
Preface

There are several books on product line engineering, but most of these books either

introduce specific product line techniques or include brief summaries of industrial

cases or researches. From these sources, it is difficult to gain a comprehensive

understanding of the various dimensions and aspects of software variability that

product line engineering practitioners and researchers must understand. The book

aims to address this gap by providing a comprehensive reference on the notion of

variability modeling in the context of software product line engineering, to give an

overview of the techniques proposed for variability modeling, and to give a general

perspective on software variability management. We believe that practitioners as

well as researchers and computer science students will gain a new insight into

software, software engineering, and variability in product line engineering.

The most important attribute of software is the “softness” of software, i.e., software

that is easy (cost-effective) to modify and adapt to evolving requirements or changing

operating environments, easy to port on different hardware or software platforms, and

easy to reuse for development of similar applications. The “softness” of software

cannot be attained without engineering it into software. In order to “embed” softness

into software, we need to understand the “space” of the commonality and variability of

a family of related systems (i.e., a product line) and its evolution, and then organize and

codify the knowledge gathered as a commonality and variability model. With this

understanding, we can engineer software applying various design principles and

embedding variation points that can later be bound with variants.

Once the initial variability of a software product line has been established and

implemented, the focus shifts towards evolution of the provided variability in

response to changes in the variability required from the software product line. Over

time, new products are added to a product line, old products are removed, and the

functionality that used to be highly differentiating and only used in the high-end

products of the product line commodities is included in all products, removing the

need for variation points. Thus, during evolution, the focus of variability management

is as much on removing unnecessary variability as it is on adding new variation points

in response to new needs. The focus on removing variability is important as the

complexity of hundreds or thousands of variation points can easily become unwieldy.

v



One aspect contributing to the complexity of software variability management is

the dependencies between variation points and between the variants available at

each variation point. Where industrial software product lines frequently hold well

over 1,000 variation points, the total number of variants is even larger. The variants

cannot be freely selected independent of all other selected variants, but instead there

are dependencies that need to be respected. This leads to a situation where the

number of variation points is over a thousand, the number of variants a multiple of

that, and the number of dependencies between variants and between variation

points is of a similar or larger number. This explains the importance of intentional

management of software variability: even though the inherent complexity of

variability is already quite high, the total complexity easily becomes unmanageable

if not kept under control.

A final factor increasing the importance of software variability is concerned with

later binding of software variation points. Traditional pre-deployment configuration

of products allows for testing of the specific configuration as a safety net for

avoiding inconsistent configurations. However, run-time dynamicity is increasing

in importance for virtually all software-intensive systems. In those situations,

testing of the resulting configuration after a run-time change is complicated and

often only the most basic of system integrity is verified. The trend towards late

binding is indicative of the importance of software variability management even

outside the traditional area of software product lines and is now becoming impor-

tant for large software products that have significant installation time, startup time,

and run-time configuration taking place. Consequently, proper management of

variability avoiding inconsistent configurations at run-time through the use of

first-class models is particularly important.

Above, we have raised four reasons to stress the importance of software

variability management, i.e., modeling multiple products in a product line, evolu-

tion, complexity, and the shift towards later, even run-time, binding of variation

points. As is illustrated in the industrial experiences part of the book, there are no

theoretical problems without any bearing on industrial practice, but rather

challenges originating in industrial practice that the software engineering research

community has responded to. In our experience, mature software product lines may

have ten thousand variation points or more and the number of legal configurations

of products in the product line may number in the millions. Also, in our writing of

the book and the interaction with contributing authors, we are increasingly becom-

ing convinced that software variability management is evolving into a field of its

own, rather than a subfield of software product lines. In all systems where configu-

ration and run-time dynamism are important, software variability management

offers a powerful toolbox to deal with the resulting complexity, independent of

the system being part of a software product line or not.

From a software engineering research perspective, software variability manage-

ment represents a complex, multifaceted problem that intersects with several

traditional topics, including, among several others, software configuration manage-

ment, run-time dynamism, domain specific languages, modeling, and software

architecture. The field has borrowed techniques from these traditional fields, but

in return also contributes back with new insights, approaches, and techniques.

vi Preface



The book is organized in four main parts which guide the reader into the various

aspects and dimensions on software variability. Each chapter briefly summarizes

“What you will learn in this chapter”; so expert and non-expert? Readers can easily
locate what topics they will find, but it also describes areas of practice for the

applicability of the concepts explained.

In Part I, we intentionally drive the reader to the major topics on software

variability modeling, but as we do not have a specific chapter for variability

management, the chapters included in this part should be seen as different sides

of the management perspective. First, we introduce the paradigm of software

product line engineering in Chap. 1, where Product Line Engineering is compared

with traditional Software Engineering and the role of software variability manage-

ment is highlighted for the current practice of product lines. We then explore

various dimensions of commonality and variability (C&V) in Chaps. 2 and 3,

separating C&V modeling into problem and solution space modeling, and

constraints specification. Managing traceability between various C&V models

and the notion of variability in time and space is also discussed. The dimension

of feature binding time, the implications of deciding a specific binding time, and its

importance for the software development life cycle are discussed in Chap. 4, which

also provides a renewed taxonomy of different binding times. Chapters 5 and 6

describe ways to implement and configure software variability. In Chap. 5 we

outline from a high-level perspective various mechanisms for implementing soft-

ware variability, and how variability implementation mechanisms affect the archi-

tecture, components, and code levels. We did not go into the specific

implementation details as many of the mechanisms described in the chapter depend

on the programming language selected. Once product line variability is embedded

into the product line asset (code) using various mechanisms, we should be able to

configure products from the asset. Chap. 6 focuses on processes of product deriva-

tion activities for pre- and post-deployment times, with special mention of the

configuration tasks of software products at run-time and reconfiguration activities.

Because of the complexity of C&V models and complex interrelationships among

them, visualizing the relationships between modeling elements is useful and

enhances understandability and maintainability. Techniques for visualization are

discussed in Chap. 7. Finally, we conclude this part of the book in Chap. 8 with a

description on how different life-cycle products are related to each other in terms of

variability when feature models are considered a first-class artifact for any product

line engineering process.

Part II of the book describes an overview of research and commercial tools, from

Chaps. 9–12. Three research tools, COVAMOF, PLUM, and FaMa, address differ-

ent aspects of variability management as they provide automatic support for

managing, configuring, and testing feature models with other related software

artifacts. The commercial tool pure::variants is a variability management suite

that evolves from the original FODA feature model to support the problem and

solution spaces for describing variant configurations.

Preface vii

http://dx.doi.org/10.1007/978-3-642-36583-6_1
http://dx.doi.org/10.1007/978-3-642-36583-6_2
http://dx.doi.org/10.1007/978-3-642-36583-6_3
http://dx.doi.org/10.1007/978-3-642-36583-6_4
http://dx.doi.org/10.1007/978-3-642-36583-6_5
http://dx.doi.org/10.1007/978-3-642-36583-6_6
http://dx.doi.org/10.1007/978-3-642-36583-6_5
http://dx.doi.org/10.1007/978-3-642-36583-6_6
http://dx.doi.org/10.1007/978-3-642-36583-6_7
http://dx.doi.org/10.1007/978-3-642-36583-6_8
http://dx.doi.org/10.1007/978-3-642-36583-6_9
http://dx.doi.org/10.1007/978-3-642-36583-6_12


Part III shows the most practical viewpoint of the book as we collect three

different industry cases on how variability is managed in real industry projects.

Chapter 13 provides the view of Philips Healthcare Systems where product line

engineering is used extensively to manage the complexity and the diversity of the

Philips systems that rely on C&V and configuration properties of the Philips

Software Product Line (SPL). In Chap. 14 Toshiba researchers use a product line

strategy to describe the variability in power plants software for managing an

automatic control system where complex rules model the relationships between

events, conditions, and actions. Chapter 15 from BigLever Software focuses on

Second Generation Product Line Engineering (2GPLE) activities and tools and

applied to an industrial case at General Motors. In this chapter we can discover the

differences between traditional SPLE activities (first generation) and those

suggested for a second generation (2GPLE), where variability is described and

managed consitently and traceable across the full engineering life cycle and con-

figuration management is simplified.

Part IV concludes the book and encompasses six different chapters focused on

emerging topics about software variability that, currently, are under research. The

diversity of topics include dynamic software product lines, variability in autonomic

computing and web services, the relationship and role of variability in service-

oriented product lines, the impact and use of design decisions in conjunction with

variability models, and finally, how variability is realized using aspect orientation.

We believe that there are more interesting research topics that can be discussed with

more detail, but this part of the book provides and suggests the readers current and

future trends where variability can be applied to manage the diversity of products in

different types of systems or how other software engineering techniques can be also

applied with variability models and vice versa.

As authors and editors, we feel that the book presents an important contribution

both to the industrial practice of software product lines and software engineering

more broadly and to the software engineering research community. We have strived

to capture the current state of the art and state of practice in the chapters and to

indicate important, open research challenges as well as pitfalls for industrial

practitioners to be aware of. We hope that the book can serve as a platform for

the community of researchers and practitioners in software variability management,

allowing the community to develop the next set of solutions, techniques, and

methods to address this complicated and yet fascinating field in software

engineering.

Madrid, Spain Rafael Capilla

Gothenburg, Sweden Jan Bosch

Pohang, Republic of Korea Kyo-Chul Kang

January 2013

viii Preface

http://dx.doi.org/10.1007/978-3-642-36583-6_13
http://dx.doi.org/10.1007/978-3-642-36583-6_14
http://dx.doi.org/10.1007/978-3-642-36583-6_15


http://www.springer.com/978-3-642-36582-9


