Chapter 2
Worldlines and Proper Time

2.1 Introduction

Having introduced the mathematical framework of special relativity, we may move
to the basics of (non-quantum) physics, namely, the description of the motion of
a particle or a physical system idealized to a pointlike particle. We shall notably
see the interpretation of the metric tensor g as the operator giving the elapsed time
along the trajectory of a particle.

2.2 Worldline of a Particle

Special relativity being a non-quantum theory, particles are described as points, as
in classical mechanics. Actually, we shall use the word particle or point particle to
cover either an elementary particle or a physical system whose spatial extension
can be neglected at the scale of the phenomenon under study. A “particle at a
given instant” will be represented by a point in the spacetime & (an event), and
the “successive positions” of the particle will draw a one-dimensional curve in the
affine space &. Let us note that, at this stage, we cannot give some meaning to the
phrase “at a given instant” if we wish to preserve the mixed space/time character of
& and not to split it into some space part and some time part. Therefore, we shall
define a particle by its entirety in spacetime, namely, a curve of &, which we shall
call the worldline of the particle.

The link between physics and the mathematics introduced in Chap. 1 consists in
stating that the so-called massive particles do not follow any kind of worldline in
Minkowski spacetime, but only those that are timelike:

"Minkowski spacetime is however the arena for relativistic quantum field theory.
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Any massive particle is represented by a piecewise twice continuously
differentiable curve .# of Minkowski spacetime (&, g) such that any vector
tangent to .Z is timelike.

Let us recall that a vector ¥ € E is timelike iff v - ¥ = g(v,v) < 0 (cf.
Sect. 1.3.4) and that a piecewise twice continuously differentiable curve means that
there exists some function

o R— & @1

Ar— A=¢) '
that is (i) twice differentiable with a continuous second derivative (i.e. of class C?)
on each interval of a finite subdivision of R and (ii) such that .Z is the image set of
¢: £ = p(R). If ¢ is injective, it is called a parametrization of £ .

Remark 2.1. Of course, for a given worldline .Z, there exists an infinite number of
parametrizations: if ¢ is one of them, any bijective function f : R — R of class
C? induces a new parametrization ¢ := ¢ o f. A priori, a parametrization of .Z is
a purely mathematical operation. We shall introduce in Sect. 2.3 a parametrization
with physical grounds: that provided by the “elapsed time” (the so-called proper
time) along .Z.

Remark 2.2. We may consider the above statement as the formal definition of a
massive particle. The notion of mass will be introduced in Chap. 9, and we shall see
that indeed massive particles, as defined above, have a nonvanishing mass.

Remark 2.3. By demanding that the worldline be timelike, we exclude hypothetical
particles called tachyons (Bilaniuk et al. 1962; Feinberg 1967; Recami 1987;
Boratav and Kerner 1991; Fayngold 2002). These particles would on the contrary
move on spacelike worldlines. Note that there is no consistent relativistic theory that
allows a given worldline to change its type on some part of it: a worldline is either
always timelike (ordinary massive particles), null (photons, Sect.2.5) or spacelike
(tachyons). We shall elaborate more on tachyons in Sect. 4.3.3.

A parametrization ¢ of . induces a one-parameter family of vectors of E—at
each point of ., we may consider the derivative vector of ¢ at this point:

] ——M
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where we have used the notation A(A) for ¢(A) [generic point of ., cf.(2.1)]. ¥
is called the field of tangent vectors associated with the parametrization ¢. One
may give a more “physical” expression to v: denoting by dA the increase ¢ of the
parameter A and by d¥ the infinitesimal vector joining the point A(1) to the point
A(A + dA) (cf. Fig. 2.1), we get
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Fig. 2.1 Worldline of a
massive particle, with the
tangent vector v associated
with the parametrization
@(A). The null cone at point
A is shown. Since ¥ is
timelike, it is located inside

the null cone ? OH_(D\')

VA eR, TA) = (2.3)

From the definition of a worldline, the vector ¥ (1) must be timelike for all values
of the parameter A: (1) - ¥(1) < 0.

If (0;¢,) is an affine frame of & (cf. Sect.1.2.3) and (x%(A)) the affine
coordinates of A = ¢(A) in this frame, the components of the tangent vector
V(L) with respect to the basis (€,) are the derivatives of the functions x*(A):
v¥(A) = dx%/dA; hence,

dx* _

T = o (2.4)

2.3 Proper Time

2.3.1 Definition

We have already noticed in Sect. 1.3.1 that the metric tensor g does not define a
metric on & in the strict mathematical sense and that it should be called instead
pseudo-metric tensor (cf. Remark 1.6 p. 8). As a consequence, the norm with respect
to g introduced in Sect. 1.3.5, || |,, is not a norm in the mathematical sense. In
. — . . —> . 13 E3)
particular, || v'||, = 0 is not equivalent to v = 0. However, if the “norm” | |,
is taken only on timelike vectors (such as the tangent vectors to massive particle
worldlines), i.e. if one considers the mapping

+
Efimelike —> R

iy - —=— (2.5)
v '_)”v”g:\/_g(vav)7



32 2 Worldlines and Proper Time

then one gets a function that vanishes only for ¥ = 0, as for any norm.”

Accordingly, one may use g to measure “lengths” along a given worldline. The
fundamental physical interpretation of the metric tensor g consists in stating that
these “lengths” correspond to the elapsed time along the worldline:

Let A and A’ be two infinitely close events on the worldline .# of a given
massive particle (cf. Fig. 2.1). Let d X be the infinitesimal vector connecting A4
and A’. The vector d¥ is tangent to .%, and from the definition of a worldline,
it is timelike. We may then set

cdr:= ||d¥|, = /—g(dX.dX) if dX is future-directed
cdt := —||d¥||, = —/—g(d¥,d¥X) ifdX is past-directed

(2.6)

Let us recall that the future/past-directed properties have been defined in
Sect. 1.4. Thanks to the ¢ factor (cf. Sect.1.2.4), the dimension of dz is
time, g having no dimension and d¥ having the dimension of length (cf.
the convention adopted in Sect. 1.2.4). dt is called the proper time elapsed
between the events 4 and A" on .Z.

If the displacement d ¥ is represented by its components (dx%) in some orthonor-
mal basis of (E, g), the scalar product g(dX,dX) can be expressed according
to (1.18), so that (2.6) becomes

cdt = £+/(dx%)? — (dx1)2 — (dx2)? — (dx3)2, 2.7

orthonormal basis

where the sign &+ corresponds to the two cases considered in (2.6).

Given a parametrization ¢ (1) of £, one may express the proper time in terms
of the associated tangent vector field V. Let us suppose that ¥ is future-directed.
Would this not be the case, the change of parameter A +— —A would provide a
future-directed tangent vector. Then, we have

d¥ = vda, 2.8)

where dA is the difference of parameter between A’ and A: A =¢(1),
A" = (A + dA) (cf. Fig. 2.1). Thanks to g’s bilinearity, (2.6) can be written

cdr = /—g(V,7)dA. (2.9)

2Tt is however still not a norm in the mathematical meaning, for it does not satisfy the triangle
. . — —> — —>
inequality [| 7" + Wil < V]l + [IW]].
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Fig. 2.2 Proper time
between events A and B
along a worldline .

B=¢ (M)

A=¢(L)

Remark 2.4. Choosing a parametrization such that ¥ is future-directed ensures
that dr has the correct sign, namely, is positive (resp. negative) if d¥ is future-
directed (resp. past-directed). Let us stress that, although Eq. (2.9) lets appear the
parametrization ¢ of .Z, the value of dt is independent of that parametrization, as
it is clear on (2.6).

The definition of proper time can be extended to events with a finite separation
along a worldline, by integrating (2.6) between these two events. Hence if A and B
are two events of some worldline .Z (cf. Fig.2.2) and if ¢ is a parametrization of
Z suchthat A = ¢(A;) and B = ¢(A,), we set

B A
(A, B) ;:/A dr = %/A V=g (@), v))dr |, (2.10)

where ¥ (1) is the tangent vector field associated with the parametrization ¢. As for
dt, (A, B) does not depend on the choice of the parametrization ¢. On the other
hand, it depends on the worldline connecting A to B.

2.3.2 Ideal Clock

Let us call clock any physical device that (i) can be reduced to a point particle (at the
scale of the phenomenon under study), (ii) follows a timelike worldline . and (iii)
provides a sequence of “signals”, i.e. a sequence of events ..., E_;, Eo, E1, Es, ...
sampling .Z (Fig.2.3). Each Ej is called a tick.

An ideal clock is then defined as a clock for which the proper time t(Ey, Ex+n)
between two ticks Eyx and Ex 4y is equal to a constant K times the number N of
elapsed ticks:

t(Ex, Exsn) = K N. @2.11)
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Fig. 2.3 (a) Generic clock; a b
(b) ideal clock

Among all the clocks, ideal clocks are characterized by the fact that the
proportionality; factor K is the same at each point of their worldline (Fig.2.3).
In other words, the time indicated by an ideal clock is the proper time along the
clock’s worldline.

Remark 2.5. Relativity has banished the concept of absolute time (cf. Sect. 1.2.5). It
however introduces along each worldline a privileged time: that given by the metric
tensor according to (2.6). An ideal clock is a clock that displays this time. Obviously
it varies from one worldline to the other, i.e. the quantity t(A4, B) defined by (2.10)
depends upon the worldline connecting A and B. It is in that sense that relativity
has suppressed absolute time.

An ideal clock is a “theoretical” device that can be more or less well approxi-
mated by an actual device. To know whether a given experimental clock constitutes
a good approximation of an ideal clock, one may check if the laws of kinematics
and dynamics (which will be developed in the coming chapters and are expressed in
terms of the proper time) are satisfied when experiments are described with the time
given by this clock. For instance, a pendulum held fixed with respect to the Earth
constitutes a relatively good approximation (at the human scale!) of an ideal clock.
But this is no longer true in a strongly accelerated frame with respect to the Earth:
the pendulum motion looses any periodicity if the acceleration is not constant. An
atomic clock constitutes a much better approximation of an ideal clock, because
it provides a time that depends very weakly on its state of acceleration, at least
for accelerations smaller than the centripetal acceleration of an electron around the

atomic nucleus, which is about 102 ms—2.

Remark 2.6. Since it is related to the fundamental object of relativity, namely, the
metric tensor g, the proper time is the only truly physical time, in the following
meaning. The definition of time along a given worldline is a priori arbitrary: one
can choose the time provided by any clock. The distinctive feature of proper time
is that the physical laws expressed in terms of it are simpler than if expressed in
terms of an arbitrary time, because the basic physical laws involve the metric tensor,
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to which proper time is directly related. Considering the example mentioned above,
the pendulum beats are periodic functions of the proper time in an inertial frame.
To paraphrase Poincaré (1898), we may say that it is for a matter of commodity that
one uses proper time and not an arbitrary time.

Remark 2.7. When considering a human being, the proper time is also the most
convenient one to describe her/his physiological evolution, given the physical nature
of physiological processes. Admitting that the physiological time is indeed the one
perceived by consciousness, one may think about the proper time along a worldline
as the time “felt” by a human observer moving along this worldline.

Remark 2.8. The fundamental concept that appears once the metric tensor and the
worldlines have been introduced is that of fime and not of length. We shall discuss
this further below.

2.4 Four-Velocity and Four-Acceleration

2.4.1 Four-Velocity

We have seen in Sect.2.2 that one may associate many tangent vector fields to a
given worldline .Z, namely, the tangent fields linked to all possible parametrizations
of .Z. The introduction of proper time in Sect. 2.3 allows us to select a tangent vector
field independent of any parametrization and thereby intrinsic to the worldline: the
four-velocity, or 4-velocity for short, of a massive particle evolving along a
worldline .Z is the vector of E defined at any point A € .Z by

1dx
z=-2 (2.12)
c dr

where d¥ is an infinitesimal vector tangent to . and future-directed (cf. Sect. 1.4)
and dt is the proper time interval corresponding to dX via (2.6). If one wishes
to give a rigorous mathematical meaning to (2.12), it suffices to parametrize the
worldline .Z by ¢ times its proper time: A = c¢t. Such a parametrization is unique,
up to the choice of some origin. The vector # is then nothing but the derivative
of that parametrization, as defined in Sect.2.2. As a derivative, it is of course
independent of the origin of proper time.

If v is a future-directed tangent vector field associated with some parametriza-
tion (A1) of £, we may insert (2.8) and (2.9) into (2.12) and get

—> —>

- v v

(2.13)
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Fig. 2.4 4-velocity & and
4-acceleration @ at two
points A and B of a timelike
worldline .

-
u

This identity can be viewed as the definition of a unit tangent vector () from an
arbitrary tangent vector (v). It is actually trivial to check on (2.13) that®

7w =—1) (2.14)

We could even have introduced the 4-velocity % as the unique future-directed unit
vector tangent to .. The definition (2.12) has more the aspect of a “velocity”. Note
however that # is dimensionless, thanks to the factor 1/c in (2.12).

Remark 2.9. Many authors define the 4-velocity with the dimension of a veloc-
ity, by setting @ := d¥/dr instead of (2.12). Equation (2.14) becomes then
u - U = —c*. We follow here the convention of Landau and Lifshitz (1975), pre-
ferring a dimensionless 4-velocity, because many expressions are simplified when
¥ is a unit vector. Moreover, from a pedagogical point of view, the dimensionless
character of the 4-velocity is valuable in avoiding the confusion with an “ordinary”
velocity, which is a different concept (in particular, it is relative to some observer,
contrary to the 4-velocity, cf. Remark 2.10 below).

The property (2.14) implies that the 4-velocity belongs to the set % T introduced

in Sect. 1.4.3:
[@eut] @.15)

Conversely, any element of %7+ can be considered as a 4-velocity. We conclude that
7 T is nothing but the set of all possible 4-velocities.

The 4-velocity at two points A and B of a worldline is depicted in Fig.2.4. The
null cone of g is also drawn at these two points (cf. Sect. 1.4): as a timelike future-
directed vector, # is located inside the future null cone .# 1.

3Let us recall that the notation @ - & stands for g (¥, ).
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Remark 2.10. The reader might have been surprised by the fact that, in the theory
of relativity, the 4-velocity has not been defined relatively to a frame or an observer.
On the contrary, it has been introduced as an absolute quantity, which depends only
on the considered worldline, the latter being obviously independent of any observer.
Actually, the 4-velocity is different from a velocity and is not a directly measurable
quantity. After having introduced the concept of observer in Chap. 3, we shall define
in Chap. 4 the “ordinary” velocity of a point particle with respect to an observer. It
will be a function of the 4-velocities of the particle and the observer, and will be a
measurable quantity, as the ratio of a length by a time.

2.4.2 Four-Acceleration

It is natural to define the four-acceleration, or 4-acceleration for short, as the vector
of E that measures the variation of the 4-velocity field @ along the worldline .

L 1ldd

= —— 2.16
cdr ( )

where t stands for the proper time along .. The above expression takes a rigorous
mathematical meaning if % is parametrized by A = ct : the vector @ is then
nothing but the second derivative of this parametrization.

% being dimensionless and ¢t having the dimension of a length [cf. Eq. (2.6)],
the dimension of the 4-acceleration is that of the inverse of a length and not that of
an acceleration.*

Two basic properties of the 4-acceleration follow easily from its definition:

* @ is orthogonal to @ (with respect to the metric g):

a-u=0]| (2.17)
Proof. One has
1dud _, 1d _, _, 1 d
di=-Lag=-— @ wn==Lcn=o0 o
cdr 2cdr 2cdr

4 is either the zero vector or a spacelike vector.

Proof. If @ # 0, thanks to (2.17) and by means of the Gram-Schmidt
process (Deheuvels 1981), we may find an orthogonal basis of E of the type
(i, d, e, ¢>). In this basis, taking into account (2.14), the matrix of g is

4 As for the 4-velocity, which has not the dimension of a velocity, cf. Remark 2.9.
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1 0 0 0
loza o 0
S5=1 0 0 @@ 0
0 0 0 &-&

Since the signature of g is (—,+,+,+), the diagonal terms but —1 are
necessarily strictly positive (Sylvester’s law of inertia, Sect. 1.3.1); hence, in
particular, @ - @ > 0, which proves that @ is spacelike. O

‘We conclude that
a-a>0)| (2.18)

with@ - @ = 0iff d = 0.

It is worth to note that the above demonstration uses only the fact that @ is
orthogonal to &; we have therefore established a very useful property:

Any vector orthogonal to a timelike vector is necessarily spacelike or zero.

The 4-acceleration at two points of a worldline is depicted in Fig.2.4. Being
spacelike, this vector is located outside the null cone, contrary to . Note that
the orthogonality between @ and ¥ does not imply the orthogonality in the
usual (Euclidean) sense of the arrows representing @ and # in Fig.2.4 (cf. the
discussion about the graphical representation of vectors in Sect. 1.3.6). We shall
see in Sect.2.7.3 a geometrical interpretation of the 4-acceleration involving the
curvature of the worldline.

Remark 2.11. As for the 4-velocity (cf. Remark 2.10), the 4-acceleration is an
absolute quantity, independent of any frame or observer.

Historical note: The concepts of worldline, 4-velocity and 4-acceleration have
been introduced by Hermann Minkowski (cf. p. 26). They appear in a publication of
1908 (Minkowski 1908) and play a central role in the famous article on spacetime
published the year after (Minkowski 1909) and discussed at the end of Chap. 1.
Note however that, as soon as 1905, in the “Palermo memoir” (Poincaré 1906),
Henri Poincaré (cf. p. 26) let appear a four-dimensional vector that was nothing but
the 4-velocity, although without any explicit mention of a worldline. The concept
of proper time, as exposed above, namely, the length given by the metric tensor
along a worldline, is also due to Minkowski: in the publications (Minkowski 1908)
and (Minkowski 1909), he wrote the relations (2.6) and (2.10) (making use of
the components (1.17) of g in an orthonormal basis). Besides, the relation (2.17)
expressing the orthogonality of the 4-acceleration and the 4-velocity appears clearly
in the 1909 text (Minkowski 1909).
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2.5 Photons

2.5.1 Null Geodesics

In Sect.2.2, we have postulated that massive particles follow worldlines that are
timelike. We shall now define the worldlines of massless particles, the first of
them being photons. As for any point particle, a photon is represented by a one-
dimensional curve in Minkowski spacetime (its worldline). Whereas the worldlines
of massive particles show a great variety (all the curves with timelike tangent
vectors), photons are compelled to follow quite specific curves, straight lines, the
direction vector of which is null:

In vacuum, a massless particle, and in particular a photon, is represented by
a straight line of & whose direction vector is a null vector of the metric g,
i.e. a vector ¥ obeying ¥ - ¥ = 0. Such a line is called a null geodesic of
spacetime. If the particle is a photon, it is also called a light ray.

This principle justifies the choice of qualifier lightlike given to null vectors of g
(cf. Sect. 1.3.4). When we shall treat electromagnetism (Chaps. 17-20), we shall
verify that the wave solutions to Maxwell equations in vacuum propagate along null
directions of the metric tensor.

Remark 2.12. A null geodesic is a special case of a null curve, i.e. a curve of &
whose tangent vectors are null vectors. There exists null curves that are not straight
lines and thus not null geodesics. An example is the helix defined by the parametric
equation x°(1) = rA, x' (1) = rcos A, x2(1) = rsin A, x>(1) = 0, with r > 0, in
some affine coordinate system (x*) associated with an orthonormal basis.

Remark 2.13. The notion of proper time introduced for massive particles cannot be
extended to photons, because (2.6) would result in dz = 0 (for d¥ is null along a
null geodesic). This would mean that an ideal clock carried by a photon is frozen.
Consequently, the 4-velocity of a photon cannot be defined. In other words, there
does not exist any null vector that is a unit one (since by definition, the scalar square
of a null vector is zero).

2.5.2 Light Cone

Let us consider an event A in the spacetime &. The worldlines of all the photons
that encounter A (photon passing through A, or emitted at A or received at A) form
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a subset of & that is the image of the null cone of g in E (Sect. 1.4) under the
identification of the pair (&£, A) (affine space & with A as an origin) with the vector
space E (cf. Fig.2.4). More precisely, let @ be the 4-velocity of a massive particle
passing through A and (€, €5, €3) three vectors such that (&, ¢, €5, €3) is
an orthonormal basis of (E, g). (4; &, €1, €5, €3) is then an (orthogonal) affine
coordmate system of & (cf. Sect.1.2.3). A point M € & of affine coordinates
(x% x!', x2, x3) belongs to the worldline of a photon that encounters A iff AM is
a null vector: g(AM AM ) = 0. From (1.6) and (1.18), this is equivalent to

—(x2 4+ H+ @D+ (P =0. (2.19)

Such an equation defines a three-dimensional cone of apex A in the affine space
&, which is called the light cone of event A. We shall denote it by .#(A), the
sheet corresponding to the future (resp. past) null cone being denoted .# * (A) (resp.
I (A)). £T(A) is called the future light cone of event A and .# ~(A) the past
light cone of A.

The null cone of apex A separates the events that are related to A by a timelike
vector to those that are related to A by a spacelike vector. Figure 2.4 shows the light
cones of two points A and B on the worldline of a massive particle.

Remark 2.14. The light cone is entirely determined by the considered event and
does not depend upon the worldline passing through this event. Note also that the
light cones of different events can be deduced from each other by a mere translation
(see Fig.2.4).

2.6 Langevin’s Traveller and Twin Paradox

Having introduced formally the proper time at Sect.2.3, let us now study it in a
specific case, which puts forward its dependency with respect to the considered
worldline. The “experiment” to be described has been designed by Paul Langevin®
in 1911 (Langevin 1911). It is known as Langevin’s traveller and it illustrates the
so-called twin paradox. Beside proper time, it provides also a nice illustration of the
concepts of 4-velocity and 4-acceleration introduced in Sect. 2.4.

SPaul Langevin (1872-1946): French physicist, known for his work on the magnetic properties
of materials and Brownian motion. As a friend of Einstein since 1911, he contributed a lot in
the diffusion of relativity in France (Paty 1999a). He was also president of the French League of
Human Rights from 1944 to 1946.
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Fig. 2.5 Worldlines of the twins ¢ and ¢”: that of € is the vertical line x = 0 and that of 0’
is represented for different values of the parameter . Between the events A (¢’ departure) and B
(0’ return), the worldline of ¢” is made of three arcs of hyperbola: AC;, C,C, and C, B, defined
by (2.20) (the points C;, C, and P have been drawn only for « = 4). Long-dashed lines indicate
a null geodesic issued from A (segment [A D]) and a null geodesic arriving in B (segment [DB]);
[AD] U [DB] is thus the worldline of a photon emitted at A and reflected at D in order to meet
observer 0 in B

2.6.1 Twins’ Worldlines

Let us consider two observers ¢ and ¢’ that we shall model as two particles on
timelike worldlines equipped with ideal clocks.® We take for the worldline . of &
the simplest that one may think of: a straight line of &. The worldline .#’ of &” is
chosen to coincide with . until some event A; this is the very reason why & and
0’ may be called twins. At A, 0’ separates from & and travels until the event P. He
then moves back and meets up with & at the event B, after which the worldlines .Z
and .’ coincide again (cf. Fig.2.5).

Since .& is a straight line, the 4-velocity & of & is constant. This implies that the
4-acceleration of & vanishes. Let then (€ ) be an orthonormal basis of (E, g) such

%We shall define more precisely the concept of observer in Chap.3, the present version being
sufficient for the purpose of this section.
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that % is equal to the (constant) vector €. We consider the affine coordinate system
(x° = ct,x! = x,x* = y, x> = z) defined by this basis and having 4 as origin (cf.
Sect. 1.2.3). The points M of .Z obey the relation AM = ct €. Differentiating, we
getdAM = ¢ dt @, so that formula (2.6) along with the property g (€, €) = —1
shows that the coordinate ¢ coincides with &”s proper time.

Let us now define precisely the worldline of ¢”. For simplicity, we suppose
that ¢’ travels always in the same direction, which we shall select to be that
of 2. The spatial trajectory of &’ as perceived by & is then a line segment,
travelled in one way and then in the reverse way. The corresponding worldline in
Minkowski spacetime is contained in the plane through A and generated by the
vectors (€, €1), i.e. the plane (¢, x). The precise shape of .’ depends on the
velocity of &’ with respect to &'. We shall choose .Z” between A and B to be made
of three arcs of hyperbola, AC|, C,C; et C; B (cf. Fig.2.5), defined in terms of
the affine coordinates (ct?, x, y, z) by the following equations:

fors e 0 ﬂ ©ox(t) = % [\/1 +a2(t/T)* - 1} (2.20a)
[T 3T cT / a?
forZE_Z,T:|: X(I):7|:_\/l+a2([/T—1/2)2+2 1+E_1:|

(2.20b)

fort e _E,T:| Cox() = T [\/1 +a2(t/T —1)*— 1] (2.20¢)
4 o

where T is O’s proper time elapsed between the events A and B, so that £(A4) = 0,

t(Cy) =T/4,t(Cy) =3T/4and t(B) = T. The parameter o € R is dimensionless
and allows us to consider a whole family of worldlines for &, as shown in Fig.2.5.
If o = 0, ¢’ coincides with . and for « # 0, Eq. (2.20a) leads to

(aCiT + 1)2 — (a%)z —1, 2.21)

which is the equation of a hyperbola in the plane (¢, x), having the “horizontal”
line ¢+ = O as the foci axis. Similarly, (2.20b) defines a hyperbola of foci axis the
line t = T/2 and (2.20c) a hyperbola of foci axis the line t = T (cf. Fig.2.5).
The choice of arcs of hyperbola will be justified in Sect. 2.6.4, where we shall see
that it implies a constant norm of the 4-acceleration. This constitutes a relativistic
generalization of the uniformly accelerated motion, as we shall discuss in Sect. 12.2.
We shall call the observer ¢” following the worldline defined above Langevin’s
traveller.

Let P be the mid-journey event (maximal distance from &, cf. Fig.2.5). Its
position depends upon « and is obtained by setting t = 7'/2 in (2.20b):
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2¢T | a2 o cT
x(P) = — 14 ——1]==-—. (2.22)
o ( 16 8 1+a2/16+1

2.6.2 Proper Time of Each Twin

We have seen above that the proper time of & coincides with the coordinate ¢ of the
affine system (ct, x, y, z). To determine the proper time ¢’ of &”, let us parametrize
the worldline .%” by A = t. An infinitesimal displacement d¥” along .#” has the
components dx’* = (cdt,dx,0,0) in the orthonormal basis (€,), where dx is
related to d¢ by differentiating (2.20):

dy = (T kD), (2.23)

\/1 +02(t)T —k/2)*

where the integer k takes the following values : k = 0 for0 <¢ < T/4,k = 1 for
T/4<t<3T/4andk = 2for3T/4 <t < T. Thebasis (€4) being orthonormal,
the proper time ¢’ along .#” is given by formula (2.7):

1 1
dr’' = - \/ (dx"%)2 — (dx'")? — (dx"?)? — (dx"?)?2 = V22 —dx2. (2.24)
c c

Substituting (2.23) for dx yields
_ dt
J1+e2 (/T —k/2)

dr’ (2.25)

Thanks to the change of variable «(¢/T — k/2) = sinhu, this equation is easily
integrated into’

T r k k
' = — arsinh - —— =T, 2.26
, 2rsin [a (T 2)} + 7 (2.26)

where arsinh stands for the inverse hyperbolic sine (arsinh x = In(x + +v/x% + 1))
and

T = %arsinh (%) . (2.27)

7Let us recall that d(sinh %) = cosh udu and /1 + sinh? u = cosh u.
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The integration constant k7’/2, which appears in (2.26), has been chosen in each
of the domains k = 0( € [0,T/4])),k = 1( € [T/4,3T/4])and k = 2 (¢t €
[3T/4,T]) in order to enforce the continuity of ¢/, starting from ¢/ = 0 atz = 0.
The relation (2.26) between the proper times ¢ and ¢’ is plotted in Fig.2.6. At the
particular points A (k = 0,1 =0),C; (k =0,t =T/4),P (k =1,t =T/2),C,
(k=1,t =3T/4)and B (k =2,t = T), it results in

T’ T/ 37"
CA)=0. (€)= (P = (C)=" T(B) =T
(2.28)

We notice that the inequality ¢ < ¢ always holds (cf. Fig. 2.6). In particular, when
0 and 0" meet again in B, the elapsed proper time from ¢’ departure is t(B) = T
for O, whereas the elapsed proper time for &, t'(B) = T’, is given by (2.27).
Whenever o # 0, we have T’ # T, and the ratio of the two elapsed proper times is

" _((B)-1'(4) 4
T =i =~ (G) =1 229

The ratio 7'/ T is plotted as a function of « in Fig. 2.7. For the worldlines drawn in
Fig. 2.5, its value is 0.96 (¢ = 2), 0.88 (¢ = 4), 0.72 (o = 8) and 0.30 (&« = 40).

2.6.3 The “Paradox”

The result (2.29) constitutes the so-called twin paradox. Actually, this is not a
paradox for this does not generate any contradiction in the theory of relativity, as
discussed below; this is simply a surprising result for a “nonrelativistic” physicist:
in Newtonian theory, the times given by the clocks of each twin would be the same
when they meet in B, provided that they have been synchronized in A.

The paradoxical aspect of Langevin’s traveller arises from a naive interpretation
of the principle of relativity: from the point of view of twin &, the twin &” is the
traveller and the above computation shows that when ¢” is back, he is younger
than . But from the point of view of &7, it is & who is travelling. When the
twins meet again, & should then be younger. Since both points of view should be
equally valid according to the principle of relativity, a paradox appears: at the event
B, 0’ cannot be both younger and older than &. Actually, this argument is false
because the two twins & and ¢” do not follow equivalent worldlines in Minkowski
spacetime. The worldline of & is a very peculiar curve: a straight line, which
implies that &’s 4-acceleration is vanishing. On the contrary, the 4-acceleration
of &’ is nonzero, as we shall see below. Since the two twins are not equivalent,
the relativity principle cannot be invoked and the paradox disappears. For a more
detailed discussion, we refer the reader to Grandou and Rubin (2009).
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Fig. 2.6 Proper time ¢ of the twin ¢” (Langevin’s traveller) as a function of the proper time ¢ of
the twin &, for various values of the parameter «. Note that at the instants 1 = 0, = T/2 and
t = T, where the two worldlines are parallel (cf. Fig.2.5), the slope of the curve is 45°, which
means that " flows at the same rate as ¢. On the other side, at the instants t = 7'/4 and t = 3T /4,
where the inclination of .#” differs the most from that of ., the slope of the curve is the smallest
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Fig. 2.7 Ratio between the proper time elapsed between A4 and B for ¢’ and that elapsed for &,

as a function of the parameter « [cf. formula (2.29)]
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Remark 2.15. From the four-dimensional point of view adopted in this book, the
solution of the twin “paradox” appears rather trivial: the proper time has been
defined as the length given by the metric tensor g along a worldline, and it
seems obvious that the length between two points A and B depends upon the path
chosen between these two points. A sceptical mind could reply: “there is nothing
revolutionary in this with respect to the Newtonian time, because everything relies
on the definition of proper time as the length of worldlines with respect to g; this
is an arbitrary definition of “time”. It is therefore not surprising that it results in
a strange behaviour”. However, we have already mentioned in Sect.2.3 that the
time defined from g is the actual physical time, in the sense that the equations of
dynamics take a simple form when expressed with it (we shall see it explicitly in
Chap. 9). We shall actually see in Sect.2.6.6 some experimental realizations of the
twin paradox, showing that the time provided by atomic clocks between two events
A and B do depend on the worldline between these two events. It is therefore not a
mere semantic effect!

Remark 2.16. Since arsinhx = In(x + +/x2 + 1), we deduce from formula (2.29)
that when @ — 400, the ratio T’/ T goes to 0, behaving as 4Ina/«. This is
not surprising if one contemplates Fig.2.5: when &« — o0, the worldline .’
approaches the worldline [A D] U [DB] of a photon emitted in 4 and reflected back
to B in D. Each segment [AD] and [DB] is a piece of null geodesic and hence as
a vanishing metric length (cf. Remark 2.13 in p. 39). Therefore we understand why
T’, which is nothing but the metric length of .#’ between A and B, converges to
zero when o — +-00.

Historical note: This is in fact Albert Einstein who, in the seminal 1905 article
(Einstein 1905b), already pointed out that two clocks initially synchronized and, at
the same position, would not show the same time if they are read at the same place
after having travelled on different paths. Einstein gave an approximate formula
(valid for small velocities) of the delay between t' and t. During a conference in
Zurich in 1911, he illustrated the effect by describing a round-trip journey of a
living organism locked in a moving box (cf. Damour (2006), p. 34). In order to
make the effect more spectacular, Paul Langevin (cf. p. 40) imagined in 1911 a
human being leaving the Earth aboard a “projectile”, travelling towards some star
at a velocity close to that of light and coming back on Earth after 2 years, whereas
200 years have been elapsed on our planet (Langevin 1911; Paty 1999a). Let us note
that in the 1911 text (Langevin 1911), Langevin did not speak explicitly of “twins”
but of a “traveller” and “the Earth”. Besides, he gave clearly the explanation
of the dissymmetry between the two by mentioning the acceleration felt by the
traveller.
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2.6.4 4-Velocity and 4-Acceleration

Let us compute the 4-velocity @’ of Langevin’s traveller ¢” at each point of his
worldline. From the definition (2.12), we have

., 1d¥
u=- )
c dr’
The components of #’ in the orthonormal basis (€) are thus «'* = ¢~'dx'*/dt’.
Since dx* = (c dr,dx, 0,0), we get u’* = 0,4 =0,

o 1dx  dr d 4 ldx' ldx  1dxdr
W =-—=— an W =-——=-—=-——
c dr’ de’ c dv cdt/ ¢ drdt

By means of (2.25) and (2.23), we obtain

W’ = \/1 +a2(t)T —k/2) (2.30a)
W= (=Dra(t/T —k/2). (2.30b)

Given the definition of the integer k, we note that if > 0, then for 0 < ¢t < T/2,

'’ > 0 (0" is moving away from & in the direction of increasing x), whereas for

T/2<t<T, W< 0(0 s moving towards ). The vector %, as given by (2.30),
is drawn at some selected points of .¢” in Fig. 2.8.
Let us notice that, from (2.26),

a (i — lﬁ) — sinh [3 (z’ — ’fr’)} , (2.31)
T 2 T 2

so that the components of %’ can be expressed in terms of the proper time 1’
according to

W° = cosh [3 (z’ _ ET’)} (2.32a)
T 2

2 SR B A g /_li ’

W= (=1) smh[T (z 5T )} (2.32b)

Remark 2.17. Thanks to the identity cosh? x — sinh®> x = 1, it is easily checked
on these formulas that @’ - @' = —(u/®)?> + (u’')> = —1, as it should be for any
4-velocity [Eq. (2.14)].

Let us now compute the 4-acceleration @’ of ¢”. By definition [cf. Eq. (2.16)],

_1dw@
e d

—>/
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Fig. 2.8 Worldline .#’ of Langevin’s traveller ¢’ with the 4-velocity %’ and 4-acceleration @’
at some selected points. This figure corresponds to the case « = 4 (solid line in Fig.2.5), i.e.
to the acceleration y = 4c¢/T. At the event A, the 4-acceleration changes sharply from O to
@’ = yc™?2 € (ignition of the rocket engine). Its norm stays then constant (equal to yc~2), until
the return event B, where @’ vanishes again (rocket engine stopped). The event C; is the sudden
change of direction of acceleration by 180° (thrust reversing). ¢’ is subsequently slowed down
until P and then sped up towards €, until C,. At this point, a new thrust reversing occurs, so that
0’ is slowed down until it reaches B

Accordingly, the components of @ in the orthonormal basis (€) are

0 1
a/o_ 1du’ A 1dl/l/ 3

=, a4 =-—, =0.
c dr’ c dr’

2
a“ =0 and d

Taking the derivative of (2.32) with respect to ¢, we get

k
a”® % sinh [% (t’ — ET’):| (2.33a)

o ki g /_li l
a =1 T cosh[T (t 2T):|. (2.33b)
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As a check, the orthogonality between the 4-acceleration and the 4-velocity
[Eq.(2.17)] is recovered from (2.32) and (2.33): @’ - &’ = "’ + " =o0.
Thanks to (2.31), we can express the components of @’ in terms of ¢ instead of ¢’

2
=L (i - ]f) (2.34)

cT \T 2
rok\?
(—1)k%\/1 t a2 (7—5) . (2.34b)

We notice that ¢’ has a sudden change of sign when k goes from O to 1, i.e. when
t = T/4, as well as when k goes from 1 to 2, i.e. when t = 37'/4. More precisely,
if @ > 0, formula (2.34b) yields

1
a

te OT — ad'>0, te T 3T — d' <0
’4 9 474 b

3T ;
te| T = d" >0 (2.35)

Physically, if we consider that &” is travelling in some spaceship, the sudden change
of sign of a’ ! corresponds to a thrust reversing operated on the rocket engine (events
C and C; in Fig.2.8).
Let us evaluate the scalar square of @’. The basis (€,) being orthonormal, we
have @’ - @' = —(a’*)? + (a’")%. From (2.33) or (2.34), we get easily
2

S

a = .
c2T?

(2.36)

The right-hand side being clearly positive, we recover the property (2.18), namely,
that @’ is a spacelike vector. More remarkably, (2.36) shows that the norm of the
4-acceleration,

o=@, =vaa =1 (2.37)

does not depend upon ¢’: it is therefore constant along the worldline .¢” between A
and B. This property is specific to the spacetime motion along an arc of hyperbola,
which we have chosen for .

We have seen in Sect.2.4.2 that the dimension of a’ is the inverse of a length,
in agreement with (2.37), « being dimensionless. To let appear a quantity with the
dimension of an acceleration, it suffices to multiply a’ by ¢2. We thus introduce the
parameter

yi=a—, (2.38)
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instead of «. y has the dimension of an acceleration and is related to the norm of the
4-acceleration of &’ by

a = [y

= (2.39)

We shall see in Chap. 12 that y is actually the acceleration felt by the observer ¢” in
his local frame.

Remark 2.18. Note that y # d?x/dt?, i.e. y is not the second derivative of the
function x(¢) defining the worldline of ¢”. The latter is obtained by taking the
derivative of dx/dt as given by (2.23). One gets, after substituting y/c fora/ T,

d2x

N P z—liT)2 o (2.40)
dr2 v 2 ( 2 ' '

We conclude that one has |y| ~ |d?x/dt?| only in the nonrelativistic limit
YT < c.

Remark 2.19. In many textbooks,® the twin paradox is exposed from a worldline
&' simpler than the three arcs of hyperbola considered here, namely, a straight line
segment from A to P as well as from P to B (see Fig.2.9). The computations
are then simpler than those presented above, the equation of .’ being x(¢) = Vi
fort € [0,T/2] and x(t) = V(T —¢t) fort € [T/2,T], with V := 2x(P)/T.
We have then dx = £V dt, so that evaluating dt’ according to formula (2.24), we
getdt’ = /1 —(V/c)2dt, which is easily integrated and leads to the proper time

ratio
T’ | V2
— =4/l —— <1. 2.41
T 2 - 4D

However, this configuration is not physical for it corresponds to an infinite accel-
eration of 0" at A (the 4-velocity jumping suddenly from #’(A4_) to ©@'(A4), cf.
Fig.2.9) as well as in P and B. On the contrary, the “tri-hyperbolic” worldline
considered here involves always a finite acceleration. It admits thus a clear physical
interpretation in terms of a (rocket) engine of constant thrust, switched on at A,
inverted in C; and C; and switched off at B. This demonstrates that the twin paradox
is not an artefact resulting from an infinite acceleration.

8Two exceptions are the books by Mgller (1952) and by Marder (1971).
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Fig. 2.9 Simplified - >
worldline for the Langevin’s u(BIR pui(B)
traveller ¢’: ¢’ is reduced to

a line segment between A and t=T 3
P, as well as between P and "\ \

B. The 4-acceleration of ¢” is 2\ N

then infinite at A, P and B, B \
as indicated by the jumps of R N
the 4-velocity @’ at these t=3T/4
points. On the opposite, the

“tri-hyperbolic” worldline

(dotted curve, the same as in

Figs. 2.5 and 2.8) yields

always a finite 4-acceleration t=1/2

t=TH

t=0

2.6.5 A Round Trip to the Galactic Centre

Let d := x(P) be the maximal distance of &” with respect to &. We may reexpress
formulas (2.22) and (2.29) in terms of the acceleration y via (2.38):

2¢2 yT\? T 4c . (yT
d=— 1+ — ) —1 and — = —arsinh [ — ). (242)
14 4c T yT 4c

The second relation allows one to express T in terms of 77 as

*

T 4e 4
T = T, sinh (—)  with Tho=-S=1T (2.43)
T. y o

T is the timescale that can be built from ¢ and the acceleration y; in Newtonian
physics, this would be 4 times the time required to reach the light velocity, starting
from a zero velocity with the acceleration y. Substituting 7' by the above value in

the expression of d and noticing that y/1 4 sinh” x = cosh x, we get
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g = |:cosh (2) _ 1} . (2.44)
2 T,

When T’ <K Ty, the Taylor expansions of (2.43) and (2.44) lead to

T ~T’

T & Ty = ¢ 1 (T? (2.45)
* d:F(T’)2:2x§y(T) .
*

If T/ « T, O’ has not the time to reach a relativistic velocity with respect to &
and (2.45) gives the Newtonian results, as it should be: no differential ageing and
the travelled distance d /2 at a constant acceleration y (phase [AC,] lasting T’/4)
being equal to y/2 times the square of travel time. This is indeed the expected result
for a vanishing initial velocity.

Conversely, if T’ > Ty, the ultra-relativistic regime is reached and rela-
tions (2.43) and (2.44) lead to

T.
T ~ 7 exp(T"/ Tx)
T'> T, 2.46
> 1y — CT* / 1 ( )
d ~ 1 exp(T'/Ty) = ECT.

Remark 2.20. Formula (2.43), which relates T to T’, depends on a single parame-
ter: the acceleration y, via the time 7% = 4c/y. One should however not conclude
that the twin paradox is a phenomenon intrinsically linked to acceleration. It should
rather be perceived as the reflect of the dissymmetry of the worldlines between A
and B. It turns out that in Minkowski spacetime (&, g), the only way for £’ to
depart from a straight line (worldline .%) is to have some episode of nonvanishing
4-acceleration. If & is given a topology different from that of an affine space, then it
is possible to have T # T’ with . and %’ both having a vanishing 4-acceleration.
It suffices that & has a non-simply connected topology,” as shown is the study (Uzan
et al. 2002).

Let us apply the above formulas to the “concrete” case where ¢” is an astronaut in
some spaceship. To consider an acceleration bearable for a human being, let us take
the value of Earth’s gravity: y = 1 g = 9.81 ms~2. This has even the advantage
to create an artificial gravity aboard the spaceship that simulates the terrestrial
environment and makes the journey comfortable. The corresponding time parameter
defined by (2.43)is Ty = 4c/y = 1.22 x 108 s = 3.87 yr, and formulas (2.43)
and (2.44) lead to values of T and d as functions of 7T’ listed in Table 2.1. We
observe that if ¢ is travelling for more than a year, then the difference between

9An example of such spaces is a torus or, more generally, any compact domain with periodic
boundary conditions.
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Table 2.1 Properties of various trips of Langevin’s traveller, when the
acceleration is fixed to y = 9.81ms~2: T’ is the round-trip duration
measured by him, 7 is the duration of the same trip but measured by
the “sedentary” observer ¢ and d is the maximal achieved distance
between ¢’ and & (1 light-year = 9.46 X 10'> m). One checks that if
T > Ty = 3.87 yr,then d =~ ¢T /2, in agreement with (2.46)

T’ [yr] T [yr] d [light-year]
1 1.01 0.065

2.09 0.26
4 4.75 1.13
8 15.0 5.82
16 120 58
32 7.50 x 103 3.74 x 10°
39.5 5.20 x 10* 2.60 x 10*
56 3.68 x 10° 1.84 x 10°
64 2.90 x 107 1.45 x 107
80 1.81 x 10° 9.03 x 108
90 2.39 x 10'° 1.19 x 100
100 3.15 x 10! 1.58 x 10'!

the “onboard” proper time 7’ and the “harbour” proper time 7 is noticeable. With a
journey lasting for 8 years, &’ can reach the closest stars from the Solar System. If he
is travelling for 77 = 16 years, when he is back on Earth, T = 120 years will have
elapsed, implying that he will not be able to report his journey to his acquaintances
but to their children. Table 2.1 shows that the centre of the Galaxy, located a roughly
26,000 light-years, can be reached within a journey of round-trip duration of only
39.5 years. In this case, it is not guaranteed that there will be anybody interested
by the traveller’s account at the return, for 52,000 years will have elapsed on Earth!
Let us not speak about a round trip to Andromeda Galaxy, located at 2 million light-
years, because while it takes only 56 years for the astronaut, his return will take
place on an Earth aged by 3 million years and, at the very least, he will face some
language issue. ..

Of course, in the above description, we have limited ourselves to pure kinematic
considerations and have not taken into account the energetic cost of such travels:
maintaining an acceleration of 1 g during several years requires an enormous
amount of energy and forbids such travels with today technology. Nevertheless,
we shall keep in mind that relativity allows one, at least theoretically, to visit the
Galactic centre and even to reach the border of the observable universe within a
human lifetime (d ~ 12 billion light-years for a round trip of 90 year, cf. Table 2.1),
travelling at less than the speed of light! (¢”’s worldline is always located inside
the light cone, cf. Fig.2.8). Hence it is not correct to say that it is not possible for
a person to travel further than a hundred light-year or so away from Earth because
relativity forbids to travel faster than light. On the contrary, the solution is offered
by relativity itself: it remains true that for any observer that he may encounter on
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his way, ¢ is travelling slower than light'?; this implies that for people observing

him from the Earth, &” will take at least 26, 000 years to reach the Galactic centre.
On the contrary, for &”, only 20 years will have elapsed when he will arrive at the
Galactic centre.

One lesson from the above example is that relativity allows for time travel to the
future: one may say that 0" is travelling to ¢”s future, since when &’ meets again &
at B, O is older than him. The numbers listed in Table 2.1 show even that this time
travel to the future can be of millions of years. On the other side, special relativity
does not allow for time travel to the past: even if we take the point of view of O,
when ¢ meets again ¢” at B, the latter is younger than him but still older than when
he left him at A.

Remark 2.21. Tt is Minkowski spacetime structure that forbids the time travel to
the past: all the light cones being parallel (cf. Figs. 1.8 and 2.8), one can show
that it is not possible for the worldline .’ to meet .£ at a point B located in the
past of A while staying inside the light cone of any of its points. However, if a
gravitational field is present, the spacetime structure is no longer that of an affine
space, as we shall see in Chap.22, but that of a “curved” space ruled by general
relativity. The light cones are then no longer parallel with respect to each other and
it is possible, under certain conditions (quite extreme though. .. ), to have ¥’ such
that B is anterior to A. This is the time machine of science-fiction novels! We shall
not discuss this subject further and refer the interested reader (who would not be?)
to Lehoucq (2004), Davies (2002), Thorne (1994).

2.6.6 Experimental Verifications

Undoubtedly, the twin paradox puts forward an effect that is not part of everyday
life, namely, the dependency of time upon the motion of bodies. Actually the
velocities of people and objects around us are very small with respect to the velocity
of light, and we have seen that the time shift is sizeable only if 7’ is of the order
T, which implies a velocity close to ¢ [cf. (2.43) under the form Vi := y Ty ~ c].
Nevertheless, even if the effect is too small for our senses, it can be exhibited by a
sufficiently sensitive experiment. This turned out to be possible in the 1970s, thanks
to atomic clocks.

2.6.6.1 Hafele-Keating Experiment (1971)

The first experimental reproduction of the twin paradox has been performedin 1971
by J.C. Hafele of Washington University at Saint Louis (Missouri) and Richard E.
Keating of the US Naval Observatory (Hafele 1972b; Hafele and Keating 1972a,b)

10We shall make precise the notion of velocity in Chap. 4.
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(cf. also Hafele (1972a)). Four caesium atomic clocks have been loaded on airline
jets for a journey round the Earth; when back to their starting point, they have
been compared with atomic clocks stayed on the ground. Two journeys have taken
place. The first one has been performed eastward from 4 to 7 October 1971,
with 12 stopovers, 3 changes of plane (Boeing 747 and 707) and a total of 41 h
of flight. The second one has been performed westward from 13 to 17 October
1971, with 13 stopovers, 2 changes of plane (Boeing 707), totalizing 49 h of flight.
The corresponding worldlines are rather different from that of Langevin’s traveller
defined in Sect. 2.6.1: the motion around the Earth being circular and not linear, the
worldlines rather looks like helices. The precise trajectory of the clocks was pretty
complicated because of the different stopovers, the experiment being performed on
commercial airlines. Thanks to the flight data provided by the pilots, it has been
possible to reconstruct the worldline .#”’ followed by the onboard clocks. Another
difference with Sect. 2.6.1 is that the worldline . of the reference clock staying on
the ground is not a straight line but also a helix, due to the Earth rotation. However,
even if the worldlines . and .#” are more complicated than in Sect. 2.6.1, one could
similarly compute, by means of (2.10), the proper times T along . and T’ along
#' between the plane departure (event A) and its return (event B). These theoretical
values have been then compared with the actual measurements given by the clocks.

In addition to the shape of the worldlines, another complication arises from the
fact that the clocks aboard the planes were travelling higher in the gravitational
potential of the Earth than the clocks stayed on the ground. A general relativistic
effect then takes place: the gravitational redshift, that we shall discuss in Chap. 22.
It results in a difference between the proper times 7’ and 7T, in the direction
of increasing T’. This effect has a magnitude comparable to that of the special
relativistic effect that we are interested in here. The verification of the twin paradox
must thus take this into account.

In Chap. 13, we shall compute the value 7/ — T in the framework of special
relativity, by means of simplified airplane trajectories. The precise computation,
relying on the actual trajectories, results in 7 = T — 184 £ 18 ns (nanoseconds)
for the eastward journey. The 18 ns error bar is related to the uncertainties in the
reconstruction of the airplane worldline (uncertainties in position and velocity).
Hence, the clocks that have travelled eastward must be younger by 184 ns than those
stayed on the ground. This value must be corrected from the general relativistic
effect mentioned above; the latter goes in the reverse direction: it increases T’ by
144 & 14 ns. Accordingly, the theoretical prediction is 7/ = T — 40 & 32 ns. The
observed value, obtained by taking the average over the four clocks, in order to
reduce the experimental error, is 7/ = T — 59 £ 10ns.

Regarding the westward journey (counterrotating with respect to the Earth), the
worldline .#” (a helix at first approximation) deviates less from a straight line than
the worldline .Z. We are thus in the case where special relativity predicts 77 > T, as
we shall see explicitly in Chap. 13. The computation leads to T’ = T + 96 & 10 ns,
to which the gravitational redshift effect must be added (always with the result of
increasing T”), to arrive at T’ = T + 275 £ 21 ns. The measured value is 7/ =
T + 273 £ 7ns.



56 2 Worldlines and Proper Time

Fig. 2.10 Airplane carrying the atomic clocks (observer ¢”) in Alley experiment (1975), parked
near the truck containing the reference atomic clocks (observer &), at the Naval Air Station
Patuxent River (Eastern coast of United States). This picture may be considered as a view of the
event A, where ¢ and 0’, who were following the same worldline, are on the verge to separate
[Credit: C.O. Alley (1983)]

Given the error bars, we conclude that Hafele-Keating experiment has confirmed
that the proper time elapsed between two events does depend on the worldline
related them. This may be seen as the experimental demonstration that the actual
time is not Newton’s absolute time, but relativity’s time.

2.6.6.2 Alley Experiment (1975)

A more precise experiment with atomic clocks in airplane has been performed in
1975 by Carroll O. Alley of the University of Maryland (USA) (Alley 1983). This
time, an aircraft entirely devoted to the experiment has been used instead of regular
airline planes. It was an antisubmarine aircraft Lockheed P-3C Orion, which has the
capability to fly non-stop for 16 h. On 22 November 1975 six atomic clocks (three
caesium ones and three rubidium ones) have been loaded for a 15-h flight turning
around Chesapeake Bay, on the Northeast coast of the United States (worldline .Z”).
A set of identical atomic clocks was installed in a trailer on the base from which the
aircraft departed (worldline .%) (cf. Fig. 2.10). The average speed of the plane was
540kmh™! = 150ms~! = 5x1077 ¢ and the altitude was 7,600 m during the 5 first
hours, 9,100 m during the 5 next hours and 10,700 m during the 5 last hours. The
computation of the proper times along .#” and . leads to the following theoretical
prediction:

T'=T —57ns +52.8ns = T + 47.1ns, (2.47)
S—— N ——
SR GR

where “SR” labels the contribution of special relativity (kinematic effect considered
in this chapter) and “GR” the contribution of general relativity (gravitational
redshift). The value measured at the return is in agreement with (2.47) within a
relative accuracy of 1.5%. Since the kinematic effect is a tenth of the total effect, we
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conclude that Alley experiment has confirmed the twin paradox with an accuracy of
the order of 15%.

Remark 2.22. Other tests about the dependency of proper time with respect to the
motion will be presented in Chaps. 4 and 5. They are much more precise than the
experiments described above. We have limited ourselves to the last ones because
they are directly interpretable in terms of the twin paradox.

2.7 Geometrical Properties of a Worldline

2.7.1 Timelike Geodesics

In the study of Langevin’s traveller, we have observed that T > T’ as long as
the worldline .’ departs from .Z (i.e. as long as « # 0). Given the definition of
proper time, we may state in an equivalent manner that between events A and B, the
straight worldline . has a length (given by the metric tensor g) larger than that of
the curved worldline .#’. We shall show now that Langevin’s traveller reflects the
most general case: if two points of & can be joined by a timelike straight line, all
the other timelike curves joining them have a smaller metric length. This result is of
course the exact opposite of what holds in a Euclidean space, where the straight line
is always the shortest path between two points.

Let A and B be two points of & such that B is located inside the future light
cone of A. These two points can then be joined by timelike curves (i.e. worldlines
of massive particles). A particular worldline is the straight line %, through A and
B. Let (€,) be an orthonormal basis of (E, g) such that €, coincides with the 4-
velocity of .%. We introduce the affine coordinate system (x* = ct, x' = x,x? =
y.x3 = z) associated with (€,) and centred on A (cf. Fig.2.11). Let .Z be a
timelike worldline connecting A and B. As . must stay inside the light cone of
each of its points, we can use the affine coordinate ¢ as a regular parameter'' along
Z. Let then X, Y and Z be three functions R — R giving the position of . in
terms of the affine coordinates (x*), according to

x=X@), y=Y@t), z=Z(@). (2.48)

The components in the basis (€) of the elementary displacement vector dX¥ along
£ are then

dx® = (¢ dr, Xdr, Ydr, Zdr), (2.49)

UTf the timelike constraint was relaxed, then ¢ could move “backward in time” and ¢ would not
be a good parameter along it.
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Fig. 2.11 Comparing the
metric length (proper time) of
two worldlines joining two
events A and B: a straight
line and a curved line. Since
c2dt? = ¢2dr? — dx2, the
curved line is, with respect to
the metric g, shorter than the
straight line

where the derivatives of the functions X, Y and Z are indicated with a dot.
The length of £ (with respect to g) between the points A and B is given by
formula (2.10):

B B
ct(A,B) = c/ dr = / V—g(d¥,d¥). (2.50)
A A

Now, since (€) is an orthonormal basis, —g (d¥,d¥) = —nuedx®dx? = ¢2dr® —
(X dr)? — (Y dr)® — (Z dr)% Hence

B
ct(A,B) = C/A \/1 — ciz [(X)2+ (V) +(2)*] dt

IA

B
c/ dt = c[t(B) — t(A)]. @2.51)
A

Since c[t(B) — t(A)] = c ©0(A, B) is the length of the straight line %, between A
and B, we conclude that .5 maximizes the metric length (proper time) between A
and B, among all the possible worldlines.

For this reason, one calls timelike geodesic any timelike straight line of &.
Note that the term geodesic must be understood as a curve of extremal length, not
necessarily minimal. To summarize, the null geodesics introduced in Sect.2.5.1
correspond to minima of the metric length, whereas the timelike geodesics to
maxima.

Remark 2.23. The timelike geodesic between A and B providing the upper bound
on the metric length between these two points, one may ask about the lower
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bound on this length, taking into account that it must be positive or zero [cf. the
integral (2.50)]. The answer is given by the example of Langevin’s traveller: the
lower bound is zero. Indeed, when the parameter « tends to infinity, the length of
the worldline .#”’ between A and B shrinks to zero, as shown by formula (2.29) (see
also Remark 2.16 p. 46).

2.7.2 Vector Field Along a Worldline

Given a timelike worldline, .Z let us say, we have already encountered two kinds of
vector fields defined along it: (i) the tangent vector fields associated with the various
parametrizations of .Z, among which the 4-velocity and (ii) the 4-acceleration field
introduced in Sect.2.4.2 (which is nowhere tangent to .%’). More generally, let us
define a vector field along the worldline £ as a mapping

v:¥Y— E
A — T(A). (2.52)

Since the points A of .Z are often labelled with their proper time t, we shall also
write U (7) for ¥ (A(7)).

One says that the vector field ¥ is differentiable at a point A(r) € £ iff the
limit

— := lim é [V(t +¢e)— V(7)) (2.53)

exists. The vector dv /dz is then called the derivative of V along . at point A(T).
Given a basis (€) of E, we may write ¥ (t) = v*(t) €. Itis then easy to see that
v is differentiable iff the components v*(t) are differentiable functions R — R.
Moreover, the components of the derivative are nothing but the derivatives of the
components:

— =y (2.54)

2.7.3 Curvature and Torsions

This section can be skipped during a first reading.

Along any timelike worldline .#, one may define, from a pure geometrical
viewpoint, an orthonormal basis, the Serret—Frenet tetrad (€, €1, €, € 3), which
characterizes the curvature and torsion of the worldline. Usually, the Serret—Frenet
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tetrad is constructed in a Euclidean space, from the arc-length parameter s along the
curve. In Minkowski spacetime, which is not Euclidean (cf. Sect. 1.3.1), the Serret—
Frenet tetrad is constructed instead from the metric length c7, t being the proper
time along the curve.

The first vector of the Serret-Frenet tetrad is nothing but the 4-velocity @ of .Z:
€0 = u. The vector € is thus timelike, unit and tangent to .. Let us assume that
the 4-acceleration @ of .Z is nonvanishing. If this is not the case, . is reduced to
a straight line and the Serret—Frenet approach is useless. The second vector of the
Serret—Frenet tetrad is defined by

1—) 1 d?O — B —
e, =—ad =——, where a:=|dl,=va-a. (2.55)
a

The second equality in a’s definition is meaningful for @ is a spacelike vector [cf.
Eq. (2.18)]. The positive number a is called the curvature of the worldline . at
the considered point. From our conventions (cf. Sect. 2.4.2), the dimension of a is
the inverse of a length. The quantity a™! is called the curvature radius of . at the
considered point. In a Euclidean space, a~! would be the radius of the circle that
approximates the best the curve . at the considered point. However, Minkowski
spacetime being not a metric space, the notion of circle is not defined in the present
context. A second interpretation of the curvature radius is this time transposable
to Minkowski spacetime: a~' is the distance to % at which two hyperplanes
orthogonal to @ at two neighbouring points of % intersect. We shall show it at
Sect.3.7.

Let us consider now the derivative of the vector € along %, following the
definition (2.53). Since ¢ is a unit vector, d€’|/dzt is orthogonal to €; it is thus
expressible as a linear combination of € and a unit vector €, orthogonal to both
€oand €:

1d_> — —
_gen =aeg+1T e, (2.56)
c dr

The fact that the coefficient of € in the above formula is @ can be checked by
expanding the identity d/dt(€o - €;) = 0. If d€;/dt is not collinear to €Y,
relation (2.56) constitutes the definition of both the scalar 77 > 0 and the unit vector
€. Ty is called the first torsion of the worldline .Z. If T} = 0, . is contained in
the plane generated by (€9, € ). In the general case, let O be a point of .# and
let us set 7(0O) = 0. Given a point A(t) € £ close to O and of proper time t,
we may perform a Taylor expansion of the vector OA in terms of the dimensionless
parameter

£ = apcT, (2.57)
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Fig. 2.12 Serret—Frenet

tetrad at some point O of the
worldline .# (the vector €3 is /‘/
not drawn

) AN

Z
trace of -2 onto
its osculating plane

where ag is .Z’s curvature at O. Expanding up to power 3 in &, we get

dOA 2204 £ d$P0A

OA(r) = ¢ de +5 de? +€ del

+ 0(eh), (2.58)

with d*OA/de* = (cap)™ d* OA/dz*, and from Egs. (2.12), (2.55) and (2.56),
1dOA
¢ dr
1 ¢*04

c? de?

1 *04 ., lda_, R
PR =a2eo+zae1+aTle2. (2.59¢)

s (2.59)

=4y (2.59b)

Hence

o (act)? . dat (ct)?_,
OA(7) = (1 + 6 )CT ey + (a + Eg) 2 e 2.60)

+%Tl(cr)3 2+ O((act)*).

In this equality, the quantities a, da/dt and Tj, as well as the vectors €, € and
€5, have to be taken at the point O.

The expansion (2.60) shows that, up to the order (act)?, the worldline stays in
the plane (O; €y, €1). This plane is called the osculating plane of £ at O. The
first torsion 77, which appears at the order (ac7)? in the expansion (2.60), measures
thus the departure of the worldline from its osculating plane (cf. Fig. 2.12).

Let us assume that 77 # 0, i.e. that €, is well defined. Since the latter is a unit
vector (€,- ¢, = 1),d¢,/dr is orthogonal to €, and thus can be written as a linear
combination of €, € and a unit vector € 3 orthogonal to €, € and €:
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——2=Oleo+,36’1+T283.
c dr

The coefficients & and B are determined from the scalar products € - €, = 0 and
€ -€y=0; taking the derivative of the first one with respect to ¢, we get o = 0,

whereas taking the derivative of the second one yields 8 = —T;. Hence
1de, N N
-——=-Tie1+Tes. (2.61)
¢ dr

If d?z/ dt is not collinear to €, this relation constitutes the definition of both
the scalar 75 > 0 and the unit vector e3. T» is called the second torsion of the
worldline .Z. If T, = 0, £ is contained in the affine subspace of & of dimension 3
(hyperplane) and generated by (€0, €1, € ). In the general case, (2.60) shows that
at the order (act)?, .Z is contained in the hyperplane (O; €, €1, € ), that we shall
call the osculating hyperplane of the worldline at the point O. It is easy to see that
T, €3 is involved at the order (act)* in the expansion of 52(1). The second torsion
measures thus the departure of .Z from its osculating hyperplane.

Let us suppose that 7> # 0 and evaluate d€’3/dr. Since €3 is a unit vector,
d¢’3/dzr is orthogonal to €. It is then necessarily a linear combination of the vectors
€0, €1 and €5:

-3 =aeog+pe;+yes.
c dt
Taking the derivative with respect to t of the identities €9 - €3 = 0, €;- €3 = 0
and €,- €3 =0,wegeta =0, 8 =0and y = —T>, so that we may write
1de _
R %7 5 (2.62)
c drt

Altogether, (2.55), (2.56), (2.61) and (2.62) can be written as

d?o/dl’ 0 a 0 0 _)0
1| d€y/dr a 0 T, 0O s
1 1 1 1
N = N . 2.63
¢ de,/dr 0-7y 0 T, € (269
d?g,/d‘[ 0 0 —T2 0 e

We shall see at Sect.3.5.3 that the matrix appearing in the above formula can be
interpreted in terms of the 4-rotation of the Serret—Frenet tetrad.

Historical note: The interpretation of the norm of the 4-acceleration as the
curvature of the worldline appeared as early as 1908 in an article by Hermann
Minkowski (cf. p. 26) (1908) and subsequently in his famous text on spacetime
(Minkowski 1909).
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