Lemma 112 we find

ˇ̌
�gk;q.z; x; u/ detgk.z; x; u/ � ��;q.z/ detgk.z; x/

ˇ̌

� ��gk.z; x; u/ � gk.z; x/
��
!

X

0�i�n�1
kgk.z; x; u/ki!kgk.z; x/kn�1�i

! :

The Cauchy–Schwarz inequality combined with (126)–(128) implies

Z

�k�1�.S2r�1/k
ˇ̌
�gk;q.z; x; u/ det gk.z; x; u/ � ��;q.z/ det gk.z; x/

ˇ̌
d�k;r .x/d
.u/

�
	Z

�k�1�.S2r�1/k
��gk.z; x; u/ � gk.z; x/

��2
!
d�k;r .x/d
.u/


1=2
�

�
	Z

�k�1�.S2r�1/k

	 X

0�i�n�1
kgk.z; x; u/ki!kgk.z; x/kn�1�i

!


2
d�k;r .x/d
.u/


1=2
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� n.1C 1=r/1=2

.k.k C 1=r//1=2

	 X

1�s�k

1

s2


1=2
�!;h. Q�V /

X

1�i�n�1
k�V ki!;h

�1
r

k�.z/k!
�n�1�i

�
	Z

�k�1

	 X

1�s�k

xs

s


2n�2
d�k;r .x/


1=2
D O

� .log k/n�1
kn

�

by Lemma 111 with n replaced by 2n � 2. This is the essential error estimate. As
one can see, the growth of the error mainly depends on the final integral factor,
since the initial multiplicative factor is uniformly bounded over X . In order to get
the principal term, we compute

Z

�k�1

detgk.z; x/ d�k;r .x/ D 1

rn
det�.z/

Z

�k�1

	 X

1�s�k

xs

s


n
d�k;r .x/

	 .log k/n

rnkn
det �.z/:

From there we conclude that
Z

z2X

Z

.x;u/2�k�1�.S2r�1/k
�gk;q.z; x; u/gk.z; x; u/

n d�k;r .x/d
.u/

D .log k/n

rnkn

Z

X

��;q�
n CO

� .log k/n�1

kn

�

The probabilistic estimate 110 follows by (119). ut
Remark 114. If we take care of the precise bounds obtained above, the proof gives
in fact the explicit estimate

Z

XGG
k .Lk;q/

�nCkr�1
Lk;�

�

h;p;"

D .nC kr � 1/Š Ik;r;n

nŠ.kŠ/r .kr � 1/Š

	Z

X

��;q�
n C "k;r;nJ




where

J D n .1C 1=r/1=2
	 kX

sD1

1

s2


1=2 Z

X

�!;h. Q�V /
n�1X

iD1
riC1k�V ki!;hk�.z/kn�1�i

! !n

and

j"k;r;nj �

	Z

�k�1

	 kX

sD1

xs

s


2n�2
d�k;r .x/


1=2

.k.k C 1=r//1=2
Z

�k�1

	 kX

sD1

xs

s


n
d�k;r .x/
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�
�
1C 1

3

P2n�2
mD2

2m.2n�2/Š
.2n�2�m/Š

�
1C 1

2
C : : :C 1

k

��m�1=2

1C 1
2

C : : :C 1
k

	 1

log k

by the lower and upper bounds of Ik;r;n, Ik;r;2n�2 obtained in Lemma 111. As
.2n � 2/Š=.2n� 2 �m/Š � .2n � 2/m, one easily shows that

j"k;r;nj � .31=15/1=2

log k
for k � e5n�5: (129)

Also, we see that the error terms vanish if Q�V is identically zero, but this is of
course a rather unexpected circumstance. In general, since the form Q�V is trace
free, Lemma 2.23 applied to the quadratic form u 7! h Q�V .�; �/u; ui on C

r implies
�!;h. Q�V / � .r C 1/�1=2k Q�V k!;h. This yields the simpler bound

J � n r1=2
	 kX

sD1

1

s2


1=2 Z

X

k Q�V k!;h
n�1X

iD1
rik�V ki!;hk�.z/kn�1�i

! !n: (130)

ut
It will be useful to extend the above estimates to the case of sections of

Lk D OXGG
k
.1/˝ ��

k O
� 1

kr

�
1C 1

2
C : : :C 1

k

�
F
�

(131)

where F 2 PicQ.X/ is an arbitrary Q-line bundle on X and �k W XGG
k ! X

is the natural projection. We assume here that F is also equipped with a smooth
Hermitian metric hF . In formula (2.20), the renormalized metric �k.z; x; u/ of Lk
takes the form

�k.z; x; u/ D 1
1
kr .1C 1

2
C : : :C 1

k
/
gk.z; x; u/C�F;hF .z/; (132)

and by the same calculations its expected value is

�.z/ WD E.�k.z; �; �// D �det V �;det h�.z/C�F;hF .z/: (133)

Then the variance estimate for �k � � is unchanged, and the Lp bounds for �k
are still valid, since our forms are just shifted by adding the constant smooth term
�F;hF .z/. The probabilistic estimate (120) is therefore still true in exactly the same
form, provided we use (131)–(133) instead of the previously defined Lk , �k and �.
An application of holomorphic Morse inequalities gives the desired cohomology
estimates for

hq
�
X;EGG

k;mV
� ˝ O

�m
kr

�
1C 1

2
C : : :C 1

k

�
F
��

D hq.XGG
k ;OXGG

k
.m/˝ ��

k O
�m

kr

�
1C 1

2
C : : :C 1

k

�
F
��
;
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providedm is sufficiently divisible to give a multiple of F which is a Z-line bundle.

Theorem 115. Let .X; V / be a directed manifold, F ! X a Q-line bundle, .V; h/
and .F; hF / smooth Hermitian structure on V and F respectively. We define

Lk D OXGG
k
.1/˝ ��

kO
� 1

kr

�
1C 1

2
C : : :C 1

k

�
F
�
;

� D �detV �;det h� C�F;hF :

Then for all q � 0 and all m � k � 1 such that m is sufficiently divisible, we
have

(a) hq.XGG
k ;O.L˝m

k // � mnCkr�1

.nC kr � 1/Š

.log k/n

nŠ .kŠ/r

	Z

X.�;q/

.�1/q�nCO..log k/�1/


;

(b) h0.XGG
k ;O.L˝m

k // � mnCkr�1

.nC kr � 1/Š

.log k/n

nŠ .kŠ/r

	Z

X.�;�1/
�n �O..log k/�1/



;

(c) �.XGG
k ;O.L˝m

k // D mnCkr�1

.nC kr � 1/Š

.log k/n

nŠ .kŠ/r

�
c1.V

� ˝ F /n CO..log k/�1/
�
:

Green and Griffiths [51] already checked the Riemann–Roch calculation
Theorem 115(c) in the special case V D T �

X and F D OX . Their proof is much
simpler since it relies only on Chern class calculations, but it cannot provide
any information on the individual cohomology groups, except in very special
cases where vanishing theorems can be applied; in fact in dimension 2, the Euler
characteristic satisfies � D h0 � h1 C h2 � h0 C h2, hence it is enough to get the
vanishing of the top cohomology groupH2 to infer h0 � � ; this works for surfaces
by means of a well-known vanishing theorem of Bogomolov which implies in
general

Hn

	
X;EGG

k;mT
�
X ˝ O

�m
kr

�
1C 1

2
C : : :C 1

k

�
F
��


D 0

as soon as KX ˝ F is big and m � 1.
In fact, thanks to Bonavero’s singular holomorphic Morse inequalities [13],

everything works almost unchanged in the case where V � TX has singularities
and h is an admissible metric on V (see (8)). We only have to find a blow-up

 W QXk ! Xk so that the resulting pull-backs 
�Lk and 
�V are locally free, and

� deth�, 
��h;p;" only have divisorial singularities. Then � is a .1; 1/-current with
logarithmic poles, and we have to deal with smooth metrics on
�L˝m

k ˝O.�mEk/
whereEk is a certain effective divisor onXk (which, by our assumption (8), does not
project ontoX ). The cohomology groups involved are then the twisted cohomology
groups

Hq.XGG
k ;O.L˝m

k /˝ Jk;m/

where Jk;m D 
�.O.�mEk// is the corresponding multiplier ideal sheaf, and the
Morse integrals need only be evaluated in the complement of the poles, that is on
X.�; q/ X S where S D Sing.V /[ Sing.h/. Since
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.�k/�
�
O.L˝m

k /˝ Jk;m

� � EGG
k;mV

� ˝ O
�m

kr

�
1C 1

2
C : : :C 1

k

�
F
��

we still get a lower bound for the H0 of the latter sheaf (or for the H0 of the
un-twisted line bundle O.L˝m

k / on XGG
k ). If we assume that KV ˝ F is big, these

considerations also allow us to obtain a strong estimate in terms of the volume, by
using an approximate Zariski decomposition on a suitable blow-up of .X; V /. The
following corollary implies in particular Theorem 104.

Corollary 116. If F is an arbitrary Q-line bundle over X , one has

h0
	
XGG
k ;OXGG

k
.m/˝ ��

k O
�m

kr

�
1C 1

2
C : : :C 1

k

�
F
�


� mnCkr�1

.nC kr � 1/Š

.log k/n

nŠ .kŠ/r

�
Vol.KV ˝ F /�O..log k/�1/

�
� o.mnCkr�1/;

whenm � k � 1, in particular there are many sections of the k-jet differentials of
degreem twisted by the appropriate power of F if KV ˝ F is big.

Proof. The volume is computed here as usual, i.e. after performing a suitable
modification 
 W QX ! X which converts KV into an invertible sheaf. There is of
course nothing to prove if KV ˝F is not big, so we can assume Vol.KV ˝F / > 0.
Let us fix smooth Hermitian metrics h0 on TX and hF on F . They induce a metric

�.det h�1

0 ˝ hF / on 
�.KV ˝ F / which, by our definition of KV , is a smooth
metric. By the result of Fujita [47] on approximate Zariski decomposition, for every
ı > 0, one can find a modification 
ı W QXı ! X dominating 
 such that


�
ı .KV ˝ F / D O QXı .AC E/

where A and E are Q-divisors, A ample and E effective, with

Vol.A/ D An � Vol.KV ˝ F /� ı:

If we take a smooth metric hA with positive definite curvature form �A;hA , then we
get a singular Hermitian metric hAhE on 
�

ı .KV ˝ F / with poles along E , i.e. the
quotient hAhE=
�.deth�1

0 ˝ hF / is of the form e�' where ' is quasi-psh with log
poles log j�E j2 (mod C1. QXı// precisely given by the divisorE . We then only need
to take the singular metric h on TX defined by

h D h0e
1
r .
ı/

�'

(the choice of the factor 1
r

is there to correct adequately the metric on detV ). By
construction h induces an admissible metric on V and the resulting curvature current
� D �KV ;det h� C�F;hF is such that


�
ı � D �A;hA C ŒE�; ŒE� D current of integration on E .
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Then the 0-index Morse integral in the complement of the poles is given by

Z

X.�;0/XS
�n D

Z

QXı
�n
A;hA

D An � Vol.KV ˝ F /� ı

and Corollary 116 follows from the fact that ı can be taken arbitrary small. ut
Example 117. In some simple cases, the above estimates can lead to very explicit
results. Take for instance X to be a smooth complete intersection of multidegree
.d1; d2; : : : ; ds/ in P

nCs
C

and consider the absolute case V D TX . Then

KX D OX.d1 C : : :C ds � n � s � 1/:

Assume that X is of general type, i.e.
P
dj > n C s C 1. Let us equip V D TX

with the restriction of the Fubini–Study metric h D �O.1/ ; a better choice might
be the Kähler–Einstein metric but we want to keep the calculations as elementary as
possible. The standard formula for the curvature tensor of a submanifold gives

�TX ;h D .�T
PnCs ;h/jX C ˇ� ^ ˇ

where ˇ 2 C1��1;0T �
X ˝ Hom.TX ;

L
O.dj //

�
is the second fundamental form.

In other words, by the well known formula for the curvature of projective space,
we have

h�TX;h.�; �/u; ui D j�j2juj2 C jh�; uij2 � jˇ.�/ � uj2:
The curvature � of .KX; deth�/ (i.e. the opposite of the Ricci form Tr�TX ;h) is
given by

� D � Tr�TX ;h D Tr.ˇ ^ ˇ�/ � .nC 1/h � �.nC 1/h: (134)

We take here F D OX.�a/, a 2 QC, and we want to determine conditions for the
existence of sections

H0

	
X;EGG

k;mT
�
X ˝ O

�
� a

m

kr

�
1C 1

2
C : : :C 1

k

��

; m � 1: (135)

We have to chooseKX ˝ OX.�a/ ample, i.e.
P
dj > nC s C aC 1, and then (by

an appropriate choice of the metric of F D OX.�a/), the form � D �KX˝OX .�a/
can be taken to be any positive form cohomologous to .

P
dj � .nC s C aC 1//h.

We use Remark 114 and estimate the error terms by considering the Kähler metric

! D �C .nC s C 2/h �
�X

dj C 1
�
h:

Inequality (134) shows that ! � 2h and also that ! � Tr.ˇ ^ ˇ�/. From this,
one easily concludes that k�k! � 1 by an appropriate choice of �, as well as



Applications of Pluripotential Theory to Algebraic Geometry 259

k�TX ;hk!;h � 1 and k Q�TX ;hk!;h � 2. By (130), we obtain for n � 2

J � n3=2
�p
6

� 2 n
n � 1

n � 1
Z

X

!n <
4�p
6
nnC1=2

Z

X

!n

where
R
X
!n D �P

dj C 1
�n

deg.X/. On the other hand, the leading term
R
X
�n

equals
�P

dj � n � s � a � 1
�n

deg.X/ with deg.X/ D d1 : : : ds. By the bound
(129) on the error term "k;r;n, we find that the leading coefficient of the growth of
our spaces of sections is strictly controlled below by a multiple of

�X
dj � n � s � a � 1

�n � 4�
�31
90

�1=2 nnC1=2

log k

�X
dj C 1

�n

if k � e5n�5. A sufficient condition for the existence of sections in (135) is thus

k � exp
�
7:38 nnC1=2�

P
dj C 1P

dj � n� s � a � 1
�n�

: (136)

This is good in view of the fact that we can cover arbitrary smooth complete
intersections of general type. On the other hand, even when the degrees dj tend
to C1, we still get a large lower bound k 	 exp.7:38 nnC1=2/ on the order of jets,
and this is far from being optimal : Diverio [39,40] has shown e.g. that one can take
k D n for smooth hypersurfaces of high degree. It is however not unlikely that one
could improve estimate (136) with more careful choices of !, h. ut
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46. T. de Fernex, A. Küronya, R. Lazarsfeld, Higher cohomology of divisors on a projective variety.
Math. Ann. 337, 443–455 (2007)

47. T. Fujita, Approximating Zariski decomposition of big line bundles. Kodai Math. J. 17, 1–3
(1994)

48. E. Getzler, Pseudodifferential operators on supermanifolds and the Atiyah-Singer index
theorem. Commun. Math. Phys. 92, 167–178 (1983)

49. E. Getzler, An analogue of Demailly’s inequality for strictly pseudoconvex CR manifolds.
J. Differ. Geom. 29, 231–244 (1989)

50. H. Grauert, O. Riemenschneider, Verschwindungssätze für analytische Kohomologiegruppen
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