
Chapter 1
Crystal Bonding

Abstract The bonding of atoms is described as function of the electrostatic forces,
covalent bonding, mixed bonding van der Waals bonding hydrogen and metallic
bonding, and Born repulsion, yielding equilibrium distance and ionic or atomic radii
that are tabulated. Repulsive potential softness parameters and Mohs hardness are
tabulated Close packing of ions/atoms determine ordering preferences. Compress-
ibility and Madelung constants, lattice constants and bond length are discussed and
tabulated (Table 1.2). Electronegativity, ionicity and effective charges for numerous
AB-compounds are listed. Atomic electron density profiles are given.

The bonding of atoms in semiconductors has primary influence of forming the
lattice of any solar cell and is accomplished by electrostatic forces and by the
tendency of atoms to fill their outer shells. Interatomic attraction is balanced
by short-range repulsion due to strong resistance of atoms against interpenetra-
tion of core shells. The knowledge of the detail of this interaction is not only
of help for selecting most appropriate materials for solar cells but also for judg-
ing about the ease of incorporation of desirable crystal defects and avoiding oth-
ers.

The different types of the bonding of condensed matter (solids) will be reviewed,
irrespective of whether they are crystalline or amorphous.

The formation of solids is determined by the interatomic forces and the size of
the atoms shaping the crystal lattice. The interatomic forces are composed of a far-
reaching attractive and a short-range repulsive component, resulting in an equilib-
rium distance of vanishing forces at an interatomic distance re , at which the po-
tential energy shows a minimum (Fig. 1.1). In Binary compounds, this equilibrium
distance re can be written as the sum of atomic radii

re = rA + rB , (1.1)

where rA and rB are characteristic for the two atoms A and B (Fig. 1.2).
Attractive interatomic forces are predominantly electrostatic (e.g., in ionic,

metallic, van der Waals, and hydrogen bonding) or are a consequence of sharing va-
lence electrons to fill their outer shells, resulting in covalent bonding. Most materials
show mixed bonding, i.e., at least two of these bond types contribute significantly
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4 1 Crystal Bonding

Fig. 1.1 Interaction potential (a) and forces (b) between two atoms; re is the equilibrium distance;
Ec is the bonding energy at r = re

to the interatomic interaction. In the better compound semiconductors, the mixed
bonding is more covalent and less ionic. In other semiconductors, one of the other
types of bonding may contribute, e.g., van der Waals bonding in organic crystals,
and metallic bonding in highly conductive semiconductors.

The repulsive interatomic forces, called Born forces (see Born and Huang 1954),
are caused by a strong resistance of the electronic shells of atoms against interpen-
etration. The repulsive Born potential is usually modeled with a strong power law1

eV (r) =
β

rm
with m � 10, . . . , 12. (1.3)

1.1 Ionic Bonding

Ionic bonding is caused by Coulomb attraction between ions. Such ions are formed
by the tendency of atoms to complete their outer shells. This is most easily accom-
plished by compounds between elements of group I and group VII of the periodic
system of elements; here one electron needs to be exchanged. The bonding is then
described by isotropic (radial-symmetric) nonsaturable Coulomb forces attracting

1A better fit for the Born repulsion is obtained by the sum of a power and an exponential law:

VBorn =
β

rm
+ γ exp

(
− r

r0

)
. (1.2)

r0 is the softness parameter, listed for ions in Table 1.7. For more sophisticated repulsion poten-
tials, see Shanker and Kumar (1987). β is the force constant (see Eq. (1.1)) and m is an empirical
exponent. For ionic crystals the exponent m lies between 6 and 10.
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Fig. 1.2 Na+ anion and Cl−
cation shown as hard spheres
in actual ratio of radii

as many Na+ ions as space permits around each Cl− ion, and vice versa, while
maintaining overall neutrality. This results in a closely packed NaCl lattice with a
coordination number 6 (= number of nearest neighbors).

The energy gain between two ions can be calculated from the potential equation

eV = − e2

4πε0r
+

β

rm
for r = re, (1.4)

containing Coulomb attraction and Born repulsion. For an equilibrium distance re =
rNa++rCl− = 2.8 Å results2 in a minimum of the potential energy of eVmin ∼ −5 eV
for a typical value of m= 9.

In a crystal we must consider all neighbors. For example, in an NaCl lattice, six
nearest neighbors exert Coulomb attraction in addition to 12 next-nearest neighbors
of equal charge exerting Coulomb repulsion, etc. This alternating interaction results
in a summation that can be expressed by a proportionality factor A in the Coulomb
term of Eq. (1.4), the Madelung constant (Madelung 1918).

For the NaCl crystal structure it follows

A =
6√
1

− 12√
2
+

8√
3

− 6√
4
+

25√
5

− · · ·+ · · · , (1.5)

where each term presents the number of equidistant neighbors in the numerator
and the corresponding distance (in lattice units) in the denominator. This series is
only slowly converging. Ewald’s method (the theta-function method) is powerful
and facilitates the numerical evaluation of A. For NaCl, we obtain from (Madelung
1918; Born and Lande 1918):

eV = −A
e2

4πε0re
+

β ′

rm
e

(1.6)

with A = 1.7476, a lattice binding energy of eV A
min = H 0(NaCl) = 7.948 eV, com-

pared to an experimental value of 7.934 eV. Here β ′ and m are empirically obtained

2β can be eliminated from the minimum condition {dV/dr|re = 0}. One obtains β = e2rm−1
e /

(4πε0m) and as cohesive energy eVmin = −e2(m − 1)/(4πε0mre ).
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Table 1.1 Madelung
constant for a number of
crystal structures

Crystal structure Madelung constant

NaCl 1.7476

CsCl 1.7627

Zinc-blende 1.6381

Wurtzite 1.6410

CaF2 5.0388

Cu2O 4.1155

TiO2 (Rutile) 4.8160

Fig. 1.3 Total charge contour
plot of the O2 molecule (after
Cotton and Wilkinson 1979).
Copyright Pergamon Press

from the observed lattice constant and compressibility. The Madelung constant is
listed for several AB-compounds in Table 1.1 (see Sherman 1932).

The Born-Haber cycle is an empirical process of obtaining the lattice energy, i.e.,
the binding energy per mole. The process starts with the solid metal and gaseous
halogen, and adds the heat of sublimation Wsubl(Na) and the dissociation energy
(1/2)Wdiss(Cl); it further adds the ionization energy Wion(Na) and the electron affin-
ity Welaff(Cl) in order to obtain a diluted gas of Na+ and Cl− ions; all of these
energies can be obtained experimentally. These ions can be brought together from
infinity to form the NaCl crystal by gaining the unknown lattice energy H 0 (NaCl).
This entire sum of processes must equal the heat of formation W 0 (NaCl) which can
be determined experimentally (Born 1919; Haber 1919):

W 0
solid(NaCl) =

{
Wsubl(Na)+Wion(Na)+

1

2
Wdiss(Cl2)+Welaff(Cl)

}

+H 0(NaCl). (1.7)

A minor correction of an isothermal compression of NaCl from p = 0 to p = 1 (atm),
heating it from T = 0 K to room temperature, and an adiabatic expansion of the ion
gases to p = 0 has been neglected. The corresponding energies almost cancel. The
error is <1 %.

1.2 Covalent Bonding

Covalent bonding is caused by two electrons that are shared between two atoms:
they form an electron bridge as shown in Fig. 1.3 for a diatomic oxygen molecule.
This bridge formation can be understood quantum-mechanically by a nonspherical
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Table 1.2 Lattice constants (a in Å) and ratio of lattice constants c/a for simple predominantly
ionic AB compounds (after Weissmantel and Hamann 1979)a

NaCl Structure CsCl Structure Zinc-blende Wurtzite c/a

AgF 4.93 NaBr 5.973 BaS 6.363 AlP 5.431 AgI 4.589 1.63

AgCl 5.558 NaCl 6.433 CsCl 4.118 AlAs 5.631 AlN 3.110 1.60

AgBr 5.78 PbS 5.935 CsBr 4.296 AlSb 6.142 BeO 2.700 1.63

BaO 5.534 PbSe 6.152 CsI 4.571 BeS 4.86 CdS 4.139 1.62

BaS 6.363 PbTe 6.353 TiI 4.206 BeSe 5.08 CdSe 4.309 1.63

BaSe 6.633 RbF 5.651 TICI 3.842 BeTe 5.551 GaN 3.186 1.62

BaTe 7.000 RbCl 6.553 TiBr 3.978 CSi 4.357 InN 3.540 1.61

CaO 4.807 RbBr 6.868 TiI 4.198 CdS 5.832 MgTe 4.529 1.62

CaS 5.69 RbI 7.341 NH4Cl 3.874 CdSe 6.052 MnS 3.984 1.62

CaSe 5.992 SnAs 5.692 NH4Br 4.055 CdTe 6.423 MnSc 4.128 1.63

CaTe 6.358 SnTe 6.298 NH4I 4.379 CuF 4.264 TaN 3.056 –

CdO 4.698 SrO 5.156 TiNO3 4.31 CuCl 5.417 ZnO 3.249 1.60

KF 5.351 SrS 5.582 CsCN 4.25 CuBr 5.091 ZnS 3.819 1.64

KCl 6.283 SrSe 6.022 GaP 5.447 NH4F 4.399 1.60

KBr 6.599 SrTe 6.483 GaAs 5.646

KI 7.066 TaC 4.454 GaSb 6.130

LiF 4.025 TiC 4.329 HgSe 6.082

LiCl 5.140 TiN 4.244 HgTe 6.373

LiBr 5.501 TiO 4.244 InAs 6.018

LiI 6.012 VC 4.158 InSb 6.474

MgO 4.211 VN 4.137 MnS 5.611

MgS 5.200 VO 4.108 MnSe 5.832

MgSe 5.462 ZrC 4.696 ZnS 5.423

NaF 4.629 ZrN 4.619 ZnSe 5.661

NaCl 5.693 ZnTe 6.082

aFor explanation of the different crystal structures see Chap. 2

electron density distribution extending between the bonded atoms. Examples of such
density distributions are shown in Fig. 1.3 for an O2 molecule and schematically in
Fig. 1.4 for a molecule formation with electrons in a 1s or 2p state, e.g., for H2
or F2, respectively.

If an approaching atom of the same element has in its protruding part of the
electron density distribution an unpaired electron with antiparallel spin, both eigen-
functions may overlap; the Pauli principle is not violated.

Their combined wave function (Ψ+ = ΨA + ΨB ) yields an increased electron
density Ψ 2 in the overlap region (see Fig. 1.5a); the result is an attractive force
between these two atoms in the direction of the overlapping eigenfunctions. This is
the state of lowest energy of the two atoms, the bonding state.
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Fig. 1.4 Atomic and molecular electron density distribution for σ(s), σ(p), and π(p) bond-
ing—see Weissmantel and Hamann (1979)

Fig. 1.5 Wavefunctions of
one-electron states [dashed
curves—identical in (a) and
(b)] and probability function
to find one electron (solid
curves) in (a), a bonding
state, and (b), an antibonding
state, showing finite and
vanishing electron density at
the center between atoms A
and B for these two states,
respectively [observe the
plotting of −ψB in (b)]. The
picture of these two
one-electron states shown
here shall not be confused
with the two-electron
potential given in Fig. 1.6

There is also a state of higher energy, the antibonding state, with Ψ− =
ΨA − ΨB in which the spin of both electrons is parallel. Here the electrons are
repulsed because of the Pauli principle, and the electron clouds cannot penetrate
each other; the electron density between both atoms vanishes (Fig. 1.5b). The re-
sulting potential distribution as a function of the interatomic distance between two
hydrogen atoms forming an H2 molecule is given in Fig. 1.6, with both the bonding
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Fig. 1.6 Potential energy for
the two valence electrons of
two covalently bound
hydrogen atoms approaching
each other; (upper curve)
antibonding state; (lower
curve) bonding state; (middle
curve) from free atom charge
distribution bonding. Charge
density distributions shown in
the insert are for the two
covalent states (after Kittel
1986 © John Wiley & Sons,
Inc.)

Fig. 1.7 Linear combination
(hybridization) of a 1s

function (spherical) with 3p

functions (a) results in four
sp3 functions (b) which
extend towards the four
tetrahedra axes 1–4, and
result in strongly directional
bonding with a bond angle
of 109.47◦

Table 1.3 Bond lengths
relevant to organic molecules
α-Si and related
semiconductors

Bond Bond length (Å) Bond Bond length (Å)

C–C 1.54 Si–Si 2.35

C=C 1.38 Si–H 1.48

C=C 1.42 (graphite) Ge–Ge 2.45

C≡C 1.21 Ge–H 1.55

C–H 1.09 (sp3) C–Si 1.87

(S) and the excited, anti-bonding state (A) shown. The figure also contains as center
curve the classical contribution of two H-atoms with a charge density of free atoms:
Such bonding is small compared with the covalent bonding shown in Table 1.3.

The bond length (center-to-center distance) between C-atoms in organic molecul-
es decreases with increasing bonding valency as Other bond lengths typical for or-
ganic or similar molecules are also listed.
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Fig. 1.8 (a) Unit cell of
diamond with pairs of
electrons indicated between
adjacent atoms; (b) electron
density profile within the
(110) plane (after Dawson
1967)

Fig. 1.9 (a) Electroneg-
ativity of the elements with
groups from the periodic
table of elements identified
by interconnecting lines;
(b) ionicity of alkali halides
and halide molecules as a
function of the difference
in electronegativity (after
Pauling 1960)

With additionally missing unpaired electrons in the outer shell, more than one
atom of the same kind can be bound to each other. The number of bonded atoms
is given by the following valency: monovalent atoms can form only diatomic
molecules; divalent atoms, such as S or Se, can form chains; and trivalent atoms,
such as As, can form two-dimensional (layered) lattices. Solids are formed from
such elements by involving other bonding forces between the molecules, chains, or
layers, e.g., van der Waals forces—see Sect. 1.5. Only tetravalent elements can form
three-dimensional lattices which are covalently bound (e.g., Si).
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1.2.1 Tetrahedrally Bound Elements

Silicon has four electrons in its outer shell. In the ground state of an isolated atom,
two of the electrons occupy the s-state and two of them occupy p-states, with a
2s22p2 configuration. By investing a certain amount of promotion energy,3 this
s2p2-configuration is changed into an sp3-configuration, in which an unpaired elec-
tron sits in each one of the singly occupied orbitals with tetrahedral geometry (see
Fig. 1.7).

From the s-orbital and the three p-orbitals, four linear combinations can be
formed, represented as σi = 1/2(ϕs +ϕpx ±ϕpy ±ϕpz), depending upon the choice
of signs.

This is referred to as hybridization, with σi as the hybrid function responsible
for bonding. When we bring together a large number of Si atoms, they arrange
themselves so that each of them has four neighbors in tetrahedral geometry as shown
in Fig. 1.9. Each atom then forms four electron bridges to its neighbors, in which
each one is occupied with two electrons of opposite spin, as shown for the center
atom in Fig. 1.8a. Such bridges become evident in a density profile within the (110)
plane shown for two adjacent unit cells in Fig. 1.8b.

In contrast to the ionic bond, the covalent bond is angular-dependent, since the
protruding atomic eigenfunctions extend in well-defined directions. Covalent bond-
ing is therefore a directional and saturable bonding; the corresponding force is
known as a chemical valence force, and acts in exactly as many directions as the
valency describes.

1.3 Mixed Bonding

Crystals that are bonded partially by ionic and partially by covalent forces are re-
ferred to as mixed-bond crystals. Most semiconductors have a fraction of covalent
and ionic bonding components (see, e.g., Mooser and Pearson 1956).

1.3.1 Tetrahedrally Bonded Binaries

By using the Grimm-Sommerfeld rule (see below) for isoelectronic rows of ele-
ments, Welker and Weiss (1954) predicted desirable semiconducting properties for
III–V compounds.4

3The promotion energy is 4.3, 3.5, and 3.3 eV for C, Si, and α-Sn, respectively. However, when
forming bonds by establishing electron bridges to neighboring atoms, a substantially larger energy
is gained, therefore resulting in net binding forces. Diamond has the highest cohesive energy in
this series, despite the fact that its promotion energy is the largest because its sp3–sp3 C–C bonds
are the strongest (see Harrison 1980).
4Meaning compounds between one element of group III and one element of group V on the peri-
odic system of elements.
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Table 1.4 Static effective
charges of partially covalent
AB-compounds (after
Coulson et al. 1962)

Compound e∗/e Compoud e∗/e

ZnO 0.60 BN 0.43

AlN 0.56

GaN 0.55

InN 0.58

ZnS 0.47 BP 0.32

CdS 0.49 AlP 0.46

HgS 0.46 GaP 0.45

InP 0.49

ZnSe 0.47 AlAs 0.47

CdSe 0.49 GaAs 0.46

HgSe 0.46 InAs 0.49

ZnTe 0.45 AlSb 0.44

CdTe 0.47 GaSb 0.43

HgTe 0.49 InSb 0.46

Semiconducting III–V and II–VI compounds are bound in a mixed bonding, in
which electron bridges exist, i.e., the bonding is directed, but the electron pair form-
ing the bridge sits closer to the anion. This degree of ionicity increases for these
compounds with an increased difference in electronegativity (Fig. 1.9) from III–V
to I–VII compounds and within one class of compounds, e.g., from RbI to LiF—
see also Table 1.4. The mixed bonding may be expressed as the sum of the wave
functions describing covalent and ionic bonding

ψ = aψcov + bψion (1.8)

with the ratio b/a defining the ionicity of the bonding. This bonding can also be
described as rapidly alternating between that of covalent and ionic. Over an average
time period, a fraction of ionicity (b/a) results. The ionicity of the bonding can
be described by a static effective ion charge e·, as opposed to a dynamic effective
ion charge, which is less by a fraction on the order of b/a than in a purely ionic
compound with the charge given by the valency.

The static effective charge for other II–VI and III–V compounds is given in Ta-
ble 1.4.

The effective charge concept can be confusing if one does not clearly identify
the ionic state of the system. For instance, in the case of CdS, a purely ionic state
is Cd++S−−, as opposed to the covalent state of Cd−−S++ (which is equivalent
to the SixSix -configuration). In other words, the covalent state is that in which both
Cd and S have four valence electrons and are connected to each other by a double
bond. This must not be confused with the neutral CdxSx configuration, which is a
mixed-bonding state.



1.3 Mixed Bonding 13

Fig. 1.10 Schematic sketch
of mixed bonding from nearly
perfect covalent (a) in Ge to
perfect ionic (d) in KCl it
shows diminishing bridge
formation and increasing
cloud formation of electrons
around anions with increasing
ionicity (after Ashcroft and
Mermin 1976). For instance,
in CdS the divalent behavior
of Cd and S could result in a
doubly charged Cd++S−−
lattice, while measurements
of the electric dipole moment
indicate an effective charge of
0.49 for CdS

Fig. 1.11 Electron density distribution obtained by Fourier analysis of X-ray diffraction pattern
of (a) NaCl and (b) diamond (after Brill et al. 1942)

The expression for the static effective charge (see Coulson et al. 1962) is

e∗

e
=

N(a/b)2 − (8 − N)

1 + (a/b)2
, (1.9)
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Table 1.5 Ionic radii ri and
half the nearest-neighbor
distances in metals rm in Å
(after Ashcroft and Mermin
1976)

Metal ri rm rm/ri Transition

Metal ri rm rm/ri

Li 0.60 1.51 2.52 Cu 0.96 1.28 1.33

Na 0.95 1.83 1.93 Ag 1.26 1.45 1.15

K 1.33 2.26 1.70 Au 1.37 1.44 1.05

Rb 1.48 2.42 1.64

Cs 1.69 2.62 1.55

with N as the valency. For N = 2, the effective charge vanishes when a/b =
√

3.
For N = 3 in III–V compounds, e∗ vanishes when a/b =

√
5/3, and for group IV

semiconductors when a = b.
In crystals, low coordination numbers (typically 4) signify a considerable cova-

lent contribution to the bonding.
The different degree of bridge formation in crystals with mixed bonding

(Fig. 1.10) can be made visible by a Fourier analysis of X-ray diffraction from
which the electron density distribution around each atom can be obtained. This is
shown for a mostly ionic crystal in Fig 1.11a and for a mostly covalent crystal
in Fig. 1.11b.

1.4 Metallic Bonding (Delocalized Bonding)

Metallic bonding can be understood as a collective interaction of a mobile electron
fluid with metal ions. Metallic bonding occurs when the number of valence electrons
is only a small fraction of the coordination number; then neither an ionic nor a
covalent bond can be established.

Metallic bonding of simple metals, e.g., alkali metals, can be modeled by as-
suming that each metal atom has given up its valence electron, forming a lattice
of positively charged ions, submerged in a fluid of electrons. Between the repul-
sive electron–electron and ion–ion interactions and the attractive electron-ion in-
teraction, a net attractive binding energy results, which is nondirectional and not
saturable, and results in close-packed structures with high coordination numbers
(8 or 12; Wigner and Seitz 1933), but relatively wide spacing between the sub-
merged metal ions (Table 1.5). Such metals have low binding energies (∼1 eV/atom)
and high compressibility. They are mechanically soft, since the nondirectional
lattice-forces exert little resistance against plastic deformation. This makes metals
attractive for forming and machining.

In other metals, such as transition group elements, the bonding may be described
as due to covalent bonds which rapidly hop from atom pair to atom pair. Again, free
electrons are engaged in this resonance-type bonding. These metals have a higher
binding energy of ∼4 to 9 eV/atom and an interatomic distance that is closer to the
one given by the sum of ionic radii (Table 1.5). They are substantially harder when
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Fig. 1.12 Hydrogen bonding
between a positive hydrogen
ion (proton) and two ions
(coordination number 2)

located in the middle of the transition metal row, e.g., Mo and W (Ashcroft and
Mermin 1976).

In semiconductors with a very high density of free carriers, metallic binding
forces may contribute a small fraction to the lattice bond, interfering with the pre-
dominant covalent bonding and usually weakening it, since these electrons are ob-
tained by ionizing other bonds. Changes in the mechanical strength of the lattice
can be observed in photoconductors in which a high density of free carriers can be
created by light (Gorid’ko et al. 1961).

For more information, see Ziman (1969) and Harrison (1966).

1.5 Van der Waals Bonding

Noble gas atoms or molecules with saturated covalent bonds can be bound to each
other by dipole-dipole interaction (Debye). The dipole is created between the nu-
cleus (nuclei) of the atom (molecule) and the cloud of electrons moving around
these nuclei, and forms a fluctuating dipole moment even for a spherically symmet-
rical atom. The interaction creates very weak, nonsaturable attractive forces. This
results in low melting points and soft molecule crystals. The bonding energy can be
approximated by

eV = −αa

r6
+

αr

r12
. (1.10)

Van der Waals forces are the main binding forces of organic semiconductors (van der
Waals 1873).

1.6 Hydrogen Bonding

Hydrogen bonding (Fig. 1.12) is a type of ionic bonding in which the hydrogen atom
has lost its electron to another atom of high electronegativity. The remaining proton
establishes a strong Coulomb attraction. This force is not saturable. However, be-
cause of the small size of the proton, hydrogen bonding is strongly localized, and
spatially no more than two ions have space to be attracted to it. When part of a
molecule, the hydrogen bond—although ionic in nature—fixes the direction of the
attached atom because of space consideration. It should not, however, be confused
with the covalent bonding of hydrogen that occurs at dangling bonds in semicon-
ductors, e.g., at the crystallite interfaces of polycrystalline Si or in amorphous Si:H.
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1.7 Intermediate Valence Bonding

An interesting group of semiconductors are transition metal com- pounds. The tran-
sition metals have partially filled inner 3d , 4d , 5d , or 4f shells and a filled outer
shell that provides a shielding effect to the valence electrons. In these compounds
the crystal field has a reduced effect. Some of these compounds show intermedi-
ate valence bonding. The resulting unusual properties range from resonant valence
exchange transport in copper-oxide compounds (Anderson 1987; Anderson et al.
1987) to giant magnetoresistance and very large magneto-optical effects in rare-
earth semiconductors. For a review, see Holtzberg et al. (1980).

1.8 Other Bonding Considerations

Other, more subtle bonding considerations have gained a great deal of interest be-
cause of their attractive properties. These are related to magnetic and special dielec-
tric properties, to superconductivity, as well as to other exotic effects.

For instance, dilute semimagnetic semiconductors such as the alloy Cd1−ς Mnς Te
(Furdnya 1982, 1986; Brandt and Moshchalkov 1984; Wei and Zunger 1986; Goede
and Heitnbrodt 1988) show interesting magneto-optical properties. They change
from paramagnetic (ς < 0.17) to antiferromagnetic (0.6 < ς ) to the ferro- or anti-
ferromagnetic behavior of MnTe; exhibit giant magneto-optical effects and bound
magnetic polarons; and offer opportunities for optoelectric devices that are tunable
by magnetic fields.

These materials favor specific structures and permit the existence of certain
quasi-particles, such as small polarons or Frenkel excitons. These discussions re-
quire a substantial amount of understanding of the related physical effects, and are
therefore postponed to a more appropriate section of this book (see also Phillips
1973; Harrison 1980; Ehrenreich 1987).

1.9 Atomic and Ionic Radii

The equilibrium distances between atoms in a crystal define atomic radii when as-
suming that hard-sphere atoms touching each other. In reality, however, these radii
are soft with some variation of the electronic eigenfunctions and, for crystals with
significant covalent fraction they depend on the angular atomic arrangement. How-
ever, for many crystals the hard-sphere radii are useful for most lattice estimates.

When comparing the lattice constants of chemically similar crystals, such as
NaCl, NaBr, KCl, and KBr, one can determine the radii of the involved ions (Na+,
K+, Cl−, and Br−) if at least one radius is known independently. Goldschmidt
(1927) used the radii of F− and O−− for calibration. Consequent listings of other
ionic radii are therefore referred to as Goldschmidt radii. These radii are indepen-
dent of the compound in which the atoms are incorporated as long as they exhibit
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Table 1.6 Covalent (effective ionic charge e· = 0) and standard ionic (identified by ±e·) radii in Å

e· +1 0 +2 0 +3 0

Li 0.68 1.34 Be 0.30 0.90 B 0.16 0.88

Na 0.98 1.54 Mg 0.65 1.30 Al 0.45 1.26

K 1.33 1.96 Ca 0.94 1.74 Sc 0.68

Cu 0.96 Zn 0.74 1.31 Ga 0.62 1.26

Rb 1.48 Sr 1.10 Y 0.88

Ag 1.26 Cd 0.97 1.48 In 0.81 1.44

Cs 1.67 Ba 1.2 La 1.04

Au 1.37 Hg 1.10 1.48 Tl 0.95 1.47

+4 0 −4 0 −3 0 −2

C 0.77 2.60 N 0.70 1.71 O 0.73 1.46

Si 0.38 1.17 2.71 P 1.10 2.12 S 1.04 1.90

Ti 0.60 As 1.18 2.22 Se 1.14 2.02

Ge 0.53 1.22 2.72

Zn 1.77 Sb 1.36 2.45 Te 1.32 2.22

Sn 1.40 2.94

Ce 0.92 Bi 1.46 Po 2.30

Pb 0.84 1.46

Fig. 1.13 Scale drawing of
rigid sphere atoms with
different bonding character
(ionic or covalent, identified
by the appropriate number of
minus signs (upper row) or
valence lines (lower row),
respectively)

the same type of bonding. One distinguishes atomic, ionic, metallic, and van der
Waals radii. Ionic radii vary with changing valency.

A list of the most important ion and atomic radii is given in Table 1.6. The dras-
tic change in radii with changing bonding force (Mooser and Pearson 1956) is best
demonstrated by comparing a few typical examples for some typical elements in-
corporated in semiconductors (Fig. 1.13). For more estimates of tetrahedral covalent
radii, see van Vechten and Phillips (1970).
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Table 1.7 Repulsive
potential softness parameters
(Eq. (1.3)) in Å (after
Shanker and Kumar 1987)

Ion r0 (th) r0 (exp)

Li− 0.069 0.042

Na+ 0.079 0.090

K+ 0.106 0.108

Rb+ 0.115 0.089

Cs+ 0.130 0.100

Ion r0 (th) r0 (exp)

F− 0.179 0.215

Cl− 0.238 0.224

Br− 0.258 0.254

I− 0.289 0.315

Table 1.8 Change of interatomic distance Δm (in Å) for compounds deviating from coordination
number m = 6

m Δm

1 −0.50

2 −0.31

3 −0.19

m Δm

4 −0.11

5 −0.05

6 0

m Δm

7 +0.04

8 +0.08

9 +0.11

m Δm

10 +0.14

11 +0.17

12 +0.19

The deviation from strict rigidity, i.e., the softness of the ionic spheres, is con-
ventionally considered by using a softness parameter r0 in the exponential repulsion
formula [Eq. (1.3)]. This parameter is listed for a number of ions in Table 1.7.

This softness also results in a change of the standard ionic radii as a function of
the number of surrounding atoms. A small correction Δm in the interionic distance
is listed in Table 1.8. This needs to be considered when crystals with different coor-
dination numbers m, i.e., the number of surrounding atoms, are compared with each
other (e.g., CsCl and NaCl).

With increasing atomic number, the atomic (or ionic) radius of homologous el-
ements increases. The cohesive force therefore decreases with increasing atomic
(ionic) radii. Thus, compounds formed by the same bonding forces, and crystallizing
with similar crystal structure, show a decrease, for example, in hardness,5 melting
point, and band gap, but an increase in dielectric constant and carrier mobility.

The ratio of ionic radii determines the preferred crystal structure of ionic com-
pounds. This is caused by the fact that the energy gain of a crystal is increased with
every additional atom that can be added per unit volume. When several possible
atomic configurations are considered, the material crystallizes in a modification that
maximizes the number of atoms in a given volume. This represents the state of low-
est potential energy of the crystal, which is the most stable one. An elemental crystal
with isotropic radial interatomic forces will therefore crystallize in a close-packed
structure.

5This empirical quantity can be defined in several ways (e.g., as Mohs, Vickers, or Brinell hard-
ness) and is a macroscopic mechanical representation of the cohesive strength of the lattice. In
Table 1.9 the often used Mohs hardness is listed, which orders the listed minerals according to the
ability of the higher-numbered one to scratch the lower-numbered minerals.
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Table 1.9 Mohs hardness
Material Chemistry Lattice type Hardness

Talc Mg3H2SiO12·aq Layer lattice 1

Gypsum CaSO4·H2O Layer lattice 2

Iceland spar CaCO3 Layer lattice 3

Fluorite CaF2 Ion lattice 4

Apatite Ca5F(PO4)3 Ion lattice 5

Orthoclase KAlSi3O8 SiO4 frame 6

Quartz SiO2 SiO4 frame 7

Topaz Al2F2SiO4 Mixed ion-valency
lattice

8

Corundum Al203 Valency lattice 9

Diamond C Valency lattice 10

Table 1.10 Preferred lattice
structure for AB-compounds
with ionic binding forces
(after Goldschmidt 1927)

rA/rB Preferred stable lattice

<0.22 None

0.22 . . . 0.41 Zinc-blende or Wurtzite

0.41 . . . 0.72 NaCl lattice

>0.72 CsCl lattice

In a binary crystal, the ratio of atomic radii will influence the possible crystal
structure. For isotropic nonsaturable interatomic forces, the resulting stable lattices
are shown in Table 1.10 for different ratios of the ion radii.

When a substantial amount of covalent bonding forces are involved, the rules to
select a stable crystal lattice for a given compound are more complex. Here atomic
bond length and bond angles must be considered. Both can now be determined from
basic principal density functions calculations. We can then define atomic radii from
the turning point of the electron density distribution of each atom, and obtain an
angular-dependent internal energy scale from these calculations (Zunger 1981). Us-
ing axes constructed from these radii, one obtains well-separated domains in which
only one crystal structure is observed for binary compounds (Zunger 1981; Villars
and Calvert 1985).

1.9.1 Bond-Length Relaxation in Alloys

The lattice constant of alloys A1−ςBς C of binary compounds AC and BC interpo-
lates according to the concentration

a(ξ)= (1 − ξ)aAC + ξaBC (1.11)
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Table 1.11 Bond-length of isovalent impurity in given host lattice and bond-length relaxation
parameter (after Martins and Zunger 1984)

System rBC(AC : B) (Å) ε

AlP:In 2.480 0.65

GaP:In 2.474 0.63

AlAs:In 2.653 0.60

GaAs:In 2.556 0.62

AlSb:In 2.746 0.61

GaSb:In 2.739 0.60

AlP:As 2.422 0.65

AlP:Sb 2.542 0.61

AlAs:Sb 2.574 0.60

GaP:As 2.414 0.62

GaP:Sb 2.519 0.57

GaAs:Sb 2.564 0.60

InP:As 2.595 0.67

InP:Sb 2.700 0.60

InAs:Sb 2.739 0.64

ZnS:Se 2.420 0.70

ZnS:Te 2.539 0.67

ZnSe:Te 2.584 0.71

β-HgS:Se 2.611 0.76

β-HgS:Te 2.716 0.71

HgSe:Te 2.748 0.74

ZnS:Hg 2.482 0.73

ZnSe:Hg 2.587 0.74

ZnTe:Cd 2.755 0.70

ZnTe:Hg 2.748 0.69

γ -CuCl:Br 2.440 0.81

γ -CuCl:I 2.563 0.80

γ -CuBr:I 2.585 0.79

C:Si 1.665 0.35

Si:Ge 2.380 0.58

Si:Sn 2.473 0.53

Ge:Sn 2.549 0.55

System rBC(AC : B) (Å) ε

InP:Al 2.414 0.73

InP:Ga 2.409 0.73

InAs:Al 2.495 0.74

InAs:Ga 2.495 0.73

InSb:Al 2.693 0.75

InSb:Ga 2.683 0.74

AlAs:P 2.395 0.67

AlSb:P 2.444 0.73

AlSb:As 2.510 0.71

GaAs:P 2.387 0.68

GaSb:P 2.436 0.73

GaSb:As 2.505 0.70

InAs:P 2.562 0.74

InSb:P 2.597 0.79

InSb:As 2.667 0.75

ZnSe:S 2.367 0.78

ZnTe:S 2.407 0.78

ZnTe:Se 2.502 0.74

HgSe:S 2.553 0.80

HgTe:S 2.579 0.82

HgTe:Se 2.665 0.80

β-HgS:Zn 2.380 0.80

HgSe:Zn 2.494 0.78

CdTe:Zn 2.674 0.78

HgTe:Zn 2.673 0.78

γ -CuBr:Cl 2.367 0.79

γ -CuI:Cl 2.407 0.76

γ -CuI:Br 2.500 0.76

Si:C 2.009 0.74

Ge:Si 2.419 0.63

α-Sn:Si 2.645 0.70

α-Sn:Ge 2.688 0.67

when they crystallize with the same crystal structure (Vegard 1921). However, the
bond length between any of the three pairs of atoms is neither a constant, as sug-
gested from the use of constant atomic radii (Pauling 1960), nor a linear interpola-
tion as shown by the dotted line in Fig. 1.14 for total relaxation of the bond of atom
B in a different chemical environment AC (or of A in BC).
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Fig. 1.14 Variation of
bond-length in an A1−ς Bς C
alloy for rigid atoms (ε = 1),
virtual crystal approximation
(ε = 0), and experimentally
observed relaxation

Table 1.12 Bond-length (d), bond-stretching (α) and bond-bending (β) force constants, calcu-
lated from elastic constants (after Martin 1970)

Crystal d (Å) α (N/m) β (N/m)

C 1.545 129.33 84.71

Si 2.352 48.50 13.82

Ge 2.450 38.67 11.37

α-Sn 2.810 25.45 6.44

SiC 1.888 88. 47.5

AlP 2.367 47.29 9.08

AlAs 2.451 43.05 9.86

AlSb 2.656 35.35 6.79

GaP 2.360 47.32 10.46

GaAs 2.448 41.19 8.94

GaSb 2.640 33.16 7.23

Crystal d (Å) α (N/m) β (N/m)

InP 2.541 43.04 6.24

InAs 2.622 35.18 5.49

InSb 2.805 26.61 4.28

ZnS 2.342 44.92 4.81

ZnSe 2.454 35.24 4.23

ZnTe 2.637 31.35 4.45

CdTe 2.806 29.02 2.44

β-HgS 2.534 41.33 2.56

HgSe 2.634 36.35 2.36

HgTe 2.798 27.95 2.57

γ -CuCl 2.341 22.9 1.01

γ -CuBr 2.464 23.1 1.32

γ -CuI 2.617 22.5 2.05

This nonrigidity of atoms is important when incorporating isovalent impurities
into the lattice of a semiconductor (doping) and estimating the resulting deforma-
tion of the surrounding lattice. With the bond length rBC within the AC lattice (see
Table 1.11), one defines a relaxation parameter

ε =
rBC(AC : B) − r0

AC

r0
BC − r0

AC

. (1.12)

The superscript 0 indicates the undisturbed pure crystal, the notation AC:B indi-
cates B as doping element with a sufficiently small density incorporated in an AC
compound, so that B–B interaction can be neglected.
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This relaxation parameter can be estimated from the bond-stretching and bond-
bending force constants α and β (see Table 1.12), according to Martins and Zunger
(1984),

ε =
1

1 + 1
6

αAC
αBC

[1 + 10βAC
αAC

] , (1.13)

yielding values of ε typically near 0.7—see Table 1.11; that is, isovalent impurity
atoms behave more like rigid atoms (ε = 1) than totally relaxed atoms (ε = 0) in a
virtual crystal approximation [Eq. (1.11)].
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