
Chapter 2
Shell Element Formulations for General
Nonlinear Analysis. Modeling Techniques

2.1 Introduction

In 1970, Ahmad, Irons and Zienkiewicz [1] presented a shell element formulation
that after many years still constitutes the basis for modern finite element analysis
of shell structures. The original formulation was afterwards extended to material
and geometric nonlinear analysis under the constraint of the infinitesimal strains
assumption [2–4].

The fundamental features of the A-I-Z shell element are,

• using isoparametric interpolation functions the displacements inside the shell
element are interpolated from three displacement-d.o.f. and two rotation-d.o.f. at
each node,

• the interpolated generalized displacement fields present C0continuity,
• the element is not based on any plate/shell theory but it is a continuum element

incorporating several assumptions that we list below (degenerated solid
element).

The kinematic and constitutive assumptions are,

• a straight line that is initially normal to the mid-surface remains straight after the
deformation,

• a straight line that is initially normal to the mid-surface is not stretched during
the deformation,

• the through-the-thickness stresses are zero.

It is important to remark that the second assumption precludes the consideration
of finite strain kinematics.

Although the A-I-Z shell element was a breakthrough in the field of finite
element analysis of shell structures, it suffers from the locking phenomenon and
much research effort has been devoted to the development of A-I-Z type elements
that do not incorporate this problem [5, 6].

The MITC4 shell element [7–9] which was developed to overcome the locking
problem of the A-I-Z shell elements has become, since its development in the early
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1980s, the standard shell element for many finite element codes. However, the
limitation of infinitesimal strains is still present in the MITC4 formulation.

Many researchers have contributed to the development of shell elements that
can model finite strain situations, among them,

• an early contribution by Rodal and Witmer for elasto-viscoplastic material
models (J2) where, at each iteration, after going through the displacements
calculation, the shell element thickness is updated neglecting the elastic strains
and invoking the incompressibility of the viscoplastic flow (J2) [10],

• in 1983 Hughes and Carnoy [11] developed a finite strain shell element for the
Mooney-Rivlin material model which uses a plane-stress constitutive relation
for the laminae and updates afterwards the thickness via a staggered iterative
formulation,

• Simo and co-workers in the period 1988–1992 developed a complete 3D non-
linear shell element formulation [12–16],

• Ramm and co-workers developed 3D shell elements considering also through-
the-thickness stretching [17, 18].

In 1995 Dvorkin et al. developed the MITC4-TLH element, that based on the
original MITC4 formulation can model finite strain elasto-plastic (J2) deforma-
tions. This element imposes the condition of zero transversal stresses and its
computational cost was rather high [19, 20].

Later, Toscano and Dvorkin developed an element that is also based on the
MITC4 formulation and can efficiently model finite strain deformations using a
general 3D material model: the MITC4-3D element [21, 22].

The most relevant differences with the original MITC4 formulation are:

• for each quadrilateral element there are 22 d.o.f.: 5 generalized displacements
per node plus 2 extra d.o.f. to incorporate the through-the-thickness stretching,
these extra d.o.f. are condensed at the element level;

• a general 3D constitutive relation is used, instead of the original laminae plane
stress constitutive relation.

2.2 The Standard A-I-Z Quadrilateral Shell Element
for Linear Analysis

2.2.1 Linear Analysis Kinematics

When modeling a shell we define, on its mid-surface, nodes and at those nodes we
define director vectors which are the best approximation to the shell mid-surface
normal at the corresponding nodes. The A-I-Z quadrilateral element is defined
using four nodes which are not necessarily coplanar.
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Under the assumption of infinitesimal strains, for a configuration at a time s, a
point inside the shell element, with natural coordinates [5] ðr; s; tÞ (see Fig. 2.1), is
defined by the Cartesian coordinates,1

sxðr; s; tÞ ¼ hkðr; sÞ sxk þ
t

2
hkðr; sÞ asVn½ �k: ð2:1Þ

In the above equation,
hk 2D isoparametric interpolation function corresponding to the k-node [5];
sxk position vector of the mid-surface k-node at time s;
ajk shell thickness at the k-node (assumed as invariant during the

deformation);
sVnjk director vector at the k-node at time s sVnjk

�
�

�
� ¼ 1

� �

;

while the natural coordinates ðr; sÞ are defined on the element mid-surface
ðt ¼ 0Þ the natural coordinate t is measured at any point along the corresponding
director vector direction. The second term on the r.h.s. in Eq. (2.1) shows that at
any point on the element mid-surface the unit director vector times the thickness is
interpolated from the nodal values.

The geometry interpolation in Eq. (2.1) presents C0 continuity.
For describing the kinematics of the A-I-Z element the two main assumptions

are:

• the element thickness remains constant due to the assumed infinitesimal strains
deformation;

• the director vectors remain straight during the deformation.

The covariant base vectors of the ðr; s; tÞ system are determined deriving Eq. (2.1),
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Fig. 2.1 Kinematics of the
A-I-Z shell element

1 We use Einstein’s notation: akbk �
P

k akbk, that is to say repeated indices indicate a
summation.
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sg
i
¼ o sx

ori
ð2:2Þ

and the contravariant base vectors need to fulfill the relation,

sgi � sg
j
¼ di

j ð2:3Þ

For linear kinematics we consider the s-configuration to be coincident with the
0-(reference) configuration.

The displacements for a time s are,

su ¼ sx� 0x: ð2:4Þ

Using the above kinematic assumptions we get,

su ¼ hk
suk þ

t

2
hk a sVn � 0Vn

� �� �

k
: ð2:5Þ

Let us now define in the 0-configuration at the node k two vectors that with the
nodal director vector form the ortho-normal basis 0V1;

0V2;
0Vnð Þ. We can write,

for infinitesimal rotations [23, 24],

sVk
n ¼ 0Vk

n þ shk � 0Vk
n

shk ¼ ak
0Vk

1 þ bk
0Vk

2
sVk

n ¼ 0Vk
n þ bk

0Vk
1 � ak

0Vk
2:

ð2:6Þ

Therefore,

su ¼ hk
suk þ

t

2
hk a ð�a 0V2 þ b 0V1Þ
� �

k
: ð2:7Þ

It is apparent from Eq. (2.7) that this element formulation introduces 5 d.o.f. per
node.

At any point inside the shell we can write the infinitesimal strain tensor in terms
of its covariant components (~elm) in the ðr; s; tÞ curvilinear system and the corre-
sponding contravariant base vectors,

e ¼ eeij
ogi og j ð2:8Þ

where we use the notation (ogi og j), to indicate the dyadic (tensorial) product
between the two contravariant base vectors.2 In Eq. (2.8), eett ¼ 0 because the
thickness is constant.

From the kinematic relations between strain components and displacements
[24] we get,

2 Some authors use the notation ogi � og j.
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eeij ¼
1
2

0g
i
� ou

ori
þ 0g

j
� ou

ori

� �

: ð2:9Þ

Hence, using Voigt notation we can write

ee ¼ ~B U ð2:10Þ

where ee is the (5 9 1) column vector formed with the non-zero curvilinear
components of the strain tensor, U is the (20 9 1) column vector with the element
nodal generalized displacements and ~B is the (5 9 20) strain-displacement matrix,
formed using Eq. (2.9) [7].

2.2.2 Stress-Strain Relations

The assumption of zero stresses through the thickness is equivalent to consider that
each surface parallel to the mid-surface is in a plane stress condition. In the A-I-Z
finite element discretization, with only C0 continuity, there are two alternative
ways for imposing through the shell thickness the plane stress condition,

• imposing it to the different laminae with constant t;
• imposing it at every point to the surfaces normal to the director vector.

We have chosen the second alternative.
At each point inside the shell element we define the local Cartesian system

be1; be2; be3ð Þ with,

be1 ¼
0g

2
� 0g

3

0g
2
� 0g

3

�
�
�

�
�
�

be3 ¼
0g

3

0g
3

�
�
�

�
�
�

be2 ¼ be3 � be1 :

ð2:11Þ

In this local Cartesian system we formulate the different plane stress consti-
tutive relations in the plane be1; be2ð Þ.

There is an obvious contradiction since the above defined plane stress state, due
to the imposed kinematic constraint, is also a plane strain state; this can only be
possible in a very specific orthotropic material model. We overlook this contra-
diction as the price that we pay for degenerating the solid into a shell element.

The constitutive tensor can be described as,

C ¼ Cijkl bei bej bek bel ¼ eCpqrs og
p

og
q

og
r

og
s

ð2:12Þ
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and from the above we can get the curvilinear components eCpqrs.
Then the element stiffness matrix can be calculated as [7],

K ¼
Z

V

~B
T ~C ~B dV : ð2:13Þ

The (5 9 5) matrix ~C collects the curvilinear components of the constitutive
tensor and it is symmetric for hyperelastic materials models and elasto-plastic
material models when an associated plasticity model is used [24].

2.2.3 The Locking Problem

The locking problem has been very much analyzed in the literature [5, 6]; in the
present section we just present a couple of very simple examples to illustrate it.

2.2.3.1 Shear Locking

Using a 4-node element to model the cantilever under constant moment in Fig. 2.2
we notice that,

• the u2 displacement interpolation is linear along the coordinate x1 with a zero at
node 1,

• the h rotation interpolation is linear with a zero at node 1.

The shear deformation c ¼ du2
dx1
� h has to be zero everywhere and the condition

is imposed more strongly when the thickness tends to zero [20, 25].
It is evident that considering the order of the interpolation functions and the

boundary condition, the only solution is u2 ¼ const ¼ 0.

Fig. 2.2 Cantilever under constant moment modeled with one 4-node element: shear locking
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2.2.3.2 Shear and Membrane Locking

When using a parabolic interpolation for the generalized displacements of a curved
cantilever we find the impossibility of imposing together the zero shear and zero
membrane elongation conditions.

2.2.4 Solving the Locking Problem

The first remedy that was proposed for the locking problem was the use of reduced
or selective integration schemes [6]; however, those schemes, even though they are
very simple and produce inexpensive elements, incorporate the difficulty of the
spurious rigid body modes and the oscillation in the stress predictions [5, 6].

The element MITC4 was developed by Dvorkin and Bathe as a solution for the
shear locking problem that does not incorporate numerical drawbacks.

2.3 The MITC4 Quadrilateral Shell Element for Linear
Analysis

This element incorporates the displacement/rotation interpolations used in the A-I-
Z element; the curvilinear covariant strain components eerr; eess; eersð Þ are directly
calculated from the displacement/rotation interpolations using Eq. (2.9).

For the out-of-surface shear components we use the interpolations in Fig. 2.3,
which can be written as,

eert ¼
1
2
ð1þ sÞ eertjDI

A þ
1
2
ð1� sÞ eertjDI

C ;

eest ¼
1
2
ð1þ rÞ eestjDI

D þ
1
2
ð1� rÞ eestjDI

B :

ð2:14Þ

In Eq. (2.14) we use the notation,

eeij

	
	
DI

P
covariant strain component calculated from the displacement interpola-
tions at the sampling point P

The element, defined as we describe in this section, satisfies the Patch Test,
does not present spurious rigid body modes and does not lock. In the literature
there is abundant numerical evidence on the element robustness and accuracy.
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2.4 Nonlinear Analysis Using the MITC4 Element

2.4.1 Infinitesimal Strains Problems: Total Lagrangean
Formulation

There are a number of nonlinear structural and mechanical problems for which the
infinitesimal strains approach provides acceptable results. For these cases we
developed for the MITC4 element a Total Lagrangean Formulation (TLF) [5].

In an incremental analysis we know the s-configuration and we seek the
(sþ Ds)-configuration. Using the Principle of Virtual Work we can state for the
equilibrium at the configuration at (sþ Ds) [24],

Fig. 2.3 The MITC4 out-of surface shear interpolations
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Z

0V

sþDs
0S : dsþDs

0e
0dV ¼ sþDsdWext: ð2:15Þ

In the above equation 0V is the volume of the reference configuration (time = 0);
and for the configuration at (sþ Ds)sþDs

0S is the second Piola-Kirchhoff stress

tensor; sþDs
0e is the Green-Lagrange strain tensor (both tensors referred to the

reference configuration) and sþDsdWext is the virtual work of the external loads.
We can write for the incremental step,

sþDs
0S ¼ s

0Sþ 0S;
sþDs

0e ¼s eþ 0e:
ð2:16Þ

Where the tensors 0S; 0e are increments referred to (time = 0).
We decompose the strain increment into a linear (0e) and nonlinear part (0g) in

terms of the incremental displacements and relate the incremental strain tensor
with the incremental stress tensor using and incremental fourth order constitutive
tensor 0C.

After linearizing we get for the incremental step [24],

Z

0V

d0e : 0C : 0e 0dV þ
Z

0V

s
0S : d0g

0dV ¼ sþDsdWext �
Z

oV

s
0S : d0e 0dV: ð2:17Þ

As it is well known, the ðsþ DsÞ-configuration is determined iterating on Eq.
(2.15) until equilibrium is fulfilled [5].

In the nonlinear problem, we need to handle finite rotations; hence, we can
write [23],

tþDsVk
n ¼ sþDs

0 R � 0Vk
n: ð2:18Þ

Any rotation matrix can be written as [23],

s
0R ¼ I

3
þ sin hk

hk
H

k
þ 1

2

sin hk=2


 �

hk=2


 �

0

@

1

A

2

H2
k

ð2:19Þ

where,

hk ¼ a2
k þ b2

k

� �1=2

Hk½ � ¼
0 0 bk

0 0 �ak

�bk ak 0

2

6
4

3

7
5:

ð2:20Þ
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As in the infinitesimal rotations case, we have 5 d.o.f./node.
In the case of finite rotations the linearized equilibrium equations present extra

terms that were discussed in Refs. [20, 23].

2.4.2 Finite Strains

For the analysis of finite strain problems we use the following interpolation for the
reference configuration geometry [21, 22],

0xðr; s; tÞ ¼ hkðr; sÞ 0xk þ
t

2
0da ð2:21Þ

where,

0d ¼
hkðr; sÞ 0Vn

	
	
k

hkðr; sÞ 0Vnjk
�
�

�
�
: ð2:22Þ

It is important to remark that we considered in Eq. (2.21) elements with uniform
thickness.

For the displacement field we use,

suðr; s; tÞ ¼ hkðr; sÞ suk þ
t

2
sko þ sk1tð Þ sd � 0d

� �

a ð2:23Þ

where,

sd ¼ hkðr; sÞsVnjk
hkðr; sÞsVnjk
�
�

�
�
: ð2:24Þ

Equations (2.22) and (2.24) are used to avoid spurious director vector stretching
[26] that in this finite strains case, in which we do not neglect the stretching
through the thickness, may affect the results.

In Eq. (2.23) sko is the constant thickness stretching and sk1 is the through-the-
thickness stretching gradient. In our formulation both stretching d.o.f. are con-
densed at the element level.

The strain interpolations are the same as the ones we used in the infinitesimal
strains case. However, for hyperelastic material models we interpolate the Green-
Lagrange covariant strain tensor components and for the elasto-plastic material we
interpolate the covariant components of the Hencky (logarithmic) strain tensor [24].

We use 3D constitutive relations; hence, the through-the-thickness stress
component is not neglected. In [22] we developed the 3D constitutive equations
for the elasto-plastic element based on Lee’s multiplicative decomposition of the
deformation gradient tensor and maximum energy dissipation [24, 27].
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2.5 Modeling Considerations

In this section we discuss several considerations that need to be taken into account
when modeling shell structures.

2.5.1 The Nodal Director Vectors

The nodal director vectors may be either defined by the analyst or calculated by the
finite element code.

When the analyst introduces the director vectors together with the mid-surface
nodes, she/he selects them at each node so as to be the best approximation to the
actual normal to the shell mid-surface.

When the finite element code calculates at a given node the director vectors, the
normals to the interpolated mid-surface are calculated for all the elements sharing
the node; hence, the code defines at the node as many director vectors as the
number of elements sharing the node (the interpolated mid-surfaces only have C0

continuity). All the element normals sharing a node rotate together.

2.5.2 Number of d.o.f. per Node

As discussed above, in a shell model there may be nodes at which only one
director vector is defined and nodes at which multiple director vectors are defined.

For the case of nodes with only one director vector, the analyst has to consider 5
d.o.f. (3 displacements and 2 rotations around the local axes sV1 and sV2).

For the case of nodes with multiple director vectors, the analyst has to consider
6 d.o.f. (3 displacements and 3 rotations around the global Cartesian axes).

The case of a node with multiple but very close director vectors has to be
treated as a case with 5 d.o.f. collapsing the very close director vectors.

It is important to be aware of the fact that when using 6 d.o.f. the rotational
boundary conditions need to be defined along the global Cartesian axes and when
using 5 d.o.f. the rotational boundary conditions need to be defined along the local
axes. In geometrically nonlinear analyses these local axes change for each
incremental step.

When modeling a stiffened shell using shell elements and iso-beam (Timo-
shenko beam) elements [5],3 at the nodes shared by a shell and a beam element 6
d.o.f. have to be used.

3 Please notice that shell elements are not compatible with Bernoulli beam elements.
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