Chapter 2
Axial Capillary Forces

Pierre Lambert and Jean-Baptiste Valsamis

Abstract This chapter presents classical techniques to compute the shape of a
meniscus using the energetic method and its numerical implementation using Surface
Evolver. It provides the numerical solution of the Laplace equation for axially
symmetric configuration and some useful analytical approximations (circular or
toroidal approximation, parabolic approximation). Formal equivalence between
these approaches is given and results are provided as rules of thumbs for the designer.

2.1 Introduction

The contribution of this chapter is to model the force exerted on solids by capillary
bridges. These liquid bridges can be seen as mechanical joints with 6 degrees-of-
freedom. This chapter focuses on the axial degree of freedom, i.e. on the forces
developed along the symmetry axis of the liquid bridges.

As experimentally confirmed in the previous chapter (as shown in Fig. 1.1), the
very first model of a phenomenon usually relies on its scaling law, acknowledging
in this case the linear dependence of capillary forces on the size of the set up, and
more generally, the importance of dimensional analysis and scaling laws.

Nevertheless, targeting the design of devices using surface tension effects, it is
useful to get a more detailed insight on the parameters ruling capillary forces. This
is the starting point of models development. The axial capillary forces are of interest
in all micromanipulation case studies, to know for example the amount of picking
force in a microassembly application. At the nanoscale, the capillary force is an
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important contribution to adhesion, such as for example adhesion in atomic force
microscopy or stiction in RF MEMS. The lateral capillary forces models are more
dedicated to self-assembly problems or to the dynamics of components floating on
solder paste menisci, such as in flip-chip assembly. The dynamics of a chip in contact
with a fluid meniscus has been studied as a classical second order system, including
inertial, viscous and stiffness effects. Only the stiffness term depends on capillary
forces, while the viscous term depends on the shear stress on the component, i.e. on
the liquid viscosity and the liquid flow inside the meniscus.

In order to make our results useful to readership we try to propose analytical
models or to present numerical results in the form of maps and graphs.

2.2 Modeling Liquid Bridges Geometry: An Overview

Literature highlights two different ways to compute capillary forces. The first one
consists in computing first the surface energy of the liquid bridge and deriving it
with respect to the degree-of-freedom of interest! (see Sect.2.2.1). This approach
is particularly well suited for systems smaller than the capillary length, because
in this case, gravity energy and inertial effects are typically smaller than surface
energy. The second approach directly gives the force from the liquid bridge geometry
(Sect.2.2.3). Note that in both cases finding the right liquid bridge geometry is the
key point, leading to some useful approximations (Sect.2.2.4). Computing the force
from surface energy is quite straightforward and will be done in the following. On the
contrary, beside this approach based on energy, a second approach based on forces
directly was highlighted in literature: basically, it consists in computing separately
the effect of surface tension and the effect of pressure gap induced by the curvature
of the liquid bridge. We contributed to that point by giving formal and experimental
evidences of the equivalence of both approaches [1]. This will be detailed later on in
Sect.2.4. Consequently, in the current section, we don’t focus on force computation
but rather on liquid bridge geometry. The link between geometry and force will be
introduced later on.
Additional details can be found in our related publications [1-3].

2.2.1 Energetic Method: Example of Two Parallel Plates

As an introduction, we propose the case of a meniscus between two parallel plates,
with a contact angle § = /2. This method consists in:

e writing the interfacial energy W of the system as a function of the parameters
defining the geometry of the system;

I'E.g. the force along the z-direction is the derivative of the energy with respect to z.
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e deriving this energy with respect to one of the parameters (the separation distance z
is often used) in order to calculate the capillary force as a function of this parameter;

e estimating the derivative of the other parameters with respect to the chosen para-
meter by assuming a mathematical relationship (for example the conservation of
the liquid volume).

This approach can be illustrated by the case of two parallel plates linked by a menis-
cus, such as represented in Fig.2.1:

The system has three phases (S: solid, L: liquid, V: vapor) and three inter-
faces (LV:liquid—vapor, SL: solid-liquid, SV: solid—vapor) leading to a total energy
equal to:

W = WsL + Wsy + WLy = ysLSsL + ysvSsy + 7% (2.1)
where:
Wst, = 2vysL7r> (2.2)
Wsy = 27sv (rg — mr?) (2.3)
Wiy =vX =27nrz 2.4)

In these equations, rq is an arbitrary constant radius, larger than r and vysr.(vsv)
represents the interfacial energy between solid and the liquid (vapor). X' represents
the area of the liquid-vapor interface (the lateral area of the meniscus). This leads to:

W = 2fySL7rr2 + 2’}/5\/(7”'3 — 7rr2) + v27rz
= 2ysymrg =27r? (ysy — sL) +727r 2
——— N e’

constant ~ cos 0=0

As we try to get the expression of the force F acting on one of the plates along
the vertical axis z as a function of the separation distance z, the latter equation must
be derived with respect to z:

Fig. 2.1 Example of the z

energetic method: case of A

two parallel plates. z is the [ . 1
gap between plates, r the T
wetting radius i.e. the radius {
of the wetting circle, and rg

an arbitrary radius for area

computation (see the related

explanation in the text)

o
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dw
F=——
dz
dr
= 2mry — 2wzy— (2.5)
dz

requires an additional assumption

In order to calculate all the derivatives involved in this expression, an additional
assumption must be stated. The assumption is that the volume V = mr?z of the
meniscus remains constant (we consequently do not consider the evaporation of the
liquid), and its conservation leads to:

dv dr 5
— =2mrz— 4+ 7wr =0 (2.6)
dz dz

Finally, combining both latter equations, the force can be written as:
F =—7ry 2.7

Of course, this method only gives an exact analytical result in the very restrictive
case of two parallel plates and a contact angle equal to 7/2. When the liquid-vapor
interface cannot be estimated analytically, it is necessary to turn oneself toward a
software such as Surface Evolver (see next section).

Israelachvili [4] applied this method to calculate the capillary force between a
sphere and a flat surface®:

F = —4wR~ycosf (2.8)

where R is the sphere radius, -y is the surface tension, and cos 6 the mean cosine of
contact angles 61 and 6, on sphere and plate respectively.

Let us add a recently published model [6] giving an analytical expression for
the capillary force between two spheres with radii R; and R;, as a function of the

separation distance z:
2R cos 6

Fsphere/sphere = _m (2.9)

where R is the equivalent radius given by R = ,%ﬁlfé, 2cosf = cosfy + cos b, z

is the separation distance or gap and £ is the immersion height, approximately given

by [6]:
. / 2
h 5 ( 14+4/1+2V/(Rz )) (2.10)

where V is the volume of the liquid bridge.

2 As it can be seen this expression does not depend on the volume of liquid. This approximation is
only valid for small volumes. More rigorous expressions, valid for large volumes are given by [5].
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2.2.2 Introduction to Surface Evolver

Surface Evolver is a simulation software which computes minimal energy surfaces.’

Therefore, in this software, constraints on contact angles, pinning lines, volume of
liquid must be defined in a text file which is processed to evolve the vapor-liquid
interface toward an energy minimum (Fig. 2.2).

In general, the energy can be written as (see previous section):

W = constant — Agr, (Ysv — ysL) +7 % (2.11)
—

~ycos
[y —
1

The surface energy vX is easy to compute as soon as the liquid-vapor is meshed.
But usually in Surface Evolver, what is meshed is only this surface and not the
solid-liquid interface (Fig.2.3).

Therefore, the energetic content of this interface — Agy 7y cos 6 has to be computed
from the single elements of this interface to be meshed, which in this case is its
boundary, i.e. the triple line. This is achieved using the Stokes theorem:

ﬂ rotiv - dS = j{w dl (2.12)

Fig. 2.2 Example of a
meniscus meshed in sur-
face evolver

Fig. 2.3 The surface energy
of the meniscus must be
computed from the meshed
elements, i.e. from the triple
line

Equivalent _—
energy content .

3 Available at http://www.susqu.edu/brakke/evolver/evolver.html.
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where rotw is equal to V x w:

V x W =(0yw; — O;wy) 1y + (Oew; — Owy) 1.
et (Oxwy — Oywy) 1, (2.13)

1 - -
= (;&;‘Wz - 8zwé‘) I, 4+ (O;wr — Orwy)1g...

o+ %(Br(rwa) — Ogw) 1, (2.14)

The integral I defined in (2.11) can be developed using V x w = 1:

I= —270050ff 1..dS = —2ycosf ¢ w-dl (2.15)
—_——
AsL
with: . . B
w=xl, = rsinfcosf1, + rcos® 01y (2.16)
and: B B
dl = rdé, 2.17)

The vector w must be defined in the input file of Surface Evolver, so that the
software can compute the energetical content of the non-meshed interface.

Similarly, we saw in the previous section that the condition of constant volume was
imposed to achieve the computation. Here again, Surface Evolver needs information
to compute a volume V of which only a part of its boundary is meshed. We refer
now to the divergence theorem (Fig.2.4):

fﬂ/divadv = {fa-as 2.18)
Vv ov
Choosing a vector # whose divergence is equal to 1, the volume can be written as:

V= gf dv

Fig. 2.4 The volume of the
meniscus must be computed
from the meshed elements, i.e.
by summing a contribution
from the lateral area X' and
a contribution from the triple
line (3L)
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=@ﬁ dS—i—@ i .-dS
X SL  rotw

=gﬁﬁa-a§+%w.-di (2.19)
2 3L

where X' denotes the meshed liquid-vapor interface, SL the solid-vapor interface
(not meshed) and 3L the triple line contours (on top and bottom of the meniscus).
The vector w is defined by rotww = z(x, y)1, where z(x, y) is the equation of the
solid-liquid interface.

Example: Truncated Cone
Let us take the case of a truncated cone limited by the planes z = 0 and z = zy
(such as depicted in Fig.2.5). The cone equation is:

r(z) =ry + (zy —z)tana (2.20)

and the normal vector is given by:

i =cosal, +sinal, 2.21)

With the surface element dS = Orsadzd 0, the volume is computed as follows:

V:@Sziz.-detfw.-dz‘

3L

Il
MR M

z1..-dS —i—j{zHrH cos 0(sin 01, + cos 01p) - rydfiy
3L

Fig. 2.5 Truncated cone z
illustrating the computation
of volume is surface evolver —

ZH

fo
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27 ZH 27

/dé’/ anar(z)zdz—i—zHrH/cos 0do

0 0

= 7rerH tana + ng tan® a + wr%,zH (2.22)
which is obviously equal to the difference of two cone volumes (ro = r(z = 0)):

V= E oH — r121(H —2H) (2.23)

Surface Evolver has been used to deduce lateral capillary forces and capillary
forces due to capillary condensation [7].

2.2.3 Exact Resolution for Axially Symmetric Problems

For axially symmetric menisci of equation r = r(z), the curvature 2 H can be written
as follows (see [3] for details):

TH — — r” + 1 zpin_poutEAp

(L+r2)3 (14723 g gl

(2.24)

where pin and poy; are the pressures inside and outside the liquid bridge, and -y is the
surface tension of the considered liquid. Ap is the pressure gap across the liquid-gas
interface: as it will be seen later on, it is one of the drivers of capillary forces. This
equation was first derived by Pierre-Simon Laplace in 1805 [8] (Fig.2.6).

SUPPLEMENT AU X* LIVRE n

du- : dz. ( +ds') EE__,,

35 (3)
('+3.7-)

On peut observer encore que dans 1'équa~

tion (b) le terme — représente i-, R étant le rayon oscu~

1 +§E;
lateur de la section de la_surly

de révolution. Le terme

un plan passant par l'axe

x représente -;g, R élant!'an-

tre rayon de courbure : ce rayon est égal & la perpendiculaire i la
surface, prolongée jusqu'i sa rencontre avec 'axe de révolution.

Fig. 2.6 Laplace’s original equation [8]
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As illustrated in Fig. 2.7, it can be seen that the first term of (2.24) is the curvature
of the planar curve defined by the meniscus profile, known to be % where 6 is the
angle between the meniscus tangent and a fixed direction, for example the horizontal
direction. ds is the infinitesimal intrinsic length along the meniscus. Consequently,
the first curvature radius is g—s. The second curvature radius is the distance between
the surface and the symmetry axis along the normal vector, given by r/sin 6.

Let us now put (2.24) as a system of two first-order differential equations:

u="9
L, 3 (2.25)
e 2204

To solve these equations, Ap must be known and boundary conditions have to be
set (Fig.2.8): let us assume that we know the point P of the meniscus in contact with
the gripper. Therefore zp and rp = r(zp) are given by the initial coordinates of P
and the slope of the meniscus in P is given by:

(2.26)

1 .
I/lP — dr — [ tan(¢>p+(92)’ 1f(02 + QSP) ;é

& = o (0 + dp) =

SEISE

where the contact angle 6, and ¢ p depends on the gripper geometry.
In our problem (how to determine the meniscus for given contact angles 6 and 6,
and liquid volume V'), only 6, is known. Indeed, Ap and the position of P are a priori

Fig. 2.7 Curvature radii of e

an axially symmetric surface: Ty
r1 is the azimuthal curvature Ty dszS
radius (in a plane containing r=rsing S ar

the symmetry axis) and r;
is the radial curvature radius
(distance between the curve
and the symmetry axis, mea- Symmetry axis r] __ _
sured along the normal) — i
I Meniscus

i
3
¥
1
'
'
I
'
'
'

Fig. 2.8 Boundary conditions 7.
depend on the geometry and
materials: the upper line states
for the gripper, while the
lower straight line states for P ¢P
the component

)

\4
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unknown. De Lazzer et al. [9] already suggested to iterate on Ap in order to adjust
61 to the prescribed value. Indeed, increasing pressure difference (i.e. more negative
Ap) leads to a more curved meniscus, and, consequently, to smaller 8. P is still
unknown and the condition on V has not yet been used. Therefore, a second iteration
loop is used [10] to determine P: an initial position of P is guessed in order to
solve the first iteration loop (i.e. determine a meniscus that would be correct as far as
contact angles are concerned), leading to a candidate whose volume is computed. If
this volume is smaller (larger) than the prescribed one, P is moved away (closer) from
the symmetry axis (this is achieved by dichotomous search). This double iterative
scheme is actually an application of the so-called shooting method. It is graphically
illustrated in Fig.2.9.

2.2.4 Geometrical Models

It has been seen in the previous section that solving (2.24) requires the knowledge
of two initial values (position and slope of the meniscus) and the pressure difference
parameter. Therefore, three conditions of the problem were used: the volume of
liquid, the initial slope and the final slopes. These three conditions can alternatively
be used to find the three parameters of a circle (two center coordinates and the radius)
or the three coefficients of the parabola r(z) = ap + a1z + arz? (Fig.2.10).

These models are physically incorrect, but they provide a good estimate of the
meniscus geometry from which the force is computed. Moreover, the parabolic model
provides a full analytical resolution, as shown by Valsamis in his doctoral dissertation
[11]. He also provided two maps (see Sect.2.3.2.4) giving the relative error of these
models with respect with the exact numerical resolution of (2.24).

x10™

Gripper—-—-—-
0.8

Starting point i+1 ,{

0.6 : o
Starting point i

z[m]

_ Meniscus
04 Starting point 1

‘\\k\(/

\

N

) 7 ﬁ

Meniscus #j (starting point 7, Ae) r[m] x10

Fig.2.9 Graphical illustration of the double iterative scheme for a sphere of 100 um radius, contact
angles equal to 3°, a volume of liquid equal to 45 nL and a gap equal to zero. Meniscus ij is obtained
with the ith starting point and the jth pressure difference (Reprinted with permission from [1].
Copyright 2005 American Chemical Society)
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4 Limit solution
A Limit solutions

Fig. 2.10 Circular and parabolic models (Courtesy of J.-B. Valsamis [11])

As aconclusion, the meniscus shape may be assumed circular, which is valid when
the radius r of the triple line is much larger than the meniscus height, or it may me
assumed parabolic, which is valid for contact angles near 7/2. The parabolic model
has been used to get analytical estimates of the axial stiffness and in combination
with gas law.

Remarks We have seen different methods to compute the geometry of a liquid
bridge at equilibrium. When using surface energy minimization, the surface energy
is known and the link to capillary force is obvious (the force is found by derivation).
For both other methods, the link between geometry on the one hand and capillary
force on the other hand has to be explained: this is the focus of next section.

2.3 Pinned and Non Pinned Triple Lines

The pinning of the triple line is made possible at the intersection between two surfaces
with different surface energies or on sharp edges.

2.3.1 Non Pinned Menisci

The double iterative scheme briefly presented in Fig.2.9 allowed us to study the
influence of the pertinent parameters on the capillary forces between two solids:
surface tension -y, contact angle €, volume of liquid V, separation distance between
both solids z. All these numerical experiments were performed with axial symmetry,
solving (2.24).

Preliminarily, in order to validate the developed simulation code, we have studied
the case of two parallel plates separated by a distance b and for a difference of pressure
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(a) x 10 (b)
2
15
E
N 1
) ) f Analytical solution
05 Numerical solution /
0 X

0 05 1 15 2 25 3 3
r[m]

Fig. 2.11 Study of the meniscus shape a Comparison between the numerical and analytical
meniscus shape, with Ap = 0, a = 3mm, b = 2mm and 6, = 60°; b Comparison between
the simulation and the experimental meniscus shape (water, steel flat component, steel sphere
(R = 6.35 mm))(Reprinted with permission from [1]. Copyright 2005 American Chemical Society)

equal to zero, leading to the analytical equation of a catenary curve [3] (Fig.2.11a).
For z = 0, the relative error between the numerical radius and the analytical one is
about 1.5 %.

A second case has been tested, namely the case of a meniscus between two parallel
plates, with contact angles equal to 90°, leading to a cylindrical meniscus (with radius
R) whose principal curvature radii are Ry = oo and Ry = R.

The last verification operated on the meniscus shape is the comparison between
the output profile and the picture of the meniscus, as presented in Fig.2.11b. This
picture corresponds to a 12.7 mm diameter sphere linked to a steel component with
0.72 wL water. The gap in this case is 265 pm. The dashed line states for the meniscus
output by the simulation tool.

The numerical computation of the force has also been compared with the analytical
approximation (2.8) of the capillary force between a plane and a sphere (radius

R), for a gap equal to zero and an equivalent contact angle H(if 01 # 0,co80 =
cos 01 + cos 92)

2
F =47 Rvycosf 2.27)

Figure 2.12 plots the force as a function of the equivalent contact angle 6 for a 26 mm
diameter sphere and for two liquids: the upper curve shows the force for water and
the lower one that for silicone oil (R47V50). It can be seen on this picture that the
results of the simulations tend to the analytical approximations (solid and dashed
lines).

After these preliminary validations, the influence of the following parameters was
studied:
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o  V=0.1pl (water)
0012 — Analytical (water)
x\g - V=01l (R47V50)
- - Analytical (R47V50)
0.01 + V=05l (water)
\ A V=0.5ul (R47V50)
\ ¢ V=1l (water)
0.008 o V=lul (R47V50)
z \
8 0.006 3
2
o
=
0.004
r----- )
L RREEET SR
0.002 S
k|
10 20 30 40 50 60 70

Contact angles 91:62 [°]

Fig. 2.12 Comparison between the simulation results and the analytical approximation F =
4myR cos @ for a 13.0 mm diameter sphere, v = 72 x 103 N m~! (water) and v = 20.8 x
1073 N m~! (silicone oil R47V50). The results are presented for different volumes (0.1, 0.5 and
1 nL) and different contact angles simulating different materials; the simulation points tend to
the analytical approximations for water (solid line) and silicone oil (dashed line) (Reprinted with
permission from [1]. Copyright 2005 American Chemical Society)

—o— Simulation
Experiments
z
5}
2
S
s 9
0
0 0.2 0.4 0.6 0.8 1
x107

Gap [m]

Fig. 2.13 Force-Distance curve for V. = 0.5 uL R47V50, Si-component and GS-St-7.9 (Both
reprinted with permission from [1]. Copyright 2005 American Chemical Society)

1. Separation distance: The curve of Fig.2.13 plots the capillary force exerted by a
7.9 mm diameter sphere (see [3] for details) on a silicon component. The force is
exerted by a 0.5 L silicone oil droplet (R47V50). This curve has been measured
with an almost zero velocity (equilibrium curve). As far as the simulation is
concerned, receding contact angles have been input since the meniscus is stretched
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by moving the sphere upwards. The correspondence between simulation and
experiment can be seen on this picture although the rupture distance predicted by
the simulation is a little smaller than the measured one.

This result indicates that the simulation tool can predict the capillary force with
separation distances different from zero: this comes as a complement to the pre-
vious validations made by comparing the simulation with the analytical approx-
imations, that was valid only at contact.

2. Pressure term versus tension term: The simulation results of Fig.2.13 also
allow to calculate and compare the importance of the interfacial tension force
and the Laplace term of the capillary force (see Fig.2.14). The results presented
in this figure justify some approximations found in the literature, neglecting the
‘tension’ term for small gaps. Nevertheless, this assumption is no longer valid for
larger gaps where the tension term even becomes dominant.

3. Surface tension: Additionally, the force has been shown to be proportional to
surface tension  which ranges from 20 to 72mNm~! for usual liquids such
as alcohols, silicone oils or water. Solder pastes can exhibit surface tensions as
high as a few hundreds of mNm ™!, leading to an important surface tension effect
in solder paste assembly processes. An increase of surface tension nevertheless
increases the contact angle (i.e. reduces the wettability), leading to a decrease of
the force: the cut-off between both effects cannot be decided without numerical
quantification.

4. Volume of liquid: The influence of the volume of liquid depends on the geometry
of the objects. It can be surprising indeed in (2.8) to observe that the force does
not depend on the volume of liquid. Hence this formula is widely used in capillary
adhesion studies, since the exact volume of liquid got by capillary condensation

1
a
"N
T 08 Ag 2
=}
2 A
~ A
5] A o
g 0.6 A A Laplace
LI(; 4 o Tension
= A o Total
& 0.4 a A
A
o
A
0.2 e A
0
0 1 2 3 4 5 6 7
4
Gap [m] x 10

Fig. 2.14 Respective contribution of the ‘tension’ and ‘Laplace’ terms in the total amount of the
force—Ratios without dimensions (Reprinted with permission from [1]. Copyright 2005 American
Chemical Society)
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is usually unknown. This formula is nevertheless only valid for small volumes of
liquid (the so-called immersion height must be small). Other geometries lead to
different dependences on the volume of liquid: for conical tips, the force increases
with increasing volume of liquid.

As a conclusion of this part of the work, we set up a numerical tool ready to
compute the force in whatever axially symmetric geometry. Three main limitations
arise: (1) finding an optimum with a numerical tool is very tedious; (2) non axially
symmetric geometries cannot be studied with this tool: the case of lateral capillary
forces will be considered in Chap. 3; (3) finally, the dynamical aspects will be studied
in Part III.

2.3.2 Pinned Menisci

2.3.2.1 Parabolic Model

As briefly exposed previously, we must distinguish between non-pinned menisci with
imposed contact angle and pinned menisci with imposed wetting radius. In the latter
case, such as depicted in Fig.2.15, analytical approximations can be set, which is of
the utmost interest to serve as benchmarks or to be exploited in design. According to
Sect.2.2.4 on geometrical approximations, it must be chosen between circular and
parabolic models.

A Limit solution

\

Fig. 2.15 Parabola model: as usual, three information (pinned contact angle, pad radius and gap)
are used to determine the three coefficients of a parabola
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This assumption of parabolic profile does not rely on any physical consideration
but corresponds to the meniscus shape observed experimentally. The equation of this
parabola is given by:

rp(2) = ag + arz + axz* (2.28)

where r and z are the axis shown in Fig.2.15. The geometric conditions on the
parabola are:

1. the symmetry with the r-axis imposes the vertex to be at z = 0,
2. theslope at z = % is given by the contact angle,

3. the radius at z = % is R.

Therefore
a) = 0
arh = cot
h2
~__ —R
apg+ ar n
The parabola is:

hcotf cotf ,
- +—z

rp@=R—— ;

(2.29)

Since the parabola represents a meniscus, r,(z) must be positive. The condition for
its existence is then:

hcotf
> (2.30)
4
The volume is:
I
V, = w/rﬁ(z)dz
_h
2
Rh? cot b h3 cot? 0

— g2y - TR OO T CO 2.31)

3 30

The relation between the volume and the contact angle can be inverted. The volume
can be considered as an input parameter instead of the contact angle. The local
curvature computed from (2.24) is:

2h% — 4Rh cot 6 + h? cot? 0 + 4 cot? 6 72

2H(z) = 2h* 3
(4Rh — h2cotf + 4cot 0 z2)(h2 4+ 4cot? §72)2

(2.32)

The curvatures at the apex (subscript o) and at the triple line (subscript 3) are:
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2cotf 4

2Hy = 2.33
0 n AR hcotd (2.33)

. h—2Rsinfcosf
2H3 = sinf TR (2.34)

From this volume equation, we can determine @, and its derivative with respect to
h (V is assumed to be constant), consequently, the force F, can be determined from
its both components :

F,=F + Fr
= —7yR*2Hy + 27yR sin 0 (2.35)

In the particular case of = 7 (corresponding to a cylindrical meniscus), the
force is equal to the well-known value —7w Ry (2.7).

The model validation has been performed by comparing the parabolic model
output with the force benchmark F = —m R+ for a cylindrical meniscus and by
comparing it with numerical results obtained with Surface Evolver. This has been
done for a pad of radius R = 100 wm, a surface tension v = 72 mNm~! and a
volume of liquid V = 710~'>m™3 = 7 nL, which corresponds to a separation
distance between the pad and the component equal to 2o = 100 wm for a cylindrical
cylinder.

We see in Fig.2.16 the good correspondence between the parabolic model and
the software results, for a large range of separation distances, between 80 and 150 %
of the separation distance k.

As a conclusion, this analytical model can be used to compute the axial force
and the axial stiffness of a liquid meniscus between two circular pads. The validity

6 & 10 ‘ ‘
—Parabolic model
51 = Surface Evolverf| |
= Benchmark
4 -
Z 3f
:N
2 -
1t
O -
1 . . . . .
0.4 0.6 0.8 1 1.2 1.4 1.6
Gap h (m) x 107

Fig. 2.16 Benchmarking of the force with our parabola model (2.35) with (2.7) and numerical
simulation (surface evolver)
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domain of this model—deduced from the comparison with numerical results output
by Surface Evolver—ranges from 80 to 150 % of the separation distance h( for which
the meniscus is a cylindre. Let us well note that the lower limit of the physics seems
to be about 55 % of ho. Below this level, the Surface Evolver does not converge
anymore, which is related to the non physical existence of such a meniscus.

2.3.2.2 Circular Model

This model assumes a circular profile of the interface shape in the plane rz, of centre
(re, z¢) and radius p (see Fig.2.17):

(re(z) —ro)> + (z — 20)* = p* (2.36)

The conditions on the arc of circle are:

1. the symmetry with the r-axis imposes the centre of circle to be on the r-axis,
2. the slope at z = % is given by the contact angle,
3. the radius at 7z = % is R.
The symmetry imposes zg = 0. By differentiating the expression with respect to z,
we have:

dr.

2r —ro)— +2z=0
dz

With the above relation, the contact angle can be imposed through the derivative of
r.. With the conditions at z = % the position of the centre is:

4 Limit solutions

A

\

Fig. 2.17 Circular model: as usual, three information (pinned contact angle, pad radius and gap)
are used to determine the three coefficients of a parabola
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h
ro=R+ 5 tan 6 (2.37)
Using the third condition:
h
= 2.38
P 2| cosd| ( )

With the above conditions, 2.36 may be rewritten under an explicit form r(z). How-
ever, the sign of the square root differs when the contact angle is lower or higher

than 7:
| h? h T
- _ ) z ' Z
re(z) = Too2d ¢ +R+2tan9 itf < >
| h? h T
— ) Z ' Z
re(z) =+ Toos2d ¢ +R+2tan9 1f9>2

More conveniently, by extracting the cos # from the square root, the two relations

become: | P
re(z) = ———+/h? —4cos20z2+ R+ —tan @ (2.39)
2cos 2

CO

The reader will notice the singularity at ¢ = 7: when 6 = 0, the centre is at r = R.
When 6 increases, the centre moves towards 4-oo (occurring for § = %). When
0 = m, the centre is at » = R. The centre moves towards —oo when 6 decreases. The
jump of ¢ from 7 — € to 5 + ¢ is accompanied of an abrupt change of the centre of

circle from +o00 to —oo. The relation still converges to R when ¢ — 7 since:

1
lim (tan9 — —) =0
0—7 cos

The volume is:

Ifl
chﬂ'/rLz.(Z)dZ
_h
2
7Rh%tan 0 wh3 h3 h?
= 7R*h - ——— (2 - 0)RR + htan0
T + 2 +400520 12 4cos29(2 YR + htan0)

(2.40)

The reader will remark that the contact angle cannot be expressed as a function of
volume as for the parabolic model. The local curvature is:
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2cosd 2cos O/ h? — 4 cos? 0 72
2H(z) = — + - (2.41)
h —hvh? —4cos20z2 +2Rhcos® + h2sinf
The curvature at the apex and at the triple line are:
2cosf 2cosf
2Hy = — 2.42
0 h +2Rc059+hsin9—h ( )
2cosf  sinf
2H; = — + — (2.43)

h R

2.3.2.3 Comparison of the Analytic Models for Axial Forces

The circular model is established following the same development presented above.
For a symmetric case (the plane containing the neck is a plane of symmetry so that top
and bottom contact angles as well as top and bottom radii are equal), the analytical
expressions of the shape, the volume and the curvature are given in Table.2.1. Input
parameters are the radius of the solid liquid interface R, the gap h and the contact
angle §. The volume can also be considered as an input parameter (instead of the
contact angle for example).

Table 2.1 Analytical expressions from the parabolic model and the circular model

Parabolic model 0— %
hcotf cotf ,
rp(z) =R — + z — R
2 7Rh cot®  wh3cot? 6 5
V=nR°h — 3 + 20 — 1mR?h
StRA? — \[307h3V,, — 572 R?h
(v = wh3
2 2h? — 4Rhcotf + h% cot? 6 + 4 cot? 6 72 1
2H(z) =2h - -
(4Rh — h? cot 6 + 4cot 0 22) (h? + 4 cot? 0 72)2 R
2H 2cotf n 4 1
=— N
0 ) 4R — heotf R
. h—2Rsinfcosf 1
2H3 =sin——— s
hR R
Circular model
—1 h
re(z) = ——~/h?2 —4cos20z2 + R+ —tanf — R
2cosf 2
2 7Rh? tan § 7h3 h3 h? 5
V=rRh+ o s — o s (5~ QR +htand) R

0(V) = No analytic solution

2cosf 2cos Ovh? — 4cos? 6 72
2H(z) = — + . —
h —h/h? —4cos? 0 z2 + 2Rh cos O + h2 sin 0
2cos @ 2cosf
2Hp=— + —

h 2Rcosf + hsinf —h
2cosf  sinf

2H; = —
3 h R

x| == ==~
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Numerical integration —— Reduced force

%0 2000

—-5000
120 150 180

Fig. 2.18 Map of the reduced force F=F/ry according to the contact angle # and the reduced
height 4 = h/r computed by numeric integration

The advantages of the parabola model are twofold: switching from negative to
positive curvatures is smoothly done when a, = 0, while the circular approximation
is not continuous: the center of the circle abruptly switches from —oo to +oo (the
mathematical expressions present alocal singularity at ¢ = 7). Secondly, the volume
of liquid can be analytically expressed as indicated by equation, having the advantage
to skip the knowledge of the contact angle (contact angles are sometimes difficult to
measure).

2.3.2.4 Error Maps for Circular and Parabolic Models

The reduced force F = F /r~y is represented on a map according to the contact angle
0 and the reduced height h = h/r.On Fig.2.18, the shape r(z) from 2.24 has been
integrated numerically, providing an exact estimation of the curvature and contact
angle. The zero force curve does not superpose on the curve 6 = 7: the Laplace
F1, term must cancel the surface tension term Fr. At a fixed contact angle 6, the
curvature decreases with the reduced gap h. Therefore when the gap increases, the
contact angle must also increase to balance the surface tension force.

To evaluate the accuracy of the analytical approximation of the interface, we
present in Fig.2.19a and b the relative error of the force for both models:

_F,—F
- F
F.—F

Ec = — (2.45)

£p (2.44)

The parabolic model presents a relative error below 20 % for an angle between 60
and120° (Fig.2.19a). On the left side of the graph, the error increases near the zero-
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0 30 60 90 120 150 180
0[]

Fig. 2.19 Map of relative error of the reduced force F=F /r according to the contact angle
and the reduced height h = h/r

force curve of the exact solution (Fig. 2.18) because there is no perfect match between
the parabolic model and the exact solution. Fig.2.19b shows that the circular model
is very accurate, especially at small gap.

2.4 Conclusions

This chapter recalled the fundamentals to calculate capillary forces for simple geome-
tries, either by using the energetic method (Sect.2.2.1), or by solving the equations
exactly (Sect.2.2.3). Geometrical approximations were also provided, assuming a
circular or a parabolic meniscus shape. This preliminary description was limited to
equilibrium configurations: axial dynamics will be presented in Chaps. 6, 7.
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Appendix
Capillary Force Developed by a Meniscus at Equilibrium

Let us consider the meniscus depicted in Fig. 2.20. At equilibrium, the sum of forces

acting on any slice of the meniscus must be equal to zero. On each face, capillary

forces can be split into two contributions: the so-called tension force Fr, due to the

action of surface tension along the tangent to liquid-gas interface, and the Laplace

or (also called) capillary force Fy, originating from the pressure acting on the face.
The force exerted on the bottom face of the slice is equal to:

F(z) = | 7r?Ap —2mrycosu | 1. (2.46)
—_—— ———
Fr Fr

while the force acting on the top face of the slice is given by:

1, u+du

¢ i
z+dz \ ! dfzf
IR

T
|
|
|
|
|
|
|
|

z

[ ——

! r

Fig. 2.20 Equilibrium of a meniscus slice comprised between z and z 4 dz. It can be shown that
the capillary force computed at height z exactly balance the the capillary force computed at height
z+dz
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F(z+dz) = (—n(r + dr)>Ap + 27 (r + dr)y cos(u + du)) 1,

= |:—7rr2Ap + 2nrycosu + 2n(—rdr Ap + rvy sinudu + ~y cos udr)):| 1,

1
(2.47)

The underbraced expression / can be shown to be equal to zero by expressing the
Laplace law (Eq. (2.24)):

4 ! ) ~ (2.48)

du cosu
_ (_ N )7 (2.49)
ds r

du . cosu
— sinu + ) 0 (2.50)
dr r

leading to:
I = —rdusinuy — dr cosuy + rysinudu + vy cosudr =0 (2.51)

Consequently, the forces F(z) + F (z + dz) balance, and the capillary force given by
F(z) can be computed at any value of z. This means that in the case of two solids
linked by a liquid meniscus, the force can be computed on the top component or on
the bottom component. For the sake of convenience, it can also be computed at the
neck in case the latter exists (it may not exist if the extremum radius of the meniscus
corresponds to one of both wetting radii).

Equivalence of Formulations

A lot of work has been reported on capillary forces modeling (see for example
[1,4-6,9, 12-14]), based on the energetic method (i.e. derivation of the total interface
energy) or a direct force computation from the meniscus geometry, the latter being
either determined exactly through the numerical solving of the so-called Laplace
equation or approximated by a predefined geometrical profile such as a circle (i.e.
toroidal approximation) or a parabola. The energetic approach is usually quite clear
on its approximations: the liquid-vapor interface energy is sometimes neglected in
order not to compute the exact shape of the meniscus, but an exact solution can be
found if the lateral is computed for example by mean of a finite element solver such as
Surface Evolver. At the contrary, literature results are not so clear as far as the other
method is concerned. For example, some authors neglect the so-called tension term
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with respect to the Laplace term . This sometimes pertinent assumption has led many
author authors to add the tension term to the result obtained by deriving the interface
energy, i.e. to mix both methods. A recent by one of the authors [15] contributed
to clarify this situation by showing that the capillary force obtained by deriving
the interfacial energy is exactly equal to the sum of the Laplace and tension terms.
The equivalence is considered with three qualitative arguments, and an analytical
argument is developed in the case of the interaction between a prism and a place.
Experimental results also contributed to show this equivalence.

Mathematically, the equivalence between the energetic approach and the direct
formulation based on the Laplace and the tension terms can be shown:

daw
F=F +Fr=—F (2.52)
dz

where Fi, and Fr are given by (2.46), W by (2.1). z is the separation distance between
both solids.

As it is shown that both approaches are equivalent, it means that the energetic
approach already involves the tension term and the Laplace term on an implicit
way. Consequently, the energetic approach as proposed by Israelachvili (see (2.8))
includes both terms, even if, for zero separation distance, the pressure term usually
dominates the tension one. For axially symmetric configurations, the method based
on the Laplace equation will be preferred because it can be easily numerically solved.
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