Chapter 6
Reacting to Player Input

6.1 Introduction

In this chapter, we will show you how your game program can react to mouse clicks
and button presses. In order to do this, we need a instruction called if that executes an
instruction (or a group of instructions) if a condition is met. We will also introduce
enumerated types as another kind of primitive type.

6.2 Reacting to a Mouse Click

6.2.1 ButtonState: An Enumerated Type

In the previous examples, we have used the current mouse state to retrieve the mouse
position. However, a MouseState object contains a lot of other information as well.
For example, it can be used to find out whether a mouse button is pressed or not.
For this, we can use the properties LeftButton, MiddleButton and RightButton. What
these properties give is a value of type ButtonState. So we could save this value as
follows:

ButtonState left = currentMouseState.LeftButton;

Primitive types—C# makes a distinction between the more complicated
types representing a class and the very basic types representing things like
integers or enumerations. The latter types are also called primitive types, be-
cause they form the building blocks of the more complicated class types.

You might guess that ButtonState is a class, however, it is actually an enumerated
type. An enumerated type is very similar to the integer type, with the difference that

A. Egges et al., Learning C# by Programming Games, 81
DOI 10.1007/978-3-642-36580-5_6, © Springer-Verlag Berlin Heidelberg 2013

http://dx.doi.org/10.1007/978-3-642-36580-5_6

82 6 Reacting to Player Input

instead of numeric values, the type contains words describing different states. In the
case of the ButtonState type, these states are Pressed and Released, because a button
is either pressed or released. Enumerated types are quite handy for representing a
variable that can contain a few different meaningful states. For example, we might
want to store the type of character that a player represents by using an enumerated
type. We can decide ourselves what kind of different states there are in our type, so
before we can use the enumerated type, we first have to define it:

enum CharacterClan { Warrior, Wizard, Elf, Spy };

The enum keyword indicates that we are going to define an enumerated type. After
that follows the name of this type and, between braces, the different states that can
be stored inside a variable of this type. This is the syntax diagram describing the
enum type definition:

The type definition can be placed inside a method, but you may also define it
at the class body level, so that all the methods in the class can use the type. You
may even define it as a top-level declaration (outside of the class body). Here is an
example of using the CharacterClan enumerated type:

CharacterClan myClan = CharacterClan.Warrior;

In this case, we have created a variable of type CharacterClan, which may contain
one of four values: CharacterClan.Warrior, CharacterClan.Wizard, CharacterClan.Elf, or
CharacterClan.Spy. In a very similar way, the ButtonState type is defined somewhere
in a library probably looking something like

enum ButtonState { Pressed, Released };

Another example of using enumerated types would be to define a type for indicating
the days in the week or the months in a year:

enum MonthType { January, February, March, April, May, June, July, August,
September, October, November, December };

enum DayType { Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday };

MonthType currentMonth = MonthType.February;

DayType today = DayType.Tuesday;

6.2 Reacting to a Mouse Click 83

6.2.2 The if-Instruction: Executing an Instruction Depending on a
Condition

As a simple example of how we can use the mouse button state to do something,
let us make a simple extension of the Painter1 program, where we only calculate the
new angle of the cannon barrel if the left mouse button is down. This means that
we have to change the instructions in the Update method, because that is where we
calculate the barrel angle.

Until now, all the instructions we have written had to be executed all the time. For
example, drawing the background sprite and the cannon barrel sprite always needs
to happen. But calculating the barrel angle only has to happen sometimes, namely
when the player presses the left mouse button. In broader terms, we want to execute
an instruction only if some condition holds true. This kind of instruction is called a
conditional instruction, and it uses a new keyword: if.

With the if-instruction, we can provide a condition, and execute a block of in-
structions if this condition holds (in total, this is sometimes also referred to as a
branch). Examples of conditions are:

1. the number of seconds passed since the start of the game is larger than 1000, or
2. the balloon sprite is exactly in the middle of the screen, or
3. the monster has eaten my character.

These conditions can either be true or false. A condition is an expression, because
it has a value (it is either true or false). This value is also called a boolean value. It
is associated with a type called bool, which we will talk about more later on. With
an if-instruction, we can execute a block of instructions if a condition is true. Take a
look at this example:

if (mouse.X > 200)

{
spriteBatch.Draw(background, Vector2.Zero, Color.White);

}

This is an example of an if-instruction. The condition is always placed in parenthe-
ses. After that, a block of instructions follows, enclosed by braces. In this example,
the background is only drawn if the mouse x-position is larger than 200. This means
that if you move the mouse too far to the left of the screen, the background is not
drawn anymore. We can place multiple instructions between the braces if we want:

if (mouse.X > 200)

{
spriteBatch.Draw(background, Vector2.Zero, Color.White);

spriteBatch.Draw(cannonBarrel, Vector2.Zero, Color.White);

If there is only one instruction, you may omit the braces to shorten the code a bit:

84 6 Reacting to Player Input

if (mouse.X > 200)
spriteBatch.Draw(background, Vector2.Zero, Color.White);

In our example, we want to update the cannon barrel angle only when the player
presses the left mouse button. This means that we have to check if the state of the
left mouse button currently is pressed. This condition is given as follows:

mouse.LeftButton == ButtonState.Pressed

The == operator compares two values and returns true if they are the same, and false
otherwise. On the left hand side of this comparison operator, we find the left mouse
button state. On the right hand side, we find the state ButtonState.Pressed. So, this
condition checks whether the left button is currently pressed. We can now use it in
an if-instruction as follows in the Update method:

if (mouse.LeftButton == ButtonState.Pressed)

{
double opposite = mouse.Y — barrelPosition.Y;
double adjacent = mouse.X — barrelPosition.X;
angle = (float)Math.Atan2(opposite, adjacent);

So, only if the left mouse button is pressed, we calculate the angle and store its value
in the angle member variable. In order to see this program working, run the Painter1a
example in the solution belonging to this chapter.

6.3 Boolean Values

6.3.1 Comparison Operators

The condition in the header of an if-instruction is an expression that returns a truth
value: ‘yes’ or ‘no’. When the outcome of the expression is ‘yes’, the body of the
if instruction is executed. In these conditions you are allowed to use comparison
operators. The following operators are available:

< smaller than

<= smaller than or equal to
> larger than

>= larger than or equal to
== equal to

I= not equal to

These operators may be used between two numbers. On the left hand side and the
right hand side of these operators you may put constant values, variables, or com-
plete expressions with additions, multiplications and whatever you want, provided

6.3 Boolean Values 85

that they are of the same type. Again, watch out that testing the equality of two val-
ues is done using a double equals sign (==). This is needed, because the single equals
sign is already used for assignments. The difference between these two operators is
very important:

x=5; this instruction means: assign the value 5 to x!

x==5 this expression means: is x equal to 5?

6.3.2 Logic Operators

In logical terms, a condition is also called a predicate. The operators that are used
in logic to connect predicates (‘and’, ‘or’, and 'not’) can also be used in C#. These
operators have a special notation in C#:

e &&is the logical ‘and’ operator
e |l is the logical ‘or’ operator
e ! is the logical ‘not’ operator

We can use these operators to check for complicated logical statements, so that we
can execute instructions only in very particular cases. For example, we can draw a
“You win!” overlay only if the player has more than 10,000 points, the enemy has a
life force of 0, and the player life force is larger than O:

if (playerPoints > 10000 && enemyLifeForce == 0 && playerLifeForce > 0)
spriteBatch.Draw(winningOverlay, Vector2.Zero, Color.White);

6.3.3 The Boolean Type

Expressions that use comparison operators, or that connect other expressions with
logical operators also have a type, just like expressions that use arithmetic operators.
After all, the result of such an expression is a value: one of the two truth values: ‘yes’
or ‘no’. In logic, these values are called ‘true’ and ‘false’. In C#, these truth values
are represented by the true and false keywords.

Next to being used for expression a condition in an if-instruction, logical expres-
sions can be applied for a lot of different things. A logical expression is similar to
an arithmetic expression, except that it has a different type. For example, you can
store the result of a logical expression in a variable, pass it as a parameter, or use
that result again in another expression.

The type of logical values is called bool. This is one of the primitive types of C#.
The type is named after the English mathematician and philosopher George Boole
(1815-1864). Here is an example of a declaration and an assignment of a boolean
variable:

bool test;
test = x>3 && y<5;

86 6 Reacting to Player Input

In this case, if x contains, for example, the value 6 and y contains the value 3, then
the boolean expression x>3 && y<5 will evaluate to true and this value will be stored
in the variable test. We can also store the boolean values true and false directly in a
variable:

bool isAlive = false;

Boolean variables are extremely handy to store the status of different objects in the
game. For example, you could use a boolean variable to store whether or not the
player is still alive, or if the player is currently jumping, or if a level is finished, and
so on. We can use boolean variables as an expression in an if-instruction:

if (isAlive)
do something

In this case, if the expression isAlive evaluates to true, the body of the if-instruction
is executed. You might think that this code generates a compiler error, and that we
need to do a comparison of the boolean variable, like this:

if (isAlive == true)
do something

However, this extra comparison is not necessary. A conditional expression like in
the if-instruction has to evaluate to true or false. Since a boolean variable already
represents either one of these two values, we do not need to perform the comparison
anymore. In fact, if the previous comparison would be needed, then we also would
need to compare that outcome again with a boolean value:

if ((isAlive == true) == true)
do something

And this gets worse:

if (((((((isAlive == true) == true) == true) == true) == true) == true) == true)
do something

In summary: do not make things more complicated than they are. If the outcome is
already a boolean value, we do not have to compare it to anything anymore.

We can use the bool type to store complex expressions that are either true or false.
Let us look at a few additional examples:

boola=12>5;
bool b = a && 3+4==8;
boolc=allb;
if (Ic)
a = false;

6.4 More on if-Instructions 87

Before you read on, try and find out what the value is of the variables a, b, and ¢
after these instructions have been executed. In the first line, we declare and initialize
a boolean a. The truth value that is stored in this boolean is evaluated from the
expression 12 > 5, which evaluates to true. So, variable a has the value true. In the
second line, we declare and initialize a new variable b, in which we store the result
of a more complex expression. The first part of this expression is the variable a,
which contains the value true. The second part of the expression is a comparison
3+4==8. This comparison is not true (3 + 4 does not equal 8), so this evaluates to
false, and therefore the logical ‘and’ also results in false. Therefore, the variable b
contains the value false.

The third line stores the result of the logical ‘or’ operation on variables a and b
in variable c. Since a contains the value true, the outcome of this operation is also
true, and it is assigned to c. Finally, there is an if-instruction, which assigns the value
false to variable a, but only if Ic evaluates to true, that is, ¢ evaluates to false. In this
particular case, c is true, so the body of the if instruction is not executed. Therefore,
after all the instructions are executed, a and ¢ contain the value true, and b contains
the value false.

6.4 More on if-Instructions

6.4.1 An if-Instruction with an Alternative

We can use the if-instruction to check if the left mouse button is down. If so, we
update the angle of the cannon barrel:

if (mouse.LeftButton == ButtonState.Pressed)

{

double opposite = mouse.Y — barrelPosition.Y;
double adjacent = mouse.X — barrelPosition.X;
angle = (float)Math.Atan2(opposite, adjacent);

In the Painter1a example, the angle stays the same when the left mouse button is not
pressed. But suppose that we want to have the angle set to zero again once the player
releases the left mouse button. We could add another if-instruction, like this:

if (mouse.LeftButton != ButtonState.Pressed)
angle = 0f;

However, there is a nicer way of dealing with this: by using an if-instruction with
an alternative. The alternative instruction is executed when the condition in the if-

88 6 Reacting to Player Input

instruction is not true, and we use the else keyword for that:

if (mouse.LeftButton == ButtonState.Pressed)

{

double opposite = mouse.Y — barrelPosition.Y;

double adjacent = mouse.X — barrelPosition.X;

angle = (float)Math.Atan2(opposite, adjacent);
}

else
angle = 0Of;

This instruction does exactly the same thing as the two if-instructions before, but we
only have to write down the condition once. Execute the Painterib program and see
what it does. You will note that the angle of the cannon barrel is zero as soon as you
release the left mouse button.

The syntax of the if-instruction with an alternative is represented by the following
syntax diagram:

q else H instruction

The reason that the body of an if-instruction can consist of multiple instructions
between braces is that an instruction can also be a block of instructions, which is
defined in the following syntax diagram:

6.4.2 A Number of Different Alternatives

When there are multiple categories of values, you can find out with if-instructions
which case we are dealing with. The second test is placed behind the else of the
first if-instruction, so that the second test is only executed when the first test failed.
A possible third test would be placed behind the else of the second if-instruction.

The following fragment determines within which age segment a player falls, so
that we can draw different player sprites:

6.4 More on if-Instructions 89

if (age<4)
spriteBatch.Draw(babyPlayer, playerPosition, Color.White);
else if (age<12)
spriteBatch.Draw(youngPlayer, playerPosition, Color.White);
else if (age<65)
spriteBatch.Draw(adultPlayer, playerPosition, Color.White);
else
spriteBatch.Draw(oldPlayer, playerPosition, Color.White);

Behind every else (except the last one), there is another if-instruction. For babies,
the babyPlayer sprite is drawn, and the rest of the instructions are ignored (they are
behind the else after all). Old players on the other hand, go through all the tests
(younger than 4? younger than 12? younger than 65?) before we conclude that we
have to draw the oldPlayer sprite.

We used indentation in this program to indicate which else belongs to which
if. When there are many different categories, the text of the program becomes less
and less readable. Therefore, as an exception to the usual rule that instructions after
the else should be indented, we allow for a simpler layout with such complicated
if-instructions.

if (age<4)
spriteBatch.Draw(babyPlayer, playerPosition, Color.White);

else if (age<12)

spriteBatch.Draw(youngPlayer, playerPosition, Color.White);
else if (age<65)

spriteBatch.Draw(adultPlayer, playerPosition, Color.White);
else

spriteBatch.Draw(oldPlayer, playerPosition, Color.White);

The additional advantage here is that using this layout, it is a lot easier to see which
cases are handled.

6.4.3 Toggling the Cannon Barrel Behavior

As a final example of using the if-instruction to handle mouse button presses, let us
try to handle a mouse button click instead of a mouse button press. We know how to
check with an if instruction if the mouse button is currently pressed, but how do we
find out if the player has clicked (meaning pressing and then releasing the mouse
button)? Have a look at the program Painteric. In this program, the cannon barrel
rotation follows the mouse pointer after you click the left button. When you click
again, the cannon stops following the mouse pointer.

The issue with this kind of ‘toggle’ behavior is that we only know the current
status of the mouse in the Update method. This is not enough information for deter-
mining when a ‘click’ happens, because a click is partly defined by what happened
the previous time we were in the Update method. We can say that a player has clicked
the mouse button if these two things happen:

90 6 Reacting to Player Input

e the player did not press the mouse button during the last Update method;
e in the current Update method, the player presses the mouse button.

In order to solve this, we need to store the previous mouse state, so that we can
compare it with the current mouse state the next time we are in the Update method.
Let us therefore store the previous and the current mouse state in two member vari-
ables:

MouseState currentMouseState, previousMouseState;
Getting the current mouse state is easy, we have done it before:
currentMouseState = Mouse.GetState();

Now, how do we get the ‘previous mouse state’? There is no way of doing this di-
rectly by calling a method from the Mouse class. However, we do know that what is
now the current mouse state will be the previous mouse state in the next Update call.
So, we can solve this problem by assigning the value of the current mouse state to
the previous mouse state before we get the new mouse state. Therefore, our Update
method will look something like:

protected override void Update(GameTime gameTime)

{
previousMouseState = currentMouseState;
currentMouseState = Mouse.GetState();
Here we do something with the mouse state

}

Now, we can write the code needed to toggle the cannon barrel behavior by
looking at the previous and current mouse state. We check this by using an if-
instruction:

if (currentMouseState.LeftButton == ButtonState.Pressed
&& previousMouseState.LeftButton == ButtonState.Released)
calculateAngle = IcalculateAngle;

The conditional expression in this case checks that the state of the left mouse button
currently is ‘pressed’, while its state was ‘released’ the previous time we retrieved
the mouse state. If this condition evaluates to true, we toggle the calculateAngle
variable. This is a member variable of type boolean (so it is either true or false).
In order to get the toggling behavior, we make use of the logical ‘not’ operator.
The result of the ‘not’ operation on the variable calculateAngle is stored again in
the variable calculateAngle. So, if that variable contained the value true, we will
store in the same variable the value false and vice versa. The result of this is that
the value of the calculateAngle variable toggles every time we execute that instruc-
tion.

We can now use that variable in another if-instruction to determine whether we
should update the angle or not:

6.5 Handling Keyboard and Gamepad Input 91

if (calculateAngle)

{
double opposite = currentMouseState.Y — barrelPosition.Y;
double adjacent = currentMouseState.X — barrelPosition.X;
angle = (float)Math.Atan2(opposite, adjacent);

}

else
angle = 0.0f;

6.5 Handling Keyboard and Gamepad Input

6.5.1 Basics of Handling Keyboard Input

Handling keyboard and gamepad input is dealt with in a very similar way to dealing
with mouse input. Instead of getting the mouse state, we have to get the keyboard or
gamepad state. This can be done as follows:

KeyboardState currentKBState = Keyboard.GetState();
GamePadState currentGPState = GamePad.GetState();

Also, just like the mouse state, these variables have several methods for checking
if the player presses a key on the keyboard, or a button on the gamepad. For ex-
ample, we can check if the player presses the ‘A’ button on the gamepad by call-
ing currentGPState.IsButtonDown(Buttons.A). Similarly, we check if the ‘A’ key on the
keyboard is pressed by calling currentKBState.lskeyDown(Keys.A). The classes Buttons
and Keys provide a number of properties for defining the available keys and but-
tons.

6.5.2 A Multicolored Cannon

The program Painter2 is an extension of the Painter1 program. It also features a rotat-
ing cannon, but now the player can also select the color of the cannon by pressing
different keys (R, G, or B). The current color of the cannon is displayed on the
screen by drawing a colored ball in the center of the rotating barrel. The cannon can
be either red, green, or blue. So, we will need three images of a ball, one for each of
the three colors:

Texture2D colorRed, colorGreen, colorBlue;

To make things a bit more convenient, we will declare an extra Texture2 variable
called currentColor, in which we keep track of what the current color of the cannon
is:

92 6 Reacting to Player Input
Texture2D currentColor;

Finally, we need a variable for storing the origin of the ball:

Vector2 colorOrigin;

Now that we have our member variables in place, let us have a look at the
LoadContent method. In this method, we need to load a few extra sprites, and store

them in the member variables that we just declared:

colorRed = Content.Load<Texture2D>("spr_cannon_red");
colorGreen = Content.Load<Texture2D>("spr_cannon_green");
colorBlue = Content.Load<Texture2D>("spr_cannon_blue");

At the start of the program, we assume that the cannon is blue, so we assign the blue
sprite to the currentColor variable:

currentColor = colorBlue;
Finally, we calculate the origin of the ball sprite which we choose as its center:

colorOrigin = new Vector2(currentColor.Width, currentColor.Height) / 2;

6.5.3 Handling the Keyboard Input

For handling the keyboard input, we will need the keyboard state. For completeness,
we will store the previous and current state for both the keyboard and the mouse. so,
we need the following member variables:

MouseState currentMouseState, previousMouseState;
KeyboardState currentKeyboardState, previousKeyboardState;

When we enter the Update method, we have to first update all these member variables
so that they contain the right values when we are actually going to handle the player
input. We follow the same procedure for the keyboard states as for the mouse states:

previousMouseState = currentMouseState;
previousKeyboardState = currentKeyboardState;
currentMouseState = Mouse.GetState();
currentKeyboardState = Keyboard.GetState();

If we want to know if the player has pressed the ‘R’ key, we use both the current
and previous keyboard states, like we did with the mouse state:

6.6 What You Have Learned 93

if (currentKeyboardState.IsKeyDown(Keys.R)
&& previousKeyboardState.lsKeyUp(Keys.R))
currentColor = colorRed;

If the player did press the ‘R’ key, we assign the red colored ball sprite to the
currentColor variable. We follow the same procedure for the ‘G’ and ‘B’ keys, which
gives us the following if-instruction:

if (currentKeyboardState.IsKeyDown(Keys.R)
&& previousKeyboardState.lsKeyUp(Keys.R))
currentColor = colorRed;
else if (currentKeyboardState.lsKeyDown(Keys.G)
&& previousKeyboardState.lsKeyUp(Keys.G))
currentColor = colorGreen;
else if (currentkKeyboardState.lskeyDown(Keys.B)
&& previousKeyboardState.lsKeyUp(Keys.B))
currentColor = colorBlue;

Finally, we only need to add an additional drawing call to the Draw method so that
the current colored ball is drawn on top of the cannon:

spriteBatch.Draw(currentColor, barrelPosition, null, Color.White, 0f,
colorOrigin, 1.0f, SpriteEffects.None, 0);

Try to run the Painter2 program now, and see how the program responds to moving
the mouse and pressing the ‘R’, ‘G’ or ‘B’ keys.

6.6 What You Have Learned

In this chapter, you have learned:

e what an enumerated type is;

how to react to mouse clicks and button presses using the if-instruction;
how to formulate conditions for these instructions using boolean values;
how to use if-instructions with different alternatives;

how to deal with keyboard and gamepad input.

2 Springer
http://www.springer.com/978-3-642-36579-9

Learning C# by Programming Games
Egges, A.; Fokker, |.D.; Overmars, M.H.
2013, XX, 443 p., Hardcover

ISEM: 978-3-642-36579-0

	Chapter 6: Reacting to Player Input
	6.1 Introduction
	6.2 Reacting to a Mouse Click
	6.2.1 ButtonState: An Enumerated Type
	6.2.2 The if-Instruction: Executing an Instruction Depending on a Condition

	6.3 Boolean Values
	6.3.1 Comparison Operators
	6.3.2 Logic Operators
	6.3.3 The Boolean Type

	6.4 More on if-Instructions
	6.4.1 An if-Instruction with an Alternative
	6.4.2 A Number of Different Alternatives
	6.4.3 Toggling the Cannon Barrel Behavior

	6.5 Handling Keyboard and Gamepad Input
	6.5.1 Basics of Handling Keyboard Input
	6.5.2 A Multicolored Cannon
	6.5.3 Handling the Keyboard Input

	6.6 What You Have Learned

