Preface

There are several books on product line engineering, but most of these books either
introduce specific product line techniques or include brief summaries of industrial
cases or researches. From these sources, it is difficult to gain a comprehensive
understanding of the various dimensions and aspects of software variability that
product line engineering practitioners and researchers must understand. The book
aims to address this gap by providing a comprehensive reference on the notion of
variability modeling in the context of software product line engineering, to give an
overview of the techniques proposed for variability modeling, and to give a general
perspective on software variability management. We believe that practitioners as
well as researchers and computer science students will gain a new insight into
software, software engineering, and variability in product line engineering.

The most important attribute of software is the “softness” of software, i.e., software
that is easy (cost-effective) to modify and adapt to evolving requirements or changing
operating environments, easy to port on different hardware or software platforms, and
easy to reuse for development of similar applications. The “softness” of software
cannot be attained without engineering it into software. In order to “embed” softness
into software, we need to understand the “space” of the commonality and variability of
a family of related systems (i.e., a product line) and its evolution, and then organize and
codify the knowledge gathered as a commonality and variability model. With this
understanding, we can engineer software applying various design principles and
embedding variation points that can later be bound with variants.

Once the initial variability of a software product line has been established and
implemented, the focus shifts towards evolution of the provided variability in
response to changes in the variability required from the software product line. Over
time, new products are added to a product line, old products are removed, and the
functionality that used to be highly differentiating and only used in the high-end
products of the product line commodities is included in all products, removing the
need for variation points. Thus, during evolution, the focus of variability management
is as much on removing unnecessary variability as it is on adding new variation points
in response to new needs. The focus on removing variability is important as the
complexity of hundreds or thousands of variation points can easily become unwieldy.



vi Preface

One aspect contributing to the complexity of software variability management is
the dependencies between variation points and between the variants available at
each variation point. Where industrial software product lines frequently hold well
over 1,000 variation points, the total number of variants is even larger. The variants
cannot be freely selected independent of all other selected variants, but instead there
are dependencies that need to be respected. This leads to a situation where the
number of variation points is over a thousand, the number of variants a multiple of
that, and the number of dependencies between variants and between variation
points is of a similar or larger number. This explains the importance of intentional
management of software variability: even though the inherent complexity of
variability is already quite high, the total complexity easily becomes unmanageable
if not kept under control.

A final factor increasing the importance of software variability is concerned with
later binding of software variation points. Traditional pre-deployment configuration
of products allows for testing of the specific configuration as a safety net for
avoiding inconsistent configurations. However, run-time dynamicity is increasing
in importance for virtually all software-intensive systems. In those situations,
testing of the resulting configuration after a run-time change is complicated and
often only the most basic of system integrity is verified. The trend towards late
binding is indicative of the importance of software variability management even
outside the traditional area of software product lines and is now becoming impor-
tant for large software products that have significant installation time, startup time,
and run-time configuration taking place. Consequently, proper management of
variability avoiding inconsistent configurations at run-time through the use of
first-class models is particularly important.

Above, we have raised four reasons to stress the importance of software
variability management, i.e., modeling multiple products in a product line, evolu-
tion, complexity, and the shift towards later, even run-time, binding of variation
points. As is illustrated in the industrial experiences part of the book, there are no
theoretical problems without any bearing on industrial practice, but rather
challenges originating in industrial practice that the software engineering research
community has responded to. In our experience, mature software product lines may
have ten thousand variation points or more and the number of legal configurations
of products in the product line may number in the millions. Also, in our writing of
the book and the interaction with contributing authors, we are increasingly becom-
ing convinced that software variability management is evolving into a field of its
own, rather than a subfield of software product lines. In all systems where configu-
ration and run-time dynamism are important, software variability management
offers a powerful toolbox to deal with the resulting complexity, independent of
the system being part of a software product line or not.

From a software engineering research perspective, software variability manage-
ment represents a complex, multifaceted problem that intersects with several
traditional topics, including, among several others, software configuration manage-
ment, run-time dynamism, domain specific languages, modeling, and software
architecture. The field has borrowed techniques from these traditional fields, but
in return also contributes back with new insights, approaches, and techniques.



Preface vii

The book is organized in four main parts which guide the reader into the various
aspects and dimensions on software variability. Each chapter briefly summarizes
“What you will learn in this chapter”; so expert and non-expert? Readers can easily
locate what topics they will find, but it also describes areas of practice for the
applicability of the concepts explained.

In Part I, we intentionally drive the reader to the major topics on software
variability modeling, but as we do not have a specific chapter for variability
management, the chapters included in this part should be seen as different sides
of the management perspective. First, we introduce the paradigm of software
product line engineering in Chap. 1, where Product Line Engineering is compared
with traditional Software Engineering and the role of software variability manage-
ment is highlighted for the current practice of product lines. We then explore
various dimensions of commonality and variability (C&V) in Chaps. 2 and 3,
separating C&V modeling into problem and solution space modeling, and
constraints specification. Managing traceability between various C&V models
and the notion of variability in time and space is also discussed. The dimension
of feature binding time, the implications of deciding a specific binding time, and its
importance for the software development life cycle are discussed in Chap. 4, which
also provides a renewed taxonomy of different binding times. Chapters 5 and 6
describe ways to implement and configure software variability. In Chap. 5 we
outline from a high-level perspective various mechanisms for implementing soft-
ware variability, and how variability implementation mechanisms affect the archi-
tecture, components, and code levels. We did not go into the specific
implementation details as many of the mechanisms described in the chapter depend
on the programming language selected. Once product line variability is embedded
into the product line asset (code) using various mechanisms, we should be able to
configure products from the asset. Chap. 6 focuses on processes of product deriva-
tion activities for pre- and post-deployment times, with special mention of the
configuration tasks of software products at run-time and reconfiguration activities.
Because of the complexity of C&V models and complex interrelationships among
them, visualizing the relationships between modeling elements is useful and
enhances understandability and maintainability. Techniques for visualization are
discussed in Chap. 7. Finally, we conclude this part of the book in Chap. 8 with a
description on how different life-cycle products are related to each other in terms of
variability when feature models are considered a first-class artifact for any product
line engineering process.

Part II of the book describes an overview of research and commercial tools, from
Chaps. 9-12. Three research tools, COVAMOF, PLUM, and FaMa, address differ-
ent aspects of variability management as they provide automatic support for
managing, configuring, and testing feature models with other related software
artifacts. The commercial tool pure::variants is a variability management suite
that evolves from the original FODA feature model to support the problem and
solution spaces for describing variant configurations.


http://dx.doi.org/10.1007/978-3-642-36583-6_1
http://dx.doi.org/10.1007/978-3-642-36583-6_2
http://dx.doi.org/10.1007/978-3-642-36583-6_3
http://dx.doi.org/10.1007/978-3-642-36583-6_4
http://dx.doi.org/10.1007/978-3-642-36583-6_5
http://dx.doi.org/10.1007/978-3-642-36583-6_6
http://dx.doi.org/10.1007/978-3-642-36583-6_5
http://dx.doi.org/10.1007/978-3-642-36583-6_6
http://dx.doi.org/10.1007/978-3-642-36583-6_7
http://dx.doi.org/10.1007/978-3-642-36583-6_8
http://dx.doi.org/10.1007/978-3-642-36583-6_9
http://dx.doi.org/10.1007/978-3-642-36583-6_12

viii Preface

Part III shows the most practical viewpoint of the book as we collect three
different industry cases on how variability is managed in real industry projects.
Chapter 13 provides the view of Philips Healthcare Systems where product line
engineering is used extensively to manage the complexity and the diversity of the
Philips systems that rely on C&V and configuration properties of the Philips
Software Product Line (SPL). In Chap. 14 Toshiba researchers use a product line
strategy to describe the variability in power plants software for managing an
automatic control system where complex rules model the relationships between
events, conditions, and actions. Chapter 15 from BigLever Software focuses on
Second Generation Product Line Engineering (2GPLE) activities and tools and
applied to an industrial case at General Motors. In this chapter we can discover the
differences between traditional SPLE activities (first generation) and those
suggested for a second generation (2GPLE), where variability is described and
managed consitently and traceable across the full engineering life cycle and con-
figuration management is simplified.

Part IV concludes the book and encompasses six different chapters focused on
emerging topics about software variability that, currently, are under research. The
diversity of topics include dynamic software product lines, variability in autonomic
computing and web services, the relationship and role of variability in service-
oriented product lines, the impact and use of design decisions in conjunction with
variability models, and finally, how variability is realized using aspect orientation.
We believe that there are more interesting research topics that can be discussed with
more detail, but this part of the book provides and suggests the readers current and
future trends where variability can be applied to manage the diversity of products in
different types of systems or how other software engineering techniques can be also
applied with variability models and vice versa.

As authors and editors, we feel that the book presents an important contribution
both to the industrial practice of software product lines and software engineering
more broadly and to the software engineering research community. We have strived
to capture the current state of the art and state of practice in the chapters and to
indicate important, open research challenges as well as pitfalls for industrial
practitioners to be aware of. We hope that the book can serve as a platform for
the community of researchers and practitioners in software variability management,
allowing the community to develop the next set of solutions, techniques, and
methods to address this complicated and yet fascinating field in software
engineering.

Madrid, Spain Rafael Capilla
Gothenburg, Sweden Jan Bosch
Pohang, Republic of Korea Kyo-Chul Kang

January 2013


http://dx.doi.org/10.1007/978-3-642-36583-6_13
http://dx.doi.org/10.1007/978-3-642-36583-6_14
http://dx.doi.org/10.1007/978-3-642-36583-6_15

2 Springer
http://www.springer.com/978-3-642-36582-9

Systems and Software Variability Management
Concepts, Tools and Experiences

Capilla, R.; Bosch, |.; Kang, K.-C. (Eds.)

2013, XMV, 317 p., Hardcover

ISBN: 978-3-642-36582-9



