Applications of Pluripotential Theory
to Algebraic Geometry

Jean-Pierre Demailly

Abstract These lectures are devoted to the study of various contemporary problems
of algebraic geometry, using fundamental tools from complex potential theory,
namely plurisubharmonic functions, positive currents and Monge-Ampere opera-
tors. Since their inception by Oka and Lelong in the mid 1940s, plurisubharmonic
functions have been used extensively in many areas of algebraic and analytic
geometry, as they are the function theoretic counterpart of pseudoconvexity, the
complexified version of convexity. One such application is the theory of L? esti-
mates via the Bochner-Kodaira-Hormander technique, which provides very strong
existence theorems for sections of holomorphic vector bundles with positive curva-
ture. One can mention here the foundational work achieved by Bochner, Kodaira,
Nakano, Morrey, Kohn, Andreotti-Vesentini, Grauert, Hormander, Bombieri, Skoda
and Ohsawa-Takegoshi in the course of more than four decades. Another develop-
ment is the theory of holomorphic Morse inequalities (1985), which relate certain
curvature integrals with the asymptotic cohomology of large tensor powers of line
or vector bundles, and bring a useful complement to the Riemann-Roch formula.
We describe here the main techniques involved in the proof of holomorphic
Morse inequalities (Sect. 1) and their link with Monge-Ampere operators and inter-
section theory. Section 2, especially, gives a fundamental approximation theorem for
closed (1, 1)-currents, using a Bergman kernel technique in combination with the
Ohsawa-Takegoshi theorem. As an application, we study the geometric properties
of positives cones of an algebraic variety (nef and pseudo-effective cone), and
derive from there some results about asymptotic cohomology functionals in Sect. 3.
The last Sect. 4 provides an application to the study of the Green-Griffiths-Lang
conjecture. The latter conjecture asserts that every entire curve drawn on a projective
variety of general type should satisfy a global algebraic equation; via a probabilistic
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curvature estimate, holomorphic Morse inequalities imply that entire curves must at
least satisfy a global algebraic differential equation.

1 Holomorphic Morse Inequalities

Holomorphic Morse inequalities provide asymptotic bounds for the cohomology
of tensor powers of holomorphic line bundles. They are a very useful complement
to the Riemann—Roch formula in many circumstances. They were first introduced
in [25], and were largely motivated by Siu’s solution [85, 86] of the Grauert—
Riemenschneider conjecture, which we reprove here as a special case of a stronger
statement. The basic tool is a spectral theorem which describes the eigenvalue
distribution of complex Laplace—Beltrami operators. The original proof of [25] was
based partly on Siu’s techniques and partly on an extension of Witten’s analytic
proof of standard Morse inequalities [102]. Somewhat later Bismut [8] and Getzler
[49] gave new proofs, both relying on an analysis of the heat kernel in the spirit
of the Atiyah—Bott—Patodi proof of the Atiyah—Singer index theorem [1]. Although
the basic idea is simple, Bismut used deep results arising from probability theory
(the Malliavin calculus), while Getzler relied on his supersymmetric symbolic
calculus for spin pseudodifferential operators [48].

We present here a slightly more elementary and self-contained proof which was
suggested to us by Mohan Ramachandran on the occasion of a visit to Chicago
in 1989. The reader is referred to [25,27] for more details.

1.1 Introduction

1.1.1 Real Morse Inequalities

Let M be a compact C* manifold, dimg M = m, and i a Morse function, i.e. a
function such that all critical points are non degenerate. The standard (real) Morse
inequalities relate the Betti numbers b, = dim H % (M, R) and the numbers

sq = # critical points of index ¢ ,

where the index of a critical point is the number of negative eigenvalues of the
Hessian form (8*h/dx; dx ;). Specifically, the following “strong Morse inequalities”
hold:

by—by_1+ -+ (=1)7by <54 —5q—1 + -+ (=1)%s9 @8
for each integer ¢ > 0. As a consequence, one recovers the “weak Morse
inequalities” b, < s, and the expression of the Euler—Poincaré characteristic

X(M) =bo—by+ -4 (=1)"by = so =51+ -+ (=1)"smn . 2)
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These results are purely topological. They are obtained by showing that M can be
reconstructed from the structure of the Morse function by attaching cells according
to the index of the critical points; real Morse inequalities are then obtained as a
consequence of the Mayer—Vietoris exact sequence (see [74]).

1.1.2 Dolbeault Cohomology

Instead of looking at De Rham cohomology, we want to investigate here Dolbeault
cohomology, i.e. cohomology of the 5-complex. Let X be a compact complex
manifold, » = dimc X and E be a holomorphic vector bundle over X with
rank E = r. Let us recall that there is a canonical E-Operator

9:C®(X, APIT} @ E) —> C®(X, AP TY @ E) (3)

acting on spaces of (p, g)-forms with values in E. By the Dolbeault isomorphism
theorem, there is an isomorphism

HI(X, E) = HI(C®(X, AP*T; @ E)) ~ H'(X, 2} @ O(E))  (4)

from the cohomology of the d-complex onto the cohomology of the sheaf of
holomorphic p-forms with values in E. In particular, we have

HJ(X, E) ~ HY(X, 6(E)), (5)

and we will denote as usual h1?(X, F) = dim HY(X, O(E)).

1.1.3 Connections and Curvature

Let us consider first a C* complex vector bundle £ — M on a real differential
manifold M (without necessarily any holomorphic structure at this point). A con-
nection D on E is a linear differential operator

D :C®(M, ATy, ® E) - C®(M, A1T' T}, ® E) (6)

satisfying the Leibniz rule
D(f As)=df Ans+ (=1)*/ f A Ds (7
forall forms f* € C*°(X, APTy;),s € C*°(X, A1T,; ®E).Onanopenset U C M
where E is trivial, E|y >~ U x C’, the Leibniz rule shows that a connection D can

be written in a unique way
Ds>~ds+T As ®)
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where I' € C®(U, A! Ty; ® Hom(C", C")) is an arbitrary r x r matrix of 1-forms
and d acts componentwise. It is then easy to check that

D?>s~(dI+T'AT)As on U. ©)

Therefore D?s = 6p A s for some global 2-form 6p € C%(M, AZTA*,} ®
Hom(E, E)), givenby 0p ~ dIy + 'y A I'y on any trivializing open set U with
a connection matrix Iy.

Definition 1. The (normalized) curvature tensor of D is defined to be ®p = #QD,
in other words

l—Dzs =0OpAs
2

for any section s € C*°(M, AT}, ® E).

The main reason for the introduction of the factor 2’—71 is the well known formula

for the expression of the Chern classes in the ring of differential forms of even
degree: one has

det(Id +10p) = 1 + Ay (D) + A%y2(D) + ... + A y,.(D),

where y; (D) is a d-closed differential form of degree 2. Moreover, y; (D) has
integral periods, i.e. the De Rham cohomology class {y; (D)} € H* (M, R) is the
image of an integral class, namely the j-th Chern class ¢; (E) € H* (M, 7).

1.1.4 Hermitian Connections

Assume now that the fibers of E are endowed with a C* Hermitian metric £, and
that the isomorphism E|y >~ U x C" is given by a C* frame (e ). Then we have a
canonical sesquilinear pairing

C®(M, APT}, @ E) x C®(M, A4T}, ® E) —> C®(M, APTIT})
(u,v) — {u, v}y

given by

{u, v}, = Z“* Avuler,eu)n for u= Zug Rey, v= Zvﬂ ® ey.

A

The connection D is said to be Hermitian (or compatible with the Hermitian
metric h) if it satisfies the additional property

d{u, v}y = {Du, v}, + (—1)% "Ly, Dv}y. (10)
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Assuming that (e, ) is h-orthonormal, one easily checks that D is Hermitian if and
only if the associated connection matrix I" is skew-symmetric, i.e. I'* = —I". In
this case Op = dI" + I" A I" also satisfies 67 = —6p, thus

Op = 2’—9D € C®(M, AT}, ® Herm(E, E)). (11)

14
Special case 2. For a bundle E of rank r = 1, the connection matrix I" of a
Hermitian connection D can be more conveniently written I = —iA where A

is a real 1-form. Then we have
i 1
Op = —dI' = —dA.
2 2

Frequently, especially in physics, the real 2-form B =dA=2n0®p e C*>®
(M, A>T},) is referred to as the magnetic field, and the 1-form A as its potential.
A phase change §(x) = s(x)e/*™) in the isomorphism Ey ~ U x C replaces 4
with the new connection form A = A + da.

1.1.5 Connections on a Hermitian Holomorphic Vector Bundle

If M = X is a complex manifold, every connection D can be split in a unique way
as the sum D = D’ 4+ D” of a (1, 0)-connection D’ and a (0, 1)-connection D" :

D' :C®(M, A" T§y @ E) — C®(M, AP™MT¥ ® E),
D" : C®(M, APTy ® E) —> C®(M, AP T @ E).
In a local trivialization given by a C*° frame, one can write
Du=du+T Au,
D'u=d"u+T" Au,

with ' =TI+ I andd’ = d,d” = 9. 1If (E, h) is a C*° Hermitian structure, the
connection is Hermitian if and only if I’ = —(I"”)* in any h-orthonormal frame.
Thus there exists a unique Hermitian connection corresponding to a prescribed (0, 1)
part D”.

Assume now that the Hermitian bundle (E, &) has a holomorphic structure. The
unique Hermitian connection D for which D" = 9 is called the Chern connection
of (E, h). In a local holomorphic frame (e, ) of Ey , the metric / is given by some
Hermitian matrix H = (hy,) where hy,, = (es, e, )s. Standard computations yield
the expression of the Chern connection:
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D's = ds + H '9H A,
D"s = 0s, 1
Op As = D% = (D'D" + D"D)s = —3d(H dH) As.

Definition 3. The Chern curvature tensor of (E, %) is the curvature tensor of its
Chern connection, denoted

Ogn=D'D"+D'D =—3(H 9H).
In the special case of a rank 1 bundle E, the matrix H is simply a positive function,

and it is convenient to introduce its weight ¢ such that H = (e™%) where ¢ €
C°(U,R) depends on the given trivialization E|y 2~ U x C. We have in this case

Oy = 1_9qu1 = 1—8590 on U, (12)
2 2

and therefore @ 5, is a closed real (1, 1)-form.

1.1.6 Fundamental Facts of Hodge Theory

Assume here that M is a Riemannian manifold with metric g = ) gjidx; ® dx;.
Given g-forms u, v on M with values in E, we consider the global L? norm and
inner product

ull? = /M U@Pdo(), (o)) = [M W), v dox),  (13)

where |u| is the pointwise Hermitian norm and do the Riemannian volume form.
The Laplace Beltrami operator associated with the connection D is

A= DD*+ D*D,
acting on any of the spaces C*°(M, AT}, ® E); here
D* : C®(M, AT}, ® E) — C®(M, A7'T}), ® E) (14)

is the (formal) L? adjoint of D. The complex Laplace operators A’ = D'D"™* +
D*D’' and A” = D”"D"* + D"*D” are defined similarly when M = X is
a complex manifold. In degree 0 we simply have A = D*D. A well-known
calculation shows that the principal symbol of A is o4(x,£) = —|£[>Id (while
on(x.§) = oar(x,§) = —1|§°1d). As a consequence A, A’, A” are always
elliptic operators.
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When M is compact, the operator A acting on any of the spaces of the complex
C>®(M, A°T;; ® E) has a discrete spectrum

MSAy<-<hjs--

and corresponding eigenfunctions ¥; € C*®(M, A?T}; @ E), depending of course
ong.

Our main goal is to obtain asymptotic formulas for the eigenvalues. For this, we
will make an essential use of the heat operator e™' 4 Tn the above setting, the heat
operator is the bounded Hermitian operator associated to the heat kernel

+o00
Ki(x,y) =) e (x) @ ¥ (), (15)

v=1
ie.
(e Bv)) = / (). K, (x. ) - () do (x) do ().
MxM

Standard results of the theory of elliptic operators show that
K; € C*(]0, +oo[ x M x M,Hom(E, E))
and that K, (x, y) is the solution of the differential equation

0
gK,(x, y) = —-A,K,(x,y), 111(1)1 Ki(x,y) =6,(x) (Diracaty), (16)
t—>04

as follows formally from the fact that %e‘m = —Ae™' and e7* = Id. The
asymptotic distribution of eigenvalues can be recovered from the straightforward

formula
+o00

Ze‘k””‘ =/ trg K, (x, x)do(x) . (17)

v=1 M

In the sequel, we are especially interested in the 0-eigenspace:

Definition 4. The space of A-harmonic forms is defined to be
S (M,E) =KerA = {u €C®(M, ATy, ® E); Au= 0}.
When M is compact, an integration by part shows that
{(Au,u)) = |Dull* + || D*ul?,

hence u is A-harmonic if and only if Du = D*u = 0. Moreover, as A is a self-adjoint
operator, standard elliptic theory implies that

C®(M, AT}, ® E) =Ker A®ImA = #/(M,E)®ImA,  (18)
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and Ker A = 2} (M, E), Im A are orthogonal with respect to the L? inner product.
Clearly ImA C Im D + Im D*, and both images Im D, Im D* are orthogonal to
the space of harmonic forms by what we have just seen. As a consequence, we have

ImA =ImD +ImD*. (19)

Hodge isomorphism theorem 5. Assume that M is compact and that D is an
integrable connection, i.e. D> = 0 (or §p = 0). Then D defines on spaces
of sections C*®°(M, ATy, ® E) a differential complex which can be seen as a
generalization of the De Rham complex. The condition D?> = 0 immediately
implies that Im D | Im D* and we conclude from the above discussion that there
is an orthogonal direct sum

C®(M, AT}, ® E) = #4(M.E) ®ImD & Im D*. (20)

If we put u = h+Dv+ D*w according to this decomposition, then Du = DD*w =
0 if and only if | D*w| = {(DD*w,w)) = 0, thus

Ker D = ] (M, E) & Im D.
This implies the Hodge isomorphism theorem
Hpx(M,E) :=KerD/Im D ~ (M, E). (21)
In case M = X is a compact complex manifold, (£, ) a Hermitian holomorphic

vector bundle and D = D’ + D" the Chern connection, the integrability condition
D' = 3% = 0 is always satisfied. Thus we get an analogous isomorphism

HY(X, 0(E)) ~ H} (X, E) ~ A, (M, E), (22)04
and more generally
HY(X,QF ® O(E)) ~ H(X, E) ~ A" (M, E), (22) 4

where f%ﬂAp,;q (M, E) is the space of A”-harmonic forms of type (p, ¢) with values
in E.

Corollary 6 (Hodge decomposition theorem). If (X,w) is a compact Kdihler
manifold and (E, h) is a flat Hermitian vector bundle over X (i.e. D%.h = 0),
then there is an isomorphism '

HE (M E) ~ @ HI(X, E).
pt+q=k
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In fact, under the condition that w is Kihler, i.e. dw = 0, well-known identities of
Kihler geometry imply A’ = A” = %A, and as a consequence

AN (M E) = @ A0 (X,E).
pt+q=k

1.2 Holomorphic Morse Inequalities

1.2.1 Main Statements

Let X be a compact complex n-dimensional manifold, L — X a holomorphic line
bundle and £ — X a holomorphic vector bundle of rank r = rank £. We assume
that L is equipped with a smooth Hermitian metric /4 and denote accordingly @y, 5
its curvature form; by definition this is a closed real (1, 1)-form and its cohomology
class ¢ (L)r = {Op;} € Hx (X, R) is the first Chern class of L.

q-index sets 7. We define the q-index sets and {< q}-index sets of (L, h) to be

X(L.h.q) = {x € X: Oy ,(x) has q  negative eigenvalues

n —q positive eigenvalues

X(Lh<q) = |J XLk j).
1<j=q

Clearly X(L,h,q) and X (L, h, < q) are open subsets of X, and we have a partition
into “chambers” X = S U Uosqsn X(L,h,q)where S ={x € X; Op;(x) =0}
is the degeneration set. The following theorem was first proved in [25].

Main Theorem 8. The cohomology groups of tensor powers E ® LF satisfy the
following asymptotic estimates as k — +00 :

(8)wm Weak Morse inequalities :
n

k
MOE@LY < [ e, ol
n! Jxwng ’

(8)sm Strong Morse inequalities :

n

o k
Z (—D)I 7RI (X, E® L") < r—/ (=110}, + o(k").
X(L.h.<q)

n!
0<j=¢q

(8)rr Asymptotic Riemann—Roch formula :

o k"
AX.E@LF):= > ()W (X.E® L") = rm/X@z,h +o(k™) .

0<j<n
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The weak Morse form (8)wm follows from strong Morse (8)sm by adding
consecutive inequalities for the indices ¢ — 1 and ¢, since the signs (—1)?~/ and
(—=1)471=/ are opposite. Also, (8)gr is just a weaker formulation of the existence of
the Hilbert polynomial, and as such, is a consequence of the Hirzebruch—Riemann—
Roch formula; it follows formally from (8)sy with ¢ = n and ¢ = n + 1, since
h"t! = 0 identically and the signs are reversed. Now, by adding (8)sy for the
indices of opposite parity ¢ + 1 and g — 2, we find

kn
RYYX,EQ LY —hi(.)+h7'(.) < r— —nrtrer , + ok,
neJXL.niqg—1.q.49+13)

where X (L, h,{q—1,q,q + 1}) is meant for the union of chambers of indices ¢ — 1,
q,q + 1. As a consequence, we get lower bounds for the cohomology groups:

kl‘l
(X, E®L¥) > pd—pat1—pa—1 > r— (—1)10} ,—o(k™). (23)
n:Jx(L.hiqg—1.q.49+1})

Another important special case is (8)sy for ¢ = 1, which yields the lower bound

kn
WX, EQLF)y>h"—n' > r— O} , —o(k"). (24)
n JxL.h<1)

As we will see later in the applications, this lower bound provides a very useful
criterion to prove the existence of sections of large tensor powers of a line bundle.
O

1.2.2 Heat Kernel and Eigenvalue Distribution

We introduce here a basic heat equation technique, from which all asymptotic
eigenvalue estimates can be derived via an explicit formula, known as Mehler’s
formula.

We start with a compact Riemannian manifold (M, g) with dimg M =m, and
denote by do its Riemannian volume form. Let (L,h;) (resp. (E,hg)) be a
Hermitian complex line (resp. vector bundle) on M, equipped with a Hermitian
connection Dy, (resp. D).

We denote by Dy = Dpg;« the associated connection on E ® L¥, and by
Ar = Dy Dy the Laplace—Beltrami operator acting on sections of £ ®L* (i.e. forms
of degree 0). As in Case 2, we introduce the (local) connection form I'; = —iA of
L and the corresponding (global) curvature 2-form B = dA € C®(M, A’T},),
i.e. the “magnetic field” (I'r and the corresponding curvature tensor @f of Dg
will not play a significant role here). Finally, we assume that an additional section
V e C*®(M,Herm(E, E)) is given (“electric field”); for simplicity of notation, we
still denote by V' the operator V ® Id, « acting on E ® L*.
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If 2 C M is a smoothly bounded open subset of M, we consider for u in the
Sobolev space W, (2, E ® L*) the quadratic form

1
Orow) = / Dl — (V). 25)
2

Here W, (2, E ® LF) is the closure of the space of smooth sections with compact
support in £2, taken in the Hilbert space Wkl)C (M, E ® L¥) of sections that have leoc
coefficients as well as their first derivatives. In other words, we consider the densely

defined self adjoint operator

O = %DZD/( -V (26)
acting in the Hilbert space W, (2, E® LF), i.e. with Dirichlet boundary conditions.
Again, O, acting on W(2,E ® L¥) has a discrete spectrum whenever £2 is
relatively compact (and also sometimes when £2 is unbounded, according to the
behavior of B and V' at infinity; except otherwise stated, we will assume that we are
in this case later on). Then, there is an associated “localized” heat kernel

+o00
Ko, y) =) e 2y o(x) ® ¥y o () 27)

v=1

where ¥, k.0 € W (2, E ® L¥) are the eigenfunctions and A,  their eigenvalues.

We want to study the asymptotic eigenvalue distribution of [ as k — +o0, and
more precisely get an asymptotic formula for the corresponding heat kernel e ~*Fk.
The basic idea is to decompose the proof in three steps:

(o) Convince ourselves that the asymptotic estimates can be “localized”, up to
lower order error terms.

(B) Show that the local estimates can be obtained by freezing the coefficients of the
operators involved at any given point.

(y) Compute explicitly the heat kernel in the case of connections with constant
curvature, assuming moreover that £2 ~ R" with the flat Euclidean metric.

(o) In order to see that the situation can be localized, we fix a partition of unity (z;)
relative to an arbitrarily fine finite covering (£2;) of £2, such that ) rjz- = 1 near £2.
We consider the continuous injection

Iog, W) (REQLH > @PW @nN2EQL").  uw (rju);.
J

the inverse of whichis (u;) —u =) tju;. As) t;dt; = 0on £, we find

3 0t (780~ Quo) = ¢ [ (Sianp)ub < o(g)wr. @)



154 J.-P. Demailly

By the minimax principle, it follows that the eigenvalues of @ Q. Q;limIg.g, and
those of Qy o differ by at most O(1/k) as k — 4o0. This explains why a
localization process is possible, at least as far as the eigenvalue distribution is
concerned. For the related heat kernels on small geodesic balls, one can use the
following localization principle.

Proposition 9. Let 2, = B(x", p) be a geodesic ball of (M, g) of radius p where
o < injectivity radius. Then there exist constants C| and €1 > 0 such that for all
t €10, min(key, kp?/2m)] and every xo € M we have

m/2 2
[Keiow (%) = Ko, (6020 = € (5) " exp (= 2 12 sup [V]).
p

A proof of this technical result is given in Thierry Bouche’s PhD thesis (cf. [17]).
It relies on a use of Kato’s inequality (cf. [54]), which amounts to say that we get
an upper bound of K, i s in the case when the curvature is trivial; one can then use
the calculations given below to get the explicit bound, see e.g. (29").

(B) Now, let x° € M be a given point. We choose coordinates (xi,...,X,)
centered at x° such that (9/dx;, ...,d/dx,,) is orthonormal at x* with respect to
the Riemannian metric g. By changing the orthonormal frame of L as in Case 2,
we can adjust the connection form I, = —iA of L to be given by any local
potential A(x) = Y ; Aj(x)dx; such that B = dA, and we can therefore arrange
that A(x°) = 0. Similarly, we can fix a unitary frame of E such that I’z (x°) = 0.
Set x* = 0 for simplicity. The first term of our Laplace operator [, = %D iD=V
is the square of the first order operator

kY2 Dpu(x) = k72 (du(x) + k1dg @1 (x) - u(x) + 1d, 1« @E (x) - u(x))

_ ou _
— k712 Z (E —ik'/24; (x)u(x))dxj k21, ® T (x) - u(x).
J

If we use a rescaling x = k~/2% and set ii(X) = u(x) = u(k~"/?%), this operator
takes the form

Diii(X) = Z (;TM —ik'?A;(k?%) u(Jz))dx,- + O(k™"?|%]) (%) dx.
j J

As A;(0) = 0, the term k'/2A4; (k~'/2%) converges modulo O(k~'/2|%|?) terms

L e 94,
to the linearized part A4;(X) = Zi,j a_xf
form I'z of E only contributes for terms of the form O(k~'/?|%|) (and thus will be
negligible in the end, together with the quadratic terms of A ;). Our initial operator

O, = %D;‘Dk — V becomes

(0) X;. Observe also that the connection

Oy = DDy -V
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where V(%) = V(k~'/2%) and where the adjoint is computed with respect to the
rescaled metric g(x) = Y g;j(k™'/?%)dX;dX; ;here § — Y .(d%;)? ask — +oo
thanks to the assumption that g;;(0) = &;;. Modulo lower order terms O(k~'/2|%|?),
Dy is given by a linear connection form

A(X) =) B;jXidx,

associated with the constant magnetic field B(x°) = ), ; Bijdxi A dxj frozen

at x° = 0. We can moreover choose orthonormal coordinates so that B(x?) takes
the standard form

s
B()CO) = ZB/ d)Cj Adx]‘.H
j=1

where 2s < m is the rank of the alternate 2-form B(x°) and B ; the curvature
eigenvalues with respect to g(x”). The corresponding linearized potential is

A(X) =) B; % dij4s.

=1

The intuition from Physics is that the eigenfunctions represent “waves” of heat
propagation of a certain typical wave length A in the coordinates X, and of a
corresponding (much shorter) wave length A k~'/? in the original coordinates.
At that scale, our space behaves as if the metrics were flat and the curvature constant.

(y) Let us consider the operators obtained by “freezing” the coefficients at any
point x°, as explained at step (B), although we will not perform the rescaling here.
More specifically, we assume that

s

* L has constant curvature B = ) =1

trivialization in which

Bjdx; A dxjis. Then there is a local

s
Diu=du—iAANu, AZZBijde+S.
ji=1
e 2 ~ R” and the metric g is flat: g = > dx; ® dx;.
e E ~ £ x C" is atrivial (flat) Hermitian bundle.

¢ the Hermitian form V is constant. We choose an orthonormal frame of E in
which V is diagonal, i.e.

(Vuuy = Y~ Vilul”

1<A<r
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In this ideal situation, the connection Dy on E ® LX can be written Dyu = du —
ikA A u and the quadratic form Qy g, is given by

1 duy |2 duy, 2 duy |2
Qk,g(u)=/ = D = —ikBixjw| | + > |5—
m k 1<) <s an an+5 I 2 de
1<A=<r 1<A=<r

> Valwl”

1<A<r

In this situation, Qy ¢, is a direct sum of quadratic forms acting on each component
u) and the computation of e~"Hk is reduced to the following model cases (29), (30)
in dimension 1 or 2:
df 2 d*f
o= [|%] or=-2% 29)
R X

dx®

As is well known (and although the spectrum is not discrete in that case) the kernel

of the “elementary” heat operator e ' is given by
1 2
Kig(x,y) = ———=e C77/4, (29)
t,R( y) \/m
as follows from solving equation (16). The second model case is:
df 2 |d
Q(f)Z/ 4 + 4 laxlf‘ (30)
R2 dx1 ahg

A partial Fourier transform f (x;, &) = ﬁ Jr f(x1.x2) €725 dx, gives

o(f) = /Rz ‘j—ﬁ(xlfz)’z + az(xl - %)2|f(x1,§2)|2

and the change of variables x| = x| — &/a, x; = & leads (after dropping the
second variable x}) to the so called “harmonic oscillator” energy functional

2
q(g) = /’ g’ +a’x%|g|* D=—j—xz + a?x2. 31)

The heat kernel of this operator is given by Mehler’s formula :

/ a a
kir(x,y) = 3w shoar exp ( - E(coth 2at)(x — y)* — a(tanhat)xy),

(31



Applications of Pluripotential Theory to Algebraic Geometry 157

which actually reduces to (29") when a — 0. One way of obtaining this relation is
to observe that the unitary eigenfunctions of [J are

—1/2
(2@!,/%) ®,(Vax), p=0,12.....

with associated eigenvalues (2p + 1)a, where (®,) is the sequence of functions
associated with Hermite polynomials:

®,(x) = &/ dp(—w

In fact, for a = 1, easy calculations bearing on derivatives of ¢*’/2 show that

(— % + x2)¢p(x)

+2
2y dP
_e A

2/2 dP
dxp+2 ( e vl

|
—x2 X
™) dr?

e_xz) —2x e /? (e_xz).

We can now replace the first term by e* x*[2 derll (2x _xz) and use the Leibniz

formula for the differentiation of the product to see that 0P, (x) = 2p +1)®,(x).
Therefore

—(2p+l)at dr

2 2 — —av2
kr,R(X,Y)Z[a(X +y )/ZZZPp—'an?( ax) ( “amy.

The above summation ¥(x,y) = Y ;—:(J) ... can be computed via its Fourier
transform
1 1 el p )
Z’\ . = _( ) P p,—£%/4a e 2 /4a
&= p§=0 1\ 24 (i&)"(@in)’e

1 —at 1 2 2 —2at
- a _ 2 a ,
52 ¢ eXp( 4a(é‘ +n° +2e é‘n))

thus
—at

e a
E(x,y)zmexp(—ﬁ(x +y?—2e72 xy)).
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and Mehler’s formula (31’) follows. Through our change of variables, the heat
operator of Q is given by

R fon.8) = [hua(xn = Zon = 2) Fonan.

By an inverse partial Fourier transform left to the reader, we obtain the desired heat
kernel expression

a
K, ge (X1, X2, y1,¥2) = exp ( — —(cothat)((x; — y1)* + (x2 — y2)?)
4

47 sinh at
i A
X exp (Ea(xl + y)(x2 — YZ))‘ (30%)

The heat kernel associated with a sum of (pairwise commuting) operators
Oy, ..., O, acting on disjoint sets of variables is the product of the corresponding
heat kernels e'Hi Let K t*k o be the heat kernel of the component of Qy  acting
on each single entry u;. The factor in the heat kernel corresponding to each pair of
variables (x;,X;4¢), 1 < j <, is obtained by substituting kB; toa and ¢/ k to ¢
(the latter rescaling comes from the initial factor % in the expression of Qk.e). For
the other coordinates j > 2s where B has no coefficients, the kernel falls back to
the “elementary” heat kernel (29"). Finally, the constant term —V; |u; |> contributes
to multiplying the heat kernel by e’"*. Therefore we get for the global heat kernel
on 2 = R” the explicit formula

N
kBj kBj
A J J 2 2
Kl po (x.9) = ||—4mnh =—exp (= =L (coth B 1) (xaj—1=y2j—1) 4 (x2j =y2)°)

i
+ EkBj (x2j—1 + y2;-1)(x25 —y2j)>

1
% otV X T2 P kjgs(xj yj)?/4t). (32)

On the diagonal of R” x R”, the global heat kernel K; x g~ is thus given by the rather
simple (Herm(E) ® 1d;«)-valued tensor depending only on B, V and ¢ /k :

Ko (X, x) = (M)m/z v l—[ sth it (33)

Theorem 10. Consider the general (variable coefficient) case. For § > 0 small,
the heat kernel of Oy over M admits an asymptotic estimate

ot = (" 1 20 oy
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as k — +oo, where O(k™'/?1%) is uniform with respect to x € M and t in a
bounded interval |0, T| C 10, 4o00[ (moreover, for every open set 2 C M, a similar
estimate is valid for K, ;. o on relatively compact subsets of $2).

Proof. Notice first that (7, x) ]_[j=l %
function on [0, 400 x M, equal to 1 when t = 0: this is in fact the inverse of
the square root of the determinant of the positive definite symmetric matrix

extends as a smooth positive

sin(th(x)) _ 217 (=b(0)?)? _
th(x) 2p+ 1!

)

p=0

where b(x) is the antisymmetric endomorphism of T}, associated with the alternate
2-form B(x) and —b(x)? = b(x)"h(x) > 0.

The only thing one has still to get convinced of is that the kernel of e ™"~ % —e
is (k/1)"/? O (k~'/2*%) uniformly along the diagonal at any point (x°, x*) € M x M,
where Dg is the operator (J; “freezed” at x°. We can do this in a canonical way by
using normal coordinates from the Riemannian exponential mapping

1O _ ,—09

expy : R" >~ Ty 0 > M,

and trivializations of E and L produced by parallel transport along geodesics from
x° to any point x € B(x’, py), where py = injectivity radius of M. In this way,
we actually get automatically that I, (x°) = I'g(x°) = 0. When Suppu C £, :=
B(x°, p), a Taylor expansion yields Dyu — Du = O(|x| + k|x|?) - u and we get
the estimates

1
Oro, 0= Q00,0 = [ L (1Deul? = 1DP) = (V= V')
= 0( [ o+ ke Dulul + o+ kg uf?) + pluf’)

0(/M =Dl + (M +p)lul?),

ke

(p + kp?)?
ke

0(e 00 g, + ( +p+e)uf?)

: _ (ptkp?)*
whenever ¢ < 1, hence there is a constant Cp . = O(72E + p + ¢) such that

(1 =)0} o, ) = Cppelul® < Qi) = (1 + ) O o () + Cpelul®.
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From this, we conclude that e ~"5* is squeezed (as a positive bounded self-adjoint
operator) between e~ Crkel o114+ and ¢Crkel e =1 (1=)5¢ By definition of the heat
kernel we have

Kixa,(x*,x%) = lim Ky k.2, (x. y)uy (X)uy(y) do(x) do(y)
v—>+00 QPXQP

= v—ligloo «e_tDk Uy, Uy))

when u,—>§,0 (Dirac measure), thus
L!

e p'k'ETK(01+s)z,k,9p(xov x%) = ng,gp(xos x%)
< Kik.0,(x° x%) — K,O’kqu(xo, x%)
= ec”‘k‘sTK?l—a)t,k,gp(xov x°) — Kzo,k,gp(xos x°).
We take here p = ¢ = k~1/2%% so that C, . = O(k~'/>*%). The expected uniform

bounds are then obtained by an application of Proposition 9, where the choice p =
k~1/2%8 » k=1/2 ensures that the relative errors

0
Kixm —Kiro, and K gm— Kthp

are very small, namely of the order of magnitude O (exp(—k®/4T)). O

As a consequence, we obtain the following estimate for the eigenvalues:

Corollary 11. The eigenvalues A, . o of Qk.o satisfy for every t > 0 the estimate

— vk - k\m/ tV(x - B (x)Z
Sreh =00 ()" [ e [ G

This result can be also interpreted in terms of the counting function
Nieo) =#{v: dure <A}
and of the spectral density measure (a sum of Dirac measures on the real line)

o d
Mo =k /zd_ANk,Q(A)-

Notice that the measures (i o are all supported in the fixed interval [—vg, +00],
where vy is an upper bound for the eigenvalues of V(x), x € M. In these notations,
Corollary 11 can be restated:
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lim +°° e dugol) = _ / tr(e’V(X))li[Mdo(x)
Mk, (471l)m/2 o = sinth(x)t ’

k—>+00 J_oo

We thus see that the sequence of measures pi o converges weakly to a measure o
whose Laplace transform is given by the right hand side. Inverting the formula, one
obtains:

Corollary 12. For almostall A € R

k—4o00

lin K" Nea) = =00 2) = [ 3 van(V) () + Do) (34
i=1

where vp(x)(A) is the function on M x R defined by

Qs—m 7-[_’”/2

vB(A)szl---BS 3 [A—Z(ij+l)Bj]+ . (35)

(1., ps)EN?

Proof. We leave as an exercise to the reader to check that the Laplace transform

+o0 +oo
/ e *dvg(v + 1) = e“’/ e "*dvg(d)

(o.¢] —00

is actually equal to

el‘

(o) | L sinh B, (x)1” 0

1.2.3 Proof of the Holomorphic Morse Inequalities

Let X be a compact complex manifold, L and E holomorphic Hermitian vector
bundles of rank 1 and r over X. If X is endowed with a Hermitian metric w,
Hodge theory shows that the Dolbeault cohomology group H?(X, E ® L¥) can
be identified with the space of harmonic (0, g)-forms with respect to the Laplace—
Beltrami operator A} = §k§Z + 5Z§k acting on E ® L. We thus have to estimate
the zero-eigenspace of A}.

In order to apply Corollary 12, we first have to compute A} in terms of the
Hermitian connection V;, on E ® L¥ ® A% T)’(" deduced from the Chern connections
of L, E, Txy. What plays now the role of E is the (non holomorphic) bundle £ ®
A% Ty.

The relation between A} and Vj is most easily obtained by means of the
Bochner—Kodaira—Nakano identity. In order to simplify the exposition, we assume
here that the metric w on X is Kdhler. For any Hermitian holomorphic line bundle
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G on X, the operators A’ and A” associated with the Chern connection D = Dg
are related by the B-K-N identity (cf. [2, 10,61,76])

A" = A +[i6g., Al (36)

where 6 = D% € C®(X, AT} ® Hom(G, G)) is the curvature tensor and
A = L* is the adjoint of the Lefschetz operator Lu = w A u.

The Leibniz rule implies 0g g« = k0, ®Idg +0£ ®1d;« (omitting the Hermitian
metrics for simplicity of notation), thus

= Al + k[0, Al + [i0z. A].

At a given point z° € X, we can find a coordinate system (zj,...,z,) such that
(d/0z;) is an orthonormal basis of Ty diagonalizing i 1,(z°), in such a way that

i - . i -
a)(zo)zz Z dz; Ndz;, l@L(ZO)=§ Z ajdz; ANdZ;

I<j=n I<j=n

where a4, . .., @, are the curvature eigenvalues of i 0 (zo). A standard formula gives
the expression of the curvature term [i 0y, Au for any (p, ¢)-form u. In fact, for
u=>y usjrdz AdZ; ® e;, we have

(60 Aluu) = > (ay —ag)|ursal’
1.J.A

where oy = Zjej ;. In the case of a (0, g)-formu = ) u;1dZ; ® ey we simply
have Aju = D;* Diu = V;*V,u and

AY = VEV, —kV + [i6g, A], (37)

(V'u,u) Zocc]|u“| (here I = 0).

This is not yet what was needed, since only the (1,0) part V, appears. To get the
(0, 1) component, we consider u as a (1, ¢) form with values in E ® L¥ ® A"Ty.
We then get A, u = D, D;*u where

Dfu=— ZBMIM/Bz,dzlA d ANdzy, NdZy ® ey,

in normal coordinates. Thus A} u = V;*V/'u and

V//*V// + kv// + [l.HE@A”TXyA] , (37//)

(V"u, u) Za,|u“| (here I = {1,...,n}).
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If the metric w is non Kéhler, we get additional torsion terms, but these terms are
independent of k. A combination of (37") and (37”) yields

2 1 1

where W is a Hermitian form independent of k and

(Viu) =Y (g —ap)lusal”
J.A

Now apply Theorem 10 and observe that W does not give any significant contribu-
tion to the heat kernel as k — +o00. We write here z; = x; +iy; and the “magnetic
field”

B=if, = Z Oljdxj‘ Adyj.

I<j=n

The curvature eigenvalues are given by B; = |a;|. We denote s = s(x) the rank of
B(x) and order the eigenvalues so that

|al| Z...z |asl >0:as+l == 0y.

The eigenvalues of 1 acting on E ® A" Ty are the coefficients ap; — ay, counted
with multiplicity r. Therefore

Theorem 13. The heat kernel associated with e~ 2% in bidegree (0, q) satisfies

K e " iz €T L o)
e (4m)ngn—s o sinh |a; (x) [z

as k — +oo. In particular, iflll(’q < Ag’q < ... are the eigenvalues of%A;’ in
bidegree (0, q), we have

o0 — :

Ze_zul;»q " Z / ellag, ()= (x)) ﬁ |ozj(x)|

x (4m)men—s L Lsinh e (x)|t
v=1 |J]=¢q j=1

foreveryt > 0.

At this point, the main idea is to use the eigenspaces to construct a finite dimen-
sional subcomplex of the Dolbeault complex possessing the same cohomology
groups. This was already the basic idea in Witten’s analytic proof of the standard
Morse inequalities [102]. We denote by

k.q k.q
S 7, resp. ji”g
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the A-eigenspace of %AZ acting on C®(X, A% T} ® E ® LF), resp. the direct sum
of eigenspaces corresponding to all eigenvalues < A. As J; and A} commute, we see

that 5(%”;‘"’) C f%ﬁk’qH, thus %jk" and s~ 5* are finite dimensional subcomplexes
of the Dolbeault complex B

9 C®(X, A" THE ® L").

Since 059, + 0,0k = Al = kAId on J5°, we see that ° has trivial
cohomology for A # 0. Since j‘ff)k" is the space of harmonic forms, we see that
f%ﬂk 5* has the same cohomology as the Dolbeault complex for A > 0. We will call
this complex the Witten 0-complex. We need an elementary lemma of linear algebra.

Lemma 14. Set h! = dim HY(X, E ® L*). Then for everyt > 0

q +o00

_ _ _ kit

R =R 4 (CDTh) < Y (=) e
(=0 j=1

Proof. The left hand side is the contribution of the 0 eigenvalues in the right hand
side. All we have to check is that the contribution of the other eigenvalues is > 0.
The contribution of the eigenvalues such that AI;’Z =A>0is

q
ey (=17 dim 4"
=0

As f%jk" is exact, one easily sees that the last sum is equal to the dimension of
5%;“ C %ﬁk’qH, hence > 0. O

Combining Theorem 13 with Lemma 14, we get
-1
hE—hl™ 4+ (=D)hY,
l_[j<s |a] | . ef(a[:j_al_z ‘ajl)

Z /X 22n—snntn—s l_[j<s(1 _ e_2t|05j\)'

/1=t

q
<o(k") + rk" Z(—l)”‘l
=0

This inequality is valid for any # > 0, so we can let 7 tend to 4-o0. It is clear that
ap; — oy — || is always < 0, thus the integrand tends to O at every point
where s < n. When s = n, we have ag, (x) —ayx) — ) |oj(x)] = 0if and only
if a;(x) > O for every j € CJ and ;(x) < O for every j € J. This implies
x € X(L,h,{); in this case there is only one multi-index J satisfying the above
conditions and the limit is

@r) e+ ran| = Qm)T@OLR)"| = 1O 41,
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as®p, = ﬁébh by definition. By the monotone convergence theorem, our sum of
integrals converges to

q
- —n 1 n
S e lda = o (176},
=0 X(L.h0) e JX(L.h<q)
The Main Theorem 8 follows. 0

1.3 Applications to Algebraic Geometry

1.3.1 Solution of the Grauert—-Riemenschneider Conjecture

Let L be a holomorphic line bundle over a compact connected complex manifold
X of dimension n and V;, = H°(X, L¥). Denote by Z(V}) the set of common
zeroes of all sections in V%, and fix a basis (0y, ..., oy ) of Vi. There is a canonical
holomorphic map

Dy X ~Z(Vy) — P(Vp), X > [oo(x) @ ... on(X)] 39)

sending a point x € X ~ Z(V;) to the hyperplane H C Vi of sectionso = ) _A;0; €
Vi such that o(x) = Y A;0;(x) = 0; it is therefore given by x > [op(x) : ... :
on(x)] in projective coordinates on P(V;) =~ PV. The pull-back @ &(d) can be
identified with the restriction of L*¢ to X ~ Z(V}); indeed, to any homogeneous
polynomial P(wy,...,wy) € HO(PV, 0'(d)) of degree d, one can associate a
section

s = P(0y,...,on) € H'(X, L*). (40)

When L possesses a smooth Hermitian metric # with @, ;, > 0, one can construct
many sections of high tensor powers L¥ (e.g. by Hormander’s L? estimates [56], [4]
for ). For k > k large enough, the “base locus” Z(V}) is empty, the sections in Vi
separate any two points of X and generate all 1-jets at any point. Then @y, gives an
embedding of X in some projective space PV, for N = N(k) and k > k. In this
way, the theory of L? estimates implies the Kodaira embedding theorem : a compact
complex manifold X is projective algebraic if and only if X possesses a Hermitian
line bundle (L, &) with C*° positive curvature.

The Grauert—-Riemenschneider conjecture [50] is an attempt to characterize the
more general class of Moishezon varieties in terms of semi-positive line bundles. Let
us first recall a few definitions. The algebraic dimension a(X) is the transcendence
degree of the field .# (X) of meromorphic functions on X . A well-known theorem
of Siegel [83] asserts that 0 < a(X) < n (see Corollary 17 below). A compact
manifold or variety X is said to be Moishezon if a(X) = n.
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By definition, the Kodaira dimension k(L) is the supremum of the dimension of
the images Yy = P (X ~ Z(Vi)) C P(V,*) for all integers kK > 0 [one defines
k(L) = —oo when V; = 0 for all k, in which case we always have Y; = @].
Since the field of meromorphic functions on X obtained by restriction of rational
functions of P(V,*) to Y} has transcendence degree at least equal to dim Y}, we infer
that

— 00 < k(L) =supdimY; <a(X) <n. 41)

Definition 15. The line bundle L — X is said to be big if «(L) is maximal, i.e.
k(L) =n=dimX.

The following standard lemma is needed (cf. [80, 83]).

Lemma 16 (Serre-Siegel). For every line bundle L — X, there exist constants
C > c¢ > 0andky € N* such that

dim H°(X, L*) < C kP forallk > 1
dim H(X, L*) > ¢ kP forallk > 1 multiple of k.

Proof. The lower bound is obtained by taking k¢ such that p := dim Yy, = «(L).
Then, by the rank theorem, there exists a point xo € X ~ Z(V},) and a basis
(00, ...,0n5) of HO(X, L) such that oy(xo) # 0 and

(d(01/060) A ... A d(0,/00))(x0) % 0.

Then by taking s = P(09,...,0,,0,...,0) in (40), we obtain an injection of the
space of homogeneous polynomials of degree d in p+ 1 variables into H°(X, L¥o?),
whence

d
RO(X, LR > ( ;p) >d”/pl.

The proof of the upper bound proceeds as follows: select a Hermitian metric
h, on L and a finite family of coordinate balls B; = B(z;,r;) such that B;» =
B(zj,r;/2) cover X, and L, is trivial for each j. By moving a little bit the points
Zj, we may assume that @;; has maximal rank at all points z; for all k& (the bad
set is at most a countable union of analytic sets, so it is nowhere dense). If L* has
many sections, one can solve a linear system in many unknowns to get a section s
vanishing at a high order m at all centers z;. Then the Schwarz lemma gives

Islln.co = sup [sllnp = 27" C(hY* sup lIsllnz; < 27" C(h)*IIslho0
J ’ J

where C(h) is a bound for the oscillation of the metric & on B;, which we may
assume to be finite after possibly shrinking B;. Thus m < klogC(h)/log2
if s # 0. Since the sections of L* are constant along the fibers of &, only
mIimYe#{z} equations transversally to the fibers are needed to make s vanish at
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order m. Therefore we can choose m = (h°(X, L*)/#{z;})"/4mYc and still get a
non zero section, so that

RO(X, LYy ~ #{z;} - mI™ e < C k<D, O
Corollary 17 (Siegel). For every compact complex manifold X
a(X) :=trdege A (X) < n.

Proof. Fix s algebraically independent elements fi,..., f; € .#(X) and let D
be the sup of the pole divisors of the f;’s. To every polynomial P(fi,..., f;)
of degree < k corresponds injectively a section op = P(f1,...,fs) €
H°(X,0(kD)). A dimension count implies

k—; < <k+s) < CKk9P) < C k"
AN N

by Lemma 16. Therefore s < n. O

Now, the Grauert—Riemenschneider conjecture [50] can be stated as follows.

Grauert-Riemenschneider conjecture 18. A compact complex variety Y is
Moishezon if and only if there is a proper non singular modification X — Y
and a Hermitian line bundle (L, h) over X such that the curvature form @y j, is > 0
on a dense open subset of X.

Proof. When Y is Moishezon, it is well known that there exists a projective
algebraic modification X ; therefore we can even take L to be ample and then there
exists i such that @ , > 0 everywhere on X.

The converse statement was proved by Siu in [85, 86], assuming only &, > 0
everywhere and ®1, , > 0 in at least one point. Morse inequalities provide in fact a
much stronger criterion, requiring only the positivity of some curvature integral:

Theorem 19. Ifa Hermitian line bundle (L, h) on X satisfies the integral condition

/ (©rn)" >0,
X(L.h<1)

then k(L) = n, in particular X is Moishezon.

In fact, the lower bound (24) applied with £ = O implies immediately that
h°(X,L¥) > ck”, hence k(L) = n. Now, if X is a modification of ¥, we have
MY) >~ M(X),s0a(X) =a(Y),and Y has to be Moishezon. O
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1.3.2 Cohomology Estimates for nef Line Bundles

On a projective algebraic manifold X, a line bundle L is said tobe nef if L - C > 0
for every algebraic curve C C X. If w is a given Kihler or Hermitian (1, 1)-form
on X, it can be shown (cf. [26]) that L is nef if and only if for every ¢ > 0 there
exists a smooth Hermitian metric /. such that &, j, > —ew on X ; in fact, the latter
property clearly implies

L'C:/@L,hsz—efw = L-C>0
c c

for every curve C. Conversely, if L - C > 0 for every curve C, the well-known
Kleiman criterion (cf. [53]) implies that kL + A is ample for every ample divisor A.
Hence there exists a smooth Hermitian metric /; on L such that

1
Okta =kOpp, +Oup, >0 = Opyp, > —Ea), where w = @4, > 0.

Therefore, one can introduce the following definition of nefness on an arbitrary
compact complex manifold.

Definition 20. Let X be a compact complex manifold and w a given smooth
positive (1, 1)-form on X. A line bundle L — X is said to be nef if for every
e > 0 there exists a smooth Hermitian metric 4, on L such that &), > —cw
everywhere on X.

A consequence of holomorphic Morse inequalities 21. [f X is compact Kdihler
and L is nef, for every holomorphic vector bundle E on X one has

h(X,0(E)® O(L)) = o(k")  forallg > 1.

Proof. Let w be a Kéhler metric. The nefness of L implies that there exists a smooth
Hermitian metric /., on L such that & 5, > —ew. On X (L, h,, 1) we have exactly

1 negative eigenvalue A; which is belongs to [—¢, 0[ and the other ones A; (j > 2)
are positive. The product A; - -- A, satisfies [A;---A,| <& ]_[jzz(kj + &), hence

1 n

’?‘@L’hs sw A (O, + ew)"! on X(L,hg,1).

1
< —_
“(n—-1!

By integrating, we find

/ O, < ns/ w A (er1(L) + ew)"™!
X(Loel) X

and the result follows. O

Note 22. When X is non Kihler, D. Popovici [79] has announced bounds for the
Monge—Ampere masses of @, ,, which still imply the result, but the proof is much
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harder in that case. On the other hand, when X is projective algebraic, an elementary
hyperplane section argument and an induction on dimension easily implies the
stronger upper bounds

hi(X,O0(E) ® O(kL)) = O(k"™%) forallg > 0. (42)
Hint. By Serre duality, it is enough to show that
h(X,O0(F)® O(—kL)) = O(k9) forevery g > 0

and every holomorphic vector bundle F. Choose a very ample line bundle 4 so big
that F' = F* ® 0(A) is Nakano positive, and apply the Nakano vanishing theorem
and Serre duality to see that HY(X, O(F) @ 0(—A) ® O0(—kL)) = 0 for all k and
q > 1. Use the exact sequence 0 — Ox(—A) — Ox — 04 — 0, take the tensor
product with &' (F) ® O (—kL) and apply induction. O

It is unknown whether the accurate bound (42) holds true on a general compact
complex manifold, even when X is assumed to be Kédhler.

1.3.3 Distortion Inequalities for Asymptotic Fubini-Study Metrics

Another application of the heat kernel estimates is a generalization of G. Kempf’s
distortion inequalities [58, 60] to all projective algebraic manifolds. In this gener-
ality, the result was obtained by Th. Bouche [17], and in less generality (but with
somewhat stronger estimates) by G. Tian [98].

Let L be a positive Hermitian line bundle over a projective manifold X, equipped
with a Hermitian metric . Then V;, = H°(X, L¥) has a natural Hermitian metric
given by the global L? norm of sections. For k > ky large enough, &, is an
embedding and L¥ can be identified to the pull-back @7 O(1). We want to compare
the original metric | « | of L and the metric | « |ps induced by the Fubini—Study metric
of O(1).

Let (51, ..., sy) be an orthonormal basis of H°(X, L¥). It is not difficult to check
that

&1

st P A+ -+ lsy (x) 2

&2 = forg e LY.

thus all that we need is to get an estimate of ) _ |s; (x)|*. However, this sum is the
contribution of the 0 eigenvalue in the heat kernel

+o00
KFox) = ey (0P

j=1
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associated to %DZ in bidegree (0,0). We observe that non zero eigenvalues A’;
are also eigenvalues in bidegree (0, 1), since d is injective on the corresponding

eigenspaces. The associated eigenfunctions are Jvr i/ kk’; , for

197117 = (ALY vy ) = kA,
Thus the summation
+o00
ok =
> ey ()
j=1

is bounded by the heat kernel in bidegree (0, 1), which is itself bounded by k" e~
with ¢ > 0 (note that o, — ey — D |ej| < Oon X for |J| = 1). Taking t = k*
with ¢ small, one can check that all estimates remain uniformly valid and that the
contribution of the non zero eigenfunctions in K (x, x) becomes negligible in C°
norm. Then Theorem 13 shows that

Do Isi @) ~ Kf (x,x) ~ K" Q2m) " o (x) -+ (%))

ast = k® - +oo.For € € Lfﬁ we get therefore the C° uniform estimate

g7
€12

As a consequence, the Fubini-Study metric on L induced by & converges
uniformly to the original metric. G. Tian [98] proved that this last convergence
statement holds in norm C*. It is now known that there is in fact an asymptotic
expansion in 1/ k, and therefore C°*° convergence; this holds true even in the almost
complex setting, see [15, 82].

(i)n|a1(x)---ozn(x)| as k — +oo. (43)
2

1.3.4 Algebraic Counterparts of the Holomorphic Morse Inequalities

One difficulty in the application of the analytic form of the inequalities is that
the curvature integral is in general quite uneasy to compute, since it is neither
a topological nor an algebraic invariant. However, the Morse inequalities can be
reformulated in a more algebraic setting in which only algebraic invariants are
involved. We give here two such reformulations—after they were found via analysis
in [30], F. Angelini [5] gave a purely algebraic proof (see also [88, 100] for related
ideas).

Theorem 23. Let L = F —G be a holomorphic line bundle over a compact Kdhler
manifold X, where F and G are numerically effective line bundles. Then for every
q=0,1,...,n = dim X, there is an asymptotic strong Morse inequality
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> (=D hi(X, kL)<— > (=1 ,( )F" 7 -G’ + o(k").

0<j=q T 0<j=<q

Proof. By adding ¢ times a Kihler metric » to the curvature forms of F and G,
e > 0 one can write O = O, — O, where O, = 5-Of + ew and O, =
;OG + ew are positive definite. Let A; > --- > A, > 0 be the eigenvalues of & (jG .

with respect to @) F.e- Then the elgenvalues of @L with respect to @) F.e are the real
numbers 1 — A; and the set X(L,h, < q) is the set {Ag+1 < 1} of points x € X
such that A4 4 (x) < 1. The strong Morse inequalities yield

L /s
> (=D (X KL) < F/ D[] =28, + ok™.

0<j<q B AR L Py

On the other hand we have

(’;)@’};’ NGO, =al (L) 6L,

where 0,{ (A) is the j-th elementary symmetric function in Ay, ..., A, , hence
q=J n—j J —1i 9= 5J n
> (=1 ()F -G 812%/}(2(1) ol (1) O,
O<]<q O<]<q

Thus, to prove the lemma, we only have to check that

DDl =W, DT[] 1=2;) =0

0=j=n l<j=n
forall A; > ... > A, > 0, where ¢, denotes the characteristic function of a set.
This is easﬂy done by 1nduct10n on n (just split apart the parameter A, and write
ol (V) = 0]_,(0) + 0, (A) A). o

In the case ¢ = 1, we get an especially interesting lower bound (this bound has
been observed and used by S. Trapani [100] in a similar context).

Consequence 24. h°(X, kL) —h'(X,kL) > 5.(F"—nF"='-G)—o(k"). Therefore

some multiple kL has a section as soon as F" —nF"1.G >0

Remark 25. The weaker inequality

kn
h°(X, kL) > —(F" — nF" 1. G)—o(k")
n:
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is easy to prove if X is projective algebraic. Indeed, by adding a small ample
Q-divisor to F and G, we may assume that F', G are ample. Let m(G be very ample
and let k’ be the smallest integer > k/mg. Then h®(X, kL) > h®(X,kF — k'm,G).
We select kK’ smooth members G 1 =<j= k' in the linear system |moG| and use
the exact sequence

0— H(X.kF =) G;) > H'(X.kF) > @ H(G, . kFs)).

Kodaira’s vanishing theorem yields HY(X,kF) = 0 and HY(G;,kF|g,) = 0 for
q > 1 and k > k. By the exact sequence combined with Riemann—Roch, we get

hO(X. kL) = B(X.kF =Y G;)

k" n n—1 kn_l n—1 n—2
= —F"— Ok )—Z((n_l)!F -G, — Ok ))
k" n k/mo n—1 n—l1
= (F'=n=2FG) — 0k

n

> %(F —n P! -G) —o(k"™).

(This simple proof is due to F. Catanese.) O

Corollary 26. Suppose that F and G are nef and that F is big. Some multiple of
mF — G has a section as soon as

Fn—l .G

m >n
Fn

In the last condition, the factor n is sharp: this is easily seen by taking X =
Pl and F = O(a,...,a) and G = O(by,...,b,) over IP|; the condition of the
corollary is then m > )" b;/a, whereas k(mF — G) has a section if and only if
m > sup b; /a; this shows that we cannot replace n by n(1 — ¢).

1.4 Morse Inequalities on q-Convex Varieties

Thierry Bouche [16] has obtained an extension of holomorphic Morse inequalities
to the case of strongly g-convex manifolds. We explain here the main ideas involved.

A complex (non compact) manifold X of dimension »n is strongly g-convex in
the sense of Andreotti and Grauert [3] if there exists a C * exhaustion function
on X such that i 851& has at least n — g + 1 positive eigenvalues outside a compact
subset of X . In this case, the Andreotti—Grauert theorem shows that all cohomology
groups H" (X, F) with values in a coherent analytic sheaf are finite dimensional
form > q.
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Theorem 27. Let L, E be holomorphic vector bundles over X with rank L = 1,
rank E = r. Assume that X is strongly q-convex and that L has a Hermitian metric
h for which ®p j, has at least n — p + 1 nonnegative eigenvalues outside a compact
subset K C X. Then forallm > p + q — 1 the following strong Morse inequalities
hold:

n k"
YD) dimHY(X. E® L) <r— (=1)"O} , + o(k").

i—m ne Jx(@L.h=m)

Proof. For every ¢ € R, we consider the sublevel sets
X.={xeX; ¥ <c}.

Select ¢¢ such that i 851& has n — g + 1 positive eigenvalues on X ~ X,.. One can
choose a Hermitian metric wy on X in such a way that the eigenvalues y? <...< )/,?

of i 30y with respect to wy satisfy

- E)’?E"'<V;)_1§1 and y;):...:yl?zlonX\XCO; (44)

S| =

this can be achieved by taking wy equal to 90y on a C* subbundle of Tx of
rank n — ¢ 4+ 1 on which i 39y is positive, and wy very large on the orthogonal
complement. We set = e”wy where p is a function increasing so fast at infinity
that w will be complete.

More important, we multiply the metric of L by a weight e™*°¥ where y is a
convex increasing function. The resulting Hermitian line bundle is denoted (L, 1).
For any (0, m) form u with values in E ® L¥, viewed as an (1, m) form with values
in E ® LF¥ ® A"Ty, the Bochner—Kodaira—Nakano formula implies an inequality

(Afu,u) > /Xk([iQLX,hX),A]u,u) + (Wu,u)

where W depends only on the curvature of £ ® A" Ty and the torsion of w. By the
formulas of Sect. 1.2.3, we have

([i61,8,). Alutct) = (@1 + -+ + ) |ul
where @) < --- < «, are the eigenvalues of
100, =004 +i00(x o) = ibry + (x 0 ¥)iddy.
If B is the lowest eigenvalue of i 6, ; with respect to w, we find

aj = B+ (x op)y)/e.

ar+ o =mB4 (f oY)y 4y e
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and by (44) we getforallm > ¢g:
1 —p
ar+-toy >=mpf+—e PyoyonX~ X
n

It follows that one can choose y increasing very fast in such a way that the Bochner
inequality becomes

(Afu,u) > k/

X~X¢

AW @) - C, /X ()2 45)

where A > 1 is a function tending to oo at infinity on X and C; > 0. Now,
Rellich’s lemma easily shows that A} has a compact resolvent. Hence the spectrum
of A}l is discrete and its eigenspaces are finite dimensional. Standard arguments also
show the following:

Lemma 28. When y increases sufficiently fast at infinity, the space 7™ (X, L’)‘( ®

E) of L?>-harmonic forms of bidegree (0, m) for A} is isomorphic to the cohomology
group H"(X, E ® LF) forallk € Nandm > q.

For a domain £2 CC X, we consider the quadratic form
k.m 1 a2 15,2
Qg () = - | 9kul” + [0;ul
k Jo

with Dirichlet boundary conditions on d52. We denote by %ﬂk i’f’Q the direct sum of

all eigenspaces of Q]_é’m corresponding to eigenvalues < A (i.e. < kA for AY).

Lemma 29. For every A > 0 and ¢ > 0, there exists a domain 2 CC X and an
integer kg such that

. k.m . k.m . k.m
dlrlljiﬂs)LQ < dlmf%fsx’x < dlmf%ﬁsH&Qfork > k.

Proof. The left hand inequality is a straightforward consequence of the minimax
principle, because the domain of the global quadratic form Qé’m is contained in the

domain of Q%"
For the other inequality, let u € ji”;”f'x. Then (45) gives

k A|u|2—C1/ Ju|? gk/\/ 2.
XX Xeo X

Choose ¢» > ¢; > ¢p so that A(x) > a on X ~ X,, and a cut-off function ¢ with
compact support in X, suchthat0 < ¢ < 1and¢ = 1 on X,. Then we find

kA
[ 2 < SEEA / .
X=X, ka X
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For a large enough, we get [, lul? < e|lu|?. Set 2 = X.,. Then
<]

. 1 [ = - -
Q]g <pu):E/Q|8¢Au+q08ku|2+|q08ku—8<pJu|2

IA

C 1
k.m _2 - 2
1+ 05" + (142 )l
C
< L+ )G+ )l
&
As loul® = [y, [ul? = (1 —e)|lul]®, we infer

I+¢ C
gy < —— (2 4+ = 2
05" (pu) = 17— (A + 22 ) lleu

If ¢ is replaced by a suitable smaller number and k taken large enough, we obtain
ng W) < A+ o)|v|? forall v € @%ff‘x. Then the right hand inequality in
Lemma 29 follows by the minimax principle. O

Now, Corollary 12 easily computes the counting function N é’m for the eigen-
values:

r i
lim  lim k"NE"() = —/ -1 m(—e )
A—1>I(I)1+ k—}r—{-loo 2 ( ) n! X(L)(vhx*m)( ) 21 LX’hX)

n

Applying this to the Witten complex f%ﬂkifx, we easily infer the inequality of
Theorem 27, except that ¢(L) is replaced by c¢(L,). However, up to now, the
inequality is valid for all m > ¢. Take the convex function y equal to 0 on | — o0, ¢o].
Then

i i =
OL,h, = EQLX,hX =0+ 533()( oY)

coincides with @ ;, on X, and has at most (p —1) 4 (¢ —1) negative eigenvalues on
X~ X, Hence X(Ly,hy,m) = X(L,h,m)form > p+g—1land®p ,, = Op,
on these sets. Theorem 27 is proved. O

As a corollary, one obtains a general a priori estimate for the Monge—Ampere
operator (i 0)" on g-convex manifolds.

Corollary: calculus inequalities 30. Let X be a strongly q-convex manifold and
@ a C* function on X, weakly p-convex outside a compact subset of X. For { =
0,1,...,n, let G¢ be the open set of points where iag(p is non degenerate and admits
£ negative eigenvalues. Then forallm > p =q — 1

n

Z (1009)™ has the sign of (—1)™.

{=m Ge
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This result has been first obtained by Y.T. Siu [87] for g-convex domains in
a Stein manifold. At that time, the g-convex case of the inequalities was not yet
available and Siu had to rely on a rather sophisticated approximation argument
of Stein manifolds by algebraic varieties; the proof could then be reduced to the
compact case.

The general statement given above is in fact a direct consequence of Theorem 27:
take for L the trivial bundle L = Oy equipped with the metric defined by the weight
e ¥ and E = Oy. Since H"™(X,L*) = H™(X, Oy) is independent of k and finite
dimensional, Theorem 27 implies

K" Z/ (=1)"™(idd¢p)" > constant — o (k")
¢=m ? Gt

forall k > kg and m > p 4+ g — 1, whence the result. O

2 Approximation of Currents and Intersection Theory

2.1 Introduction

Many concepts described in this section (e.g. pseudo-effectivity) are quite general
and make sense on an arbitrary compact complex manifold X—no projective or
Kéhler assumption is needed. In this general context, it is better to work with
ag-cohomology classes instead of De Rham cohomology classes: we define the
Bott—Chern cohomology of X to be

H]f(’jq (X,0) = {d-closed (p, q)-forms}/{ag-exact (p, q)-forms}. (46)

It is easily shown that these cohomology groups are finite dimensional and can
be computed either with spaces of smooth forms or with currents; in fact, they
can be computed by certain complexes of sheaves of forms or currents that both
provide fine resolutions of the same sheaves of holomorphic or anti-holomorphic
forms. Our statement therefore follows formally from general results of sheaf theory.
Also, finiteness can be obtained by the usual Cartan—Serre proof based on Montel’s
theorem for Cech cohomology. In both cases, the quotient topology of HE(X,C)
induced by the Fréchet topology of smooth forms or by the weak topology of
currents is Hausdorff. Clearly, Hg-(X,C) is a bigraded algebra, and it is trivial
by definition that there are always canonical morphisms

H{I(X,C) > HI(X,0), P HL(X.C) > Hip(X.C). (47
prq=k
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By Hodge decomposition and by the well-known d0-lemma of Kihler geometry,
these morphisms are isomorphisms when X is Kéhler; especially, we get a canonical
algebra isomorphism

HEo(X,C) ~ P H“(X,C) i X is Kihler. (48)

pq

We will see in paragraph 5 (Remark 63) that this is true more generally if X is in
the Fujiki class @, i.e., the class of manifolds bimeromorphic to Kéhler manifolds.

2.2 Pseudo-Effective Line Bundles and Singular Hermitian
Metrics

Let L be a holomorphic line bundle on a compact complex manifold X. It is
important for many applications to allow singular Hermitian metrics.

Definition 31. A singular Hermitian metric /2 on L is a Hermitian metric such that,
for any trivialisation Ly >~ U x C, the metric is givenby h = e™%, ¢ € L. (U).

loc
The curvature tensor

OLn = —— 8399 = —— 39 logh (49)
’ 2 2
can then be computed in the sense of distributions, and defines in this way a
(global) closed (1, 1)-current on X . It defines a (real) cohomology class {®; ;} €
Hé'cl (X,C) which is mapped to the first Chern class ¢;(L) by the canonical
morphisms (2). We will therefore still denote this Bott—Chern class by c¢;(L). The
positive case is of special interest.

Definition 32. We say that L pseudo-effective if ¢;(L) € Hé’cl (X,C) is the
cohomology class of some closed positive current 7', i.e. if L can be equipped with
a singular Hermitian metric 2 with T = ®p ;, > 0 as a current, in other words, if
the weight functions ¢ can be chosen to be plurisubharmonic on each trivialization
openset U.

The locus where & has singularities turns out to be extremely important. One way
is to introduce multiplier ideal sheaves following A. Nadel [75]. The main idea
actually goes back to the fundamental works of Bombieri [12] and H. Skoda [94].

Definition 33. Let ¢ be a psh (plurisubharmonic) function on an open subset
£2 C X.To ¢ we associate the ideal subsheaf . (¢) C O, of germs of holomorphic
functions f € Ogq . such that | f|?e™¢ is integrable with respect to the Lebesgue
measure in some local coordinates near x.
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The zero variety V(.7 (¢)) is thus the set of points in a neighborhood of which
e~ % is non integrable. The following result implies that this is always an analytic set.

Proposition 34 ([75]). For any psh function ¢ on 2 C X, the sheaf (@) is
a coherent sheaf of ideals over §2. Moreover, if 2 is a bounded Stein open set,
the sheaf .7 (¢) is generated by any Hilbert basis of the L* space *(82,¢) of
holomorphic functions f on §2 such that [, | fl?e™¥dA < +oc.

Proof. Since the result is local, we may assume that £2 is a bounded pseudoconvex
open set in C". By the strong Noetherian property of coherent sheaves, the family
of sheaves generated by finite subsets of .7#(£2, ¢) has a maximal element on each
compact subset of £2, hence #%(£2, ¢) generates a coherent ideal sheaf ¢ C 0.
Itis clear that _# C #(g); in order to prove the equality, we need only check that
e+ I () N m};'; = J(p), for every integer s, in view of the Krull lemma.
Let f € .#(¢). be defined in a neighborhood V' of x and let 6 be a cut-off function
with support in V such that & = 1 in a neighborhood of x. We solve the equation
du = g := 3(Af) by means of Hormander’s L? estimates [4, 56], applied with the
strictly psh weight

() = @) + (n + ) log|z — x|* + |z

We get a solution u such that [, |u|?e™¢|z — x| 72" *T9)dA < oo, thus F = 0f —u
is holomorphic, F € #%(2,¢) and f, — Fy, = u, € 7 (@), N m§2+,: This proves
the coherence. Now, _¢ is generated by any Hilbert basis of ¢’ 2(!2; ¢), because it
is well-known that the space of sections of any coherent sheaf is a Fréchet space,
therefore closed under local L? convergence. O

Another important way of measuring singularities is via Lelong numbers—a
natural generalization of the concept of multiplicity to psh functions. Recall that
the Lelong number of a function ¢ € Psh(£2) at a point x is defined to be

su
v(@.x0) = liminf — 2@ _ i SPBn? (50)
=—x logl|z—xo| r—>0y logr
In particular, if ¢ = log | f| with f € 0(§2), then v(g, x¢) is equal to the vanishing
order
ord,,(f) = sup{k € N; D% f(x9) =0, V|| < k}.

The link with multiplier ideal sheaves is provided by the following standard result
due to Skoda [94].

Lemma 35. Let ¢ be a psh function on an open set §2 and let x € 2.

(@ Ifv(p,x) < 2, then e % is Lebesgue integrable on a neighborhood of x, in
particular I (9)x = Oq x.
(b) More generally, if v(e,x) > 2(n + s) for some integer s > 0, then

|—2n—25
bl

e >clz—x c>0
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in a neighborhood of x, and .Z(¢), C m};'; where mg, . is the maximal ideal

of Oq . In particular e™? is non integrable at x if v(p, x) > 2n.
(¢) The zero variety V(Y (¢)) of 7 (@) satisfies

Van(@) C V(I (9)) C Ea(e)

where E.(¢) = {x € X;v(p,x) > c} is the c-upperlevel set of Lelong
numbers of ¢.

The only non trivial part is Lemma 35(a); the proof relies on the Bochner—
Martinelli representation formula for T = %35(,0 (see [94]). One should observe
that Lemma 35(a) (resp. (b)) is optimal, as one can see by taking ¢(z) = Alog|zi],
resp. ¢(z) = Alog|z|, on 2 = C".

2.3 Hermitian Metrics with Minimal Singularities
and Analytic Zariski Decomposition

We show here by a general “abstract” method that a pseudo-effective line bundle
always has a Hermitian metric /., with minimal singularities among those with
nonnegative curvature ®y ; > 0 in the sense of currents. The following definition
was introduced in [44].

Definition 36. Let L be a pseudo-effective line bundle on a compact complex
manifold X . Consider two Hermitian metrics /1, h; on L with curvature @y, ; ;=0
in the sense of currents.

(a) We will write i < h, and say that A, is less singular than /5, if there exists a
constant C > 0 such that h; < Ch,.

(b) We will write h; ~ hj, and say that Ay, h, are equivalent with respect to
singularities, if there exists a constant C > 0 such that C “lhy < hy < Chy.

Of course /1 < hy if and only if the associated weights in suitable trivializations
locally satisfy ¢, < ¢; 4+ C. This implies in particular v(g;, x) < v(¢,, x) at each
point. The above definition is motivated by the following observation.

Theorem 37. For every pseudo-effective line bundle L over a compact complex
manifold X, there exists up to equivalence of singularities a unique class of
Hermitian metrics h with minimal singularities such that @ j > 0.

Proof. The proof is almost trivial. We fix once for all a smooth metric s, (Whose
curvature is of random sign and signature), and we write singular metrics of L under
the form & = heoe™ V. The condition @ ;, > 0 is equivalent to ﬁaﬁw > —u where
u = Op .- This condition implies that v is plurisubharmonic up to the addition
of the weight g of /i, and therefore locally bounded from above. Since we are
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concerned with metrics only up to equivalence of singularities, it is always possible
to adjust ¥ by a constant in such a way that supy ¥ = 0. We now set

hmin = hooe_wmin7 I,/fmin(x) = Sl];p 1//()(?)

where the supremum is extended to all functions y such that supy ¢ = 0 and
#85@0 > —u. By standard results on plurisubharmonic functions (see Lelong
[69]), ¥min still satisfies #aﬁwm > —u (i.e. the weight ¢@oo + Wiin Of Amin
is plurisubharmonic), and &, is obviously the metric with minimal singularities
that we were looking for. [In principle one should take the upper semicontinuous
regularization ¥} of Yy, to really get a plurisubharmonic weight, but since v,
also participates to the upper envelope, we obtain here Y, = ¥,7. automatically].

O

Remark 38. In general, the supremum ¥ = sup;¢; ¥; of a locally dominated
family of plurisubharmonic functions v, is not plurisubharmonic strictly speak-
ing, but its “upper semi-continuous regularization” ¥*(z) = limsup,_, ¥ ({)
is plurisubharmonic and coincides almost everywhere with v, with ¥* > .
However, in the context of (41), ¥* still satisfies ¢* < 0 and #351& > —u, hence
¥* participates to the upper envelope. As a consequence, we have * < ¢ and thus
¥ = ¥* is indeed plurisubharmonic. Under a strict positivity assumption, namely
if L is a big line bundle (i.e. the curvature can be taken to be strictly positive in
the sense of currents, see Definition 42(d) and Theorem 43(b), then A, can be
shown to possess some regularity properties. The reader may consult [7] for a rather
general (but certainly non trivial) proof that ¥, possesses locally bounded second
derivatives 3*Vmin/0z; 07 outside an analytic set Z C X ; in other words, @ .,
has locally bounded coefficients on X ~ Z. O

Definition 39. Let L be a pseudo-effective line bundle. If / is a singular Hermitian
metric such that ®; , > 0 and

H'(X,mL ® #(h®") ~ H'(X,mL)  forallm >0,

we say that & is an analytic Zariski decomposition of L.

In other words, we require that # has singularities so mild that the vanishing
conditions prescribed by the multiplier ideal sheaves .#(h®") do not kill any
sections of L and its multiples.

Exercise 40. A special case is when there is an isomorphism pL = A + E where
A and E are effective divisors such that H°(X,mpL) = H°(X, mA) for all m and
O'(A) is generated by sections. Then A possesses a smooth Hermitian metric /2 4, and
this metric defines a singular Hermitian metric 4 on L with poles %E and curvature

%@ Ahs T %[E ]. Show that this metric / is an analytic Zariski decomposition.
Note: When X projective and there is a decomposition pL. = A + E with A nef
(see Definition 20), E effectiveand H(X, mpL) = H°(X,mA) for all m, one says
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that the Q-divisor equality L = %A + %E is an algebraic Zariski decomposition
of L. It can be shown that Zariski decompositions exist in dimension 2, but in higher
dimension they do not exist in general. O

Theorem 41. The metric huyy, with minimal singularities provides an analytic
Zariski decomposition.

It follows that an analytic Zariski decomposition always exists (while algebraic
decompositions do not exist in general, especially in dimension 3 and more).

Proof. Leto € H°(X,mL) be any section. Then we get a singular metric 4 on L by
putting ||, = |£/0(x)"/™| for & € L,, and it s clear that |o|,» = 1 for this metric.
Henceo € HY(X,mL® .#(h®™)), and a fortiorio € H(X,mL ® f(hfl’i’l’f)) since

hmin 1s less singular than . O

2.4 Description of Positive Cones (Kdhler and Projective
Cases)

Let us recall that an integral cohomology class in H?(X, Z) is the first Chern class
of a holomorphic (or algebraic) line bundle if and only if it lies in the Neron—Severi

group
NS(X) = Ker (H*(X.Z) - H*(X, Oy)) (51)

(this fact is just an elementary consequence of the exponential exact sequence 0 —
7 — 0 — 0* — 0).If X is compact Kihler, as we will suppose from now on in
this section, this is the same as saying that the class is of type (1, 1) with respect to
Hodge decomposition.

Let us consider the real vector space NSg(X) = NS(X) ®z R, which can be
viewed as a subspace of the space H'"!(X,R) of real (1, 1) cohomology classes. Its
dimension is by definition the Picard number

p(X) = ranky NS(X) = dimg NSr(X). (52)

We thus have 0 < p(X) < k"' (X), and the example of complex tori shows that all
intermediate values can occur when n = dim X > 2.

The positivity concepts for line bundles considered in Sects. 1.3.2 and 2.2 possess
in fact natural generalizations to (1, 1) classes which are not necessarily integral
or rational—and this works at least in the category of compact Kihler manifolds
(in fact, by using Bott—Chern cohomology, one could even extend these concepts to
arbitrary compact complex manifolds).

Definition 42. Let (X, w) be a compact Kéhler manifold.

(a) The Kihler cone is the set # C H"“!'(X,R) of cohomology classes {w} of
Kéhler forms. This is an open convex cone.
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J = Kihler cone in Hb'(X,R) [open]
F = nef cone in HV(X,R) [closure of %]
‘€ = pseudo-effective cone in H1!(X,R) [closed]

€°= big cone in HY!(X,R) [interior of €]

Fig. 1 Positive cones in a compact Kéhler manifold

(b) The closure # of the Kiihler cone consists of classes {&} € H'!'(X,R) such
that for every & > 0 the sum {& +ew} is Kéhler, or equivalently, for every ¢ > 0,
there exists a smooth function ¢, on X such that o +i 39, > —sw. We say that
s the cone of nef (1, 1)-classes.

(c) The pseudo-effective cone is the set & C H'!'(X,R) of cohomology classes
{T} of closed positive currents of type (1, 1). This is a closed convex cone.

(d) The interior &° of & consists of classes which still contain a closed positive
current after one subtracts e{w} for & > 0 small, in other words, they are classes
of closed (1, 1)-currents 7" such that T > ew. Such a current will be called a
Kihler current, and we say that {7} € H"!(X,R) is a big (1, 1)-class.

The openness of J# is clear by definition, and the closedness of & is a
consequence of the fact that bounded sets of currents are weakly compact (as follows
from the similar weak compactness property for bounded sets of positive measures).
It is then clear that %" C &.

In spite of the fact that cohomology groups can be defined either in terms of
forms or currents, it turns out that the cones 2 and & are in general different.
To see this, it is enough to observe that a Kéhler class {«} satisfies fY a? > 0 for
every p-dimensional analytic set. On the other hand, if X is the surface obtained by
blowing-up P? in one point, then the exceptional divisor E ~ P! has a cohomology
class {o} such that [, o = E? = —1, hence {a} ¢ 7, although {a} = {[E]} € &.

In case X is projective, all Chern classes ¢;(L) of line bundles lie by definition
in NS(X), and likewise, all classes of real divisors D = ) ¢ iDj,c; € R, lie in
NSgr(X). In order to deal with such algebraic classes, we therefore introduce the
intersections

JNs = H N NSR(X), Ens = EN NSR(X),

and refer to classes of H'!'(X,R) not contained in NSg(X) as transcendental
classes.

A very important fact is that all four cones s, éxs, K xs, &Xs have simple
algebraic interpretations.



Applications of Pluripotential Theory to Algebraic Geometry 183

Fig. 2 Positive algebraic

classes in a projective NS]R(X ) /\

manifold

Theorem 43. Let X be a projective manifold. Then

(a) s is equal to the open cone Amp(X) generated by classes of ample (or very
ample) divisors A (recall that a divisor A is said to be very ample if the linear
system H(X, O(A)) provides an embedding of X in projective space).

(b) The interior &g is the cone Big(X) generated by classes of big divisors, namely
divisors D such that h°(X, (kD)) > ¢ k™ X for k large.

(c) &ns is the closure Eff(X) of the cone generated by classes of effective divisors,
ie divisors D =) ¢;Dj, cj € Ry.

(d) The closed cone ' xs consists of the closure Nef(X) of the cone generated by
nef divisors D (or nefline bundles L), namely effective integral divisors D such
that D - C > 0 for every curve C, also equal to Amp(X).

In other words, the terminology “nef”, “big”, “pseudo-effective” used for classes of
the full transcendental cones appear to be a natural extrapolation of the algebraic
case.

Proof. First notice that since all of our cones %" have non empty interior in NSg(X)
(which is a rational vector space in terms of a basis of elements in H 2(X, Q)), the
rational points 6 := ¥ NNSg(X), NSg(X) = NS(X) ®z Q, are dense in each of
them. (a) is therefore just Kodaira’s embedding theorem when we look at rational
points, and properties (b) and (d) are obtained easily by passing to the closure of
the open cones. We will now give details of the proof only for (b) which is possibly
slightly more involved.

By looking at points of 5(5 = &° N NSg(X) and multiplying by a denominator,
it is enough to check that a line bundle L such that ¢;(L) € &° is big. However,
this means that L possesses a singular Hermitian metric 4, such that & ,, > sw
for some Kihler metric . For some integer po > 0, we can then produce a
singular Hermitian metric with positive curvature and with a given logarithmic
pole hf°e=0@1oe l=%l” in a neighborhood of every point x, € X (here 6 is a
smooth cut-off function supported on a neighborhood of x¢). Then Hérmander’s
L? existence theorem [4, 56] can be used to produce sections of L* which generate
all jets of order (k/ po) — n at points xo, so that L is big.
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Conversely, if L is big and A is a (smooth) very ample divisor, the exact sequence
0— Ox(kL—A) — Ox (kL) — O4(kL}4) — 0 and the estimates

hO(X, Ox (kL)) > ck", h°(A, O4(kLy4)) = O(K"™)

imply that Oy (kL — A) has a section for k large, thus kL— A = E for some effective
divisor E. This means that there exists a singular metric /2, on L such that

1 1
@LJ,L = E(@AJM + [E]) 2 EC()
where = © 4, hence ¢;(L) € &°. O

Corollary 44. If L is nef, then L is big (i.e. k(L) = n) if and only if L" > 0.
Moreover, if L is nef and big, then for every § > 0, L has a singular metric h = e™¥
such that maxyex v(@,x) < §andi®p ) > ¢ w for some ¢ > 0. The metric h can
be chosen to be smooth on the complement of a fixed divisor E, with logarithmic
poles along E.

Proof. By holomorphic Morse inequalities 21 and the Riemann—Roch formula,
we have
hO(X, kL) = y(X,kL) + o(k") = k" L" /n! + o(k"),

whence the first statement. By the proof of Theorem 43(b), there exists a singular
metric /11 on L such that

) —l(i@ +[E])>1 - o
o bt T e \gy T AN = @ g DAk

Now, for every ¢ > 0, there is a smooth metric /. on L such that 2'_7:@L115 > —cw.
The convex combination of metrics h. = h¥¢h17*¢ is a singular metric with poles
along E which satisfies

;—@L,h; > e(w + [E]) — (1 —ke)ew > ke’w.
. :
Its Lelong numbers are v (E, x) and they can be made smaller than § by choosing

& > 0 small. O

We still need a few elementary facts about the numerical dimension of nef line
bundles.

Definition 45. Let L be a nef line bundle on a compact Kéhler manifold (X, w).
One defines the numerical dimension of L to be

nd(L) = max {k = 0,...,n; c;(L)* # 0in H*(X,R)}.
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Notice that if L is nef, each power c;(L)* can be represented by a closed positive
current @, € ¢;(L)* obtained as a weak limit of powers of smooth positive forms

1 _ Nk
O = lim (a + —w+ 88<pm) , a € ci(L).
m

m—>-+o00

Such a weak limit exists since f x (Oé + %a) + 35<pm)k A "7 is uniformly bounded
as m — +o00. Then we see that

/cl(L)k/\a)"_k:/@kAw"_k>O = O #0 = (L) #0o.
X X

By Corollary 44, we have (L) = n if and only if nd(L) = n. In general, we merely
have an inequality.

Proposition 46. If L is a nef line bundle on a compact Kdihler manifold (X, w),
then k(L) < nd(L).

Proof. We consider arbitrary irreducible analytic subsets Z C X and prove by
induction on p = dim Z that «(L|z) < nd(Lz) where nd(L,z) is the supremum
of all integers k such that cl(L|Z)k #0,ie [y[Z]A c1 (L)Y AwP~* > 0. This will
prove our statement when Z = X, p = n. The statement is trivial if p = 0, so we
suppose now that p > 0. We can also assume that r = x(L|z) > 0, otherwise there
is nothing to prove. This implies that a sufficient large multiple moL has at least
two independent sections oy, o1 on Z. Consider the linear system |agoy + ai01],
a=lay:a] e PL, and take Y = Y, C Z to be an irreducible component of the
divisor of 0, := apoy + a;01 which is not a fixed component when a varies. For m
sufficiently divisible, &, Lz has rank r at a generic (smooth) point of Z, hence the
rank of (D1 )y is = r' ;= min(r, p — 1) ifa € ]P(lc is itself generic. A fortiori
rank(@mL‘y) > r/ (we may even have sections on Y which do not extend to Z).
By the induction hypothesis we find

/ [Y]Aci (L) Aw? '™ > 0.
b
Now, we use the fact that [Z] A ¢;(moL) — [Y] can be represented by an effective

cycle (the sum of all components # Y in the divisor of our generic section o,).
This implies

/ / 1 , ,
[1Z1ne @ ne = [ i aawy Aot >0,
X my Jx

Ifr = p,wehaver’ = p—1,hencer’+ 1 = r and we are done. If » < p, we have
r’ = r and then we use the obvious inequality « < Cow for some representative
a € c;(L) and some Cy > 0 to conclude that

1
/[Z] Aci(L) AP > — / [Z] Aci (L) AP 77 > 0. O
X Co Jx
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Remark 47. It may happen that k(L) < nd(L): take e.g.
L— X = X1 X X2

equal to the total tensor product of an ample line bundle L; on a projective
manifold X; and of a unitary flat line bundle L, on an elliptic curve X, given
by a representation 7;(X2) — U(1) such that no multiple kL, with k& # 0 is
trivial. Then HO(X, kL) = HO(Xl,kLl) ® HO(Xz,kLz) = 0 for k > 0, and
thus k(L) = —oo. However ¢;(L) = prfci(L;) has numerical dimension equal
to dim X;. The same example shows that the Kodaira dimension may increase by
restriction to a subvariety (if ¥ = X x {point}, then k(L y) = dimY).

2.5 Approximation of Plurisubharmonic Functions via
Bergman Kernels

We prove here, as an application of the Ohsawa-Takegoshi L? extension
theorem [78], that every psh function on a pseudoconvex open set 2 C C” can
be approximated very accurately by functions of the form c log | f|, where ¢ > 0
and f is a holomorphic function. The main idea is taken from [28]. For other
applications to algebraic geometry, see [29] and Demailly—Kollar [38]. We first
recall the statement of the generalized L? extension theorem; its proof relies on a
subtle enhancement of the Bochner—Kodaira technique, and we refer to the literature
for details.

Theorem 48 (Ohsawa—Takegoshi [78], Manivel [70]). Let X be a complex
n-dimensional manifold possessing a smooth plurisubharmonic exhaustion function
(“weakly pseudoconvex” or “weakly 1-convex” manifold), and a Kdhler metric
w. Let L (resp. E) be a Hermitian holomorphic line bundle (resp. a Hermitian
holomorphic vector bundle of rank r over X), and s a global holomorphic section
of E. Assume that s is generically transverse to the zero section, and let

Y ={xeX;s(x)=0,A"ds(x) # 0}, p=dimY =n—r.

Finally, let ¢ be an arbitrary plurisubharmonic function on X. Assume that the
(1, 1)-form © +r 5- dd(log s 1>+ @) is semi-positive and that there is a continuous
Sfunction o > 1 such that the following two inequalities hold everywhere on X :

—1 {@ES,S}

@ O +r— dd(og s +¢) > a ,
2w |s|?

(b) Is| e

Then for every holomorphic section fy of the line bundle A"T§ @ L over Y such
that [, | fy|*e™?| A" (ds)|72dV,, < o0, there exists a holomorphic extension fy
of fvr over X such that
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| fx|?e™ / | fr|?e™
—_— . = dV R0 5 Cr —dV RO
/X s (—log|sp? " " y 1A @) "

where C, is a numerical constant depending only on r.

Theorem 49. Let ¢ be a plurisubharmonic function on a bounded pseudoconvex
open set 2 C C". For every m > 0, let Ho(me) be the Hilbert space of
holomorphic functions f on $2 such that fQ | f2e™2"¢d A < +o00 and let ¢,, =
ﬁ log " |o¢|* where (o¢) is an orthonormal basis of #o(mg). Then there are
constants Cy, Cy > 0 independent of m such that

C 1 C
@) ¢(2) — — < gu(2) < sup @) + —log— for everyz € 2 and r <
m [e—zl<r m rn

d(z, 082). In particular, ¢, converges to ¢ pointwise and in L
when m — +o00 and

(b) v(p,z)— % < v(@m,2) < v(p,z) foreveryz € £2.

1
loc

topology on §2

Proof. (a) Note that Y_ |o¢(z)|? is the square of the norm of the evaluation linear
formev, : f + f(z) on 5 (mg), since a,(z) = ev,(o¢) is the £-th coordinate
of ev, in the orthonormal basis (o). In other words, we have

2 _ 2
> loe) S | /@)

where B(1) is the unit ball of ¢ (m¢) (The sum is called the Bergman kernel
associated with 775 (mg)). As @ is locally bounded from above, the L? topology
is actually stronger than the topology of uniform convergence on compact
subsets of £2. It follows that the series Y_ |o¢|> converges uniformly on §2 and
that its sum is real analytic. Moreover, by what we just explained, we have

1
¢m(z) = sup —log|f(z)|
feBym

For zp € £2 and r < d(z9, 0§2), the mean value inequality applied to the psh
function | £|? implies

| f(z0)* < | f@FPdAR)

i
a2 /n! Ji—oj<r
exp(Zm sup (p(z))/ | f2e™2md .

2

=
— gnyp2n
T /I’l lz—zol<r

If we take the supremum over all f € B(1) we get

1
< s — log ——
om(20) < ‘Z_:I‘LrGD(Z) * om 8
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(b)
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and the second inequality in (a) is proved—as we see, this is an easy conse-
quence of the mean value inequality. Conversely, the Ohsawa—Takegoshi L2
extension Theorem 48 applied to the 0-dimensional subvariety {zo} C §2 and to
the trivial bundles L = 2 x C and E = §2 x C", with the section s(z) = z— 2
of E, shows that for any a € C there is a holomorphic function f on £2 such
that f(zo) = a and

[ 1rpemed < cujape o,
2

where C; only depends on n and diam 2. We fix a such that the right hand side
is 1. Then || f|| < 1 and so we get

log C3

1 1
®m(z0) = —log| f(z0)| = —loglal = ¢(z) —
m m 2m

The inequalities given in (a) are thus proved. Taking r = 1/m, we find that

lim  sup  @(¢) = ¢(2)

m—>+00 |§—z|<l/m

by the upper semicontinuity of ¢, and so limg,(z) = ¢(z), since
lim % log(Com™) = 0.
The above estimates imply

C 1 C
WP (@)~ < sup () = sup g(d) + - log

lz—zol<r lz—zol<r lz—zo|<2r m

After dividing by logr < 0 when r — 0, we infer

Sup\z—zo\<2r @(Z) + élog % < Sup\z—zokr Pm (Z) < Sup|z—z0|<r (,0(2) - %
logr - logr - logr

and from this and definition (50), it follows immediately that

n
v(<p,x) - Z = V((/)m,Z) =< V(w,Z)- (]

Theorem 49 implies in a straightforward manner the deep result of [84] on the

analyticity of the Lelong number upperlevel sets.

Co

rollary 50 ([84]). Let ¢ be a plurisubharmonic function on a complex mani-

fold X. Then, for every ¢ > 0, the Lelong number upperlevel set

E(p)={z€X; v(p,2) >c}

is an analytic subset of X.



Applications of Pluripotential Theory to Algebraic Geometry 189

Proof. Since analyticity is a local property, it is enough to consider the case of a
psh function ¢ on a pseudoconvex open set £2 C C". The inequalities obtained in
Theorem 49(b) imply that

Ec((p): ﬂ Ec’—n/m(§0M)‘

m>=>my

Now, it is clear that E.(¢,,) is the analytic set defined by the equations créa) (=0
for all multi-indices « such that |a| < mc. Thus E.(p) is analytic as a (countable)
intersection of analytic sets. O

Remark 51. 1t can be easily shown that the Lelong numbers of any closed positive
(p, p)-current coincide (at least locally) with the Lelong numbers of a suitable
plurisubharmonic potential ¢ (see [94]). Hence Siu’s theorem also holds true for
the Lelong number upperlevel sets E.(T") of any closed positive (p, p)-current 7.

Theorem 49 motivates the following definition.

Definition 52. A plurisubharmonic function ¢ on a complex manifold X is said to
have analytic singularities if it can be written locally near every point xo € X as

@(z) = clog Z lg; @>+ 0(1), i.e. up to equivalence of singularities,
1<j<N

with a family of holomorphic functions (g;) defined near xo and ¢ > 0. Also,
a closed positive (1,1) current T is said to have analytic singularities if its
plurisubharmonic potential has analytic singularities. We also refer to this situation
by saying that ¢ or T have logarithmic poles. When X is algebraic, we say that the
singularities are algebraic if ¢ € Q4 and the (g;) are sections of some algebraic
line bundle &' (D), xo ¢ Supp D.

Notice that by Noetherianity, a convergent series log Y jen lg; |2 can be replaced by
a finite sum up to equivalence of singularities, thus Theorem 49 always produces
plurisubharmonic functions ¢,, with analytic singularities.

2.6 Global Approximation of Closed (1,1)-Currents
on a Compact Complex Manifold

We take here X to be an arbitrary compact complex manifold (no Kihler assumption
is needed). Now, let T be a closed (1, 1)-current on X. We assume that 7' is quasi-
positive, i.e. that there exists a (1, 1)-form y with continuous coefficients such
that T > y ; the case of positive currents (y = 0) is of course the most important.
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Lemma 53. There exists a smooth closed (1, 1)-form « representing the same 30-
cohomology class as T and a quasi-psh function ¢ on X suchthat T = a + %35(;).
(We say that a function ¢ is quasi-psh if its complex Hessian is bounded below by a
(1, 1)~form with locally bounded coefficients, that is, if i 3¢ is quasi-positive).

Proof. Select an open covering (U;) of X by coordinate balls such that T = %85(,0 i
over Uj, and construct a global function ¢ = ) 6;¢; by means of a partition of
unity {6} subordinate to U;. Now, we observe that ¢ — ¢ is smooth on Uy because
all differences ¢; — ¢ are smooth in the intersections U; N Uy, and we have the

equality ¢ — ¢ = Y _0;(¢; — ¢r). Therefore o := T — L33 is smooth. O

b4

By replacing T with T — o and y with y — o, we can assume without loss of
generality that {7} = 0, i.e. that T = %35(;) with a quasi-psh function ¢ on X such
that £9dg > .

Our goal is to approximate 7" in the weak topology by currents 7, = %85(/),,,
such their potentials ¢,, have analytic singularities in the sense of Definition 52,
more precisely, defined on a neighborhood Vy, of any point xo € X in the form
Pm(z) = cmlog); lojm|*> + O(1), where ¢,, > 0 and the o/, are holomorphic
functions on V.

We select a finite covering (WW,) of X with open coordinate charts, and shrink
them a little to be on the safe side. Given § > 0, we take in each W, a maximal family
of points with (coordinate) distance to the boundary > 3§ and mutual distance >
8/2. In this way, we get for § > 0 small a finite covering of X by open balls U ]/
of radius § (actually every point is even at distance < §/2 of one of the centers,
otherwise the family of points would not be maximal), such that the concentric
ball U; of radius 24 is relatively compact in the corresponding chart W,. Let t; :
U; — B(a;,26) be the isomorphism given by the coordinates of W, ; by taking
8 > 0 small enough, we can assume that the coordinates of U; extend to U; U Uy
whenever U; N Uy # 0. Let £(§) be a modulus of continuity for y on the sets U,
such that lims_,¢ &(§) = O and y, — yy < %8(5) wy forall x, x” € U;. We denote by
y; the (1, 1)-form with constant coefficients on B(a, 2§) such that ‘L';( y; coincides
with y —&(8) w at 7;"' (a;). Then we have

0<y-—rt/y; <2 on U (53)

for 6 > 0 small. Wesetp; =@ o ‘L'j_l on B(a;,26) and let ¢; be the homogeneous
quadratic function in z — a; such that %35% = y,; on B(a;,28). Then ¢; — g, is
plurisubharmonic on B(a;, 26) since

i —
—90((p; —qj) o) =T —7jy; 2y = 7jy; 2 0. (54)

We let U j’ ccu ]f’ CC U be the concentric balls of radii §, 1.5, 26 respectively.
On each open set U; the function ¢; (= ¢ —¢q; ot; = (p; —q;) o 71; is
plurisubharmonic, so Theorem 49 applied with 2 = U; ~ B(a;,2§) produces
functions
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1 2 .
Vim = Elogz lojel”, (o)) = basis of 7, (myr;). (55)
14

The functions ¥;,, + ¢; o ; on U; then have to be glued together by a partition of
unity technique. For this, we rely on the following “discrepancy” lemma, estimating
the variation of the approximating functions on overlapping balls.

Lemma 54. There is a constant C independent of m and § such that the quasi-psh
Sunctions wj, =2m(Yjm +qj o1)), ie.

wim(x) =2mgq; ot;(x)+ IOgZ ’Uj,z(x)’z, X € U,/-/,
¢

satisfy
[Wjm —wim| < C(logé™" + me(8)8*) on unuy.

Proof. The details will be left as an exercise to the reader. The main idea is the
following: for any holomorphic function f; € J#y,(my;), a d equation du =
FIC) f;) can be solved on Uy, where 6 is a cut-off function with support in U J’/ nul,
on a ball of radius < §/4, equal to 1 on the ball of radius §/8 centered at a given
point xo € U7 N U}, with |00] = O(87"). We apply the L? estimate with respect
to the weight (n + 1)log|x — xo|?> + 2my, where the first term is picked up so
as to force the solution u to vanish at xo, in such a way that F, = u — 0f; is
holomorphic and Fy(xo) = fj(xo). The discrepancy between the weights on U ]’-’
and U/’ is given by
Vi— Vi =—(q; 01 —qr o).

By re-centering the quadratic functions at 7; (xo), resp. tx (xo), we can write
gjotj—qrot =ReGjr + Rjk

where G is holomorphic on U; U Uy [equal to a difference of linear forms in the
coordinates of B(a;,28) and B(ax,268)], Gk (x0) = q; © 7 (x0) — gk © & (xo) and
R = O(e(8)8?) is a remainder term coming from the change of coordinates and
the slight discrepancy between 99(q jotj)and 39 (qx o ¢) at the common point X,
with R i (xo) = 0. In this way, we get

|emG‘/k |2€—m1ﬁk — e—mwj —2mR i ,

so that we have a uniform control of the L? norm of the solution f; = e"Cik . =
e™Gik(u — 6 f;) of the form

Ifklze_zm‘”" < C8—2n—4em0(s(5)82) |fj|2e—2m¢,-_
Uk U;
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The required estimate follows, using the equality

2V =% g o (x)[? = sup |f®)]> onU;
- festy; my ).l fl<1

and the analogous equality on Uy. O

Now, the actual gluing of our quasi-psh functions is performed using the
following elementary partition of unity calculation.

Lemma 55. Let U J’ ccU ;’ be locally finite open coverings of a complex manifold
X by relatively compact open sets, and let §; be smooth nonnegative functions with
supportin U}, such that 0; < 1on U] and 0; = 1 0onU]. Let A; > 0 be such that

i(6;000; —06; A36;) > —A;w on U/ \U;

Sfor some positive (1, 1)-form w. Finally, let w; be quasi-psh functions on U; with the
property that i85wj > y for some real (1, 1)-formy on M, and let C; be constants
such that
wi(x) <Cj+ sup wi(x) on U/~Uj.
k#j.U/3x

Then the function w = log (Z H?ewf) is quasi-psh and satisfies
00w >y — 2( Z%U,"\U} Ajecf)a).
J

Proof. If weseta; = 0;0w; + 200, a straightforward computation shows that
_ Z(G?Bw; +29j39j)ewf _ Zejewj(xj
3 sz»ewf' > 9}2er
Z(Otj AW +(9]2»35Wj +20; 3591'—23(%’ Agej)ewf Zj,k 0;e"iOre"kaj Na
Y. 02" (X 62emi)?

ow

ow =

k|0 —bka; |2ve ek . > sz-ew.f dow, . >(20;000; 200, N30 )e"i
(S 03e)’ > e T ee”

by using the Legendre identity. The first term in the last line is nonnegative and the
second one is > y. In the third term, if x is in the support of 6;396; — 36; A 00;,
thenx € U~ Uj and so w;(x) < C; + wi(x) for some k # j with U] > x and
Ok (x) = 1. This gives

(260,000, —206; A 36,)e"s ,
B S oo N o 2y e e
j j

The expected lower bound follows. O
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We apply Lemma 55 to functions w; ,, which are just slight modifications of the
functions w; ,» = 2m(¥;m + q; o ;) occurring in Lemma 54:

- C
570 (6) = Wy () 4+ 2m (= + Cae () (/2 = [7,(0])
=2 . . . Q C.e(8 52 2 —|t; 2
= 2m(Yjm(x) + ;0 7j(x) + -+ C3e(8)(8°/2 = [r; (1)[)
where x — z = 7;(x) is a local coordinate identifying U; to B(0,26), C; is the

constant occurring in Lemma 54 and C; is a sufficiently large constant. It is easy to
see that we can take A; = C;8672 in Lemma 55. We have

C
Wim = wim +2C + m738(5)52 on B(x;,8/2) C U/,
since |7;(x)| < 8/2 on B(x;,4/2), while
Wim <Wjm+2C — mCse(8)8> on U]’-’ ~ Ujf.

Form > m(§) = (log 8" /(£(8)8?), Lemma 54 implies |w; u—wi m| < Csme(8)§>
on U}’ N U;". Hence, for C; large enough, we get

Wjim(x) < sup wim(X) < sup wiem(x) on U ~NUj,
k#j, B(xr.6/2)3x k#j,U/3x

and we can take C; = 0 in the hypotheses of Lemma 55. The associated function
w = log ()_67e"im) is given by

C
w= logZ 9]2 exp <2m(1/fj,m +qgjot; + ;1 + C3£(5)(82/2 — Irjlz))).
J
If we define ¢, = ﬁw, we get

() = 5 W) 2 Yin() + 4y 0 T (0) + L+ e > p(0)

in view of Lemma 54, by picking an index j such that x € B(x;,§/2). In the
opposite direction, the maximum number N of overlapping balls U; does not
depend on §, and we thus get

¢, C
w=<logN + 2m(mjax {%,m(x) +gq;jo rj(x)} + ;1 + 738(5)32).
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By definition of y; we have supj,_ |, ¥;({) < supj,_,., 9(§) —q; o7 (x) + Csr
thanks to the uniform Lipschitz continuity of g; o t;, thus by Lemma 54 again we
find

log N C 1 C C
om(x) < =224 sup @(0) + — + —log — + —¢(8)8% + Csr.
2m t—x|<r m m r 2

By taking for instance r = 1/m and § = §,, — 0, we see that ¢, converges to ¢.
On the other hand (53) implies ~ddq; o 7;(x) = r]’-" v; =y —2e(8)w, thus

’—aﬁfv,,m > 2m(y — Cee(8)w).
b4
Lemma 55 then produces the lower bound
’—aéw >2m (y — C68(5)w) — C16 2w,
b4

whence )
Z30gn = y — Cse ()
/4

form > my(8) = (log§™")/(e(8)8%). We can fix § = §,, to be the smallest value
of § > 0 such that m((§) < m, then §,, — 0 and we have obtained a sequence of
quasi-psh functions ¢,, satisfying the following properties.

Theorem 56. Let ¢ be a quasi-psh function on a compact complex manifold X
such that %88@ > y for some continuous (1, 1)-form y. Then there is a sequence
of quasi-psh functions @,, such that ¢, has the same singularities as a logarithm
of a sum of squares of holomorphic functions and a decreasing sequence &, > 0
converging to 0 such that
@ o) <) = sp 0@ +C(FED 4 r )
[E—x|<r m
with respect to coordinate open sets covering X. In particular, ¢,, converges to
@ pointwise and in L'(X) and

n
() v(p.x) — — < v(@m, x) < v(p, x) foreveryx € X ;
. m
1 —
(€) —00¢m >y — enw.
b4
In particular, we can apply this to an arbitrary positive or quasi-positive closed
(1, D)-current T = & + ~00¢.

Corollary 57. Let T be a quasi-positive closed (1,1)-current on a compact
complex manifold X such that T >y for some continuous (1, 1)-form y. Then there
is a sequence of currents T,, whose local potentials have the same singularities
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as 1/m times a logarithm of a sum of squares of holomorphic functions and a
decreasing sequence &, > 0 converging to 0 such that

(a) T,, converges weakly to T,

®) W(T,x) — 2 < (T, x) < v(T,x) foreveryx € X ,
m

©) Tn=y—enw.

We say that our currents T,, are approximations of T with logarithmic poles.

By using blow-ups of X, the structure of the currents 7,,, can be better understood.
In fact, consider the coherent ideals _#, generated locally by the holomorphic

functions (0}2) on Uy, in the local approximations
1 k
Pem =5 logZ |f7,(',,7),|2 + 0(1)
J

of the potential ¢ of T on Uj. These ideals are in fact globally defined, because
the local ideals f,y(,k) = (0](-2) are integrally closed, and they coincide on the
intersections Uy N U, as they have the same order of vanishing by the proof of
Lemma 54. By Hironaka [55], we can find a composition of blow-ups with smooth
centers [, : )Zm — X such that ), _#,, is an invertible ideal sheaf associated with
a normal crossing divisor E,,. Now, we can write

1 -
M;;‘/)k,m = @k © Um = 10g |SEm| + Gk.m

“m
where sg,, is the canonical section of &'(—E,,) and ¢, is a smooth potential. This
implies
1

T = —[Em] + B (56)
where [E,,] is the current of integration over E,, and B,, is a smooth closed (1, 1)-
form which satisfies the lower bound 8, > ), (y —enw). (Recall that the pull-back
of aclosed (1, 1)-current by a holomorphic map f is always well-defined, by taking
a local plurisubharmonic potential ¢ such that 7 = i9dd¢ and writing f*T =
id9(¢ o f)). In the remainder of this section, we derive from this a rather important
geometric consequence, first appeared in [42]). We need two related definitions.

Definition 58. A Kihler current on a compact complex space X is a closed positive
current 7" of bidegree (1, 1) which satisfies 7 > ew for some ¢ > 0 and some
smooth positive Hermitian form w on X.

Definition 59. A compact complex manifold is said to be in the Fujiki class &
if it is bimeromorphic to a Kihler manifold (or equivalently, using Hironaka’s
desingularization theorem, if it admits a proper Kéhler modification).

Theorem 60. A compact complex manifold X is bimeromorphic to a Kihler mani-
fold (i.e. X € €) if and only if it admits a Kdiihler current.
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Proof. If X is bimeromorphic to a Kihler manifold Y, Hironaka’s desingularization
theorem implies that there exists a blow-up Y of Y (obtained by a sequence of
blow-ups with smooth centers) such that the bimeromorphic map from Y to X can
be resolved into a modification y : ¥ — X. Then Y is Kihler and the push-forward
T = ux® of a Kdhler form @ on Y provides a Kéhler current on X. In fact, if @
is a smooth Hermitian form on X, there is a constant C such that u*w < C®
(by compactness of Y), hence

T = jx® > s (C ' p*0) = C'w.

Conversely, assume that X admits a Kéhler current 77 > ew. By Corollary 57(c),
there exists a Kahler current T = T, > %a) (with m > 1 so large that ¢,, < ¢/2)

in the same dd-cohomology class as T, possessing logarithmic poles. Observation
(56) implies the existence of a composition of blow-ups ¢ : X — X such that

w*T =[E]+ B on X,

where E is a Q-divisor with normal crossings and ,3 a smooth closed (1, 1)-form
such that B > Fu*w. In particular B is positive outside the exceptional locus of .

This is not enough yet to produce a Kahler form on X, but we are not very far.
Suppose that X is obtained as a tower of blow-ups

X:XN—)XN_I—)"'—)X1—>X0:X,

where X ;11 is the blow-up of X; along a smooth center ¥; C X;. Denote by
Si+1 C X4 the exceptional divisor, and let ; : X;4+; — X; be the blow-up
map. Now, we use the following simple

Lemma 61. Forevery Kdhler current T; on X ;, there exists € ;1 > 0 and a smooth
Sformuj 1y in the 00-cohomology class of [S 1] such that

*
Tig1=p;Tj —€j41uj41

is a Kiihler current on X 11.

Proof. The line bundle (—S;11)|S;+1 is equal to Opy,)(1) where N; is the
normal bundle to Y; in X ;. Pick an arbitrary smooth Hermitian metric on N;, use
this metric to get an induced Fubini-Study metric on &p(y;)(1), and finally extend
this metric as a smooth Hermitian metric on the line bundle &'(—S; ). Such a
metric has positive curvature along tangent vectors of X ;1 which are tangent to
the fibers of S;4+1 = P(N;) — Y;. Assume furthermore that 7; > §;w; for some
Hermitian form w; on X; and a suitable 0 < §; < 1. Then

* *
WiTj —€jpiujpr = 8,05 — €j 1)
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where 7w, is semi-positive on X 41, positive definite on X ;41 ~ S; 11, and also
positive definite on tangent vectors of Ty, |s;, Which are not tangent to the fibers
of S;+1 — Y;. The statement is then easily proved by taking £;4; <« §; and
by using an elementary compactness argument on the unit sphere bundle of T,
associated with any given Hermitian metric. O

End of proof of Theorem 60. If u; is the pull-back of u; to the final blow-up X, we
conclude inductively that u*T — > ¢;ii; is a Kéhler current. Therefore the smooth

form ~ ~ ~
@:=PB— eji; =p T =) e, —E]
is Kihler and we see that X is a Kihler manifold. ]

Remark 62. A special case of Theorem 60 is the following characterization of
Moishezon varieties (i.e. manifolds which are bimeromorphic to projective alge-
braic varieties or, equivalently, whose algebraic dimension is equal to their complex
dimension): A compact complex manifold X is Moishezon if and only if X possesses
a Kdhler current T such that the De Rham cohomology class {T'} is rational, i.e.
{T} € H?(X, Q). In fact, in the above proof, we get an integral current T if we take
the push forward T = w4 of an integral ample class {&®} on Y, where u : ¥ — X
is a projective model of Y. Conversely, if {7’} is rational, we can take the ¢;’s to be
rational in Lemma 61. This produces at the end a Kdhler metric @ with rational De
Rham cohomology class on X . Therefore X is projective by the Kodaira embedding
theorem. This result was already observed in [59] (see also [13, 14] and Sect. 3.7 for
a more general perspective based on a singular holomorphic Morse inequalities).

Remark 63. Hodge decomposition also holds true for manifolds X € % In fact
let # : X — X be a modification such that X is Kdhler. Then there are natural
morphisms

p* HP(X,C) - H{’q()?,(C), ps : H(X,C) — HI'(X,C)

induced respectively by the pull-back of smooth forms (resp. the direct image of
currents). Clearly, ps o u* = Id, therefore pu* is injective and u« surjective, and
similar results hold true for Bott—-Chern cohomology or De Rham cohomology.
It follows easily from this that the d0-lemma still holds true for X € %, and that
there are isomorphisms

H(X,.C) - HI(X,C), @@ HL!(X.C) - Hfp(X,0).
p+q=k
2.7 Zariski Decomposition and Mobile Intersections

Let X be compact Kéhler and let « € &° be in the interior of the pseudo—effective
cone. In analogy with the algebraic context such a class « is called “big”, and it
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can then be represented by a Kdhler current T, i.e. a closed positive (1, 1)-current
T such that 7 > dw for some smooth Hermitian metric w and a constant § < 1.
We first need a variant of the approximation theorem proved in Paragraph 5.

Regularization theorem for currents 64. Let X be a compact complex manifold
equipped with a Hermitian metric o. Let T = « + i30¢ be a closed (1, 1)-current
on X, where o is smooth and ¢ is a quasi-plurisubharmonic function. Assume that
T > y for some real (1,1)-form y on X with real coefficients. Then there exists a
sequence Ty, = a + i90@, of closed (1, 1)-currents such that

(@) @m (and thus T,,) is smooth on the complement X ~ Z,, of an analytic set Z,,
and the Z,,’s form an increasing sequence

ZyCZy,C---CZyC---CX.

(b) There is a uniform estimate T,, > y — 8, with lim | §,, = 0 as m tends to
+o0.

(¢) The sequence (@) is non increasing, and we have lim | ¢, = ¢. As a
consequence, T,, converges weakly to T as m tends to +o0.

(d) Near Z,, the potential ¢,, has logarithmic poles, namely, for every xo € Z,
there is a neighborhood U of xo such that ¢,,(z) = Amlog ¥, |gme|* + O(1)
for suitable holomorphic functions (g,.¢) on U and A,, > 0. Moreover, there
is a (global) proper modification jLy : X,m — X of X, obtained as a sequence
of blow-ups with smooth centers, such that ¢,, o L, can be written locally on
X, as

O 0 1) = A (D melog e + f(w)

where (§; = 0) are local generators of suitable (global) divisors E; on X,
such that Y E; has normal crossings, ng are positive integers, and the f’s are
smooth functions on Xp,.

Sketch of proof. We essentially repeat the proofs of Theorems 49 and 56 with
additional considerations. One fact that does not follow readily from these proofs
is the monotonicity of the sequence ¢,, (which we will not really need anyway—
it can be obtained by applying Theorem 49 with 2™ instead of m, and by using
the Ohsawa-Takegoshi L? extension theorem 48 for potentials 2" ¢(x) + 2" ¢(y)
on the diagonal of X x X, so that the restriction is 2" !¢(x) on the diagonal; we
refer e.g. to [44] for details). The map w,, is obtained by blowing-up the (global)
ideals _#,, defined by the holomorphic functions (g ) in the local approximations
Om ~ ﬁlog Zj |g;m|*. By Hironaka [55], we can achieve that u¥ #, is an
invertible ideal sheaf associated with a normal crossing divisor. O

Corollary 65. If T is a Kdhler current, then one can write T = limT,, for a
sequence of Kdhler currents T,, which have logarithmic poles with coefficients in
%Z, i.e. there are modifications [L, : X,, — X such that

H;Tm = [Em] + ,Bm
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Fig. 3 Approximate Zariski decomposition

where E,, is an effective Q-divisor on X, with coefficients in %Z (the “fixed part™)
and B, is a closed semi-positive form (the “mobile part”).

Proof. We apply Theorem 64 with y = ew and m so large that §,, < ¢/2. Then
T,y has analytic singularities and 7,, > S®, so we get a composition of blow-ups
m + Xm — X such
M:;,Tm = [Em] + lgmy

where E,, is an effective Q-divisor and B,, > 5u . In particular, B, is strictly
positive outside the exceptional divisors, by playing with the multiplicities of the
components of the exceptional divisors in E,,, we could even achieve that 8, is a
Kihler class on X,,. Notice also that by construction, p,, is obtained by blowing-up
the multiplier ideal sheaves .# (mT) = . (m) associated to a potential ¢ of 7.

|

The more familiar algebraic analogue would be to take & = ¢;(L) with a big
line bundle L and to blow-up the base locus of |mL|, m > 1, to get a Q-divisor
decomposition

pL,*nL ~ E,+ D, E,, effective, D,, base point free. 67

(One says that D,, is base point free if H°(X, &(D,,) is generated by sections, in
other words if D,, is entirely “mobile” in the linear system |D,,|). Such a blow-up
is usually referred to as a “log resolution” of the linear system |mL|, and we say
that E,, + D, is an approximate Zariski decomposition of L. We will also use this
terminology for Kidhler currents with logarithmic poles.

Definition 66. We define the volume, or mobile self-intersection of a class o €
H'(X,R) to be

Vol(a) = sup/ sup/ B" >0,
Tea X\Sing(T) TE€a
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where the supremum is taken over all Kahler currents 77 € « with logarithmic
poles, and u*T = [E] 4+ B with respect to some modification u : X — X.
Correspondingly, we set

Vol(e) =0 ifa ¢ &°.

In the special case where « = c¢;(L) is an integral class, we have the following
interpretation of the volume.

Theorem 67. If L is a big line bundle and 1, L ~ E,, + D,, is a log resolution
of |mL|, we have

|
Vol(ei(L)) = lim D}, = lim 20X, mL),

m—+oo m'"

Sketch of proof. Given a Kihler current 7 € ¢;(L) with logarithmic pole, we can
always take a blow-up p : X — X so that u*T = [E] + B where E is an effective
R-divisor and 8 > 0. By using a perturbation technique as in Lemma 61, we can
always assume that £ is a Q-divisor and that 8 is Kéhler. Then {§} = pu*c;(L) —
{[E]} is a rational class and therefore f is the first Chern class ¢;(A) of an ample
Q-divisor on X. When m is a multiple of a suitable denominator my and m =
gmo +r,0 <r < mgp, we get by the elementary Riemann—Roch formula

(X, mL) = h°(X,mu*L — mo[m/molE) = h°(X, mo[m/mo)A + ru*L)

mn
n
n! /g'B ’

hence lim inf ’Z—LhO(X ,mL) > Vol(c;(L)) by taking the supremum over all such
currents 7. In the other direction, the inequality lim sup z—fqho(X ,mL) < Vol(ci1(L))
is obtained by subtracting a small rational multiple ¢4 of an ample line bundle A4.
One shows that multiples of L — A4 roughly have the same number of sections
as those of L by an exact sequence argument similar to what was done in the
proof of Theorem 43(b). By a result of Fujita [47] (cf. also [37]), the volume of
the base point free part D,, . in a log resolution of |m(L — ¢A)| approximates
lim sup :TLhO(X,m(L —¢eA)), so we get L = Ep¢ + (Dpe + €A) where
Dy, . + A is ample. The positive (1, 1)-current T, o = (W)« Op,, . +e4 is a Kéhler
current with logarithmic poles and its volume approaches lim sup :TLhO(X ,mL)
when ¢ < 1 and m is large. O

In these terms, we get the following statement.

Proposition 68. Let L be a big line bundle on the projective manifold X . Let ¢ > 0.
Then there exists a modification 1 : X, — X and a decomposition u*(L) = E + 8
with E an effective Q-divisor and B a big and nef Q-divisor such that

Vol(L) — & < Vol(B) < Vol(L).
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It is very useful to observe that the supremum in Definition 66 is actually achieved
by a collection of currents whose singularities satisfy a filtering property. Namely,
ifT, =a+1i 85(/)1 and T, = a+1i 85@2 are two Kéhler currents with logarithmic
poles in the class of «, then

T =a+iddp, ¢ =max(g,¢) (58)

is again a Kéhler current with weaker singularities than 77 and 7,. One could define
as well

— 1
T =a+idde, v=5 log(e?™¢" + e*m¥?), (58"

where m = lecm(m;, m,) is the lowest common multiple of the denominators
occurring in 77, T,. Now, take a simultaneous log-resolution w,, : X,, — X for
which the singularities of 77 and 7, are resolved as Q-divisors E; and E,. Then
clearly the associated divisor in the decomposition u; T = [E] + B is given by
E = min(E}, E;). By doing so, the volume f X, B" gets increased, as we shall see
in the proof of Theorem 69 below.

Theorem 69 (Boucksom [18]). Let X be a compact Kdhler manifold. We denote
here by H;g (X) the cone of cohomology classes of type (k, k) which have non-
negative intersection with all closed semi-positive smooth forms of bidegree (n —

k,n—k).

(a) Foreachintegerk = 1,2,...,n, there exists a canonical “mobile intersection
product”
k.k
EX-XE — HZy (X)), (ap,...,0p) > (g 0.+ 0p—1 - )

such that Vol(a) = {(a") whenever a is a big class.
(b) The product is increasing, homogeneous of degree 1 and superadditive in each

argument, i.e.

(al(a; +a;/)ak> 2 (al...a; ...ak> + (al...a;/...ak>_

It coincides with the ordinary intersection product when the o; € A are nef
classes.
(c) The mobile intersection product satisfies the Hovanskii—Teissier inequalities
[57,96,97]
(- ) = (DY (gD (with (@) = Vol(a;)).

(d) Fork =1, the above “product” reduces to a (non linear) projection operator

& — &, o — (a)



202 J.-P. Demailly

onto a certain convex subcone & of & such that # C &1 C &. Moreover, there
is a “divisorial Zariski decomposition”

a = {N(@)} + (@)

where N(a) is a uniquely defined effective divisor which is called the “negative
divisorial part” of a. The map a +— N(a) is homogeneous and subadditive,
and N(a) = 0 if and only if a € 8.

(e) The components of N(«) always consist of divisors whose cohomology classes
are linearly independent, especially N(o) has at most p = ranky NS(X)
components.

Proof. We essentially repeat the arguments developed in [18], with some simplifi-
cations arising from the fact that X is supposed to be Kéhler from the beginning.

(a) First assume that all classes «; are big, i.e. ; € &°. Fix a smooth closed
(n — k,n — k) semi-positive form u on X. We select Kahler currents 7 € «;
with logarithmic poles, and a simultaneous log-resolution . : X — X such that

w'T; = [E;] + B

We consider the direct image current 4« (81 A- - -ABy) (Which is a closed positive
current of bidegree (k, k) on X') and the corresponding integrals

[itinnsinsuza
X

If we change the representative 7; with another current T]f, we may always
take a simultaneous log-resolution such that *T; = [E’] + B, and by using
(58') we can always assume that £ < E;. Then D; = E; — E’ is an
effective divisor and we find [E;] + B; = [E’] + B/, hence B, = B; + [D,].
A substitution in the integral implies

/fﬂi/\ﬂz/\'-'/\ﬂk/\ﬂ*u
:/~,31/\,32/\"'/\,3kAH*M"F/N[DI]/\,BZA”'/\,BkAM*M
X X
Z/}ZﬁlAﬁz/\"'Aﬁk/\N”-

Similarly, we can replace successively all forms 8 by the B’;, and by doing so,
we find

/ﬁi/\ﬂé/\---Aﬁi/\u*uz/NﬂlAﬁzA---Aﬂk/\u*u.
X X



Applications of Pluripotential Theory to Algebraic Geometry 203

(b)

©

(d)

We claim that the closed positive currents u«(8; A --- A Bx) are uniformly
bounded in mass. In fact, if @ is a Kahler metric in X, there exists a constant
C; > Osuch that C;{w} —«; is a Kdhler class. Hence C;jw —T; = y; for some
Kihler form y; on X. By pulling back with u, we find C; u*w — ([E ;] + ;) =
w*y;, hence

Bi = Ciu*o—(E;]+ 1" y)).

By performing again a substitution in the integrals, we find
/~,31 A ABeAptu < Cl-'-Ck/N,u*a)k Apfu = Clu'Ck/ o* Au
X X X

and this is true especially for u = " ~*. We can now arrange that for each of the
integrals associated with a countable dense family of forms u, the supremum is
achieved by a sequence of currents (f4;;)«(B1m A -+ A Br.m) obtained as direct
images by a suitable sequence of modifications i, : X,, — X. By extracting a
subsequence, we can achieve that this sequence is weakly convergent and we set

(o1 -a.o- o) = Hm At {()« (Bim A Bow A==+ A Bim)}
m—+00

(the monotonicity is not in terms of the currents themselves, but in terms of
the integrals obtained when we evaluate against a smooth closed semi-positive
form u). By evaluating against a basis of positive classes {u} € H"*"=%(X),
we infer by Serre duality that the class of (& - .- .o) is uniquely defined
(although, in general, the representing current is not unique).

It is indeed clear from the definition that the mobile intersection product is
homogeneous, increasing and superadditive in each argument, at least when the
a;’s are in &°. However, we can extend the product to the closed cone & by
monotonicity, by setting

{1 -ar---a) =lim [ {(e1 + 6w) - (02 + dw). -+ (% + Sw))
840

for arbitrary classes o; € & (again, monotonicity occurs only where we
evaluate against closed semi-positive forms u). By weak compactness, the
mobile intersection product can always be represented by a closed positive
current of bidegree (k, k).

The Hovanskii—Teissier inequalities are a direct consequence of the fact that
they hold true for nef classes, so we just have to apply them to the classes 8,
on X,, and pass to the limit.

When k = 1 and o € &°, we have

o= mEr_{_loo{(ﬂm)*Tm} = mETw(Mm)*[Em] + {(m)«Bm}
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and (&) = limy—4o00{(i4m)«Bm} by definition. However, the images F,, =
(m)« F are effective Q-divisors in X, and the filtering property implies that
F,, is a decreasing sequence. It must therefore converge to a (uniquely defined)
limit F = lim F,,, := N(o«) which is an effective R-divisor, and we get the
asserted decomposition in the limit.

Since N(o) = o — () we easily see that N(«) is subadditive and that N(«) = 0
if « is the class of a smooth semi-positive form. When « is no longer a big class,
we define

(a) =1lim | (@ + dw), N(x) =1im 1 N(a + dw)
510 840

(the subadditivity of N implies N(& + (8§ + ¢)w) < N(« + Sw)). The divisorial
Zariski decomposition follows except maybe for the fact that N(«) might be a
convergent countable sum of divisors. However, this will be ruled out when (e) is
proved. As N (e) is subadditive and homogeneous, the set &} = {& € & ; N(«) = 0}
is a closed convex cone, and we find that @ +— (o) is a projection of & onto &}
(according to [18], & consists of those pseudo-effective classes which are “nef in
codimension 17).

(e) Leta € &°, and assume that N () contains linearly dependent components F;.
Then already all currents 7" € « should be such that u*T = [E] + B where
F = p+E contains those linearly dependent components. Write F = " A, F;,
A; > 0 and assume that
Z Cj F j= 0

jeJ
for a certain non trivial linear combination. Then some of the coefficients c;
must be negative (and some other positive). Then E is numerically equivalent to

E'=E+m (Y AF).

and by choosing ¢ > 0 appropriate, we obtain an effective divisor £’ which
has a zero coefficient on one of the components u* Fj,. By replacing E with
min(E, E’) via (58'), we eliminate the component ;. * F, . This is a contradiction
since N(ar) was supposed to contain F,. O

Definition 70. For a class « € H 1’l(X ,R), we define the numerical dimension
nd(«) to be nd() = —o0 if « is not pseudo-effective, and

nd(«x) = max{p € N; («?) # 0}, nd(x) € {0,1,...,n}
if o is pseudo-effective.

By the results of [42], a class is big (¢ € &°) if and only if nd(e) = n. Classes
of numerical dimension 0 can be described much more precisely, again following
Boucksom [18].
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Theorem 71. Let X be a compact Kihler manifold. Then the subset %y of
irreducible divisors D in X such that nd(D) = 0 is countable, and these
divisors are rigid as well as their multiples. If « € & is a pseudo-effective
class of numerical dimension 0, then « is numerically equivalent to an effective
R-divisor D = Zjej A;Dj, for some finite subset (D;)je; C Py such that
the cohomology classes {D;} are linearly independent and some A; > 0. If such
a linear combination is of numerical dimension 0, then so is any other linear
combination of the same divisors.

Proof. Tt is immediate from the definition that a pseudo-effective class is of
numerical dimension 0 if and only if (¢) = 0, in other words if « = N(«). Thus
o« = ) A;D; as described in Theorem 71, and since A;(D;) < (a), the divisors
D ; must themselves have numerical dimension 0. There is at most one such divisor
D in any given cohomology class in NS(X) N & C H?(X, Z), otherwise two such
divisors D = D’ would yield a blow-up u : X > X resolving the intersection,
and by taking min(u* D, u*D’) via (58'), we would find u*D = E + B, B # 0,
so that { D} would not be of numerical dimension 0. This implies that there are at
most countably many divisors of numerical dimension 0, and that these divisors are
rigid as well as their multiples. O

Remark 72. If L is an arbitrary holomorphic line bundle, we define its numerical
dimension to be nd(L) = nd(c1(L)). Using the canonical maps ®},,;| and pulling-
back the Fubini—Study metric it is immediate to see that nd(L) > x(L).

The above general concept of numerical dimension leads to a very natural formula-
tion of the abundance conjecture for Kihler varieties.

Generalized Abundance Conjecture 73. Let X be an arbitrary compact Kdahler
manifold X .

(a) The Kodaira dimension of X should be equal to its numerical dimension:
«(Kx) = nd(Kx).

(b) More generally, let A be a Q-divisor which is kit (Kawamata log terminal, i.e.
such that cx (A) > 1). Then k(Kx + A) = nd(Kx + A).

Remark 74. Tt is obvious that abundance holds in the case nd(Ky) = —oo (if L is
not pseudo-effective, no multiple of L can have sections), or in the case nd(Ky) =
n which implies Ky big (the latter property follows e.g. from the solution of the
Grauert—Riemenschneider conjecture in the form proven in [25], see also [42]).

In the remaining cases, the most tractable situation is the case whennd(Ky) = 0.
In fact Theorem 71 then gives Ky = ) A;D; for some effective divisor with
numerically independent components, nd(D;) = 0. It follows that the A; are
rational and therefore

Kx~> AjD;+F  whereA; € Q*.nd(D;) =0and F € Pic’(X). (¥)
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If we assume additionally that ¢(X) = h%!(X) is zero, then mKy is linearly
equivalent to an integral divisor for some multiple m2, and it follows immediately that
k(X) = 0. The case of a general projective manifold with nd(Kx) = 0 and positive
irregularity ¢(X) > 0 has been solved by Campana—Peternell [23], Proposition 46.
It would be interesting to understand the Kdhler case as well.

2.8 The Orthogonality Estimate

The goal of this section is to show that, in an appropriate sense, approximate Zariski
decompositions are almost orthogonal.

Theorem 75. Let X be a projective manifold, and let o = {T'} € &3 be a big class
represented by a Kdihler current T. Consider an approximate Zariski decomposition

:u“;kn Tn = [Em] + [Dm]

Then
(D" - En)* <20(Cw)"(Vol(@) — D)

where w = c|(H) is a Kdihler form and C > 0 is a constant such that o is
dominated by Cw (i.e., Cw %+ « is nef). In other words, E,, and D,, become “more
and more orthogonal” as D), approaches the volume.

Proof. Forevery t € [0, 1], we have
Vol(e) = Vol(E,, + D,,) = Vol(tE,, + D).
Now, by our choice of C, we can write E,, as a difference of two nef divisors
En=ua—Dy=pur(a+ Co)—(Dy+ Cuyo). ]
Lemma 76. For all nef R-divisors A, B we have
Vol(A— B) > A" —nA""'- B

as soon as the right hand side is positive.

Proof. In case A and B are integral divisors, this is a consequence of holomorphic
Morse inequalities (cf. Consequence 24). If A and B are Q-divisors, we conclude
by the homogeneity of the volume. The general case of R-divisors follows by
approximation (actually, as it is defined to be a supremum, the volume function
can easily be shown to be lower semi-continuous, but it is in fact even continuous,
cf. [[18], 3.1.26]). O

Remark 77. We hope that Lemma 76 also holds true on an arbitrary Kéihler
manifold for arbitrary nef (non necessarily integral) classes. This would follow from
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Conjecture 95 generalizing holomorphic Morse inequalities to non integral classes,
exactly by the same proof as Theorem 23.

Lemma 78. Let fBi,...,B, and B, ..., B, be nef classes on a compact Kihler
manifold X such that each difference ,3; — B; is pseudo-effective. Then the n-th
intersection products satisfy

Bi--Bu < Bi- By
Proof. We can proceed step by step and replace just one ; by g'j = B; + T;

where T'; is a closed positive (1, 1)-current and the other classes 8 = Bi, k # j
are limits of Kéhler forms. The inequality is then obvious. O

End of proof of Theorem 75. In order to exploit the lower bound of the volume, we
write

tEn, + D, = A— B, A= Dy +tp(a+ Cw), B=t(Dy+ Cu,w).

By our choice of the constant C, both A and B are nef. Lemma 76 and the binomial
formula imply

Vol(tEy + D) > A" —nA"" 1. B

n
=Dp+nt Dy @+ Co)+ Y i (Z) DIk (o + Cw)*
k=2

— nt DL (D + Cto)
n—1 n—1

— nt? Z tk_l( : )D,’;,_l_k k(@ + Co)k - (D + Cut o).
k=1

Now, we use the obvious inequalities
Dy < pp(Co),  pp(a+Co) <2, (Cow), Dy + Cppo <2u, (Co)
in which all members are nef (and where the inequality < means that the difference

of classes is pseudo-effective). We use Lemma 78 to bound the last summation in
the estimate of the volume, and in this way we get

n—1
—1
Vol(tEy + D) = Djjy + ntDjy '+ Eyy —nt® ) 26H1 4! (" . )(Ca))”.
k=1

We will always take ¢ smaller than 1/10n so that the last summation is bounded by
4(n —1)(1 4+ 1/51n)""% < 4ne'/> < 5n. This implies

Vol(tE,, + D,y) > D" +nt D"~ ' . E,, — 5n*t*(Cw)".
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Now, the choice t = ﬁ(D,’}l_l - E;)((Cw)™)~! gives by substituting

1 (DI Ep)?

B Cay Vol(Ey, 4+ Dy,) — D, < Vol(a) — D",

(and we have indeed ¢t < ﬁ by Lemma 78), whence Theorem 75. Of course, the
constant 20 is certainly not optimal. O

Corollary 79. Ifo € é\s, then the divisorial Zariski decompositiona = N (o) + (o)
is such that

(" Y- N(a) = 0.

Proof. By replacing o with & + 8¢ (H ), one sees that it is sufficient to consider the
case where « is big. Then the orthogonality estimate implies

()5 (D) - () s Em = D"+ (1) * (i) + Em
D" E, < C(Vol(a) — D)2

IA

Since (") = lim(wy)« (DY), N(a) = lim(im)«E»n and lim D" = Vol(a),
we get the desired conclusion in the limit. O

2.9 Dual of the Pseudo-Effective Cone

We consider here the Serre duality pairing
H"(X,R)x H" """ 1(X,R) — R, (@, p)—a-B = / anB. (59
X

When restricted to real vector subspaces generated by integral classes, it defines a
perfect pairing
NSk x NS " 7'(X) — R (60)

where NS € H'!'(X,R) and NS}, """ (X) ¢ H"'"~'(X,R). Next, we intro-
duce the concept of mobile curves.

Definition 80. Let X be a smooth projective variety.

(a) One defines NE(X) C NSE"7'(X) to be the convex cone generated by
cohomology classes of all effective curves in H"~'""~1(X, R).

(b) We say that C is a mobile curve if C = Cy, is a member of an analytic family
{Ci}ies such that | J,.g C; = X and, as such, is a reduced irreducible 1-cycle.
We define the mobile cone ME(X), to be the convex cone generated by all
mobile curves.
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(c) If X is projective, we say that an effective 1-cycle C is a strongly mobile if we
have 5 ;
C=ps(Ar NN Apy)

for suitable very ample divisors A j on X, where i : X — X is a modification.
We let ME’ (X)) be the convex cone generated by all strongly mobile effective
I-cycles (notice that by taking A ; general enough these classes can be
represented by reduced irreducible curves; also, by Hironaka, one could just
restrict oneself to compositions of blow-ups with smooth centers).

Clearly, we have
ME*(X) C ME(X) C NE(X) € NS§ "1 (X). (61)

Another simple observation is:

Proposition 81. One has a-C > 0 whenever {a} € & and {C} € ME(X). In other
words Exs = & N NSg(X) is contained in the dual cone (ME(X))".

Proof. If the class {«} is represented by a closed positive current 7 and C = C,,
belongs to a covering family (C;); s, it is easy to see that T, is locally well defined
and nonnegative as soon as C; is not contained in the set of poles of a local potential
¢ of T. However, this occurs only when ¢ belongs to a pluripolar set P C S, hence
fort € § ~ P we have

O{'CZ/T‘CIEO. O
G

The following statement was first proved in [19].

Theorem 82. If X is projective, the cones éns = Eff(X) and ME’(X) are dual
with respect to Serre duality, and we have ME®(X) = ME(X).

In other words, a line bundle L is pseudo-effective if (and only if) L - C > 0
for all mobile curves, ie., L - C > 0 for every very generic curve C (not
contained in a countable union of algebraic subvarieties). In fact, by definition
of ME*(X), it is enough to consider only those curves C which are images of
generic complete intersection of very ample divisors on some variety X, under a
modification p : X > X. By a standard blowing-up argument, it also follows that
a line bundle L on a normal Moishezon variety is pseudo-effective if and only if
L - C > 0 for every mobile curve C.

Proof. By Proposition 81 we have éys C (ME(X))" and (61) implies (ME(X))Y C
(ME’(X))Y, therefore
éns C (ME*(X))Y. (62)

If we show that &ys = (ME*(X))Y, we get at the same time (ME’(X))Y =
(ME(X))V, and therefore by biduality (Hahn—Banach theorem) we will infer
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C\ /I

N /[ _/
L (Mns)”
NSz (X) HYY (X, R)  H"YTNXR) (X)

Fig. 4 Duality theorem for positive cones

ME’(X) = ME(X). Now, if the inclusion were strict in (62), there would be an
element o € déys on the boundary of Sys which is in the interior of ME®(X)Y.
Let w = ¢;(H) be an ample class. Since o« € dé\s, the class o + dw is big for every
8 > 0, and since @ € (ME*(X))")° we still have @ — ew € (ME*(X))" fore > 0
small. Therefore

a-I'>¢ew-T" (63)

for every strongly mobile curve I", and therefore for every I" € ME’(X). We are
going to contradict (63). Since o + Sw is big, we have an approximate Zariski
decomposition

ui (@ + Sw) = Es + Ds.

We pick I' = (,ug)*(Dg‘_l) € ME’(X). By the Hovanskii-Teissier concavity
inequality
w-T > (wn)l/n(DgL)(n—l)/n

On the other hand

a-T =a-(us)«(Dj™")
= pya- Dg_l < pi (@ + dw) - Dg—l
— (Es+ Ds)- D}~ = DI + DI~ - Ej.
By the orthogonality estimate, we find
a«-I' _ Dj + (20(Cw)"(Vol(@ + §w) — pn)"”2
w-I — (a)n)l/n(Dgl)(n—l)/n

(Vol(a + $w) — D})'/?
(D) =D/

E C/(Dg)l/n + C//

However, since o € déys, the class o cannot be big so

lim D§ = Vol(x) = 0.
§—0
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We can also take Dj to approximate Vol(« 4+ §w) in such a way that (Vol(x 4+ §w) —
Dg)l/2 tends to 0 much faster than Dj. Notice that Dy > 8"w", so in fact it is
enough to take

Vol(a + dw) — D < 82,

which gives (¢ - I')/(w - I') < (C’ + C")4. This contradicts (63) for § small. O

3 Asymptotic Cohomology Functionals and Monge—Ampere
Operators

The goal of this section is to show that there are strong relations between
certain Monge—Ampere integrals appearing in holomorphic Morse inequalities, and
asymptotic cohomology estimates for tensor powers of holomorphic line bundles.
Especially, we prove that these relations hold without restriction for projective
surfaces, and in the special case of the volume, i.e. of asymptotic 0-cohomology,
for all projective manifolds. These results can be seen as a partial converse to the
Andreotti—Grauert vanishing theorem.

3.1 Introduction and Main Definitions

Throughout this section, X denotes a compact complex manifold, n = dim¢ X its
complex dimension and L — X a holomorphic line bundle. In order to estimate the
growth of cohomology groups, it is interesting to consider appropriate “asymptotic
cohomology functions”. Following partly notation and concepts introduced by
A. Kiironya [46, 63], we introduce

Definition 83. Let X be a compact complex manifold and let L — X be a
holomorphic line bundle.

(a) The g-th asymptotic cohomology functional is defined as

N !

h9(X, L) = limsup ——h?(X, L®).
k—+o00 k"

(b) The g-th asymptotic holomorphic Morse sum of L is

~ | o
h=S9(X, L) := limsup Z— 3 (~D)T R (X, LB

k—>+o00 0<j<q

When the lim sup’s are limits, we have the obvious relation

h=1(X.L)= Y ()77 (X.L).

0=j=¢q
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Clearly, Definition 83 can also be given for a Q-line bundle L or a Q-divisor D, and
in the case ¢ = 0 one gets by Theorem 67 what is called the volume of L (see also
[18,37,67]):

Vol(X, L) := h°(X, L) = limsup k—hO(X L®). (64)

k—+o00

3.2 Extension of the Functionals to Real Cohomology Classes

We are going to show that the h? functional induces a continuous map
DNSg(X) 3 a — h? (X, ), (65)

which is defined on the “divisorial Néron—Severi space” DNSg(X) C H];’Cl (X,R),
i.e. the vector space spanned by real linear combinations of classes of divisors in the
real Bott-Chern cohomology group of bidegree (1, 1). Here Hy' (X, C) is defined
as the quotient of d-closed (p, q)-forms by dd-exact (p, q)-forms, and there is a
natural conjugation H3 (X,C) — HgZ (X, C) which allows us to speak of real
classes when ¢ = p. Notice that Hy? (X, C) coincides with the usual Dolbeault
cohomology group H79(X,C) when X is Kéhler, and that DNSg(X) coincides
with the usual Néron—Severi space

NSr(X) = R®q (H*(X,Q) N H"'(X.C)) (66)
when X is projective (the inclusion can be strict in general, e.g. on complex 2-tori

which only have indefinite integral (1, 1)-classes, cf. [BL04]).
For o € NSr(X) (resp. « € DNSr(X)), we set

R R !
(X, ) (resp. hqDNS(X,a)): limsup  ——h'(X,L)
k—>+oo.%cl(L)—>a k
inf " a(x L), (67
_s>01,r}c0>0 sup k_” ( ’ ) ( )

k>ko.|| 1 (L)—all<e

when the pair (k, L) runs over N* x Pic(X), resp. over N* x Picp(X) where
Picp(X) C Pic(X) is the subgroup generated by “divisorial line bundles”, i.e
line bundles of the form Oy (D) Similar definitions can be given for the Morse
sum functionals h 9(X,) and hDNS(X ). Clearly hDNS(X a) < ﬁﬁg’ (X,a) on
DNSgr(X), but we do not know at this point whether this is always an equality. From
the very definition, th , hgd (and likewise hDNS , DNS) are upper semi-continuous
functions which are positively homogeneous of degree 7, namely
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h (X, Aar) = A"he (X, ) (68)

for all @ € NSg(X) and all A > 0. Notice that l;"NS (X, ) and ﬁﬁg’ (X, ) are always
finite thanks to holomorphic Morse inequalities (see below).

Proposition 84.

(@) For L € Picp(X), one has hi(X,L) = h4(X.,c(L)), h=9(X,L) =
};S{\’IS(X ,c1(L)), in particular asymptotic cohomology depends only on the
numerical class of L.

(b) The map o — hi\(X, ) is (locally) Lipschitz continuous on DNSg (X).

(c) Wheng =0, };ODNS (X,a) and ﬁ%s (X, @) coincide on DNSg (X)) and the limsups
are limits.

The proof is derived from arguments quite similar to those already developed
in [63] (see also [34] for the non projective situation). If D = Y p iD; is an
integral divisor, we define its norm to be |D|| = ) |p;| Vol,(D;), where the
volume of an irreducible divisor is computed by means of a given Hermitian
metric w on X; in other words, this is precisely the mass of the current of
integration [D] with respect to w. Clearly, since X is compact, we get equivalent
norms for all choices of Hermitian metrics @ on X. We can also use w to fix a
normalized metric on Hé'cl (X, R). Elementary properties of potential theory show
that ||c; (O (D))|| < C||D]|| for some constant C > 0 (but the converse inequality
is of course wrong in most cases). Proposition 84 is a simple consequence of the
more precise cohomology estimates (1.9) which will be obtained below. The special
case ¢ = 0 is easier, in fact, one can get non zero values for };O(X , L) only when
L is big, i.e. when X is Moishezon (so that we are always reduced to the divisorial
situation); the fact that limsups are limits was proved in Theorem 67. We postpone
the proof to Sect. 19, which will provide stronger results based on approximate
Zariski decomposition.

Lemma 85. Let X be a compact complex n-fold. Then for every coherent sheaf
on X, there is a constant Ce > 0 such that for every holomorphic line bundle L
on X we have

(X, 7 ® Ox(L)) = Cz(lci (D)l + 1)P
where p = dim Supp .Z.

Proof. We prove the result by induction on p ; it is indeed clear for p = 0 since we
then have cohomology only in degree 0 and the dimension of H%(X,.# ® Ox (L))
does not depend on L when .% has finite support. Let us consider the support Y
of .% and a resolution of singularity u : Y — Y of the corresponding (reduced)
analytic space. Then .% is an Oy -module for some non necessarily reduced complex
structure Oy = Ox/_# on Y. We can look at the reduced structure Oyrq =
Ox|S, ¥ =/ 7, and filter Z by 57, k > 0. Since S*7 /"7 is a
coherent Oy .q-module, we can easily reduce the situation to the case where Y is
reduced and .% is an Oy-module. In that case the cohomology
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HY (X, ® Ox(L)) = HI(Y,# ® Oy(Ly))

just lives on the reduced space Y .

Now, we have an injective sheaf morphism .% — u.u*.% whose cokernel ¢
has support in dimension < p. By induction on p, we conclude from the exact
sequence that

h9(X, F ® Ox(L)) — h'(X, pupt* F ® Ox(L))| < Ci(ler (L) + 1P,
The functorial morphisms
p* D HUY,F @ Oy(Ly)) —> HIY, i* F ® Oy (L)),
po P HUY 0" F ® O3 (W L)y) — HU(Y. papt™ F ® Oy (Lyy))
yield a composition
px o s HI(Y,F ® Oy (Ly)) — HI(Y, psp™.7 @ Oy (Ly))
induced by the natural injection .# — u.u*.%. This implies

W(Y,F @ Oy(Liy)) <hI(Y, 1*F ® O3 (u*Liy)) + Ci(le(L)]| + D7
By taking a suitable modification ' : Y’ — Y of the desingularization Y, we
can assume that (u')*.% is locally free modulo torsion. Then we are reduced to
the case where F#' = (u/)*.% is a locally free sheaf on a smooth manifold Y,
and L' = (u/)*Ly. In this case, we apply Morse inequalities to conclude that
W', F ® Oy(L) < Cylei(L)] + 1)7. Since Jlei (L) < Csller(L)]| by
pulling-back, the statement follows easily. O

Corollary 86. For every irreducible divisor D on X, there exists a constant Cp
such that
h'(D, Op(Lip)) < Cp([er(L)] + 1)

Proof. Ttis enough to apply Lemma 85 with .% = (ip)«Op whereip : D — X is
the injection. O

Remark 87. 1t is very likely that one can get an “elementary” proof of Lemma 85
without invoking resolutions of singularities, e.g. by combining the Cartan—Serre
finiteness argument along with the standard Serre—Siegel proof based ultimately
on the Schwarz lemma. In this context, one would invoke L2 estimates to get
explicit bounds for the homotopy operators between Cech complexes relative to
two coverings % = (B(xj,rj)), %' = (B(xj,r;/2)) of X by concentric balls.
By exercising enough care in the estimates, it is likely that one could reach an
explicit dependence Cp < C’|| D|| for the constant Cp of Corollary 86. The proof
would of course become much more technical than the rather naive brute force
approach we have used.
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Theorem 88. Let X be a compact complex manifold. Fix a finitely generated
subgroup I' of the group of Z-divisors on X. Then there are constants C, C’
depending only on X, its Hermitian metric w and the subgroup I', satisfying the
following properties.

(a) Let L and L' = L ® O(D) be holomorphic line bundles on X, where D € I'
is an integral divisor. Then

h9(X, L") = h*(X,L)| < C(lles (D) + [ DI)" D]

(b) On the subspace DNSgr(X), the asymptotic q-cohomology function hAqDNS
satisfies a global estimate

|hibns (X B) — hipns (X )| = C"(lell + 181"~ 18 — el
In particular (without any further assumption on X), ];qDNS is locally Lipschitz
continuous on DNSg (X).

Proof. (a) We want to compare the cohomology of L and L' = L ® (D) on X.
For this we write D = D4 — D_, and compare the cohomology of the pairs L
and L1 = L ® 0(—D_) one hand, and of L' and L, = L' ® &(—D+) on the
other hand. Since ||c; (O (D))| < C| D] by elementary potential theory, we see
that is enough to consider the case of a negative divisor, i.e. L' = L ® &(—D),
D > 0.1If D is an irreducible divisor, we use the exact sequence

0-L®0O(-D)—-L—->0CpQ@Lp—0

and conclude by Corollary 86 that

|h1(X,L ® 6(=D)) —h(X.L)| < h"(D.6p ® Lip) +hi~"(D.0p ® Lp)

< 2Cp (e (L] + D"

For D =} p;D; > 0, we easily get by induction
n—1
(X, L® 0(=D) —h(X, 1) <23 p;Co, (ler (L) + D pell Vil +1)
J k

If we knew that Cp < C’||D]|| as expected in Remark 1.6, then the argument
would be complete without any restriction on D. The trouble disappears if we
fix D in a finitely generated subgroup I" of divisors, because only finitely many
irreducible components appear in that case, and so we have to deal with only
finitely many constants Cp, . Property 9(a) is proved.
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(b) Fix once for all a finite set of divisors (A;)i<j<; providing a basis of
DNSgr(X) C Hé'cl (X,R). Take two elements o and B in DNSg(X), and fix
e > 0. Then f — « can be ¢-approximated by a Q-divisor ) A;D;, A; € Q,
and we can find a pair (k, L) with k arbitrary large such that %cl (L) is e-close
to o and n!/k"h?(X, L) approaches ﬁ%NS(X, a) by e. Then %L + Y AjA;
approaches f as closely as we want. When approximating § —o, we can arrange
that kA ; is an integer by taking k large enough. Then 8 is approximated by
%cl (Lywith L’ =L ® O()_kA; Aj). Property (a) implies

) I kal

> —Ck"(lell + &+ 18—l +&)" (I —al +¢).

WXL =X L) = =C (e @]+ | Yo kA4

We multiply the previous inequality by n!/k" and get in this way

n! A _

ot X L) = hfs(X, ) =& = C'(lle]| + 18Il + &)~ (I — el + &)
By taking the limsup and letting ¢ — 0, we finally obtain

s (X, B) — hi s (X, @) = =C" ([l + 181" 18 — ]|

Property 9(b) follows by exchanging the roles of « and . O

3.3 Transcendental Asymptotic Cohomology Functions

Our ambition is to extend the function ﬁf\,s in a natural way to the full cohomology
group Hé’cl (X,R). The main trouble, already when X is projective algebraic,
is that the Picard number p(X) = dimg NSr(X) may be much smaller than
dimpg Hé’cl (X, R), namely, there can be rather few integral classes of type (1,1)
on X. It is well known for instance that p(X) = 0 for a generic complex torus of
dimension n > 2, while dimg Hé’cl (X,R) = n?. However, if we look at the natural
morphism
Hyl (X, R) — HZ(X,R) ~ H*(X,R)

to de Rham cohomology, then H 2(X,Q) is dense in H%(X,R). Therefore, given
aclass a € Hé’cl (X,R) and a smooth d-closed (1, 1)-form u in «, we can find
an infinite sequence %Lk (k € S C N) of topological Q-line bundles, equipped
with Hermitian metrics /; and compatible connections V such that the curvature
forms %@Vk converge to u. By using Kronecker’s approximation with respect to
the integral lattice H?(X,Z)/torsion C H?(X,R), we can even achieve a fast
diophantine approximation

1Ov, — kul| < Ck™/" (69)



Applications of Pluripotential Theory to Algebraic Geometry 217

for a suitable infinite subset k € S C N of multipliers. Then in particular
logi Il = 1oy, —ku®?| < Ck™/", (70)

and we see that (Lg, hy, Vi) is a C° Hermitian line bundle which is extremely
close to being holomorphic, since (V]S’l)2 = @%kz is very small. We fix a Hermitian
metric w on X and introduce the complex Laplace—Beltrami operator

Oy = (VEHVEY + (VI (VXY acting on LA(X, A% T3 @ Ly).

We look at its eigenspaces with respect to the L? metric induced by w on X and
hi on L. In the holomorphic case, Hodge theory tells us that the 0-eigenspace
is isomorphic to H?(X,O(Ly)), but in the “almost holomorphic case” the
0-eigenvalues deviate from 0, essentially by a shift of the order of magnitude of
||(~)0vk2|| ~ k7/P2 (see also the PhD thesis of L. Laeng [64, Chap. 4], for more
details). It is thus natural to introduce in this case

Definition 89. Let X be a compact complex manifold and @ € Hyl(X,R)
an arbitrary Bott—Chern (1, 1)-class. We define the “transcendental” asymptotic
q-cohomology functions to be

N ! =
(a) hl(X,o) = inf lim sup n—nN(Dk,q, < ke)
u€a E—)O,k—>+w,Lkahkvvk’%@V}{—>u k
. ! -
b hZ'(X.a) = inf lim sup S )Ny <
uew £=0,k—>+00. Li, b, Vi. 1 Oy, —u k 0<j<q

ke)

where the limsup runs over all 5-tuples (g, k, Lg,hi, Vi), and where
N (U 4, ke) denotes the sum of dimensions of all eigenspaces of eigenvalues at

most equal to ke for the Laplace-Beltrami operator Ll , on L*(X, A% Ty ®
Ly ) associated with (L, hy, Vi) and the base Hermitian metric w.

The word “transcendental” refers here to the fact that we deal with classes o of
type (1, 1) which are not algebraic or even analytic. Of course, in the definition,
we could have restricted the limsup to families satisfying a better approximation
property ”%@Vk —u|| < Ck~'=1/%2 for some large constant C (this would lead a
priori to a smaller limsup, but there is enough stability in the parameter dependence
of the spectrum for making such a change irrelevant). The minimax principle easily
shows that Definition 36 does not depend on w, as the eigenvalues are at most
multiplied or divided by constants under a change of base metric. When o €
NSr(X), by restricting our families {(e, k, L, hx, Vi )} to the case of holomorphic
line bundles only, we get the obvious inequalities

ﬁfq\Is(X, @) < hi(X, ), Yo € NSp(X), (1)
ﬁﬁg()ﬂ a) < f;fq(X, a), Va e NSg(X). (72)
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It is natural to raise the question whether these inequalities are always equalities.
Hopefully, the calculation of the quantities limy s 4 oo ,’:—,l N (g4, < ke) is aproblem
of spectral theory which is completely understood thanks to Sect.1 (see also
[25, 91]). In fact, by Corollary I (1.13), the above limit can be evaluated explicitly
for any value of ¢ € R, except possibly for a countable number of values of ¢ for
which jumps occur; one only has to take care that the non-integrability of 9 due to
the diophantine approximation does not contribute asymptotically to the eigenvalue
distribution, a fact which follows immediately from (40) (cf. [64]).

Theorem 90. With the above notations and assumptions, let us introduce at each
point x in X the “spectral density function”, defined as a finite sum

4 S—n
) =" Sl Y (3 Z(zp,+1)|u]|)

(p1.-...ps) ENS =1

where s = s(x) is the rank of the real (1, 1)-formu at x, andu;, 1 < j <'s, its non
zero eigenvalues with respect to the base Hermitian metric w, and ug4+; = ... =
u, = 0. For each multi-index J C {1,2,...,n}, let us setuy = Zjej uj. Then the
asymptotic spectrum of Uy 4 admits the estimate

lim —N(Dkq, <k = / > v +ugy —up)dV,

k—>+o00 k
[J1=¢

except possibly for a countable number of values of A which are discontinuities of
the right hand integral as an increasing integral of A.

Corollary 91. We have (as a limit rather than just a lim sup ) the spectral estimate

lim N(Dkq, <ke) = / (=D)7u"
X(ugq)

£—>O,k—>+oo,Lk,hk,Vk.%@vk—m k"

Coming back to the transcendental asymptotic cohomology functions, we get the
following fundamental result, which gives in some sense an explicit formula for
hi (X, ) and h=?(X, ) in terms of Monge—Ampgre operators.

Theorem 92. The limsup’s defining h (X, ) and hs q(X a) are limits, and we
have

(a) h (X, ) = 1nf/ (=" (u smooth).
X(u.q)

715004
(b) h='(X,a) = inf / (=D)%u"  (u smooth).
<0 X(u,sq)
Now, if L — X is a holomorphic line bundle, we have by definition

59X, L) < (X e1(L)) < hSU(X.er(L)) < inf / D% (73)
u€ci(L) J x(u,<q)
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(u smooth), where the last inequality is a consequence of holomorphic Morse
inequalities. We hope for the following conjecture which would imply that we
always have equalities.

Conjecture 93. For every holomorphic line bundle L — X on a compact complex
manifold X, we have

uew

(a) ﬁ”(X, L) = inf/ (—=1)%u", u smooth,
X(u.q)

(b) h</(X,L) = inf / (=)%", u smooth.
X(u,=q)

ucw

Since the right hand side is easily seen to depend continuously on o € H];’Cl (X,0),
one would get:

Corollary of the conjecture 94. If Conjecture 93 holds true, then
(a) WMo(X.a) =hi(X.0) and (b))  hSd(X.0) = b (X, )

Sor all classes o« € NSp(X).

In general, equalities 93(a, b) seem rather hard to prove. In some sense, they
would stand as an asymptotic converse of the Andreotti—-Grauert theorem [3]:
under a suitable g-convexity assumption, the latter asserts the vanishing of related
cohomology groups in degree g; here, conversely, assuming a known growth of
these groups in degree g, we expect to be able to say something about the g-index
sets of suitable Hermitian metrics on the line bundles under consideration. The only
cases where we have a positive answer to Question 2.8 are when X is projective
and ¢ = 0 or dim X < 2 (see Theorems 97 and 98 below). In the general setting of
compact complex manifolds, we also hope for the following “transcendental” case
of holomorphic Morse inequalities.

Conjecture 95. Let X be a compact complex n-fold and @ an arbitrary cohomology
class in Hé’cl (X, R). Then the volume, defined as the supremum

0<Tea

Vol(at) := sup / T", (74)
X ~Sing(T)

extended to all Kéhler currents T € o with analytic singularities (see Definition
11 (4.4)), satisfies
Vol(«) > sup / u" (75)
X(u,0)UX(u,1)

ucw

where u runs over all smooth closed (1, 1) forms. In particular, if the right hand side
is positive, then o contains a Kihler current.

By the holomorphic Morse inequalities, Conjecture 95 holds true in case « is an
integral class. Our hope is that the general case can be attained by the diophantine
approximation technique described earlier; there are however major hurdles, see
[64] for a few hints on these issues.
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3.4 Invariance by Modification

We end this section by the observation that the asymptotic cohomology functions
are invariant by modification, namely that for every modification u : X — X and
every line bundle L we have e.g.

hi(X,L) = h"(X, u*L). (76)
In fact the Leray spectral sequence provides an E, term
EJ = HP (X, R1psOg(W* L)) = HP(X, Ox (L®) @ R1p.Oy).

Since RYu« 0y is equal to Oy for ¢ = 0 and is supported on a proper analytic
subset of X for ¢ > 1, one infers that h” (X, Ox (L®* ® Rip,Og) = O(k"™") for
all g > 1. The spectral sequence implies that

R4(X, L®) — h4 (X, u* L&) = 0(k" ).

We claim that the Morse integral infimums are also invariant by modification.

Proposition 96. Let (X, ) be a compact Kéhler manifold, o« € H''(X,R) a real

cohomology class and ju : X — X a modification. Then

(a) inf/ (—1)%4" = inf / (="
HEY J X (u.q) veura Jx(v.q)

(b) inf/ (—1)%4" = inf / (—1)4v"
HEY JX(u.<q) veure Jx(v,<q)

Proof. Given u € o on X, we obtain Morse integrals with the same values by
taking v = p*u on X, hence the infimum on X is smaller or equal to what is on X.
Conversely, we have to show that given a smooth representative v € y*o on X, one
can find a smooth representative u € X such that the Morse integrals do not differ
much. We can always assume that X itself is Kihler, since by Hironaka [55] any
modification X is dominated by a composition of blow-ups of X. Let us fix some
up € o and write

v = g+ ddce,  d°=-—(@-09), dd°=—23,
4 21

where ¢ is a smooth function on X. We adjust @ by a constant in such a way that
@ > 1 on X. There exists an analytic set S C X suchthat u : X ~u~'(S) > X~ S
is a biholomorphism, and a quasi-psh function {g which is smooth on X ~ § and
has —oo logarithmic poles on S (see e.g. [24]). We define

it = W up+dd® maxe, (9 +8 Ysop, 0) = v+dd max,, (8 ¥son, —p) (77)
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where max,,, 0 < gy < 1, is a regularized max function and § > 0 is very small.
By construction i coincides with w*ug in a neighborhood of ! (S) and therefore
u descends to a smooth closed (1, 1)-form u on X which coincides with u near S,
so that # = p*u. Clearly u converges uniformly to v on every compact subset of
X ~ u'(S) as § — 0, so we only have to show that the Morse integrals are small
(uniformly in §) when restricted to a suitable small neighborhood of the exceptional
set E = p~'(S). Take a sufficiently large Kihler metric & on X such that

1 1 1 . - - .
—E(T)SUSE(T), —Ea)fdd‘qof O, —®=<ddVsou.

| —

Thenit > —w and it < & + § dd“VYs o p everywhere on X.Asa consequence
|| < (cT) + 8w+ dd s o u))"
<@ +n8(@+ddYs o) A(@ + 86 + dd Ps o))"

thanks to the inequality (a + b)" < a” + nb(a + b)"~'. For any neighborhood V'
of £~1(S) this implies

/|a"|§/@"+n5(1+5)"—1/ "
v v X

by Stokes formula. We thus see that the integrals are small if V' and § are small.
The reader may be concerned that Monge—Ampere integrals were used with an
unbounded potential g, but in fact, for any given §, all the above formulas and
estimates are still valid when we replace ¥s by max,, (¥s, —(M + 2)/§) with
M = maxy ¢, especially formula (77) shows that the form # is unchanged.
Therefore our calculations can be handled by using merely smooth potentials. O

3.5 Proof of the Infimum Formula for the Volume

We prove here

Theorem 97. Let L — X be a holomorphic line bundle on a projective algebraic
manifold X . Then

Vol(X,L) = inf / ",
uecy (L) X(u,0)

It is enough to show the inequality

inf / W' < Vol(X, L) (78)
uecy (L) X(u,0)
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and for this, we have to construct metrics approximating the volume. Let us first
assume that L is a big line bundle, i.e. that Vol(X,L) > 0. We have seen
in Definition 66 and Theorem 67 (cf. also [18]) that Vol(X, L) is obtained as
the supremum of |’ X~Sing(T) T" for Kahler currents T = —ﬁaﬁh with analytic
singularities in ¢;(L); this means that locally 7 = e~ where ¢ is a strictly
plurisubharmonic function which has the same singularities as ¢ log ) |g;|* where
¢ > 0 and the g; are holomorphic functions. By [28], there exists a blow-up
w: X — X such that u*T = [E] + B where E is a normal crossing divisor
on X and 8 > 0 smooth. Moreover, by [19] we have the orthogonality estimate

1/2

(E]. g = /E g1 < C(Vol(x. L) — 7). (79)

while
B" =/ B" :/ T" approaches Vol(X, L). (80)
X X ~Sing(T)

In other words, E and 8 become “more and more orthogonal” as " approaches the
volume (these properties are summarized by saying that u*7T = [E] + B defines
an approximate Zariski decomposition of ¢ (L), cf. also [47]). By subtracting to
a small linear combination of the exceptional divisors and increasing accordingly
the coefficients of E, we can achieve that the cohomology class {f} contains a
positive definite form 8’ on X (i.e. the fundamental form of a Kéhler metric); we
refer e.g. to [42, proof of Lemma 29] for details. This means that we can replace T
by a cohomologous current such that the corresponding form f is actually a Kihler
metric, and we will assume for simplicity of notation that this situation occurs right
away for T. Under this assumption, there exists a smooth closed (1, 1)-form v
belonging to the Bott—Chern cohomology class of [ E], such that we have identically
(v —=28B) A B! = 0 where

[E]- """
IBn

for some constant C’ > 0. In fact, given an arbitrary smooth representative vy €
{[E]}, the existence of v = vy 4 ddy amounts to solving a Laplace equation
Ay = f with respect to the Kéhler metric 8, and the choice of § ensures that we
have [, f B" = 0 and hence that the equation is solvable. Then it := v + B is
a smooth closed (1, 1)-form in the cohomology class p*c; (L), and its eigenvalues
with respect to B are of the form 1 + A; where A; are the eigenvalues of v. The
Laplace equation is equivalent to the identity ) A; = né. Therefore

§ = < C'(Vol(X, L) —p")"? 81)

3 A =crvol(x.L) - g) "2

I<j=n

(82)
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The inequality between arithmetic means and geometric means implies

I (1+x,)5(1+% > 4) =1+ Cvel(x, 1) — 1)

I<j=n I<j=n

whenever all factors (1 + A ;) are nonnegative. By 2.2(i) we get

inf / u" < / "
u€cr(L) J x(u,0) X (,0)
< [ B+ Cavolcx. Ly - 7))
X
< Vol(X, L) + Cs(Vol(X, L) — p")"/°.

As B" approaches Vol(X, L), this implies inequality (4.1).

We still have to treat the case when L is not big, i.e. Vol(X,L) = 0. Let A4
be an ample line bundle and let 7y > 0 be the infimum of real numbers such that
L + tA is a big Q-line bundle for ¢ rational, ¢ > . The continuity of the volume
function implies that 0 < Vol(X, L + tA) < e for t > t sufficiently close to f.
By what we have just proved, there exists a smooth form u, € ¢(L + tA) such that
fX(u,,O) u} < 2¢. Take a Kihler metric w € c¢1(A4) and define u = u, — tw. Then

clearly
/ u' < / uy < 2e,
X (u,0) X (u; ,0)
hence
inf / u" =0.
u€cy(L) X (1.0)
Inequality (4.1) is now proved in all cases. O

3.6 Estimate of the First Cohomology Group on a Projective
Surface

Our goal here is to show the following result.

Theorem 98. Let L — X be a holomorphic line bundle on a complex projective
surface. Then both weak and strong inequalities (23)(i) and (23)(ii) are equalities
forq =0, 1, 2, and the lim sup’s involved in h?(X, L) and h=1(X, L) are limits.

We start with a projective non singular variety X of arbitrary dimension n, and
will later restrict ourselves to the case when X is a surface. The proof again consists
of using (approximate) Zariski decomposition, but now we try to compute more
explicitly the resulting curvature forms and Morse integrals; this will turn out to be
much easier on surfaces.
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Assume first that L is a big line bundle on X. As in Sect. 3, we can find an
approximate Zariski decomposition, i.e. a blow-up pu : X — X and acurrent T €
c1(L) such u*T = [E] + B, where E an effective divisor and § a Kdhler metric on
X such that

Vol(X, L) —n < B" < Vol(X, L), n<K 1 (83)

(On a projective surface, one could even get exact Zariski decomposition, but we
want to remain general as long as possible). By blowing-up further, we may assume
that E is a normal crossing divisor. We select a Hermitian metric 4 on &'(E) and
take

i =
U, = 588 IOg(|0E|i + 82) =+ @ﬁ(E),h + ﬁ c /JL*C] (L) (84)

whereor € H 0()2 , O(E)) is the canonical section and @ ¢ (k) ;, the Chern curvature
form. Clearly, by the Lelong—Poincaré equation, u, converges to [E]+ S in the weak
topology as & — 0. Straightforward calculations yield

i szD;ll’OoE A D;’OUE &2
27 (&2 + |og|*)? &2 + |og|?

O + B.

Us =

The first term converges to [E] in the weak topology, while the second, which is
close to @ near E, converges pointwise everywhere to 0 on X ~ E. A simple
asymptotic analysis shows that

2

. 21,0 1,0

i eD,"og AD, of g p _
— ) ) — [E]A O
(2n @1 losP? T @ ajesport) 7 EINGL,

in the weak topology for p > 1, hence

. - n —1 _
lim i} = " + > (p [E]A O, AP, (85)

r=l

In arbitrary dimension, the signature of u. is hard to evaluate, and it is also non
trivial to decide the sign of the limiting measure lim . However, when n = 2,
we get the simpler formula

un(l)ug = B2 +2[E]A B+ [E] A Op.

In this case, E can be assumed to be an exceptional divisor (otherwise some part
of it would be nef and could be removed from the poles of 7'). Hence the matrix
(E; - Ey) is negative definite and we can find a smooth Hermitian metric 4 on (E)
such that (@g ;)| < 0, i.e. O has one negative eigenvalue everywhere along E.

Lemma 99. One can adjust the metric h of O(E) in such a way that Og, is
negative definite on a neighborhood of the support |E| of the exceptional divisor,
and Og ;, + B has signature (1, 1) there. (We do not care about the signature far
away from |E|).
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Proof. At a given point xo € X, let us fix coordinates and a positive quadratic
form ¢ on C2. If we put ¥:(z) = ex(z)log(l + £ '¢q(z)) with a suitable cut-off
function y, then the Hessian form of v, is equal to g at xo and decays rapidly to
O(eloge)|dz|? away from x. In this way, after multiplying /& with e*¥:@, we can
replace the curvature @ j,(xo) with O 5 (x¢) £ ¢ without substantially modifying
the form away from xy. This allows to adjust @, to be equal to (say) —%,B(xo)
at any singular point xo € E; N Ej in the support of |E|, while keeping O
negative definite along E. In order to adjust the curvature at smooth points x € |E]|,
we replace the metric & with 4'(z) = h(z) exp(—c(z)|0£(2)|?). Then the curvature
form @, is replaced by Of j (x) = Of, (x) + c(x)|dog|* at x € |E| (notice that
dogp(x) = 0if x € Sing|E|), and we can always select a real function ¢ so that
Op v is negative definite with one negative eigenvalue between —1/2 and 0 at any
point of | E|. Then g ;» + B has signature (1, 1) near |E|. O

With this choice of the metric, we see that for ¢ > 0 small, the sum

2

S —
2+ og? " P

is of signature (2,0) or (1, 1) (or degenerate of signature (1,0)), the non positive
definite points being concentrated in a neighborhood of E. In particular the index
set X (ug, 2) is empty, and also

- i ezDz’OoE A D,ll'ocrE
w <
fT2m (24 |og[?)?

+ B

on a neighborhood V of |E|, while u, converges uniformly to 8 on X ~ V. This
implies that

£—>0 e—>0

< limin u. < limsu u, < + - b
2 < liminf 2 < limsup 2<B*+28-E
X(ue.0) X(ue.0)
Since fX~ 2= L% = B>+ 2B E + E? we conclude by taking the difference that

—E*—2B8-E < liminf/ —u? < lim sup/ —u? < —E2
=0 Jx(u.1) e=0  J X(ug1)

Let us recall that 8 - E < C(Vol(X, L) — B%)'/? = 0(n'/?) is small by (84) and the

orthogonality estimate. The asymptotic cohomology is given here by };Z(X ,L) =

0 since h*(X,L®) = H(X,Kxy ® L® %) = 0 for k > ko, and we have by

Riemann—Roch

RNX,L)=h"(X,L)— L> =Vol(X,L)— L* = —E*— B - E + O(n).
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Here we use the fact that ]z’—,!,hO(X , L®*) converges to the volume when L is big.
All this shows that equality occurs in the Morse inequalities (67) when we pass to
the infimum. By taking limits in the Neron—Severi space NSg(X) C H"!'(X,R),
we further see that equality occurs as soon as L is pseudo-effective, and the same
is true if —L is pseudo-effective by Serre duality. It remains to treat the case
when neither L nor —L are pseudo-effective. Then h°(X, L) = h*(X,L) = 0,
and asymptotic cohomology appears only in degree 1, with ﬁl(X L) = —L? by
Riemann—Roch. Fix an ample line bundle A and let #, > 0 be the infimum of real
numbers such that L + ¢A is big for ¢ rational, t > f,, resp. let t(’) > 0 be the
infimum of real numbers ¢’ such that —L + ¢’ A is big for ¢ > #/. Then for t > t,
and t’ > 1}, we can find a modification j : X — X and currents T € ¢;(L + tA),
T’ € ci(—L + t' A) such that

T =[El+B  wT =[Fl+y
where B, y are Kdhler forms and E, F normal crossing divisors. By taking a suitable

linear combination t'(L + tA) — t(—L + ¢’ A) the ample divisor A disappears, and
we get

P (t/[E] LB —t[F]— ty) e wrei(L).

After replacing E, F, B, y by suitable multiples, we obtain an equality
[E]=[F]+ B —vy € n*er(L).

We may further assume by subtracting that the divisors £, F have no common
components. The construction shows that 82 < Vol(X,L + tA) can be taken
arbitrarily small (as well of course as y?), and the orthogonality estimate implies
that we can assume 8 - £ and y - F to be arbitrarily small. Let us introduce metrics
hg on O(E) and hr on O(F) as in Lemma 99, and consider the forms

N i €D %or A D, 0p & Opn + B
U = + — )
T @Al @l
. 210 1.0
i € th.UF/\DhFUF &2
- — — e —y € wurci(L).
2 (24 |or|?)? 2+ op2 M v prad)

Observe that u, converges uniformly to 8 — y outside of every neighborhood of
|E| U |F|. Assume that @, < 0on Vg = {|og| < &} and Opy, < 0 on
Vi = {|oF| < &}. On Vg U VF we have

. 2 1.0 1,0
i € DhEO'EADhEO'E 82

- -
2 (24 |ogl?)? &2 + |or|

2
&
+
2@F,h[-‘ + :3 + ;@E,hb‘
0
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where @;hEis the positive part of @, with respect to 8. One sees immediately
that this term is negligible. The first term is the only one which is not uniformly
bounded, and actually it converges weakly to the current [E]. By squaring, we find

limsup/ uﬁf/ (B—y)Y+2B-E.
e=0  JX(us,0) X(B—7.0)

Notice that the term — —‘2 OF ., does not contribute to the limit as it converges
boundedly almost everywhere to 0, the exceptions being points of | F'|, but this set is
of measure zero with respect to the current [E]. Clearly we have | X(B=y.0) (B—y)* <

B? and therefore
limsup/ < B> +2p8-E.
X (ug,0)

e—>0

Similarly, by looking at —u,, we find

limsup/ u§§y2+2y~F.
X(ue.,2)

e—>0

These limsup’s are small and we conclude that the essential part of the mass is
concentrated on the 1-index set, as desired. O

Remark 100. 1Tt is interesting to put these results in perspective with the algebraic
version Theorem 23 of holomorphic Morse inequalities. When X is projective, the
algebraic Morse inequalities used in combination with the birational invariance of
the Morse integrals imply the inequalities

(a) inf/ ()% < inf " pra g
ueer (L) J X (u.q) p*(L)=0(F=G) \ q

& inf/ Dt < IOl M Vo e
) u€cy (L) X(u,sq)( ) u* (L)~ ﬁ(F G) Z( ) ]

where the infimums on the right hand s1de are taken over all modifications
w: X — X and all decompositions u*L = O(F — G) of u* L as a difference
of two nef Q-divisors F, G on X. Again, a natural question is to know
whether these infimums derived from algebraic intersection numbers are equal
to the asymptotic cohomology functionals hq(X L) and h =4(X, L). A positive
answer would of course automatically yield a positive answer to the equality
cases in 2.9(a) and (b). However, the Zariski decompositions involved in our
proofs of equality for ¢ = 0 or n < 2 produce certain effective exceptional
divisors which are not nef. It is unclear how to write those effective divisors as
a difference of nef divisors. This fact raises a lot of doubts upon the sufficiency
of taking merely differences of nef divisors in the infimums (a) and (b), and it
is likely that one needs a more subtle formula. O
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3.7 Singular Holomorphic Morse Inequalities

The goal of this short section is to extend holomorphic Morse inequalities to the
case of singular Hermitian metrics, following Bonavero’s PhD thesis [13] (cf. also
[14]).We always assume that our Hermitian metrics /# are given by quasi-psh
weights ¢. By Theorem 88, one can always approximate the weight by an arbitrary
close quasi-psh weight ¢ with analytic singularities, modulo smooth functions.

Theorem 101. Let (L, h) be a holomorphic line bundle on a compact complex
n-fold X, and let E be an arbitrary holomorphic vector bundle of rank r. Assume
that locally h = e™% has analytic singularities, and that ¢ is quasi-psh of the form

h:clog2:|gj|2 mod C*, ¢ >0,

in such a way that for a suitable modification j. : X — X one has u* @y, = [D]+p
where D is an effective divisor and B a smooth form on X. Let S = j(Supp D)
be the singular set of h. Then we have the following asymptotic estimates for the
cohomology twisted by the appropriate multiplier ideal sheaves:

kn
(@) h1(X,EQ L* ® 7(h")) < r—'/ (=110}, + o(k") .
no Jx(L.hg)~S ’

b) Y (DR (X.E®LF.s (h")) < rk—,/ (1?07 ,+o(k").
X(L.h,=q)~S

n!
0<j=q

Proof. For this, we observe that the Morse integrals are given by

/~ (—1)7p",
X(B.q)

thanks to a change of variable z = wu(x). In fact, by our assumption ©y j is
smooth on X ~ S, and its pull-back u*®, ; coincides with the smooth form f
on the complement X~ Supp D (and Supp D is a negligible set with respect to the
integration of the smooth (12, ) form A" on X .) Now, a straightforward L2 argument
in the change of variable (cf. [33]) yields the direct image formula

Ky ® (") = uu(Kg ® I (u*hh)). (86)

Letus introduce the relative canonical sheaf Ky, = K3 ® w*Ky'' = O(div(Jac p))
and let us put

]::/,L*L, };:M*h, EZM*E(X)K;}/X-
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Then / has divisorial singularities and therefore .% hy =0 (—|kD]) where |...]
means the integral part of a divisor. The projection formula for direct images yields

pe(E ® LK ® 7(h*)) = E ® LK ® 7 (h"),
Rip(E®L*® 7(h") = E® LF @ Ky' ® RIps (K5 ® S (hF)).

However, for k > k¢ large enough, the multiplicities of | kD | are all > 0 for each of
the components of D, hence .# (h*) = &(—| kD) is relatively ample with respect
to the morphism & : X — X. From this, e.g. by an application of Hormander’s L?
estimates (see [13] for more details), we conclude that R i (K g ® & (h¥)) = 0
for k > kg. The Leray spectral sequence then implies

HI(X,E® L' ® 7(h")) ~ HI(X,E ® L[F @ 7 (h")). (87)

This reduces the proof to the case of divisorial singularities. Let us next assume that
D is a Q-divisor. Let a be a denominator for D, and putk = al+b,0 <b <a-—1.
Then

EQLF® 7(h")=EQ® L™ ® 0(—alD — |bD]) = F, ® G*

where ; 3 5
F,=EQL"® O(—|bD)), G =L"®O(—aD).

By construction, we get a smooth Hermitian metric g on G such that &g, = af.
In this case, the proof is reduced to the standard case of holomorphic Morse
inequalities, applied to the smooth Hermitian line bundle (G, %) on X and the
finite family of rank r vector bundles Fj, 0 < b < a — 1. The result is true even
when D is a real divisor. In fact, we can then perturb the coefficients of D by small
&’s to get a rational divisor D, and we then have to change the smooth part of ®;
to B = B + O(e) (again smooth); actually 8, — B can be taken to be a linear
combination by coefficients O(e) of given smooth forms representing the Chern
classes c1(O(D)) of the components of D. The Morse integrals are then perturbed
by O(g). On the other hand, Theorem 88 shows that the cohomology groups in the
right hand side of (87) are perturbed by ek”. The result follows as ¢ — 0, thanks to
the already settled rational case. O

4 Morse Inequalities and the Green-Griffiths—Lang
Conjecture

The goal of this section is to study the existence and properties of entire curves
f : C — X drawn in a complex irreducible n-dimensional variety X, and more
specifically to show that they must satisfy certain global algebraic or differential
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equations as soon as X is projective of general type. By means of holomorphic
Morse inequalities and a probabilistic analysis of the cohomology of jet spaces,
we are able to prove a significant step of a generalized version of the Green—
Griffiths—Lang conjecture on the algebraic degeneracy of entire curves.

4.1 Introduction

Let X be a complex n-dimensional manifold ; most of the time we will assume
that X is compact and even projective algebraic. By an “entire curve” we always
mean a non constant holomorphic map defined on the whole complex line C, and
we say that it is algebraically degenerate if its image is contained in a proper
algebraic subvariety of the ambient variety. If u : X — X is a modification and
f : C — X is an entire curve whose image f(C) is not contained in the image
w(E) of the exceptional locus, then f admits a unique lifting / : C — X.
For this reason, the study of the algebraic degeneration of f is a birationally
invariant problem, and singularities do not play an essential role at this stage.
We will therefore assume that X is non singular, possibly after performing a suitable
composition of blow-ups. We are interested more generally in the situation where
the tangent bundle Ty is equipped with a linear subspace V. C Ty, that is,
an irreducible complex analytic subset of the total space of Ty such that (0.1) all

fibers V, := V N Tx . are vector subspaces of Ty . Then the problem is to study

entire curves f : C — X which are tangent to V, i.e. such that f,Tc C V.
We will refer to a pair (X, V') as being a directed variety (or directed manifold).
A morphism of directed varieties @ : (X,V) — (¥, W) is a holomorphic map
@ : X — Y such that @,V C W ; by the irreducibility, it is enough to check this
condition over the dense open subset X ~ Sing(V') where V is actually a subbundle.
Here Sing(V') denotes the indeterminacy set of the associated meromorphic map
a : X --- G,(Tx) to the Grassmannian bundle of r-planes in T, r = rank V' ;
we thus have V|x < sing(v) = ™S where S — G, (Ty) is the tautological subbundle
of G,(Ty). In that way, we get a category, and we will be mostly interested in the
subcategory whose objects (X, V') are projective algebraic manifolds equipped with
algebraic linear subspaces. Notice that an entire curve f : C — X tangentto V is
just a morphism f : (C, T¢) — (X, V).

The case where V' = T/ is the relative tangent space of some fibration X — §
is of special interest, and so is the case of a foliated variety (this is the situation
where the sheaf of sections (V') satisfies the Frobenius integrability condition
[O(V),0(V)] C O(V)); however, it is very useful to allow as well non integrable
linear subspaces V. We refer to V' = Ty as being the absolute case. Our main
target is the following deep conjecture concerning the algebraic degeneracy of entire
curves, which generalizes similar statements made in [51] (see also [65, 66]).

Generalized Green-Griffiths-Lang conjecture 102. Let (X, V) be a projective
directed manifold such that the canonical sheaf Ky is big (in the absolute case
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V = T¥x, this means that X is a variety of general type, and in the relative case
we will say that (X, V) is of general type). Then there should exist an algebraic
subvariety Y & X such that every non constant entire curve f : C — X tangent to
V is contained in Y .

The precise meaning of Ky and of its bigness will be explained below—our
definition does not coincide with other frequently used definitions and is in our view
better suited to the study of entire curves of (X, V). One says that (X, V) is Brody-
hyperbolic when there are no entire curves tangent to V. According to (generalized
versions of) conjectures of Kobayashi [Kob70, Kob76] the hyperbolicity of (X, V)
should imply that Ky is big, and even possibly ample, in a suitable sense. It would
then follow from Conjecture 102 that (X, V') is hyperbolic if and only if for every
irreducible variety ¥ C X, the linear subspace Vy; = Ty, N ux'V C Ty has
a big canonical sheaf whenever p : Y > Yisa desingularization and E is the
exceptional locus.

The most striking fact known at this date on the Green—Griffiths—Lang conjecture
is a recent result of Diverio et al. [41] in the absolute case, confirming the statement
when X C Pf’cﬂ is a generic non singular hg/persurface of large degree d, with a
(non optimal) sufficient lower bound d > 2"". Their proof is based in an essential
way on a strategy developed by Siu [90, 91], combined with techniques of [31].
Notice that if the Green—Griffiths—Lang conjecture holds true, a much stronger and
probably optimal result would be true, namely all smooth hypersurfaces of degree
d > n + 3 would satisfy the expected algebraic degeneracy statement. Moreover,
by results of Clemens [21] and Voisin [101], a (very) generic hypersurface of
degree d > 2n + 1 would in fact be hyperbolic for every n > 2. Such a generic
hyperbolicity statement has been obtained unconditionally by McQuillan [71, 72]
when n = 2 and d > 35, and by Demailly-El Goul [36] whenn = 2 and d > 21.
Recently Diverio—Trapani [45] proved the same result whenn = 3 and d > 593. By
definition, proving the algebraic degeneracy means finding a non zero polynomial P
on X such that all entire curves f : C — X satisfy P(f) = 0. All known methods
of proof are based on establishing first the existence of certain algebraic differential
equations P(f; f', f",.... f®) = 0 of some order k, and then trying to find
enough such equations so that they cut out a proper algebraic locus ¥ ¢ X.

Let Ji V be the space of k-jets of curves f : (C,0) — X tangent to V. One
defines the sheaf ﬁ(E,SgV*) of jet differentials of order k and degree m to be
the sheaf of holomorphic functions P(z; &, . .. &) on Ji V which are homogeneous
polynomials of degree m on the fibers of J¥V — X with respect to local coordinate
derivatives §; = f ()(0) (see below in case V has singularities). The degree m
considered here is the weighted degree with respect to the natural C* action on J*V/
defined by A - f(¢) := f(At), i.e. by reparametrizing the curve with a homothetic
change of variable. Since (A - f)Y)(t) = A/ fU)(At), the weighted action is given
in coordinates by

A'(Elvé%"'vék) = (Aélskzézs---skk%‘k)' (88)
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One of the major tool of the theory is the following result due to Green—Griffiths
[51] (see also [9,31,32,89,92,93])).

Fundamental vanishing theorem 103. Let (X, V') be a directed projective variety
and f : (C,Tc) — (X,V) an entire curve tangent to V. Then for every global
section P € HO(X EGG V* ® O(—A)) where A is an ample divisor of X, one has
POf S S f("))—O

Let us give the proof of vanishing Theorem 103 in a special case. We interpret
here E GG 2V ® O(—A) as the bundle of differential operators whose coefficients
vanish along A. By a well-known theorem of Brody [20], for every entire curve
f 1 (C,Tc) — (X,V), one can extract a convergent “renormalized” sequence
g = lim f o h, where h, are suitable homographic functions, in such a way that
g is an entire curve with bounded derivative sup, ¢ |8’ (t)[lo < 400 (with respect
to any given Hermitian metric w on X); the image g(C) is then contained in the
cluster set f(C), but it is possible that g(C) < f(C). Then Cauchy inequalities
imply that all derivatives g/} are bounded, and therefore, by compactness of X,
u= P(g; g.¢g" ...,g®) is a bounded holomorphic function on C. However,
after raising P to a power, we may assume that A4 is very ample, and after moving
A € |A|, that Supp A intersects g(C). Then u vanishes somewhere, hence u = 0 by
Liouville’s theorem. The proof for the general case is more subtle and makes use of
Nevanlinna’s second main theorem (see the above references).

It is expected that the global sections of H°(X, E; oG W V¥ ® O(—A)) are precisely
those which ultimately define the algebraic locus Y C X where the curve f should
lie. The problem is then reduced to the question of showing that there are many non
zero sections of H°(X, Efg V* ® 0(—A)), and further, understanding what is their
joint base locus. The first part of this program is the main result of this section.

Theorem 104. Let (X,V) be a directed projective variety such that Ky is big
and let A be an ample divisor. Then for k > 1 and § € Q4 small enough,
8 < c(logk)/k, the number of sections h°(X, EGGV* ® O(—mdA)) has maximal
growth, i.e. is larger that ckm”+kr_1f0r some m 2 my, wherec, ¢, > 0,n = dim X
and r = rank V. In particular, entire curves f : (C,Tc) — (X, V) satisfy (many)
algebraic differential equations.

The statement is very elementary to check when r = rank V' = 1, and therefore
when n = dimX = 1. In higher dimensions n > 2, only very partial results
were known at this point, concerning merely the absolute case V = Ty. In
dimension 2, Theorem 104 is a consequence of the Riemann—Roch calculation
of Green—Giriffiths [51], combined with a vanishing theorem due to Bogomolov
[11]—the latter actually only applies to the top cohomology group H", and things
become much more delicate when estimates of intermediate cohomology groups are
needed. In higher dimensions, Diverio [39, 40] proved the existence of sections of
H(X, E,?S?V* ® O(—1)) whenever X is a hypersurface of ]P’fé“ of high degree
d > d,, assuming k > n and m > m,. More recently, Merker [73] was able to treat
the case of arbitrary hypersurfaces of general type, i.e. d > n+3, assuming this time
k to be very large. The latter result is obtained through explicit algebraic calculations
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of the spaces of sections, and the proof is computationally very intensive. Bérczi [6]
also obtained related results with a different approach based on residue formulas,
assuming d > 27"len,

All these approaches are algebraic in nature, and use only the algebraic version
of holomorphic Morse inequalities (Sect. 1.3.4). Here, however, our techniques are
based on more elaborate curvature estimates in the spirit of Cowen—Griffiths [22].
They require the stronger analytic form of holomorphic Morse inequalities (see
Sects. 1 and 3.7)—and we do not know how to translate our method in an algebraic
setting. Notice that holomorphic Morse inequalities are essentially insensitive to
singularities, as we can pass to non singular models and blow-up X as much as
we want: if & : X — X is a modification then UxOyg = Ox and R, O is
supported on a codimension 1 analytic subset (even codimension 2 if X is smooth).
As already observed in Sect. 3.4, it follows from the Leray spectral sequence that
the cohomology estimates for L on X or for L = p*L on X differ by negligible
terms, i.e.

he(X,L®") — hi(X,L®™) = O(m" ™).

Finally, singular holomorphic Morse inequalities (see Sect.3.7) allow us to work
with singular Hermitian metrics /; this is the reason why we will only require to
have big line bundles rather than ample line bundles. In the case of linear subspaces
V C Ty, we introduce singular Hermitian metrics as follows.

Definition 105. A singular Hermitian metric on a linear subspace V' C Ty is a
metric & on the fibers of V' such that the function logh : £ +— log|é |i is locally
integrable on the total space of V.

Such a metric can also be viewed as a singular Hermitian metric on the tauto-
logical line bundle &p(yy(—1) on the projectivized bundle P(V) = V ~ {0}/C*,
and therefore its dual metric 2* defines a curvature current © ¢, (1).,+ of type (1, 1)
on P(V) C P(Tx), such that

P O yhe = 2’—8510gh, where p : V ~ {0} — P(V).
T

If log & is quasi-plurisubharmonic (or quasi-psh, which means psh modulo addition
of a smooth function) on V, then log/ is indeed locally integrable, and we have
moreover

O6py,na+ = —Co (89)

for some smooth positive (1, 1)-form on P(V') and some constant C > 0; con-
versely, if (89) holds, then log /4 is quasi-psh.

Definition 106. We will say that a singular Hermitian metric # on V is admissible if
h can be written as i = e?hg) where hy is a smooth positive definite Hermitian on
Tx and ¢ is a quasi-psh weight with analytic singularities on X, as in Definition 105.
Then £ can be seen as a singular Hermitian metric on &p(y)(1), with the property
that it induces a smooth positive definite metric on a Zariski open set X’ C X ~
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Sing(V') ; we will denote by Sing(#) D Sing(V') the complement of the largest such
Zariski open set X'.

If h is an admissible metric, we define &}, (V*) to be the sheaf of germs of
holomorphic sections of V| Y ~Sing(h) which are h*-bounded near Sing(k); by the
assumption on the analytic singularities, this is a coherent sheaf (as the direct image
of some coherent sheaf on P (1)), and actually, since h* = e~?hf, it is a subsheaf
of the sheaf O(V*) := 0y, (V*) associated with a smooth positive definite metric
ho on Tx. If r is the generic rank of V' and m a positive integer we define similarly
K7, to be sheaf of germs of holomorphic sections of (det V, )8 = (ATVE,)®m
which are det 2*-bounded, and K} := K v o

If V is defined by ¢ : X --- G,(Tx), there always exists a modification
w X — X such that the composition @ o 4 : X — G,(u*Tx) becomes
holomorphic, and then ©*V},—1(x<sing(r)) €xtends as a locally trivial subbundle of
w*Tx which we will simply denote by u* V. If & is an admissible metric on V, then
w*V can be equipped with the metric u*h = e?°*u*ho where *hg is smooth and
positive definite. We may assume that ¢ o w has divisorial singularities (otherwise
just perform further blow-ups of X to achieve this). We then see that there is an
integer my such that for all multiples m = pmy the pull-back 1* K7, is an invertible
sheaf on X, and det2* induces a smooth non singular metric on it (when h = hy, we
can even take mo = 1). By definition we always have Ky}, = w«(u*K7y;,) for any
m > 0. In the sequel, however, we think of Ky, not really as a coherent sheaf, but
rather as the “virtual” Q-line bundle w4 (u* K ’;‘}1)1/ ™o and we say that Ky, is big if
(X, KVh) > c¢m" for m > my, with ¢ > 0, i.e. if the invertible sheaf pL*K’;% is
big in the usual sense.

At this point, it is important to observe that “our” canonical sheaf Ky differs from
the sheaf %y := i,.0(Ky) associated with the injection i : X ~ Sing(V) — X,
which is usually referred to as being the “canonical sheaf”, at least when V' is the
space of tangents to a foliation. In fact, %y is always an invertible sheaf and there
is an obvious inclusion Ky C J#y. More precisely, the image of (A" Ty) — &y
is equal to #y ®¢, _# for a certain coherent ideal ¢ C O, and the condition
to have hp-bounded sections on X ~ Sing(V') precisely means that our sections
are bounded by Const)  |g;| in terms of the generators (g;) of &y ®p, 7, ie.

Ky = #y ®6, 7 where ¢ is the integral closure of _# . More generally,

|x’ |x’

—m/mg

Ky =27 ®ox I jme

where 7 hfn * c Oy is the (m/ my)-integral closure of a certain ideal sheaf

Fnmy C Ox, which can itself be assumed to be integrally closed; in our previous
discussion, p is chosen so that u*_#j , is invertible on X.

The discrepancy already occurs e.g. with the rank 1 linear space V' C Tpn
consisting at each point z # 0 of the tangent to the line (0z) (so that necessarily
Vo = Tpp.0)- As a sheaf (and not as a linear space), i« O (V) is the invertible sheaf
generated by the vector field § = ) z;0/0z; on the affine open set C" C P{,
and therefore 7y := i.0(V?*) is generated over C" by the unique 1-form u such
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that u(¢) = 1. Since £ vanishes at 0, the generator u is unbounded with respect
to a smooth metric /o on T]P” , and it is easily seen that Ky is the non invertible
sheaf Ky = J#y ® mp . We can make it invertible by considering the blow-up
w:X > Xof X = ]P’" at 0, so that u* Ky is isomorphic to u* %y ® O3 (—E)
where E is the exceptlonal divisor. The integral curves C of V are of course
lines through 0, and when a standard parametrization is used, their derivatives do
not vanish at 0, while the sections of i« (V') do—another sign that i.&'(V') and
i«O(V*) are the wrong objects to consider. Another standard example is obtained
by taking a generic pencil of elliptic curves AP(z) + £ Q(z) = 0 of degree 3 in P2,
and the linear space V' consisting of the tangents to the fibers of the rational map
]P’é ---P{. defined by z — Q(z)/P(z). Then V is given by

) PdQ—QdP
0—ixOV) — O(Tp) ——— O (6)® Z5s — 0

where S = Sing(V') consists of the nine points {P(z) = 0} N {Q(z) = 0}, and
s is the corresponding ideal sheaf of S. Since det 0(Tp2) = 0'(3), we see that
Ky = 0(3) is ample, which seems to contradict (2) since all leaves are elliptic
curves. There is however no such contradiction, because Ky = %y ® _Zs is not
big in our sense (it has degree 0 on all members of the elliptic pencil). A similar
example is obtained with a generic pencil of conics, in which case .#y = (1) and
card S = 4.

For a given admissible Hermitian structure (V,h), we define similarly the
sheaf EJGV* to be the sheaf of polynomials defined over X ~ Sing(h)
which are “h bounded”. This means that when they are viewed as polynomials
P(z; &,....&) interms of §; = (Vho )/ £(0) where VI)O is the (1, 0)-component
of the induced Chern connection on (V, hg), there is a uniform bound

P68 = (Dl )" ©0)

near points of X ~ X’ (see Sect. 2 for more details on this). Again, by a direct image
argument, one sees that £} GG oV, is always a coherent sheaf. The sheaf E, GG o
defined to be E; GG Vi when h = hy (it is actually independent of the choice of hy, as
follows from arguments similar to those given in Sect. 2). Notice that this is exactly
what is needed to extend the proof of the vanishing Theorem 103 to the case of a
singular linear space V' ; the value distribution theory argument can only work when
the functions P(f; f',.... f%)(¢) do not exhibit poles, and this is guaranteed
here by the boundedness assumption.

Our strategy can be described as follows. We consider the Green—Griffiths bundle
of k-jets X,?G = J¥V <~ {0}/C*, which by (88) consists of a fibration in weighted
projective spaces, and its associated tautological sheaf

L = Oysa(l),
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viewed rather as a virtual Q-line bundle ﬁxkcc. (mo)'/™ withmg = lem(1,2, ... k).
Then, if 7 : X7 — X is the natural projection, we have

EZS = (7k)+ Oyoa(m)  and R”(nk)*ﬁxkcc.(m) =0forg > 1.

Hence, by the Leray spectral sequence we get for every invertible sheaf F' on X the
isomorphism

HYX, EJSV*® F) ~ HI(XS, Oyos(m) ® i F). 91)

The latter group can be evaluated thanks to holomorphic Morse inequalities. In fact
we can associate with any admissible metric # on V' a metric (or rather a natural
family) of metrics on L = Oycc(1). The space X kGG always possesses quotient
singularities if k > 2 (and even some more if V' is singular), but we do not really care
since Morse inequalities still work in this setting. As we will see, it is then possible
to get nice asymptotic formulas as k — +o0c. They appear to be of a probabilistic
nature if we take the components of the k-jet (i.e. the successive derivatives
g = fU)0),1 < j < k) as random variables. This probabilistic behaviour was
somehow already visible in the Riemann—Roch calculation of [51]. In this way,
assuming Ky big, we produce a lot of sections 0; = H(X9, Oycc(m) ® ) F),
corresponding to certain divisors Z; C X kGG. The hard problem ‘which is left in
order to complete a proof of the generalized Green—Griffiths—Lang conjecture is to
compute the base locus Z = () Z; and to show that Y = m;(Z) C X must be a
proper algebraic variety. Unfortunately we cannot address this problem at present.

4.2 Hermitian Geometry of Weighted Projective Spaces

The goal of this section is to introduce natural Kéhler metrics on weighted projective
spaces, and to evaluate the corresponding volume forms. Here we put d“ = ;-(3—09)

so that dd¢ = 2'—”85 The normalization of the d¢ operator is chosen such that we
have precisely (dd° log |z|?)" = 8 for the Monge—Ampere operator in C"; also, for
every holomorphic or meromorphic section ¢ of a Hermitian line bundle (L, /) the
Lelong—Poincaré can be formulated

dd‘loglol; = [Zs] — Op s, (92)

where O, = #D%’h is the (1, 1)-curvature form of L and Z, the zero divisor
of 0. The closed (1, 1)-form @, j, is a representative of the first Chern class ¢;(L).
Given a k-tuple of “weights” ¢ = (ay,...,ay), i.e. of integers a; > 0 with
gcd(ay, ...,ar) = 1, we introduce the weighted projective space P(ay,...,ax)
to be the quotient of C* ~ {0} by the corresponding weighted C* action:
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P(ai.....ar) = Ck < {0}/C*, Az= A%z, A% ). (93)

As is well known, this defines a toric (k — 1)-dimensional algebraic variety with
quotient singularities. On this variety, we introduce the possibly singular (but almost
everywhere smooth and non degenerate) Kéhler form w, , defined by

1
”:wa,p = ddc(/’u,pv ®a,p(z) = —log Z |Zs|2p/axa (94)
p 1<s<k
where 7, : C¥ ~ {0} — P(a....,ay) is the canonical projection and p > 0 is a

positive constant. It is clear that ¢, , is real analytic on Ck~{0} if p is an integer and
a common multiple of all weights a;. It is at least C? if p is real and p > max(ay),
which will be more than sufficient for our purposes (but everything would still work
for any p > 0). The resulting metric is in any case smooth and positive definite
outside of the coordinate hyperplanes z; = 0, and these hyperplanes will not matter
here since they are of capacity zero with respect to all currents (dd €@, p)f. In order

to evaluate the volume f Play....ar) wad_pl, one can observe that

k—1 __ *x  k—1 c
/ Wa p —/ T, W, , ANd Qap
P(ay....ax) 2€CK, @4 p(2)=0

:/ (ddcg%,p)k_l /\dcfpa,p
zG(Ck,(pa.p(z)=0

1
=— (ddCeP?er)k, 95)
p zE(Ck,gou,p(z)<0

The first equality comes from the fact that {¢, ,(z) = 0} is a circle bundle over
P(ay,...,a), together with the identities ¢, ,(A - 2) = @4.,(z) + log|A|* and

fl =1 d¢log|A|> = 1. The third equality can be seen by Stokes formula applied
to the (2k — 1)-form

(ddcepw.p)k—l AdCePbar = eP%.p(ddcq)u,p)k_l /\dcq)u,p

on the pseudoconvex open set {z € C¥; ¢, »(2) < 0}. Now, we find

@aern = (aac 3 1Pr) = T (Lifé)@d Py, o6

S

1<s<k 1<s<k
k
/ (ddCerteryk = l_[ P _ p—. (97)
ZGCk,¢u_p(Z)<0 | <s<k ag ay...dag
In fact, (96) and (97) are clear when p = a; = ... = a; = 1 (this is just the

standard calculation of the volume of the unit ball in (Ck); the general case follows
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by substituting formally z, > z7 / ' and using rotational invariance together with

the observation that the arguments of the complex numbers z7 /% now run in the
interval [0, 27t p/a,[ instead of [0, 27| (say). As a consequence of (95) and (97), we

obtain the well known value

k—1 __ 1
[ e 98)
P(ay,...ax) ’ ap...ag

for the volume. Notice that this is independent of p (as it is obvious by Stokes
theorem, since the cohomology class of w, , does not depend on p). When p tends
to +00, we have ¢, ,(2) = @u.00(z) = logmaxi<y<k |z5|?/% and the volume form
a)fj;l converges to a rotationally invariant measure supported by the image of the
polycircle [T{|zs| = 1}in P(ay,...,ax). This is so because not all |z,|*/% are equal
outside of the image of the polycircle, thus ¢, «(z) locally depends only on k — 1
complex variables, and so w(’j; = 0 there by log homogeneity.

Our later calculations will require a slightly more general setting. Instead of

looking at C*, we consider the weighted C* action defined by
Crl=¢Cnx...xC*, A-z= A%z, .., A% ). (99)

Here z; € C’s for some k-tuple r = (ry,...,r¢) and |[r| = r; + ... 4 ry. This gives
rise to a weighted projective space

P(ag"‘],...,a][:"]) =Pay,...,ai,...,ag,...,ar),

ar s CMx .. x C* < {0} — P(agrl], . ,a,[{rk]) (100)

obtained by repeating r; times each weight a,;. On this space, we introduce the
degenerate Kihler metric w, , , such that

1
JT;,.Cl)a.r,p = ddcfpa.r,p, %.r,p(Z) = —10g Z IZSIZP/IJ.V (101)
) . , . »

1<s<k

where |z;| stands now for the standard Hermitian norm (3, i< |25 12)1/2 on C's.
This metric is cohomologous to the corresponding “polydisc-like” metric w, ,
already defined, and therefore Stokes theorem implies

Irl—=1 _ 1
w = —. (102)
a,r, r Tk
/p@’” D R Y

Since (dd¢log|zs|?)” = 0 on C" ~ {0} by homogeneity, we conclude as before
that the weak limit lim ,— 4 oo a),ll',l_pl = o)} associated with

Garoo(z) = log max. |z (103)
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is a measure su]pported by the image of the product of unit spheres []S?*~! in
P(a1 yee ), which is invariant under the action of U(r;) x ... x U(rg) on
Crx...x (C’k and thus coincides with the Hermitian area measure up to a constant
determined by condition (30). In fact, outside of the product of spheres, ¢, ;oo
locally depends only on at most k — 1 factors and thus, for dimension reasons,
the top power (dd¢ (,zJa,,.,oo)“"_1 must be zero there. In the next section, the following
change of variable formula will be needed. For simplicity of exposition we restrict
ourselves to continuous functions, but a standard density argument would easily
extend the formula to all functions that are Lebesgue integrable with respect to the

1 f |r|—
volume Torm @y r, p

Proposition 107. Let f(z) be a bounded function on P(agrl], e ,a][:k]) which is
continuous outside of the hyperplane sections z;, = 0. We also view f as a C*-
invariant continuous function on [ [(C’s ~ {0}). Then

Ir|—1
/;)( - [fk /@ @a.r.p
_ (ri=n!

- 2p ak/ZP
B (xal/ ULy enes ui) dxdu(u)
l_[s ags ~/(\X,u)€Ak,1XH S2rs—1 1 l_[ ( ry —

1<s<k

where Ag—; is the (k — 1)-simplex {x; > 0, >_x; = 1}, dx = dx; A ... A dxg—y

its standard measure, and where du(u) = du(uy)...dug(uy) is the rotation

invariant probability measure on the product [, S**~! of unit spheres in C" x
. x C'*. As a consequence

lim f(z)a) ], = ; fw) du(u).

p=>+oo JpEltl krk I as' IT 521

Proof. The area formula of the d1sc f al< dd|A |> = 1 and a consideration of the unit

disc bundle over P(a; - " ) 1mp1y that
I,:= / f@Qall) = / F@ (dd ar )" AddCetar,
P(a[lrll ..... akrk 2€CIl g4 . p(2)<0

Now, a straightforward calculation on CI"l gives

(ddcemﬂa.r.p)‘r‘ = (ddc Z IZSlzp/as)‘r‘

1<s<k

[T (&)l vre@as iz,

l<s<k %
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On the other hand, we have (dd*|z|?)I"l = rl.,‘.r.‘.!rk! [Ti<s<i(dd€|z5|*)" and

(dd<erern)rl = (p s (dd Py + P Ay N Pur)”
= |r|p\r\+le\r\wa.r.p (dd"fpa,,.,p)"‘_l /\d%,r,p A dc(pa,r,p
— |r|p\r\+le(\r\1’—1)%.r.p (dd"(pa,,,p)l"l_l AddCetarr,

thanks to the homogeneity relation (dd g, p)"‘ = 0. Putting everything together,
we find

- (rl= 1P £ I, (dd* [z

O, g <0 (s |z5|2P/as)Ir1=1/p a2 =plas)”

A standard calculation in polar coordinates with z; = psuy, uy € S 2rs— 1 yields

dd¢ 2\
# = 2 d s (us)
|z |?"s Ps

where ji; is the U(ry)-invariant probability measure on S?s~!. Therefore

2prg/as dpg
I = / (r] = D! p* f(oru, . . .., preux) l—[ 2P prfas p Tod s (ug)
’ $ar.p@)<0 (X 1<s<k paP!ylri=1/p - 1)!a§5+1

B / (Ir] = 1)! _lf(t‘“/z”ul,...,t,f"/zl’uk) 117Vt d g (uy)
uy€S2s=1 " 1y <1 (215551{ t5)|r|—l/17 (ry — 1)!a§s

N

by putting £, = |z,|27/% = p2?/* i.e. p, = 12/, 1, €10, 1]. We use still another
change of variable t, = tx, witht = ), _ _, t;and x;, € 0,1], >, xs = 1.
Then o o

diy A ... ~ndty = (5 Vdxdt where dx = dx; A ... A dxg—1.

The C* invariance of f shows that

x5 g (ug)  dxdt
(ry—l)‘ar‘ t1=1/p

o= [ s U= UG T

uges2rs—1
Yxg=1,1€]0,1] 1<s<k

15 ld U
:/mesm—l (|r|_1)!f(x‘11.\'/217u1’” ak/ZPu) l—[ /‘L( )dx

_ 1 q"s
Zrg=1 1<s<k (I‘S Dlas

This is equivalent to the formula given in Proposition 107. We have X2 /P 5 1as

p — +o00, and by Lebesgue’s bounded convergence theorem and Fubini’s formula,
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we get

lim I =—(|r|_1)!/ f T] T Jj drdp).
p—>too ¥ ns as’ (ra)€ Ay x[] $25—1 ( Fe —

1<s<k

It can be checked by elementary integrations by parts and inductionon k, ry, ..., rg
that
/ [] xi'ax...dg = _ [] Gs—Dr. (104)
XEA—1 | 2y<p (rf=D' 22
This implies that (7| — D! [];<,< & (l = dx is a probability measure on A;_; and
that 1
lim I, = u) du(u).
p—>+o0 P l_[ uel] §2rs—1 f( ) M( )
Even without an explicit check, (33) also follows from the fact that we must have
equality for f(z) = 1 in the latter equality, if we take into account the volume
formula (30). O

4.3 Probabilistic Estimate of the Curvature of k-Jet Bundles

Let (X, V) be a compact complex directed non singular variety. To avoid any
technical difficulty at this point, we first assume that V' is a holomorphic vector
subbundle of Ty, equipped with a smooth Hermitian metric /.

According to the notation already specified in the introduction, we denote by
J*V the bundle of k-jets of holomorphic curves f : (C,0) — X tangent to V
at each point. Let us set n = dimc X and r = rankc V. Then J ky - X is an
algebraic fiber bundle with typical fiber C'* (see below). It has a canonical C*-
action definedby A - f : (C,0) - X, (A - f)(t) = f(Ar). Fix a point x¢ in X and
a local holomorphic coordinate system (zi, ..., z,) centered at xo such that V, is
the vector subspace (d/9zy, ..., d/0dz,) at xo. Then, in a neighborhood U of x¢, V
admits a holomorphic frame of the form

ai + > aaﬁ(z)— 1< B <r au(0)=0. (105)

r+1<a<n

Let f(z) = (fi(t),..., fu(t)) be a k-jet of curve tangent to V' starting from a
point f(0) = x € U. Such a curve is entirely determined by its initial point and
by the projection f(t) := (fi(¢),..., f;(t)) to the first r-components, since the
condition f/(¢) € V() implies that the other components must satisfy the ordinary
differential equation
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L6y =" ap(f(0)) f5(0).

1=p=<r

This implies that the k-jet of f is entirely determined by the initial point x and the
Taylor expansion

fO)—3 =&t + 62+ .. + &5+ 0@ (106)

where & = (£54)1<a<r € C". The C* action (A, f) > A - f is then expressed in
coordinates by the weighted action

Ao 8D = Q6L A6 25 (107)
associated with the weight a = (111,201, k'), The quotient projectivized k-jet
bundle

G.= (Jkv < {o}/C* (108)
considered by Green and Griffiths [51] is therefore in a natural way a
P 20 k) weighted projective bundle over X. As such, it possesses a
canonical sheaf ﬁXch.(l) such that ﬁXGG (m) is invertible when m is a multiple of
lem(1,2, ..., k). Under the natural projection 7y : X9 — X, the direct image

()« Oy (m) coincides with the sheaf of sections of the bundle EJSV* of jet
differentials of order k and degree m, namely polynomials

PEié...8)= Y an.a@& . & (109)

ageNr, 1<t<k

of weighted degree || + 2|aa| + ... + k|ax| = m on J¥V with holomorphic
coefficients. The jet differentials operate on germs of curves as differential operators

P(f)(0) =ty o (f@) £ ... fO@)™. (110)

In the sequel, we do not make any further use of coordinate frames as (105), because
they need not be related in any way to the Hermitian metric & of V. Instead, we
choose a local holomorphic coordinate frame (e, (z))1<o<r of V on a neighborhood
U of xg, such that

{ea(2). e5(2)) = Sup + Z CiopziZj + O0(12) (111)

for suitable complex coefficients (cjjg). It is a standard fact that such a normalized
coordinate system always exists, and that the Chern curvature tensor 2l_nD¥2/ , of
(V, h) at x is then given by

i
Ovalxo) = = > cjupdz AdZ; ® €] ® ep. (112)
i,jop
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Also, instead of defining the vectors & € C" as in (40), we consider a local
holomorphic connection V on Vjy (e.g. the one which turns (e,) into a parallel
frame), and take & = V¥ f(0) € V, defined inductively by V! f = f’ and
VS f = V/(V57L ). This is just another way of parameterizing the fibers of J ky
over U by the vector bundle Vlll‘/ Notice that this is highly dependent on V (the
bundle J¥V actually does not carry a vector bundle or even affine bundle structure);
however, the expression of the weighted action (107) is unchanged in this new
setting. Now, we fix a finite open covering (U, )qe; of X by open coordinate charts
such that V|y, is trivial, along with holomorphic connections V, on V|, . Let 0, be
a partition of unity of X subordinate to the covering (U,). Let us fix p > 0 and
small parameters 1 = g1 > g, > ... > & > 0. Then we define a global weighted
exhaustion on J*V' by putting for any k-jet f € JXV

e = (Yot Y e ivirons)” (113)

a€l 1<s<k

where || ||s(x) is the Hermitian metric h of V' evaluated on the fiber Vy, x = f(0).
The function ¥, ,, . satisfies the fundamental homogeneity property

Whpeh ) =Wh,pe(f) A (114)

with respect to the C* action on J kY in other words, it induces a Hermitian metric
on the dual L* of the tautological Q-line bundle Ly = Oycs(1) over X 6. The

curvature of Ly is given by

”:@Lkv‘l’:p.s =ddlog ¥ . (115)

where 7 @ J¥V ~ {0} — XFC is the canonical projection. Our next goal is to
compute precisely the curvature and to apply holomorphic Morse inequalities to
L—-X kGG with the above metric. It might look a priori like an untractable problem,
since the definition of ¥, , . is a rather unnatural one. However, the “miracle” is
that the asymptotic behavior of ¥, ,, as &;/e,—1 — 0 is in some sense uniquely
defined and very natural. It will lead to a computable asymptotic formula, which is
moreover simple enough to produce useful results.

Lemma 108. On each coordinate chart U equipped with a holomorphic connec-
tion V of Viy, let us define the components of a k-jet f € JEV by & = V° £(0),
and consider the rescaling transformation

oveEr by &) = (611,836, ... k&) on KV, x e U

(it commutes with the C*-action but is otherwise unrelated and not canonically
defined over X as it depends on the choice of V). Then, if p is a multiple of
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lem(1,2,...,k) and e5/es—1 — O for all s = 2,...,k, the rescaled function
) pe © p;}s(gl, ..., &) converges towards

( ) ||ss||21’“)

1<s<k
on every compact subset of J* Viv ~ {0}, uniformly in C topology.

Proof. Let U C X be an open set on which Vy is trivial and equipped with some
holomorphic connection V. Let us pick another holomorphic connection V=V+rI
where I' € H°(U, 2} ® Hom(V, V). Then V2f = V2f + ['(f)(f’)- f’, and
inductively we get

Vif=Vf+P(f:V' [ V)

where P(x; &,...,&~—1) is a polynomial with holomorphic coefficients in x € U
which is of weighted homogeneous degree s in (£1,...,&_1). In other words,
the corresponding change in the parametrization of J* Viy is given by a C*-
homogeneous transformation

gs = Ss + PY(X; 517 e ,Ss—l)‘

Let us introduce the corresponding rescaled components

Erer o) = @16 ef8), Cren B = (e1hnL ).

Then

gs,s = Es,s+8§ PS(X; 51_151,87--- (‘ l)és ls)
=&+ O(es/e—1) O(|E1ell + ... + ”Ss—l,a”l/(s_l))s

and the error terms are thus polynomials of fixed degree with arbitrarily small
coefficients as &;/e,-1 — 0. Now, the definition of ¥}, ,, consists of gluing the

sums
2p 2p/s _ 2p/s
> el > kel

1<s<k 1<s<k

corresponding to & = V3 f(0) by means of the partition of unity > 0, (x) = 1. We
see that by using the rescaled variables & . the changes occurring when replacing
a connection V, by an alternative one Vg are arbitrary small in C* topology, with
error terms uniformly controlled in terms of the ratios &;/&,—; on all compact subsets
of V¥ < {0}. This shows that in C® topology, ¥, . o oy g(él, ..., &) converges
uniformly towards (ZKK o lIEx ||2P/ ")1/P whatever the tr1V1a1121ng open set U and
the holomorphic connection V used to evaluate the components and perform the
rescaling are. O
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Now, we fix a point xp € X and a local holomorphic frame (e,(z))1<a<r
satisfying (111) on a neighborhood U of xy. We introduce the rescaled components
& =&V f(0)onJ k Vv and compute the curvature of

Whpe 0 03 (25 £ ) :( 3 g ||2”“)

1<s<k

(by Lemma 108, the errors can be taken arbitrary small in C*° topology). We write
& = leasr Eweq. By (111) we have

17 = Z sl + Y ciopaiZibsakyg + O [EP).

i.j.o.p

The question is to evaluate the curvature of the weighted metric defined by

veii) = (2 ||ss||2"“)

1<s<k

= 2 . Lz, 3 p/s v 3
S (TleP + Y cipuzitady)” )+ 0GP,

1<s<k o4 i,jop
We set || = >, |€s|?. A straightforward calculation yields

log¥(z: &1.....86) =

_ _10 Y leprsa Y LB g B o
£ S &Pl L OB T '
l,],a

1<s<k l<s<k

By (115), the curvature form of Ly = & XkGG(l) is given at the central point xo by
the following formula.

Proposition 109. With the above choice of coordinates and with respect to the
rescaled components & = &V*f(0) at xo € X, we have the approximate
expression

[

grofsﬂ
ST 6P € i N2

Oryp, (0. [E) > 0arp® 45— 3 Ciop 2
ij.a.p $

l<s<k

where the error terms are O (maxo<s<k (&5/85—1)*) uniformly on the compact variety
XSS, Here w, , p s the (degenerate) Kdihler metric associated with the weight a =
(1l 2k, k[’]) of the canonical C* action on JFV .
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Thanks to the uniform approximation, we can (and will) neglect the error terms
in the calculations below. Since w, , , is positive definite on the fibers of X ISG - X
(at least outside of the axes & = 0), the index of the (1,1) curvature form
® Lew?,, (z, [£]) is equal to the index of the (1, 1)-form

L g Esafop _
- o d i dz; 116
Yi(z.§) = 1<Zs;k S G z%:,ﬂc‘] p(D)——0>- e Ny (116)

depending only on the differentials (dz;)i<j<,» on X. The g-index integral of
(Ly, ¥y ,.) on X9 is therefore equal to

kr—1
eIt =
/GG L9y,
X7 (Lk.q) P

k

_(a+kr—1D! L1
T onlkr— 1)1 /zex /SeP(ur] Ky @arp @@ N 8

where J,, ,(z,&) is the characteristic function of the open set of points where
vk(z,§) has signature (n — ¢, ¢q) in terms of the dz;’s. Notice that since yx(z, §)”
is a determinant, the product ¥, ,(z, §)yx(z,§)" gives rise to a continuous function
on X9, Formula (104) with ry = ... = ry = r and a; = s yields the slightly more
explicit integral

/ Q-1 _ (n + kr—1)!
XS6(Ly.q) LWy e nl(k!)”

L (e ox) !
X/ / W q(z, x,u)gk(z. x, u) %dxdu(u),
z€X J(x.u)€Ap—_1 x(S2r—1)k (r - 1)-

where gx (z, x, 1) = i (2, x11/2pu1, . ,x]]fﬂpuk) is given by
i 1 _ _
gi(z,x,u) = . Z Exs Z Cijap (2) UsaTlsp dzi N dZ; (117)
1<s<k i.j.o.pB

and W, ,(z, x, u) is the characteristic function of its g-index set. Here

(X1 ...x) !

(r—1k

is a probability measure on Aj_, and we can rewrite
/ oot o _(tkrZ DU
XS(Lpqy Ve nl(kD (kr = 1)!

<[ Wogeaz 6. 0)gi (2. x. 1) dvg () dp(u). (119)
z€X J(x.u)€Ar—_1 x(S2r—1)k

dvi (x) = (kr — 1)! dx (118)
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Now, formula (117) shows that g (z, x,u) is a “Monte Carlo” evaluation of the
curvature tensor, obtained by averaging the curvature at random points u; € S !
with certain positive weights x, /s ; we should then think of the k-jet f as some sort
of random parameter such that the derivatives V¥ £(0) are uniformly distributed
in all directions. Let us compute the expected value of (x,u) — gi(z, x,u) with
respect to the probability measure dvy ,(x) du(u). Since f gor1 Usallspd i (us) =
}80(,3 and fA,H Xy dvg,(x) = %, we find

1 1 i
E(ge(@e o) =1 D ~ 53— Ciuld)da AdZ;.

1<s<k i,j.o
In other words, we get the normalized trace of the curvature, i.e.

1 1

1
E(gi(z0.0) = (145 4+ ) Ouery e (120)

where Ogei(v+) decn* s the (1, 1)-curvature form of det(V *) with the metric induced
by A. It is natural to guess that g (z, x, u) behaves asymptotically as its expected
value E(gy(z,e,0)) when k tends to infinity. If we replace brutally g by its
expected value in (119), we get the integral

k=1 1 | | /
1 W, o
n'(k')’(kr—l)'(kr)”( Tt +k) e

where 7 := Ogeq(v*) decht and K, 4 is the characteristic function of its g-index set
in X . The leading constant is equivalent to (log k)" /n!(k!)" modulo a multiplicative
factor 1 + O(1/log k). By working out a more precise analysis of the deviation, we
will prove the following result.

Probabilistic estimate 110. Fix smooth Hermitian metrics h on V and v =
3= Y widz A dZj on X. Denote by Oy = —5 Y cCijapdzi N dZj Q e ® ep
the curvature tensor of V with respect to an h-orthonormal frame (e, ), and put
i
1(2) = Oder(v*)deth* = o Z nijdzi A dz;, nij = Z Cijaa -

1<i,j<n 1<a<r

Finally consider the k-jet line bundle Ly = ﬁXGG(l) — XGG eqmpped with the
induced metric lI/* . (as defined above, with 1 = &1 > & > ... > g > 0).
When k tends to znﬁmty the integral of the top power of the curvature of Ly on its
q-index set XGG(Lk, q) is given by

n+kr—1 __ (lng)" n —1
/Xomk,q) OLivte = iy \ o+ Oloe )

k
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forallg = 0,1,...,n, and the error term O((logk)™") can be bounded explicitly
in terms of Oy, n and w. Moreover, the left hand side is identically zero for g > n.

The final statement follows from the observation that the curvature of L, is
positive along the fibers of X ,?G — X, by the plurisubharmonicity of the weight
(this is true even when the partition of unity terms are taken into account, since they
depend only on the base); therefore the g-index sets are empty for ¢ > n. We start
with three elementary lemmas.

Lemma 111. The integral

me=f (2

is given by the expansion
Z 1 (kr—l)' nlsisk(r_1+'3i)!
— 1) — 1! ’
s <k S182...8; (r=1)! (kr +n—1)!
where B; = Bi(s) =card{j; s; =i}, > pi =n, 1 <i <k. The quotient

(a) ]k,r,n =

i (+1+ +1)n
rn [ ke + 1) . (kr 0 — 1) k

is bounded below by 1 and bounded above by

n

2"p! 1 1IN
(b) 1+ = Z( ’:n),( 2+"'+E) =1+ O((logk)™?).

Asa consequence

(c)
Ly = L((1 +iig l)" + 0((1ogk)"—2))
"= St
_ (logk +y)" + O((logk)"?)
= =

where y is the Euler—Mascheroni constant.
Proof. Let us expand the n-th power (Zl<v<k s ) This gives

2: 1 B B
I = - xl.uxkdv (X
Kran S182 ... 5, /Ak—l ! k kr (%)

1<51,52,....5pn <k

and by definition of the measure v, we have

kr—1)! _ _
/ xfl...xf" duk,r(x):% x;+ﬁ‘ 1...x;+ﬁ" Vdx, ... dxy.
Apey (r=D¥ Ja._,
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By formula (33), we find

b _ =1 Tl + 4 — D!
/Ak lxl s X dver(x) = (r — 1k (kr +n —1)!

P TTgsn (L + DA+ 2+ 22
kr(kr+1)...(kr+n—1)

’

and Lemma 111(a) follows from the first equality. The final productis minimal when
r = 1, thus

rl‘l

<
kr(kr +1)...(kr+n—1) _/Ak .

xf;‘ ...xf" dvy - (x)

- ”nnlsiskﬂi!
T krtkr+1)...(kr+n—1)

(121)

Also, the integral is maximal when all 8; vanish except one, in which case one gets

rer+1D)...0r+n-1)

"d = . 122
/Akl A el I S — (122)
By (121), we find the lower and upper bounds
r" 1 1\»
Iirn > I+-+...+-) ., 123
k’r’n_kr(kr+1)...(kr+n—1)( t3tot ) (123)
r Bil... B! /3k
Ixrn < 124
= e + 1) .. (k1 — 1) Z S1...5n (124)

1<s1,5n <k

In order to make the upper bound more explicit, we reorganize the n-tuple
(s1,...,8,) into those indices #; < ... < t; which appear a certain number of times
o; = By, > 2, and those, say ;41 < ... < tg4,, which appear only once. We have
of course Y_ f; = n — m, and each choice of the #;’s corresponds to n!/ay!. .. o!
possibilities for the n-tuple (sy, ..., s,). Therefore we get

3 /31 ,3k <”'Z )3 an 1

a0t oam
1<s1,....5n <k m=0 {, YXa;=n—m (1) {+1 - +m

A trivial comparison series vs. integral yields

Z 1 1 1
—_— <
@ T oo —1s21

s<t<4o00
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and in this way, using successive integrations in #y, f;—p, ..., we get inductively

1 1 1
< _
Z Mt w _n1<l<[((¥[ i+1 . -|-Oé(—l')_€!7

1<ti<..<ty<+oo 1

since o; > 2 implies oy—j 1 + ... + o —i > i. On the other hand

1 1 1 1 1 1\"
_— < — —=—14+=+... +=] .
tot1 .. tegm ~ m! Z Sl ... 8Sm m!( +2+ +k)

15t5+1<...<l‘g+m§k 1<s1,.c08m <k

Since partitions o; + ... 4+ oy = n — m satisfying the additional restriction o; > 2
correspond to ) = a; — 2 satisfying ) o/ = n —m — 24, their number is equal to

n—m-=20+4£—1 _ n—m—4{—1 P ——
-1 -1 -

and we infer from this

/31 ﬁk Y o 1, 1 1\™" 1 1\”
B it I+=+...+—
Z LB Z i + +. +k + +2+ +k
1<s1,....5n <k zé-lﬁnl<"

where the last term corresponds to the special case £ = 0, m = n. Therefore
n—2

ﬁl 2_q 2=y 1 1\" 1 1\"
< =t 4~ =t -
> 5 > — tototr) Ay

1<s;<k m=0
1 1 1\ 1 1\
- 4 I4+=—4...+— ) .
32 n_m)'(+2+ +k) +(+2+ +k)

This estimate combined with (123), (124) implies the upper bound Lemma 111(b)
(the lower bound 1 being now obvious). The asymptotic estimate Lemma 111(c)
follows immediately. O

Lemma 112. If A is a Hermitian n x n matrix, set ¥ 44 to be equal to 1 if A has
signature (n — ¢, q) and 0 otherwise. Then for all n x n Hermitian matrices A, B
we have the estimate

|H‘A,q detA —Wpy, detB‘ <||4A-B| Z ||A||’ ”B”n—l—i’

0<i<n—1
where || A||, || B|| are the Hermitian operator norms of the matrices.

Proof. We first check that the estimate holds for |det A —det B|. Let A; < ... <},
be the eigenvalues of A and A] < ... < A/ be the eigenvalues of B. We have
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[Ai] < ||A]l,1A!] < || B| and the minimax principle implies that |A; —A}| < |A—B].
We then get the desired estimate by writing

detA—detB=A1.. Ay —A1... A= > Ao hici(hi —ADA4 . A

1<i<n

This already implies Lemma 112 if A or B is degenerate. If A and B are non
degenerate we only have to prove the result when one of them (say A) has signature
(n — g, q) and the other one (say B) has a different signature. If we put M(¢) =
(1 —t)A + tB, the already established estimate for the determinant yields

d n—
|5 de M| < nlld = B IM@)| < nll4 =B =04l +e1BI)" "

However, since the signature of M (¢) is not the same for t = 0 and ¢t = 1, there
must exist #p € ]0, 1] such that (1 — #)A + #, B is degenerate. Our claim follows
by integrating the differential estimate on the smallest such interval [0, ], after
observing that M(0) = A, det M(ty) = 0, and that the integral of the right hand
side on [0, 1] is the announced bound. O

Lemma 113. Let Q 4 be the Hermitian quadratic form associated with the Hermi-
tian operator A on C". If i is the rotation invariant probability measure on the unit
sphere S~ of C" and ); are the eigenvalues of A, we have

[ J0a@Pan® = 2 (S0 (La))

The norm || A|| = max |A;| satisfies the estimate

Lo < 2 < L4112
AP [ 104@Fdu) < 141

Proof. The first identity is an easy calculation, and the inequalities follow by
computing the eigenvalues of the quadratic form ) A? + (Z Ai)z — ckizo, c>0.

The lower bound is attained e.g. for Q4(¢) = [¢11> — 2(1&2]* + ... + [£4]*) when
Wetakei():landczl—i-%. O

Proof of the Probabilistic estimate 110. Take a vector { € Ty, ¢ = Zé‘,-aiz_,

with |||l = 1, and introduce the trace free sesquilinear quadratic form

i __— i 1
Qo) = Y Gjup(D) §iG; uallp, o = Cyup — “Midap,  u€C
i,jop
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where n; = Y _,<, Cijiua- We consider the corresponding trace free curvature
tensor
~ I ~ _
Oy = % Z Cijap dzi NdZ; ® e: ® eg. (125)
i,j.o.p

As a general matter of notation, we adopt here the convention that the cano-
nical correspondence between Hermitian forms and (1, 1)-forms is normalized
as Y aydz; ® d7; < 3= ajdz A dZ;, and we take the liberty of using the
same symbols for both types of objects; we do so especially for gi(z, x,u) and
n() = 2’_7: > n;(z)dzi A dZ; = Tr Oy (z). First observe that for all k-tuples of unit
vectors u = (uy, ..., ux) € (S ™H*, uy = (us4)1<a<r» We have

/(Szr—l)k

where V(Q_ ;) is the variance of Q. on S 2r=1_ This is so because we have a sum
over s of independent random variables on (S ~!)*, all of which have zero mean
value (Lemma 113 shows that the variance V(Q) of a trace free Hermitian quadratic
form Q(u) = Y, -, <, Aaltta|* on the unit sphere S>~! is equal to r(r1_+l) 3" A2, but
we only give the formula to fix the ideas). Formula (122) yields

— 2 2
Y x Y G 6L g ) = Y 5V(Q.)

I<s<k ij.e.p 1<s<k

+1
xfdv A(x) = r—.
/Akl o k(kr + 1)

Therefore, according to notation (117), we obtain the partial variance formula

/ | gk (2%, w)(§) = B (2, X) Q) P vy (¥)d ()
Ak—1 X(sZr—l)k

_(r+D i ~ )
St (;k 5 )o@

in which

BEDO = Y xk et =( ) éxs)}n(z)(z),

l=s<k ijor 1<s<k

o €0 = Vi (B Owas) = [ | O duw.

By integrating over { € S?"~! C C" and applying the left hand inequality in
Lemma 113 we infer
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— 2
/ ez ) = B () [ v () daa)
Ar—q X(serl)k

n*(r +1) 1 <
= m(lgk s_z)a“”h(@V) (126)

where 0,, ,(@y) is the standard deviation of @ on $2"~! x §¥ 1.

Gun(@) = / (6 (& O, u)a P dpn(©) dpa(),

[Clo=1,lulp=1

On the other hand, brutal estimates give the Hermitian operator norm estimates

_ 1 1
1705l < ( )3 Exs);un(z)uw, (127)
1<s<k
1
feetevilo = (X 1) 16rh (128)
S
1<s<k
where
1Oviws = sup  [(Ov(.Ou,u)pl.
|§‘w=1~|’4|h=l

We use these estimates to evaluate the g-index integrals. The integral associated
with g, (z, x) is much easier to deal with than g (z, x, u) since the characteristic
function of the g-index set depends only on z. By Lemma 112 we find

gy (2. x, 1) det gic (2, X, u) — I 4 (2) det gy (z, x)|

< Jerer 0~ G0, 3 lger ol I8 e 0l

0<i<n—1

The Cauchy—Schwarz inequality combined with (126)—(128) implies

/ ’“‘gk,q (z, x,u) det gi(z, x, u) — g (z) det gy (z, x)’ dvg - (x)d(u)
Akfl X(slr—l)k
5 1/2
<(/ Jeoxo) = o) v, (0dp@ ) x
Ak—1 X(serl)k

2 12
iz n—1—i
S Z, X, u Z,X dv r(x)d u)
([ s X It ime o) dve, @duc

0<i<n-—1
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n(1+1/r)1/2 ( 3 1)1/2 - -1 n—1—
< — S| 00s@) D l6vi (<@ e
(k(k +1/r)1/2 ISk 52 <5 ’”"(r )

X(/AH( 2 %)zn_zd”k-r(x))l/: 0((“)%:_”)"_1)

1<s<k

by Lemma 111 with n replaced by 2n — 2. This is the essential error estimate. As
one can see, the growth of the error mainly depends on the final integral factor,
since the initial multiplicative factor is uniformly bounded over X. In order to get
the principal term, we compute

1
/ detg(z, x) dvi,(x) = — detn(z)
Ag—1 r

( Z ?) dvk,r(x)

A1 1<s<k

(log k)"
rnkn

detn(z).

From there we conclude that
| Wogpg @, 008 (2, %, 1) dvip (¥)d ()
z€X J (x.u)EAr—_1 x(S2r—1)k

S Ly . ooz

rikn k"
The probabilistic estimate 110 follows by (119). O

Remark 114. If we take care of the precise bounds obtained above, the proof gives
in fact the explicit estimate

_ +kr— D! It yp
@n-l—kr*l = (n — /Hé " rnJ
/Xsm,q) Lty T iy (er— Dy \Jy e S

where

k 1/2 n—1
1 5 ' ‘ —1—i n
J=n(1+1/r>1/2(2s—2) [ 0us@0) v @l o

i=1

and

|8k,r,n| =

k n
(k(k + l/r))l/Z/ (Z x?) dvi(x)
Ag—1
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m .\ 1/2
1 2n—2 2" (2n—2)! 1 1\—m
< (1 + 3 Zmn=2 (2;1—;—m)!(1 + 2 +...F E) ) 1

- 1+%+...+% Nlogk

by the lower and upper bounds of Iy ,,, I ,2,— obtained in Lemma 111. As
2n—=2)1/2n —2 —m)! < (2n —2)™, one easily shows that

(31/15)1/2

logk fork > >3, (129)

|€k,r,n| =

Also, we see that the error terms vanish if (:)V is identically zero, but this is of
course a rather unexpected circumstance. In general, since the form Oy is trace
free, Lemma 2.23 applied to the quadratic form u — (@ (¢, &)u, u) on C” implies
0wn(Oy) < (r + 1)72||Oy || ».4. This yields the simpler bound

k 1/2 n—1
1 . . 4 L

J<n r‘”(Z s—z) [X 16vllws Y riIOvIE AlIn@ 1L e (130)
s=1 i=1

O

It will be useful to extend the above estimates to the case of sections of
" 1 1 1
Lk:ﬁXkGG(l)@ﬂkﬁ(E(l—‘rE+"'+%)F) (131)

where F € Picg(X) is an arbitrary Q-line bundle on X and 7 : XP¢ — X
is the natural projection. We assume here that F is also equipped with a smooth
Hermitian metric /2 g. In formula (2.20), the renormalized metric nx (z, x, u) of Ly
takes the form

1
TA+i4+...+ )

nk(z,x,u) = gk (z, x,u) + Op, (2), (132)

and by the same calculations its expected value is
n@i@) = Ek(z,0,0)) = Ouetv* deth* (2) + OF iy (2). (133)

Then the variance estimate for 1y — 71 is unchanged, and the L” bounds for n;
are still valid, since our forms are just shifted by adding the constant smooth term
OF i (z). The probabilistic estimate (120) is therefore still true in exactly the same
form, provided we use (131)—(133) instead of the previously defined Ly, 1 and 7.
An application of holomorphic Morse inequalities gives the desired cohomology
estimates for

h (X EGSve @ o (1+ L l)F))
Pk kr 207 Tk

= h?(X{°, Oyoo(m) ® n:ﬁ(%(l + % +...+ %)F))
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provided m is sufficiently divisible to give a multiple of F' which is a Z-line bundle.

Theorem 115. Let (X, V) be a directed manifold, F — X a Q-line bundle, (V, h)
and (F, hg) smooth Hermitian structure on V and F respectively. We define

Li = Oye(1) ®n§ﬁ(%(1 + % bt %)F)

N = Ogetv* deth* + OF hp-

Then for all ¢ > 0 and all m > k > 1 such that m is sufficiently divisible, we
have

mn+kr—1 (IOg k)n

GG ®m n -1
@ 1. o8 = i SR ([ oo ™)),

)=
(n 4+ kr—1)! n! (k)"

mn+kr—1 (lOg k)"
(n+kr— D! n! (k)

Green and Griffiths [51] already checked the Riemann—Roch calculation
Theorem 115(c) in the special case V' = Ty and F = Oy. Their proof is much
simpler since it relies only on Chern class calculations, but it cannot provide
any information on the individual cohomology groups, except in very special
cases where vanishing theorems can be applied; in fact in dimension 2, the Euler
characteristic satisfies y = h® — h' 4+ h? < h° + h?, hence it is enough to get the
vanishing of the top cohomology group H? to infer h° > y ; this works for surfaces
by means of a well-known vanishing theorem of Bogomolov which implies in
general

n—+kr—1 n
(b) WX, (L) > " O%“(A(Uw—mmwﬁo,
17.<

(c) (X% OLP™) = (@ (V*® F)" + O((logh)™)).

kr 2 k

assoonas Ky ® F isbigandm > 1.

In fact, thanks to Bonavero’s singular holomorphic Morse inequalities [13],
everything works almost unchanged in the case where V' C Ty has singularities
and & is an admissible metric on V (see (8)). We only have to find a blow-up
w: Xx — Xi so that the resulting pull-backs pu* Ly and u*V are locally free, and
w* deth*, u*¥, , . only have divisorial singularities. Then 7 is a (1, 1)-current with
logarithmic poles, and we have to deal with smooth metrics on p* Lf”" ® O (—mEy)
where E} is a certain effective divisor on X} (which, by our assumption (8), does not
project onto X'). The cohomology groups involved are then the twisted cohomology
groups

H"(X, EST; @ 0 (1+ L l)F))) =0

HYXZ, O(LE™) ® Fim)

where _Zi ,» = W« (0(—mEy)) is the corresponding multiplier ideal sheaf, and the
Morse integrals need only be evaluated in the complement of the poles, that is on
X(m,q) ~ S where S = Sing(V') U Sing(h). Since
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®m GG 1% m 1 1

()« (O(LE™) @ Fim) C ESOV* ® ﬁ(;(l ot E)F))

we still get a lower bound for the H° of the latter sheaf (or for the H® of the

un-twisted line bundle ﬁ(L,?m) on XEG). If we assume that Ky ® F is big, these

considerations also allow us to obtain a strong estimate in terms of the volume, by

using an approximate Zariski decomposition on a suitable blow-up of (X, V'). The
following corollary implies in particular Theorem 104.

Corollary 116. If F is an arbitrary Q-line bundle over X, one has
| x°6, o GG(WZ)@N*ﬁ<ﬁ<]+l+ +1)F)
k ¥ Xg k kr 5 . X

- mht =1 (lOg k)n
T (n+kr—1D!n! (k")

(Vol(Ky & F) = O((logk)™)) = o(m"+71),

when m > k > 1, in particular there are many sections of the k-jet differentials of
degree m twisted by the appropriate power of F if Ky ® F is big.

Proof. The volume is computed here as usual, i.e. after performing a suitable
modification p : X — X which converts Ky into an invertible sheaf. There is of
course nothing to prove if Ky ® F is not big, so we can assume Vol(Ky ® F) > 0.
Let us fix smooth Hermitian metrics g on Tx and A on F. They induce a metric
w*(dethy! ® hr) on u*(Ky ® F) which, by our definition of Ky, is a smooth
metric. By the result of Fujita [47] on approximate Zariski decomposition, for every
8 > 0, one can find a modification ps : Xs —> X dominating u such that

ui(Ky ® F) = ﬁfS(A + E)
where A and E are Q-divisors, A ample and E effective, with
Vol(4) = A" > Vol(Ky ® F) — 6.

If we take a smooth metric /1 4 with positive definite curvature form @4, ,, then we
get a singular Hermitian metric 4 4h g on uj (Ky ® F) with poles along E, i.e. the
quotient i 4hg/p*(dethy' ® hr) is of the form e where ¢ is quasi-psh with log
poles log |oz|? (mod C%°(X5)) precisely given by the divisor E. We then only need
to take the singular metric s on Ty defined by

h = hoer )¢
(the choice of the factor % is there to correct adequately the metric on det V). By
construction /1 induces an admissible metric on V' and the resulting curvature current

n = Ok, deth* + O, is such that

win = Oan, + [E], [E] = current of integration on E.
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Then the 0-index Morse integral in the complement of the poles is given by

/ n”:/ Oy, =A" = Vol(Ky ® F) — 6
X(n.0)~S X5

and Corollary 116 follows from the fact that § can be taken arbitrary small. O

Example 117. In some simple cases, the above estimates can lead to very explicit
results. Take for instance X to be a smooth complete intersection of multidegree
(dy.dy,...,d;)in Pﬂéﬂ and consider the absolute case V = Ty. Then

KXZﬁx(d1+...+ds—l’l—S—1).

Assume that X is of general type, ie. ) d; > n + s+ 1. Letusequip V = Ty
with the restriction of the Fubini—Study metric # = ®¢(1); a better choice might
be the Kéhler-Einstein metric but we want to keep the calculations as elementary as
possible. The standard formula for the curvature tensor of a submanifold gives

Oryn = (Or, 4 1)x + B* AP

where B € C®(A'T} @ Hom(Tx, €D O(d,))) is the second fundamental form.
In other words, by the well known formula for the curvature of projective space,
we have

(Ory n (@& Ou,u) =[S ul® + [(&u) [P = |BE) - ul”.
The curvature p of (Kx,deth*) (i.e. the opposite of the Ricci form Tr O, ;) is
given by
p==—TrOr, , =Tr(BAB")—(n+ Dh>—(n+ 1)h. (134)

We take here F = Ox(—a), a € Q4, and we want to determine conditions for the
existence of sections

0 GG x o m ( l l
H (X,Ek,mTX 0 a (145 4.+ k))) m>1. (135
We have to choose Ky ® Oy (—a) ample,ie. Y d; >n+s+a+ 1, and then (by
an appropriate choice of the metric of F = Oy (—a)), the form n = Ok, @6y (—a)
can be taken to be any positive form cohomologousto (3~ d; — (n + s +a + 1))h.
We use Remark 114 and estimate the error terms by considering the Kéhler metric

w=p+(n+s+2)hE<Zdj+1)h.

Inequality (134) shows that @ > 2h and also that ® > Tr(8 A $*). From this,
one easily concludes that ||5]l, < 1 by an appropriate choice of 7, as well as
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1Or hllwnr < 1and ”@TX,h”w,h < 2. By (130), we obtain for n > 2

b4 n" —1 4
J<n?—x2 /w” < —n"+1/2/ "
- V6 n—1Jx NG b%

where [, @" = (3 d; + 1)" deg(X). On the other hand, the leading term |, 7"
equals (Zdj —-n—s—a-— 1)" deg(X) with deg(X) = d, ...d;. By the bound
(129) on the error term & ,,,, we find that the leading coefficient of the growth of
our spaces of sections is strictly controlled below by a multiple of

172 nn+1/2

(Zdj —n—s—a—l)n—4n(%) W(Zd}' + l)n

if k > e>*>. A sufficient condition for the existence of sections in (135) is thus

k= exp (738 "Hl/z(zd» _ani:r_la —)). (136)
J

This is good in view of the fact that we can cover arbitrary smooth complete
intersections of general type. On the other hand, even when the degrees d; tend
to 400, we still get a large lower bound k ~ exp(7.38 n"+1/2) on the order of jets,
and this is far from being optimal : Diverio [39,40] has shown e.g. that one can take
k = n for smooth hypersurfaces of high degree. It is however not unlikely that one
could improve estimate (136) with more careful choices of w, A. O
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