Chapter 6
Varieties

1 Definitions and Examples

1.1 Definitions

In this chapter we consider the schemes most closely related to projective varieties;
they will be called algebraic varieties. This is exactly what we arrive at on attempting
to give an intrinsic definition of algebraic variety.

Definition A variety over an algebraically closed field k is a reduced separated
scheme of finite type over k. A morphism of varieties is a morphism of schemes
over k. A variety X that is an affine scheme is called an affine variety.

We saw in Example 5.19 that every quasiprojective variety defines a scheme.
This scheme is a variety, that we will also call quasiprojective.

By definition, any variety X has a finite cover X = | U;, where the U; are affine
varieties. It follows from this that X is finite dimensional. If X is irreducible then all
the U; are dense in X and dim X = dim U;. Moreover, they are all birational, since
U; N Uj is open and dense in both U; and U;. Hence the function fields k(U;) are
isomorphic; these fields can be identified. The resulting field is called the function
field of X and denoted k(X). The dimension of X equals the transcendence degree
of k(X).

A closed point of a variety X that is contained in an affine open set U is also a
closed point of U, and is a point of the corresponding affine variety with coordinates
in k. There are sufficiently many such points on X.

Proposition Closed points are dense in every closed subset of X .

Proof We note first that in an affine variety (and even in an affine scheme), every
nonempty closed subset contains a closed point. Indeed, a nonempty closed subset
Z of Spec A is of the form Spec B, where B is a quotient ring of A. Since every ring
has a maximal ideal, Z has a closed point.
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If X is an arbitrary variety, Z C X a closed subset and z € Z, then it is enough
to prove that Z N U contains a closed point for any neighbourhood U of z. We can
restrict to affine neighbourhoods U, since these form a basis of all open sets. For
affine U, by what we have just said, Z N U has a closed point.

But there is a trap here for the unwary—a point may be closed in U, but not in X.
This actually happens, for example, in the case of the subset U = Spec O\ {x} where
O is a local ring of a closed point x of a curve. Fortunately, everything turns out to
be all right in the case of a variety: if z € X is a closed point of some neighbourhood
U of z then it is also closed in X. This follows from the fact that the closed points
x of a variety are characterised by k(x) = k. Indeed, a point x is closed in X if and
only if it is closed in all affine open sets containing it, and for affine varieties the
condition k(x) = k obviously characterises closed points. The field k(x) depends
only on the local ring of x, and hence does not change on passing from X to an
open subset U > x. The proposition is proved. U

Since a variety is a reduced scheme, an element f € Ox(U) is uniquely deter-
mined by its values f(x) € k(x) at all x € U. By the proposition, it is determined
by its values at closed points. Moreover k = k(x), so that an element f € Ox(U)
can be interpreted as a k-valued function on the set of closed points of U.

If : X — Y is a morphism of varieties, x € X and y = ¢(x), then the ho-
momorphism of local rings ¢*: O, — O, induces an inclusion of residue fields
k(y) < k(x). If x is a closed point then k(x) = k, and hence also k(y) = k, that
is, y is also closed. Therefore the image of a closed point is again closed. Thus
interpreting elements f € Oy(U) as functions on closed points, the homomor-
phism ¥y : Oy (U) — Ox (e~ ' (U)) is determined by ¥y (f)(x) = f(¢(x)). In
other words, by specifying the map ¢: X — Y, or even its restriction to the set
of closed points, we determine the morphism itself.

A variety X has of course any number of nonreduced closed subschemes. But any
closed subset Z C X can be made into a reduced scheme, or as we will say from
now on, into a closed subvariety. If X is an affine variety, X = Spec A and Z = V (a)
then we set Z = Spec A/a’ where ' is the radical of a, the ideal of elements a € A
such that a” € a for some r. The general case is obtained by glueing.

All this shows how close varieties are to quasiprojective varieties. Indeed, all
the local notions and properties treated in Chapter 2 carry over word-for-word for
algebraic varieties: nonsingular points, the theorem that the set of singular points is
closed, properties of normal varieties. The same is true for properties of divisors and
differential forms.

The only properties not carrying over in an obvious way to algebraic varieties
are those related to the property of being projective. We now explain what condi-
tion replaces projective for the case of arbitrary varieties. Projectivity is of course
very far from being an “abstract” property. But we have at our disposal one asser-
tion, Theorem 1.11 of Section 5.2, Chapter 1, which is an intrinsic property that is
characteristic of projective varieties. We take this as a definition.

Definition A variety X is complete if for any variety Y, the projection morphism
p: X x Y — Y takes closed sets to closed sets.
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The main properties of projective varieties, for example, the fact that the image
of a morphism is closed, and the fact that there are no everywhere regular functions
except the constants (that is, Ox (X) = k), were deduced in Section 5.2, Chapter 1
from Theorem 1.11, and therefore hold for complete varieties. Note that the proof
that the image of a morphism is closed used the fact that a morphism has a closed
graph. As we saw in Section 4.3, Chapter 5, this follows from the separated assump-
tion on a variety.

Of all the properties of projective varieties proved in Chapters 14, there is only
one that used projectivity directly, rather than via an appeal to Theorem 1.11 of
Section 5.2, Chapter 1. This is the extremely important result Theorem 2.10 of Sec-
tion 3.1, Chapter 2. Here we prove a generalisation of it to arbitrary complete vari-
eties.

Theorem 6.1 If X is a nonsingular irreducible variety and ¢ : X — Y a rational
map to a complete variety Y, the locus of indeterminacy of ¢ has codimension >2.

Proof Let V C X be the set of points at which ¢ is defined, I, C V x Y the graph
of the morphism ¢: V — Y and Z its closure in X x Y. The image of Z under the
projection p: X x Y — X is closed, since Y is complete. Since p(Z) D V, it follows
that p(Z) = X. The restriction p: Z — p(Z) is a birational morphism, since it is
an isomorphism of I, and V. The theorem thus follows from the next result. 0

Lemma If p: Z — X is a surjective birational morphism with X a nonsingular
variety then the set of points of indeterminacy of the inverse rational map p~' has
codimension >2.
Indeed, 9 = gop~!
X. Therefore ¢ is defined wherever p~

, where ¢ is the restriction to Z of the projection p: X xY —
!'is. This proves Theorem 6.1.

Proof of the Lemma Suppose that there exists a codimension 1 subvariety T C X
such that p~! is not defined at any point of T'. Replacing Z, X and T by affine open
subsets, we can assume that they are affine and 7T C p(Z) C X. Let Z C A™, and
write u1, ..., u, for the coordinates of A" as elements of Oz (Z). Consider a point
t € T and represent the rational functions ( p_l)* (u;) in the form

(p™") i) =gi/h,
where g1, ..., gu, h € O, and have no common factor. Then
h(p™") ) =gi, sothat p*(hyu; = p*(g:).

Hence g;(t) = 0 for every point t € T at which h(t) = 0, and this contradicts the
assumption that g1, ..., g, # € O; have no common factor. The lemma is proved. []

The complete varieties just introduced turn out to have properties so close to
those of quasiprojective varieties that the question arises as to whether the two no-
tions might not coincide. We will see a little later in Section 2.3 that this is not the
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case; there exist varieties that cannot be embedded in any projective space. How-
ever, what is much more important is that the intrinsic, invariant nature of the notion
of variety makes it into a much more flexible tool. Many constructions can be per-
formed very simply and naturally within the framework of this notion. It may some-
times turn out a posteori that we have not actually left the framework of projective
or quasiprojective varieties, but this is often already of secondary importance. In
Sections 1.2—1.4 we give some important examples of this kind of constructions.

A very simple example is provided by the definition of the product of varieties.
The definition in the framework of varieties is extremely simple: the arguments of
Section 4.1, Chapter 5 simplify substantially if we use the fact that the set of closed
points of the variety X x Y is the set of pairs of the form (x, y), where x € X and
y € Y are closed points (see Exercises 1 and 2). But we spent quite a lot of effort
on this definition in Section 5, Chapter 1, since there we needed to be sure that the
product of quasiprojective varieties was again a quasiprojective variety.

Another example that we now consider is the notion of normalisation of a va-
riety. Let X be an irreducible variety, K a finite field extension of the function
field k(X). We show that there exist a normal irreducible variety X} and a mor-
phlsm vk : Xg — X with the properties that k(X ) = K and the mduced map

k(X)) > k(X ) = K is the glven field extension. Such a variety is unique: for
any two normalisations X} and Xy i there exists an isomorphism f: X} — X ;(
such that the diagram

xy L xv

VK\ 1/171}
X

is commutative. X, is called the normalisation of X in K. The uniqueness of the
normalisation X} is proved exactly as in Section 5.2, Chapter 2, where we consid-
ered the case K = k(X). To prove the existence, consider an affine cover X = | J U;.
The integral closure AY of k[U;] in K is a finitely generated algebra over k, as we
saw in Sect 5.2, Chapter 2. Hence the normalisation U}, — U; in K of the affine
Varlety U, exists and is affine. From the uniqueness of normahsatlon it follows that
v; K(U NU;) and v_K(U N U;) are isomorphic. This allows us to glue the U}
together into a smgle scheme XY, which is obviously a reduced irreducible scheme
of finite type over k.

We prove that X} is separated (Section 4.3, Chapter 5). It is enough to prove
that the diagonal in X} x X} is closed, and for this it is enough to show that
it is closed in the neighbourhood of any point £ € X} x X} . Suppose that the
morphism v x v: Xy x X — X x X takes & into n € X x X, and let U’ be
an affine neighbourhood of 7 such that (v x vV)~!(U’) = V' is affine. The exis-
tence of U’ follows from the existence of the normalisation in the affine case.
Since X is a separated scheme, if we write A C X x X for the diagonal then the
scheme U = AN U’ is closed in U’, and hence is affine. It follows that the scheme
(v x v)1(U) is affine, and hence also its irreducible component V containing &.
Write §V: X§ — X} x X% and §: X — X x X for the diagonal morphisms, and
set W= (8")"1(V) = v~ 1(U). We obtain the commutative diagram
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w2y

801)\ /vxu
U

in which §" corresponds to a finite regular map of affine varieties. This holds a
fortiori for the morphism § o v (because a finite module over a ring is a fortiori finite
over a bigger ring). Applying Theorem 1.13 of Section 5.3, Chapter 1, we get that
8Y(W) =V, which means that the diagonal is closed in the neighbourhood V' of &.

Thus the scheme X ;{ is an irreducible variety, and a trivial verification shows that
it is the required normalisation.

We see that in the framework of arbitrary varieties, the construction of the nor-
malisation is quite trivial. It remains to consider the question of whether the nor-
malisation of a quasiprojective variety is again quasiprojective. This is true, but we
do not give the proof, which is based, naturally enough, on purely projective con-
siderations; it can be found, for example, in Lang [55, Proposition 4 of Section 4,
Chapter V] or Hartshorne [37, Ex. 5.7 of Chapter III]. In the case of curves, we can
repeat the proofs of Theorems 2.22-2.23 of Section 5.3, Chapter 2. These results
imply that the normalisation of any curve is quasiprojective (in the case K = k(X)),
and that of a complete curve is projective. In particular, it follows from this that a
nonsingular curve is quasiprojective. In fact this is true for any curve, but the proof
is more complicated, and we omit it here.

1.2 Vector Bundles

The idea of a vector bundle is one of the most important constructions of algebraic
varieties, and is typically “abstract” or “nonprojective” in nature. We recall that the
general notion of fibration is nothing other than a morphism of varieties p: X —
S, that is, a variety over S. We are interested in fibrations whose fibres are vector
spaces. In formulating this notion we must bear in mind that an n-dimensional vector
space over a field k has a natural structure of algebraic variety isomorphic to A”.

Definition A family of vector spaces over X is a fibration p: E — X such that
each fibre E, = p~!(x) for x € X is a vector space over k(x), and the structure
of algebraic variety of E, as a vector space coincides with that of E, C E as the
inverse image of x under p.

A morphism of a family of vector space p: E — X into another family g: F —
X is amorphism f: E — F for which the diagram

E-L F
PN g
X

commutes (so that in particular f maps E, to Fy for all x € X), and the map
fx: Ex — Fy is linear over k(x). It’s obvious how to define an isomorphism of
families.
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The simplest example of a family is the direct product E = X x V, where V isa
vector space over k, and p the first projection of X x V — X. A family of this type,
or isomorphic to it, is said to be trivial.

Example 6.1 Let V and W be two vector spaces of dimension m and n. We de-
termine the general form of a morphism f: X x V — X x W between two
trivial families. We let e1,...,e, and uj,...,u, be bases of V and W, and
write &1, ...,&, and 71, ..., n, for the corresponding coordinates. The projections
p: XxV—>Vandg: X x W — W define elements x; = p*(&) € Oxxy (X x V)
and y; = g*(;) € Oxxw(X x W). Obviously, closed points « € X x V and
B € X x W are uniquely determined by the values of x;(«) and y;(B) € k. There-
fore the morphism f is uniquely determined by specifying the elements f*(y;) €
Oxxv(X x V).

The composite of the isomorphism X — X X e; and the embedding X x ¢; —
X x V defines a morphism ¢;: X — X x V. Set a;; = ¢/ (f*(y;)) € Ox(X).
Then

f*(yj)zzaijxi- 6.1)

Indeed, it is enough to check this equality at all closed points & € X x V, and there it
follows at once from the definition of morphism of family of vector spaces (because
fx: Ex = Fy is linear).

Conversely, any matrix (a;;) with a;; € Ox(X) defines a morphism f: X x
V — X x W by means of formula (6.1). Obviously we get an isomorphism
if and only if m = n and the determinant det|a;;| is an invertible element of
Ox(X).

If p: E — X is a family of vector spaces and U C X any open set, the fibration
p~1(U) — U is a family of vector spaces over U. It is called the restriction of E to
U and denoted E|y.

Definition A family of vector spaces p: E — X is a vector bundle if every point
x € X has a neighbourhood U such that the restriction E|y is trivial.

The dimension of the fibre E, of a vector bundle is obviously a locally constant
function on X, and, in particular, is constant if X is connected. In this case the
number dim E is called the rank of E, and denoted by rank E.

Example 6.2 Let V be an (n 4 1)-dimensional vector space and P" the vector space
of lines / C V through 0. Write /, for the line corresponding to a point x € P".
Consider the subset £ C P* x V of pairs (x, v) such that x € P” and v € V are
closed points, with v € [,. Obviously E is the set of closed points of some quasipro-
jective subvariety of P" x V, which we continue to denote by E. The projection
P" x V — P”" defines a morphism p: E — P". We prove that p: E — P”" is a vec-
tor bundle. In V, we introduce a coordinate system (xo, ..., X,). The restriction of
E to the open set U, given by x4 7% 0 consists of points
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E=(1,...,th; Y0, ..., Yn) suchthat y; =tyy,

where #; = x;/xq, and the map & — ((t1,...,1,), Yy) defines an isomorphism of
E\y, with Uy x k.

Therefore E is a vector bundle of rank 1. The projection P” x V — V defines a
morphism g : E — V. The reader can easily check that g coincides with the blowup
of the origin 0= (0,...,0) € V,and g~ 1(0) =P" x 0.

Consider a vector bundle p: E — X and a morphism f: X’ — X. The fibre
product E’ = E x x X’ over X has a morphism p’: E’ — X’. This morphism defines
a vector bundle. Indeed, if Ejy = U x V with U C X then writing U = f’l(U),
we get E |’ y=E xy U'= U’ x V. This vector bundle is called the pullback of E,
and denoted by f*(E). Obviously rank f*(E) =rank E.

Example 6.3 Let X be a projective variety and f: X < P! a closed embedding to
projective space. Let p: E — P" be the vector bundle of Example 6.2. Then f*(E)
is a vector bundle over X of rank 1. It depends in general on the embedding f, and
is a very important invariant of f.

Example 6.4 Let X = Grass(r,n) be the Grassmannian of r-dimensional vector
subspaces of an n-dimensional vector space with basis ey, ..., e, (Example 1.24
of Section 4.1, Chapter 1). Consider in X x V the subvariety E consisting of points
(x, v) such that v € L,, where we write L, for the r-dimensional vector subspace
corresponding to x € Grass(r, n). Obviously the projection p: X x V — X gives
E the structure of a family of vector spaces. Let us prove that it is locally triv-
ial. Consider the open subset Uy, x, C Grass(r, n) defined by py, .« 7 0; then for
x € Uy, ..k, , the vector subspace Ly = p_l(x) has a basis

Py dij..k
{ei - Z a,'jej} where a;; = KKy
kL ke Dky..Jy

This determines an isomorphism p_l(Ukl,_.kr) — Ug,..k, X L, where L =k".

Since a vector bundle is locally trivial, it can be obtained by glueing together
trivial bundles over a number of open sets. This leads to an effective method of
constructing vector bundles.

Let X = | Uy be a cover such that the bundle p: E — X is trivial on each Uj,.
For each Uy, we fix an isomorphism

Do p_l(Uoc) = Uy x V.
Over the intersection Uy, N Ug we have two isomorphisms of p~ (U, N Ug) with

(Ug NUp) x V, namely @u,-1(y,nuy) a0d 9p,-1u,nu,) - Hence gpg o @, ! defines
an automorphism of the trivial vector bundle (U, N Ug) x V over Uy, N Ug.
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We now use the result of Example 6.1. We choose a basis of V, and write the
automorphism ¢g o goojl as an n x n matrix Cyg = (a;j)op With entries in the ring
Ox (U, N Ug). These matrixes obviously satisfy the glueing conditions

Coq =1id, and
Coy =CupCpy, onU,NUgNU,.

6.2)

Conversely, specifying matrixes Cog with entries in Ox (U, N Ug) defines a vector
bundle, provided the Cyp satisfy (6.2).

The matrixes Cyp are called transition matrixes of the vector bundle. For exam-
ple, if £ is the rank 1 vector bundle over P" introduced in Example 6.2, the maps
@q are of the form ¢y (x, y) = (x, yo), so that the transition matrix Cgg is the 1 x 1
matrix xgx, !

It is easy to determine how the matrixes Cyp depend on the choice of the iso-
morphisms @y. Any other isomorphism ¢/, is of the form ¢, = f,¢, Where fy is
an automorphism of the trivial bundle U, x V. By Example 6.1 again, f, can be
expressed as a matrix B, with entries in Ox (Uy) having an inverse matrix of the
same form. We thus arrive at new matrixes

Cz/xﬂ = BﬂCaﬁBgl.

Conversely making any such change of the matrixes Cyg leads to an isomorphic
vector bundle.

1.3 Vector Bundles and Sheaves

A vector bundle is a generalisation of a vector space. We now introduce the analogue
of a point of a vector space.

Definition A section of a vector bundle p: E — X is a morphism s: X — E such
that pos=1on X.

In particular s (x) = 0, (the zero vector in E) is a section, called the zero section
of E. The set of sections of a vector bundle E is written L(E).

Example 6.5 A section f of the trivial rank 1 bundle X X k is simply a morphism
of X to Al, that is, an element f € Ox(X). Thus £(X x k) = Ox(X). In particular
LP" x k) =k; similarly, LP" x V) =V.

Consider the vector bundle E of Example 6.2. Every section s: P" — E de-
termines, in particular, a section s: P — P" x V, and hence by Corollary 1.2 of
Section 5.2, Chapter 1 is of the form s(x) = (x, v) for some fixed v € V. But since
s(x) € E, it follows that v € [, for every x € P, and hence v = 0. Thus L(E) =0.
This proves in particular that E is not a trivial bundle.
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In terms of transition functions, a section s is given by sending each set Uy
to a vector ¢ = (fa,1, .., fa,n) With fo; € Ox(Uy), such that sg = Cypse over
Uy NUg.

Itis easy to check from the definition of vector bundle that if s1 and s, are sections
of E then there exists a section s1 + 52 such that

(s1+52)(x) =s51(x) +52(x)

for any point x € X. The sum on the right-hand side is meaningful, since s1(x) and
s2(x) € Ey, and E is a vector space. In a similar way the equality

(fs)(x) = fx)s(x)

determines a multiplication of a section s by an element f € Ox(X).

Thus the set L(E) is a module over the ring Ox (X). We associate with any open
set U C X the set L(E, U) of sections of the bundle E restricted to U. An obvious
check shows that we obtain a sheaf. We denote it by Lg; it is a sheaf of Abelian
groups, but has an extra structure, which we now define in a general form.

Definition Let X be a topological space, and suppose given on X a sheaf of rings G,
a sheaf of Abelian groups F, and in addition, for each U C X, a G(U)-module struc-
ture on F(U). In this situation we say that F is sheaf of G-modules if the multiplica-
tion map F(U) ® G(U) — F(U) is compatible with the restriction homomorphisms
,o[‘]/; that is, the diagram

FV)®RG(V) — F(V)
p%,f®p[¥,gl lpg.f
FU)Y®GWU) — sFU)
is commutative for each U C V. Under these circumstances, each stalk F, of F is
a module over the stalk G, of G.

A homomorphism F — F' of sheaves of G-modules is a system of homomor-
phisms ¢y : F(U) — F'(U) of G(U)-modules such that the diagram

Fv) 2 7 (v)

14 14
pU,}"l lpv,f’

FU) — F'(U)
ou
is commutative forall U C V.

Obviously the sheaf Lg corresponding to a vector bundle is a sheaf of modules
over the structure sheaf Oy.

Every operation on modules that can be defined intrinsically can be carried over
to sheaves of modules. In particular, for any modules over a ring A, the operations
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/ 7 * p
Me&M, M®sM, M*=Hom(M,A), /\AM

are defined. Applying these to the modules F(U) and F'(U) over the ring G(U),
we arrive at sheaves F & F', F ®¢g F', F* and /\g F, that we call the direct sum,
tensor product, dual sheaf and exterior power.

The sheaf of a trivial bundle of rank 7 is determined by Lg(U) = Ox(U)"; that
is, L is the direct sum of n copies of Oy. This sheaf is called the free sheaf of rank
n. Let F be a sheaf of Ox-modules. If every point has a neighbourhood U such that
Flu is free and of finite rank then we say that F is a locally free sheaf of finite rank.
If F is a locally free sheaf then obviously every stalk F; is a free O,-module. The
sheaf L corresponding to any vector bundle E is locally free of finite rank, since
E is locally isomorphic to a trivial bundle.

Theorem 6.2 The correspondence E +— Lg establishes a one-to-one correspon-
dence between vector bundles and locally free sheaves of finite rank (here objects of
either type are considered up to isomorphism).

Proof We show how to recover a vector bundle from a locally free sheaf F. We can
obviously assume that X is connected. Suppose that X = | J Uy, is a cover such that
Flu, is a free sheaf, and let ¢, : Fy, = O'Z]‘z be the corresponding isomorphism.
Then

0povs " Oy, = oy U (6.3)

is an isomorphism of sheaves of modules. Since X is connected, it follows that all
the numbers n, are equal; set n, = n. Any endomorphism of the sheaf of modules
O}, is given by a matrix C = (c;;) with ¢;; € Ox (U). Thus the isomorphism (6.3)
defines a matrix Cyg and obviously these matrixes satisfy the relations (6.2). Hence
they define some vector bundle E. A trivial verification, which we omit, shows that
L = F. The theorem is proved. g

One checks easily that the correspondence E — Lg between vector bundles and
locally free sheaves allows us to associate a homomorphism of sheaves of Ox-
modules to any homomorphism of bundles. In other words, the correspondence is
an equivalence of the two categories.

We should point out that the fibre of a vector bundle and the stalk of the cor-
responding sheaf are entirely different objects. For example, if E = X x k then
Lg = Ox, so that E, = k, whereas (Lg), = O,. In the general case the fibre E,
can be recovered from the stalk (Lg), using the relation

E; = (EE)x/mx (ACE)x, (64)

where m, is the maximal ideal of Oy . It is enough to verify this locally; then we can
write £ =U x k" and Lg = Of;, and (6.4) is obvious.

Whereas the notion of vector bundle was introduced here in a set-theoretic way,
that of a locally free sheaf is adapted for the more general situation, and is mean-
ingful for arbitrary schemes. It gives a natural analogue of the language of vector
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bundles. Moreover, the description in terms of transition matrixes also carries over:
the matrixes Cop must have entries belonging to the ring Ox (Uy N Up), and their
determinants must be invertible elements of this ring.

We can also define a vector bundle over an arbitrary scheme X as a scheme lo-
cally isomorphic to U x A", with U, x A" and Ug x A" glued together by transition
matrixes Cyg. Then the operations that determine the vector space structure in the
fibres are defined invariantly (because the matrixes Cyg define linear maps). The
sheaf of sections Lr of a vector bundle E is defined just as before, and the corre-
spondence E +— L is described by Theorem 6.2.

But even for varieties, Theorem 6.2 is convenient because it gives a method of
constructing new vector bundles.

Example 6.6 Let E and F be vector bundles, and L, L the corresponding locally
free sheaves. It is obvious that the sheaves L ® Lr, Lg ® LF, LT, /\pO L are all
locally free. The corresponding vector bundles are denoted by E @ F, E ® F, E*,
A\’ E.In case p =rank E we write /\” E = det E; this is a rank 1 vector bundle,
called the determinant line bundle of E.

If X =|J Uy is a cover in which E and F are defined by transition matrixes
Cup and Dyg then in the same cover, E@ F, EQ F, E*, /\p E are defined by the
transition matrixes

C 0
( 6“3 Daﬂ) ’ CC(/S ® Daﬂ, C(xﬂ /\ Caﬁ (6.5)

where ' C denotes the transpose matrix. Setting p = rank E, we see that the bundle
det E is defined by the 1 x 1 matrixes det Cyp.

Corollary For any bundle E, the dual bundle E* has det E* = (det E)~!.

It follows from (6.4) that where these operations are performed on vector bun-
dles, the corresponding operations on vector spaces are performed on each fibre.

Example 6.7 Let X be a nonsingular variety. Taking an open set U to the group
2P[U] of differential p-forms regular on U defines in an obvious way a sheaf of
Ox-modules. It is called the sheaf of differential p-forms.

Theorem 3.18 of Section 5.3, Chapter 3 asserts that this sheaf is locally free.
Hence by Theorem 6.2 it defines a vector bundle, denoted by £27. In particular, £2'
is called the cotangent bundle.

The stalk of the sheaf F at a point x € X is of the form F, = O,dt; + --- +
O,dt,, where t1, ..., t, are local parameters at x, and the sum is a direct sum. The
homomorphism Fy — Fx/myFy can be written in the form

wpdty + -+ -+ updty, > uy(x)dey + - - - + up (x)dey,,
and hence by (6.4) it follows that
Ql=F /m F = my /m. (6.6)

Obviously A\? 2! = 27 and det 2! = 2", where n = dim X.
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Example 6.8 The vector bundle dual to the cotangent bundle is called the tangent
bundle, and is denoted by @. By (6.6), for any point x € X we have

O, = (mx/mi)*,

that is, it is the tangent space at x. By Remark of Section 5.2, Chapter 3 it follows
that for an affine subset U C X with U = Spec A we have Ox (U) = Der (A, A).

The final general question we want to discuss in connection with vector bundles
is the notion of subbundle and quotient bundle.

Definition A morphism of vector bundles ¢ : F — E which is a closed embedding
of varieties is an embedding of vector bundles. In this case the image ¢(F') is called
a subbundle of E.

Proposition A subbundle F C E of a vector bundle is locally a direct summand.

Proof The assertion means that for any point x € X there exists a neighbourhood U
of x and a subbundle G of the restriction E|y such that

EIU = F|U D G. (67)

By Theorem 6.2, this equality is equivalent to the same equality for sheaves of
modules, or simply for modules over Ox (U). As always, the local assertion can
be reformulated in terms of local rings, but for this we must first translate the
assumption that ¢: F — E is a closed embedding in terms of the sheaves Lg
and Lr. Obviously, in this case, for any closed point x € X the homomorphism
¢x: Fy — E, is an embedding. This means that if Lr )y = O" and Lgjy = O",
and ¢: O" — O" is the sheaf homomorphism corresponding to the homomorphism
of vector bundles, then a free basis eq, ..., e, of O goes into a system of ele-
ments ¢(ey), ..., p(e,) € O" that are linearly independent at each point. Thus we
must show that if O is a local ring with maximal ideal m, and ¢ : O" — O" a ho-
momorphism, and ey, ..., e, a free basis of O such that ¢(ey), ..., p(e) € O"
are linearly independent modulo mQO”" then ¢ is an embedding and O" is a di-
rect sum of ¢(O") and a submodule isomorphic to O"". Indeed, set e; = ¢(e;).
Since dim(O" /mO") = n, the images of the elements ¢; can be lifted to a basis
of O"/mO". Then by Nakayama’s lemma (Proposition A.11 of Appendix to Vol-
ume 1) the elements e, ..., e, can be extended to a system of generators ey, ..., e,
of O".

It is easy to see that this system is a free basis of O": this does not even depend
on O being a local ring. Indeed, if fi, ..., f, is some free basis of O" then ¢; =
Y aijfjand f; =) bjje; with a;; and b;; € O. From the fact that fi,..., f, isa
free basis, it follows that the matrixes A = (a;;) and B = (b;;) satisfy BA = 1. But
then also AB = 1, which means that ey, ..., e, is a free basis of O". From the fact
that ey, ..., e, are linearly independent over O if follows that O" = ¢(O") ® N,
where N is the module generated by e€,41, ..., e,. The proposition is proved. [
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Now we can define the quotient bundle E / F of a vector bundle E by a subbundle
F C E. As a set, of course,

E/F =] Ex/F:.

xeX

To give it a structure of variety, consider an open set U for which (6.7) holds, and
identify | J, .y Ex/Fx with the algebraic variety G. It is easy to see that these struc-
tures are compatible on different open sets U and determine E/ F as a vector bundle.
The proof of the proposition obviously remains valid for vector bundles over an
arbitrary scheme X and leads to the definition of quotient bundle in this case.
The translation into the language of transition matrixes is obvious. If we choose
acover X = | J Uy such that (6.7) holds for all U,, the matrixes Cyp defining E can

be expressed in the form
Dsg 0O >
Coup = ,
op ( * D(’xﬂ

where D4 defines the vector bundle F and D), 8 the vector bundle E/F. It follows
at once from this that

detE =detF @detE/F. (6.8)

Example 6.9 (The normal bundle Nx,y) Let X be a nonsingular variety and ¥ C X
a nonsingular closed subvariety. We define the normal bundle Nx,y to Y in X. The
definition used in differential geometry is not applicable in the algebraic situation,
since it is based on the notion of the orthogonal complement W+ of a vector sub-
space W C V. However, as a vector space, W+ is determined by the fact that it is
isomorphic to V/W. This is what we exploit.

Write © for the restriction to Y of the tangent bundle @x. It is defined as the
pullback j*®x, where j: Y < X is the closed embedding. The vector bundle Oy
is a subbundle of ©Y. Indeed, by definition @} = j*Ox = j*(2})*) = (j*R2})*.
The restriction of differential forms from X to Y defines a surjective homomorphism
@ j*.Q)l( — .Q}l, and its dual ¢*: Oy = (.Q}l,)* — (j*.s?}()* = O} . By definition

Nxy = O)/Oy.

We compute the transition matrix of the normal bundle. The homomorphism
@;( — Nx,y defines a dual homomorphism

e N;}/Y — j*.Q}l(

of the dual vector bundles. It is easy to see that ¥ defines a closed embedding, so
that we can view Ny Jy asa subbundle of j *.Q)l( and .Q,l, as the quotient bundle

( j*.Q)l() /N% v It is enough to check these assertions on open sets on which our
vector bundles are trivial, where they are obvious.

As we saw in Theorem 3.17, Corollary of Section 5.1, Chapter 3, forms
duy, ..., du, are a basis of the Ox (U)-module Q}([U ] provided that the functions
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ui, ..., u, define local parameters at each point x € U. This basis defines a basis
N1, ..., Ny of the Oy (UNY)-module of sections over U NY of the sheaf correspond-
ing to the vector bundle j *.Q)l( Here ¢(;) is the restriction to Y of the form du;.

Suppose that n = dim X and m = codim(Y C X). By Theorem 2.14 of Sec-
tion 3.2, Chapter 2 we can choose the functions uq, ..., u, such that u; =--- =
u, = 0 are the local equations of Y in U. By the same theorem, together with
Theorem 3.17, Corollary of Section 5.1, Chapter 3, the restrictions of the forms
dum+1, ..., du, define a basis of .Q)l,[U NY], and hence 71, ..., n, is a basis of the
Oy (U NY)-module N;}/Y(U ny).

Suppose that U, and Upg are two open sets in which ug1,..., 1y, and
ug1,...,ug, are systems of local parameters chosen as described. The transition
matrix for the vector bundle 2 )1( is determined by the expression

n
dug; =Y hijdug; fori=1,....n, (6.9)
j=1
where h;; € Ox (U) are the entries of the Jacobian matrix, thatis, i;; = du ;i /dug,;,
and the transition matrix of j*£2 )1( in the basis 1y, ..., 1, is obtained by restricting
the entries of this matrix to U NY.
Since ug,; € (ug,1,...,ugm)on Uy NUgfori=1,...,m=codimY, we have

m
ua,iZE fijug,j fori=1,...,m,
Jj=1

with f;; € Ox(Uy N Up). Hence fori =1, ..., m we have

m m
dug; = fijdupj+ Y upjdfi;. (6.10)

j=1 j=1

To reconcile this formula with (6.9) we would have to express the df;; in terms

of duy,...,du,. But we are only interested in formulas for the n;, which are ob-
tained by restricting to Y all the functions occurring in it. Since ug ;j =0 on Y for
j=1,...,m, the second group of terms in (6.10) vanishes. Thus

m
nol,i:Z?l’jT]ﬁ,j f0ri=1,...,m,
j=1

where ?i j is the restriction of f;; to Uy, N Ug N'Y. As we have seen, these are the
transition matrixes of the vector bundle N )*( NE Those for Ny,y are obtained on
transposing and taking the inverse; taking the inverse is equivalent to interchanging
« and B. We finally arrive at the simple formulas

Cop = (hijy), fori,j=1,....,m (6.11)

where ug j =Y hjjuq,; in Uy N Ug.
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An important factor in practically all the constructions of this section is the pos-
sibility of specifying a vector bundle in an abstract way, without reference to an
embedding into projective space. It can however be proved that a vector bundle over
a quasiprojective variety is itself quasiprojective; we omit the proof.

1.4 Divisors and Line Bundles

In what follows, we do not assume that X is nonsingular, and consider locally prin-
cipal divisors D (Section 1.2, Chapter 3). Corresponding to each divisor D on an
irreducible variety X we have a vector space L£(D) (Section 1.2, Chapter 3). This
correspondence gives rise to a sheaf on X. To see this, note that the divisor D on
X also defines a divisor on any open subset U C X, by restricting to U the local
equations of D. We write Dy for the divisor thus obtained and set

LpU)=LWU, Dy),

where L(U, Dy ) is the vector space corresponding to the divisor Dy on U. Obvi-
ously Lp(U) Ck(X),and Lp(V) C Lp(U) whenever U C V; write ,ol‘j :Lp(V)—
Lp(U) for the inclusion map. The system {Lp (U), pl‘; } is a presheaf, and it is easy
to see that it is a sheaf. We denote it by Lp.

Multiplying elements f € Lp(U) by h € Ox(U) makes Lp into a sheaf of Ox-
modules. This sheaf is locally free. Indeed, if D is defined in an open set U, by a
local equation f,, then the elements g € Lp(Uy) are characterised by the condition
gfa € Ox(Uy). This shows that the map g — gfy defines an isomorphism

9 Lpiv, — Ox|U,- (6.12)

We saw in Section 1.3 that such a sheaf determines a vector bundle Ep; it follows
from (6.12) that rank E p = 1. Vector bundles of rank 1 are called line bundles since
their fibres are lines. We write out the transition functions for E p. Since the isomor-
phism over Uy in (6.12) is given by multiplication by f, the automorphism ¢go ¢, !
over Uy, NUg is given by multiplication by fg/f,. Note that fg/f, € Ox(Uy NUpg)
by the compatibility of the f,. Similarly ( fg [ ) = fu /fg € Ox(UyNUpg). Thus
in this case the transition matrix is the 1 x 1 matrix gqg given by

$ap = f8/fa- (6.13)

If we replace the divisor D by a linearly equivalent divisor D’ = D + div f
with f € k(X) then multiplication by f defines an isomorphism of modules
L(U, Dy) — L(U, D). We verified this in Theorem 3.3 of Section 1.5, Chap-

ter 3. In this way we obviously get an isomorphism of sheaves Lp 5 p’- The two

line bundles Ep and Ep actually have identical transition functions. Thus the sheaf
Lp and the line bundle Ep both correspond to a whole divisor class.
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Theorem 6.3 The map D — Lp — Ep defines a one-to-one correspondence be-
tween (1) linear equivalence classes of divisors, (2) isomorphism classes of sheaves
of Ox-modules locally isomorphic to Oy, and (3) isomorphism classes of rank 1
vector bundles.

Proof The correspondence between the sets (2) and (3) was established in Theo-
rem 6.2. Thus we need only prove that D — Ep defines a one-to-one correspon-
dence between the sets (1) and (3). To do this we construct the inverse map.
Suppose that E is a line bundle defined in a cover X = JU, by 1 x 1 transi-
tion matrixes ¢qg, with ¢4 and q);ﬂ] € Ox(Uy N Up). 1t follows from the glueing

conditions (6.2) that ¢g, = <,007ﬁ1 and

Pap = q);o}goyﬂ over Uy NUg NU,,. (6.14)

The inclusion Ox (U, N Ug) < k(X) allows us to consider the ¢qpg as elements of
k(X), and (6.14) holds for these in the same way. Fix some subscript y, say y =0.
We substitute y = 0 in (6.14) and set f, = @oo. Then the system of elements f, on
U, is compatible, since

I/ fa = @ap; (6.15)
hence they define a certain divisor D. Comparing (6.13) and (6.15) shows that E =
Ep.

Let us prove that the linear equivalence class of the divisor D depends only on
the line bundle E and not on the choice of the cover or the transition matrixes. Two
systems {Uy, 9ap} and {U;, <p;M} can be compared on the cover {U, N U} } by setting

Poprp =Pap and  @pgy, =@y, onUy NUgNU;NU,.

Therefore we can assume from the start that the two covers are the same, X = | J U,.
Then as shown in Section 1.2,

Vs =V Papp  With Y and ;' € Ox (Ua). (6.16)
By definition of f, and f},

fo =95 " poata =¥y fulba,

so that (6.16) gives D' = D — div(y).
Thus we have constructed a well-defined map from the set (3) to the set (1). An
obvious check shows that it is the inverse of D — Ep. The theorem is proved. [J

For any morphism f: X — Y we have the relation
f*(Ep) = E +(py; (6.17)

we leave the obvious verification to the reader.
The divisor class corresponding to a line bundle E under Theorem 6.3 is called
the characteristic class of E and denoted by c(E).
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Example 6.10 If dimX = n and £2” is the line bundle introduced in Section 1.2
then ¢(£2™) = K is the canonical class of X.

Example 6.11 Let X =P" and let D be a hyperplane of P". The line bundle Ep
corresponding to D under Theorem 6.3 is denoted by O(1). If D is given by xo =0
then in the open set U, where x, # O it has the local equation x¢/x,. Hence the
transition matrix for Ep is of the form cqp = x4 /xg. It follows that O(1) is the line
bundle dual to the line bundle £ of Example 6.2.

Let us find the sections of O(1). In U, these are of the form s, = P, /xéj, where
Py is a form of degree k; and they are related by sg = cogSq. It follows that k =1
and that P, = Pg is a form of degree 1 on P"*. Similarly, the divisor m D corresponds
to the line bundle denoted by O(m) with the transition matrix cog = (xo/xg)". The
sections of O(m) are homogeneous polynomials of degree m. It is easy to see that
O@m) = O(1)®" is the mth tensor power of O(1). For a subvariety X C P" we
write Ox (m) for the restriction to X of the line bundle (or sheaf) O(m) on P".

Example 6.12 Let X be a nonsingular variety and ¥ C X a nonsingular hypersur-
face. In this case the normal bundle Nx,y is a line bundle. We compute its charac-
teristic class.

Suppose that Y is given in an affine cover X = | JU, by local equations f,.
Then fg/fy = fup, Where fug and fa731 € Ox(Uy N Op). By (6.11), the transition
matrixes of N,y are of the form fu5)y = (fg/f«)|y. But we have just seen that
fg/f« are the transition matrixes for the line bundle Ey. Thus we have proved the
formula

Nx;y =Eyyy.
By (6.17) it follows from this that

¢(Nxyy) = py(Cy),

where Cy is the divisor class on X containing ¥ and py: C1X — ClY the ho-
momorphism of restriction to Y. Recall from Section 1.2, Chapter 3 the explicit
description of py: we must replace Y by a linearly equivalent divisor ¥’ not con-
taining Y as a component, then restrict ¥’ to Y.

Since divisor classes form a group, the correspondence established in Theo-
rem 6.3 defines a group law on the set of line bundles or sheaves locally isomorphic
to O. From (6.13) we see that addition of divisors corresponds to multiplication of
the 1 x 1 transition matrixes. This operation is given more intrinsically by the tensor
product of line bundles or sheaves (see Theorem 6.2). Here the sheaf O plays the
role of the multiplicative identity, and the inverse of Lp is £_p. Because of this,
locally free sheaves of O-modules of rank 1 are also called invertible sheaves.

Although invertible sheaves and divisor classes are in one-to-one correspon-
dence, it is often technically more convenient to use invertible sheaves. For example,
the inverse image f*(F) can be defined in a natural way for any morphism f and
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any sheaf F (see for example Hartshorne [37, Section 5, Chapter II]). It is easy
to check that if F is invertible then so is f*(F). The corresponding operation for
divisor classes requires arguments concerned with moving the support of a divisor.

These technical advantages of invertible sheaves are related to matters of princi-
ple. In a closely related situation, in the theory of complex manifolds, the notions
of invertible sheaf and divisor class are no longer equivalent, and there, invertible
sheaves provide more information and lead to a more natural statement of the prob-
lems. For this, compare Exercises 6-—8 of Section 2, Chapter 8.

For an arbitrary scheme X, a sheaf locally isomorphic to Oy is a natural analogue
of a divisor class. Such sheaves form a group: multiplication is defined as tensor
product, and the inverse of a sheaf F is its dual Hom(F, Oy). This group is again
denoted by Pic X. In our case, the transition matrixes are invertible elements of the
ring Ox (Uy N Up), the multiplication and inverse operations reduce to the same
operations on transition matrixes (in our case, transition functions).

As an application of the ideas treated here we deduce the genus formula stated
and used repeatedly in Section 2.3, Chapter 4.

Theorem 6.4 (Adjunction formula) The genus gy of a nonsingular curve Y on a
complete nonsingular surface X is given by the formula

1
gy=§Y(Y+K)+1; (6.18)
where K is the canonical class of X.

Proof Let X be a nonsingular variety and ¥ C X an arbitrary nonsingular closed
subvariety. By the definition of the normal bundle Nx,y and (6.8), we obtain

py(det®yx) = det@g( =det@y ®detNy,y.

Since @y is the dual of 2 )]( and Oy that of £2}, we can apply the Corollary of
Example 6.6, formula (6.5) to obtain

py (c(2%)) = c(27') -c(det Ny y) 7"

It follows from (6.6) that det(E*) = (detE)’] for any vector bundle. Since
det.Q)l( =N\'Ql= 2%, we get

py (c($2%)) = c(27') -c(det Ny y) ™!, (6.19)

with dim X = n and dimY = m. This formula holds for a nonsingular subvariety
Y C X of any dimension, and is usually called the adjunction formula.

Now suppose that m = n — 1. We apply the results obtained in Examples 6.5-6.7.
We arrive at the relation

py(Kx) =Ky — py(Cy). (6.20)
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Finally if n = 2 and m = 1, we deduce that the divisors on either side of (6.20) have
equal degrees.

Note that in our case, the restriction of any divisor D on X is a divisor py (D)
on Y, and it has a well-defined degree, equal to deg py (D) = Y D. Now by Corol-
lary 3.1, of Section 7, Chapter 3 we have deg Ky =2gy — 2 and so

YKy =2gy —2—Y?,

and the theorem follows from this based on simple properties of intersection num-
bers. 0

1.5 Exercises to Section 1

1 Let k be an algebraically closed field. Define a pseudovariety over k to be a ringed
space such that every point has a neighbourhood isomorphic to m-Spec A, where
A is a finitely generated k-algebra with no nilpotents; the topology and structure
sheaf on m-Spec A are defined exactly as in Chapter 5. Prove that taking a variety
to its set of closed points defines an isomorphism of the category of varieties and
pseudovarieties.

2 Define the product of pseudovarieties X and Y. Start by setting X x Y to be the
set of pairs (x, y) with x € X and y € Y, then construct an affine cover of this set
based on affine covers of X and Y, using the definition of products of affine varieties
given in Example 1.5 of Section 2.1, Chapter 1.

3 Prove that a variety is complete if and only if its irreducible components are
complete.

4 We say that a fibration X — S is locally trivial, or is a fibre bundle with fibre F
if every point s € S has a neighbourhood U such that the restriction of X over U is
isomorphic to F x U as a scheme over U. Prove that if X — S is a locally trivial
fibration with the base S and the fibre F' both complete then X is also complete.

5 Determine the transition matrixes of the line bundle of Example 6.2, which cor-
responds to the cover of P" by the sets A" given by x; # 0. Find the characteristic
class of this line bundle.

6 Let D be an effective divisor on a variety X for which the vector space L(D) is
finite dimensional, and F = Fp the corresponding invertible sheaf. Let f: X — P"
with n = [(D) — 1 be the rational map associated with £(D) as in Section 1.5,
Chapter 3. Assume that the divisors div f of functions f € £(D) have no common
components. Prove that f is regular at a point x € X if and only if the stalk F, of
F is generated as an O,-module by the space p, L(D).
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7 Suppose that X = Spec A is a nonsingular affine variety. Prove that the A-module
Ox(X) is isomorphic to the module of derivations of A (that is, k-linear maps
d: A— Asuchthatd(xy) =d(x)y + xd(y) for x,y € A).

8 Prove that the normal bundle to a line C in P" is a direct sum of n — 1 isomorphic
line bundles E. Find ¢(E).

9 Suppose that n — 1 hypersurfaces Cy, ..., C,—1 in P" of degrees ki, ..., k,—1
intersect transversally in an irreducible curve X. Find the genus of X.

10 Let f: E — X be a vector bundle and X = | Uy, a cover such that E is trivial
over each Uy, that is, Ejy, = Uy x k"". Embed £" in P" as the set of points with
x0 # 0, and glue the varieties U, x P" by means of the transition matrixes of E, now
considered as matrixes of projective transformations of P". Prove that in this way
we obtain a variety E containing E as an open set, and E is nonsingular; moreover,
f: E — X is a regular map and its fibres are isomorphic to P".

11 In the notation of Exercise 10, suppose that X = P!, and for n > 0 let E, be
the vector bundle of rank 1 corresponding to the divisor nxs on P!. Prove that
E, \ E, = C is a curve mapped isomorphically to P! by f. Let Cy be the zero
section of E,, which is obviously also contained in E,, and write F for the fibre of
E, — P! Prove that Cy — Coo ~ nF on the surface E,, and determine Cg and Cgo.

12 In the notation of Exercise 11, prove that the restriction of divisors D € Div E,
to a general fibre defines a homomorphism Cl E,, — Z whose kernel is Z - F. Prove
that Cl E,, is a free Abelian group with the two generators Co and F'.

13 In the notation of Exercises 11-12, find the canonical class of the surface E,,.

14 Prove that the surfaces E,, corresponding to distinct n > 0 are not isomorphic.
[Hint: Prove that E,, contains a unique irreducible curve with negative selfintersec-
tion, and this selfintersection is —n.]

15 Let X be a nonsingular affine variety and A = k[X] its affine coordinate ring.
Prove that the module @ (X) is isomorphic to Dery (A, A) (often written simply as
Dery (A). For the definition of Derx (A, A), see Exercise 24, Section 1.6, Chapter 2;
compare Exercise 12, Section 5.5, Chapter 3.

2 Abstract and Quasiprojective Varieties

2.1 Chow’s Lemma

We prove a result that sheds some light on the relation between complete and pro-
jective varieties. Of course, every irreducible variety is birational to a projective
variety, for example, the projective closure of any affine open subset. However, one
can prove considerably more in this direction.
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Theorem (Chow’s lemma) For any complete irreducible variety X, there exists a
projective variety X and a surjective birational morphism f: X — X.

Proof The idea of the proof is the same as that used to construct the projective
embedding of the normalisation of a curve (Theorem 2.23 of Section 5.3, Chapter 2).
Let X = |JU; be a finite affine cover. For each affine variety U; C A", write
Y; for the closure of U; in the projective space P" > A" . The variety ¥ =[] Y; is
obviously projective.
Set U = (N U;. The inclusions ¥ : U < X and v;: U < U; < Y; define a
morphism

9:U—XxY, withg=y x[]v.

Write X for the closure of ¢(U) in X x Y. The first projection px: X x ¥ — X
defines a morphism f: X — X. We prove that it is birational. For this it is enough
to check that

I U)=9). (6.21)

Indeed, px o9 =1 on U, and in view of (6.21), f coincides on f_l(U) with the
isomorphism ¢~!. Now (6.21) is equivalent to

UxY)NX =¢U), (6.22)

that is, to ¢(U) closed in U x Y. But this is obvious, since ¢(U) in U x Y is just
the graph of the morphism [] ;. The morphism f is surjective, since f(X) D U,
and U is dense in X.

It remains to prove that X is projective. For this, we use the second projection
g: X x Y — Y, and prove that its restriction g: X — Y is a closed embedding.
Since to be a closed embedding is a local property, it is enough to find open sets
Vi C Y suchthat | Jg='(V;) DX and g: X N g~ (Vi) = V; is a closed embedding.
We set

Vi =p; ' (U),

where p;: Y — Y; is the projection. First of all, the g’1 (Vi) cover X. For this it is
enough to prove that

st vy =rlw, (6.23)
since | JU; = X and |J f~'(U;) = X. In turn, (6.23) will follow from
f=piog onf~'(U). (6.24)

But it is enough to prove (6.24) on some open subset W C f “1(U;). We can
in particular take W = f_l(U) = @(U) (according to (6.21)), and then (6.24) is
obvious.

Thus it remains to prove that

e XNng 'V -V
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defines a closed embedding. Now recall that

Vi=p'(U)=Ui xY;, where;=][]¥;:
Jj#i
we get that
g (V) =X xU; x 1.

Write Z; for the graph of the morphism U; x Y; — X, which is the composite of
the projection to U; and the embedding Ui — X. The set Z; is closed in X x U; x
Y, = ¢~ 1(V;), and its projection to U; x Y; =V is an isomorphism. On the other
hand, ¢(U) C Z;, and since Z; is closed, xXn g_l (Vi) is closed in Z;. Hence the
restriction of the projection to this set is a closed embedding. Chow’s lemma is
proved. O

Similar arguments prove the analogous statement for an arbitrary variety, when
X is quasiprojective (see Exercise 7).

2.2 Blowup Along a Subvariety

Chow’s lemma shows that arbitrary varieties are rather close to projective vari-
eties. Nevertheless, the two notions do not always coincide. We construct simple
examples of non-quasiprojective varieties in the following section. The construc-
tion uses a generalisation of the notion of blowup defined in Section 4.2, Chapter 2.
The difference is that here we construct a morphism o : X’ — X such that the ra-
tional map o~! blows up a whole nonsingular subvariety ¥ C X rather than just
one point xg € X. The construction follows closely that of Sections 4.1-4.3, Chap-
ter 2.

(a) The Local Construction According to Theorem 2.14 of Volume 1, for any
closed point of a nonsingular subvariety ¥ C X of a nonsingular variety X, there ex-
ists a neighbourhood U and functions uy, ..., u,, € Ox(U), where m = codimy Y,
such that the ideal ay C Ox(U) is given by ay = (uy,...,u;), and such that
dyuy, ..., dyu, are linearly independent at every closed point x € U. The final con-
dition means that uy, ..., u, can be included in a system of local parameters at
x € U. If these conditions are satisfied, we say that uy, ..., u,, are local parameters
for Y in U.

Suppose that X is affine and uy, ..., u, are local parameters for Y everywhere
in X. Consider the product X x P"~! and the closed subvariety X’ ¢ X x P"~!
defined by the equations

tiuj(x) =tju;(x) fori,j=1,...,m,
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where 11, ..., 1, are the homogeneous coordinates in P"—1 The projection X x
P! — X defines a morphism o : X’ — X. Clearly, now o " 1(Y) =¥ x P!,
and o defines an isomorphism

X\ (rxP" ) S X\ 7.

Let x’ = (v, 1) be a closed point of X’, with y € X and ¢ € P"~!; suppose that t =
(ty : -+ ty) with ¢; £ 0. Then in a neighbourhood of x’, we have u; =u;s;, where
sj=tj/ti.Letvy, ..., Uy_m, U1, ..., Uy be alocal parameter system at y € X. Then
the maximal ideal of x” € X’ is of the form

mx/z(v],...,vn,m,ul,...,um,sl —s1(x’),...,sm—sm(x’))

=(V1s ooy Vnmme ST = S1(x)ousi = i () s s — s (X)),
It follows from this, as in Section 4.2, Chapter 2, that X’ is nonsingular, n-

dimensional and irreducible. As there, the following result holds.

Lemma If t: X — X is a blowup of the same subvariety Y C X defined by a dif-
ferent local system of parameters vi, ...,y of Y then there is an isomorphism
¢: X' — X for which the diagram
x %X
O’\ I/T
X

commutes. The isomorphism ¢ is unique.

We have ¢ = 77! o o on the open sets X’ \ o~ !(¥) and X \ t~!(¥), and the
uniqueness of ¢ follows from this. By definition, in these sets

POty ) = (X5 01(x) - vy (),
Yo ceity) = (5 ur(x) st (x)),

where = ¢~ 1.
By assumption,

ve= Y hgju; with hj € k[X]. (6.25)
j

In the open set given by f; # 0, we set s; =t;/t; and rewrite (6.25) in the form

ve=uigr with gg =" o*(hy))s;. (6.26)
j

Then define
Ot ity) = (X581 &m)- (6.27)
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The same simple verification as in the proof of the analogous lemma in Section 4.2,
Chapter 2 shows that ¢ is a morphism, which is equal to that already constructed on
X'\ o~1(Y). The construction of Y is similar.

(b) The Global Construction Let X = | J U, be an affine cover such that Y is de-
fined in U, by local parameters uq 1, ..., Uq,m. Over Uy, we apply the construction
of (a) to Y N U,; we get a system of varieties X/, and morphisms oy : X, — Uy.
Consider the subset o YU, NnU 8) C X|, for all « and $; then by the lemma, there
exist uniquely determined isomorphisms

ap: 0 (Ua NUp) — 0 (U N Up).

It is easy to check that these satisfy the glueing conditions and define a variety X’
and a morphism o : X’ — X. The morphism o we have constructed is called the
blowup of Y, or the blowup of X with centre in Y. It follows in an obvious way
from the lemma that X’ and o are both independent of the cover X = | J U, and of
the system of parameters ugy, ;.

(c) The Exceptional Locus The subvariety o~ 1(Y) is known locally:
o MY NU) =X NU) x P71 (6.28)

Globally, we are dealing with a fibre bundle of a new type: the fibre o~ !(y) over
each y € Y is a projective space P"~!. Equation (6.28) shows the sense in which
our fibre bundle is locally trivial.

With every vector bundle p: E — X we can associate a fibre bundle ¢ : P(E) —
X of this type. For this, we define P(E) as the set

P(E) = | P(ED),

xeX

where P(E,) is the projective space of lines through 0 in the vector space E. To
give P(E) the structure of an algebraic variety, consider a cover X = |_J U, in which
E is given by transition matrixes Cg. By fixing an isomorphism p~ (U 2 U, x
V, where V is a vector space, we thus get a map

U P(ED) > U x P(V),

xeUy

which allows us to give this set the structure of an algebraic variety. All the structures
of this type are obviously compatible, and define a structure of algebraic variety on
the whole of P(E). This variety is called the projectivisation of E.

More concretely, P(E) is obtained by glueing together open subsets

¢ N Uy) = Uy x P(V)
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by means of the glueing law defined by automorphisms of (Uy N Ug) x P(V):

Pap U, &) = (1, P(Cap)t), (6.29)

where u € Uy, N Ug, § € P(V) and P(Cyp) is the projective transformation with
matrix Copg.

We return to the variety o ~!(Y) arising as the exceptional locus of a blowup
o: X' — X.Itis obtained by glueing together the open sets (Y N Uy) x P!, with
the glueing law given by (6.25). This law is precisely of the type (6.29) if we take
Cyp to be the matrix

Cap = ((hij)y)-

Here the functions h;; are determined from (6.25), and a glance at the transition
matrix of the normal bundle in (6.11) shows that Cyg corresponds to the vector
bundles Ny,y. Thus the result of our argument can be expressed by the simple
formula

oL (¥) = P(Ny)y).

(d) The Behaviour of Subvarieties Under a Blowup

Proposition Let Z C X be a closed irreducible nonsingular subvariety of X that is
transversal to Y at every point of Y N Z, and let 0 : X' — X be the blowup of Y.
Then the subvariety o ~'(Z) consists of two irreducible components,

o '\ Z)=c"'Yn2Z)UuZ,
and o : Z' — Z defines the blowup of Z with centre in Y N Z.

The subvariety Z' C X' is called the birational transform of Z C X under the
blowup.

Proof The proof follows closely the arguments of Section 4.3, Chapter 2. The ques-
tion is local, so that we can assume that ¥ C X is defined by the local equa-

tions u; = -+ =uyg =uUugy; =---=up =0, and Z C X by the local equations
Ugp] =+ =Up = Up4] -+ = Ue = 0, so that the intersection ¥ N Z is defined by
Uy =-=ug=--=up=---=u,=0,here 0 <a <b<c<d=dimX, and
Ui, ..., uq is a system of local parameters on X. Then X’ is defined in X x P*~! by

the equations

tiuj=rtju; fOI‘i,j:l,...,b. (6.30)
Write_? for the closure of ¢ ~1(Z \ (Y N Z)). Then obviously, ol (Z)=0c"1(Y N
Z)U Z. Every point of o N Z\(¥YN2Z)) has ugsi =--- =u. =0 and at least one
of uy,...,us #0; therefore

tgg1=---=t.=0 onZ.
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Hence
ZCcZxpl
where 11, ..., t, are homogeneous coordinates of P“~1 and the relations
tiuj=tju; fori,j:l,...,a.

hold on Z. But these are just the > equations defining the blowup o' 7' —>Zof Z
with centre in Y N Z. We see that Z C Z’, and therefore Z = Z’, since both varieties
have the same dimension and Z’ is irreducible. The proposition is proved. U

We conclude this section with some remarks on the notion of blowup.

Remark 6.1 1t can be shown that blowing up a quasiprojective variety does not take
us outside the class of quasiprojective varieties; the proof is omitted.

Remark 6.2 The existence of blowups whose centres are not points creates a whole
series of new difficulties in the theory of birational maps of varieties of dimension
>3. In this connection, is not understood to what extent the results we obtained for
birational maps of surfaces in Section 3.4, Chapter 4 can be carried over to higher
dimensions. It is known that not every birational morphism X — Y can be expressed
as a composite of blowups; the counterexample is due to Hironaka. It remains an
open question whether every birational map is a composite of blowups and their
inverses. On the other hand, the theorem on resolving the locus of indeterminacy
of a rational map by blowups holds in any dimension, if the ground field k& has
characteristic 0; this is also a theorem of Hironaka.

2.3 Example of Non-quasiprojective Variety

The variety that we now construct to give an example of a non-quasiprojective vari-
ety will be complete. If a complete variety is isomorphic to a quasiprojective variety,
then by the theorem on the closure of the image, it would be projective. Thus it is
enough to construct an example of a complete nonprojective variety.

The proof of nonprojectivity will be based on the fact that intersection numbers
on a projective variety has a specific property. We therefore start with some general
remarks on intersection numbers.

We use notions which are a very special case of the cycle class ring mentioned
in Section 6.2, Chapter 4. In our particular case, we can easily give the definitions
from first principles. Let X be a complete nonsingular 3-fold, C C X an irreducible
curve and D a divisor on X. Suppose that C ¢ Supp D. Then the restriction pc (D)
defines a locally principal divisor on C (we do not assume that C is nonsingular),
for which the intersection number is defined (see the remark in connection with
the definition of intersection number in Section 1.1, Chapter 4). In this case the



2 Abstract and Quasiprojective Varieties 75

intersection number is denoted by deg pc (D) and is also called the intersection
number of the curve C and the divisor D:

CD =degpc(D).

The arguments of Sections 1.2—1.3, Chapter 4 show that this intersection number is
additive as a function of D and invariant under linear equivalence. In particular, the
intersection number C A is defined, where A is the divisor class containing D. In
any case, we only require this for the case C a nonsingular curve, when both these
properties are obvious.

Consider the free Abelian group A' generated by all curves C C X. The inter-
section number a A is defined for a € A! and A € CI1 X by additivity. We introduce
on A! the equivalence relation

a=b <+ aA=bA forallAeClX.

If this holds we say that a and b are numerically equivalent.

We consider an example which is basic for what follows. Suppose that a =
> n;C; and @’ =) n’.C’, where all the curves C; and C’; lie on a nonsingular
surface Y C X, and a ~ b are linearly equivalent as divisors on Y; then a = b. In-
deed, for any divisor D on X the operation pé‘i (D) of restriction to C; can be carried
out in two steps:

X Y X
Pc; = Pc; ° Py
and hence for a € DivY

(@D)x = (apy (D))

Therefore our assertion follows from the fact that intersection numbers of divisors
on Y are invariant under linear equivalence of divisors.

The preceding considerations apply to any complete variety X. The assumption
that X is projective has an important consequence for X: ifa =Y n;C; withn; >0
then a % 0. Indeed, when we intersect an irreducible curve C with a hyperplane
section H of X we obviously have the equality

CH =degC,

and in particular CH > 0. Hence also aH =) n;C;H > 0.

Before we start on the construction of the example, we consider an auxiliary
construction. Suppose C and C; are two nonsingular curves in a nonsingular 3-fold
V intersecting transversally at a point xo. We assume that C1 and C; are rational;
our results hold independently of this assumption, but it somewhat simplifies the
deduction. Let 0: W — V be the blowup of C; and §1 = 6‘1(C 1) the exceptional
surface. The restriction

ols,: $1—~ Cq,
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Figure 25 The first blowup

is a P!-bundle by Section 2.2, (c), and we write [, for the fibre over x € C. By
Proposition 6.2, o ~!(C5) consists of two components:

o7 (Cy) =1 UCY;

here o : Cé — (3 is the blowup of C, with centre in x, and in our case is therefore
an isomorphism. As a very simple exercise in the formulas defining a blowup, we
leave the reader to check that S7 and C) intersect in a single point x;, with o (x)) =
Xo, and are transversal there. We arrive at the situation of Figure 25.

Since we have assumed that the curve C| is rational, all its points are linearly
equivalent x| ~ x7, and hence

Iy, ~1ly, onS; forallxy,x;eCy.

Now consider a second blowup, the blowup 7: X — W of W with centre in C.
The inverse image = (S1) of S; is irreducible: by Section 2.2, (d), Proposition,
1S = r‘l(x(’)) U S}, where 7: §] — S is the blowup of S| centred in x. It
follows that 7! (xp) C S7. On S} we have 7! (Ixy) =L+ L', where L = 7! (xg)
and 7: L' — [, is an isomorphism. For x # xo, the fibre =11, is irreducible; we
denote it by L. By what we have said, we have

Ly~L+ L' asdivisors on Sj. (6.31)

Now write S, for the surface r_l(Cé). In this same way as S1, it is a P! -bundle
Sy — Cé with fibre Ly, over y € C/,and on S

Ly ~ Ly, forally,y €Cs, and Lx(/) =1L. (6.32)
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Figure 26 The second
blowup

The two surfaces S| and S, intersect along the line L as shown in Figure 26.
We go over to numerical equivalence on X. Substituting (6.31) in (6.32) we get
that

Ly~L+L ~L,+L" (6.33)

The basic feature of this relation is its lack of symmetry with respect to the fibres
L, and L, of the two ruled surfaces S{ and S, arising from the order in which the
blowups were performed. This is what we exploit in the example, the construction
of which we now embark on.

Consider a nonsingular 3-fold V and two nonsingular rational curves C{, C» C V
that intersect transversally in two points xo and x; (for example, V could contain a
copy of P2, with C; aline and C3 a conic). In the 3-fold Vy = V \ x1 we blow up as
above first C; \ x1, then the birational transform of C; \ x1; we get a morphism

op: Xo— V\x1.

In V1 =V \ xo we blow up the two curves in the opposite order, first C \ xo then
the birational transform of C| \ xo; we get a morphism

o1: X1 — V\xp.
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Now the two varieties 00_1 (V \ {x0,x1}) and 01_1 (V \ {x0, x1}) are obviously iso-
morphic, and the morphisms op and o7 coincide on them. Indeed, the curve C7 U
C2 \ {x0, x1} is disconnected, and thus both oy ' (V \ {x0, x1}) and o ' (V' \ {x0, x1})
can be obtained by carrying out the blowup of V' \ {x¢, x1} with centre C; \ {xg, x1}
on the open set V \ C, and with centre C> \ {xo, x1} on the open set V \ Cj, then
glueing the resulting varieties along the open set V \ {C1 U C;}, over which both
blowups are isomorphisms.

Thus we can glue X and X along their open subsets o, ‘v \ {x0,x1}) and

01_1 (V' \ {xo0, x1}), obtaining a 3-fold X and a morphism
o: X—>V.

In X we have the relation (6.33), which we deduced using the existence of the point
of intersection xo of C1 and C. In the same way the point x; leads to the relation

Ly~Li +Ly~L,+Lj (6.34)

where L is the irreducible curve of intersection of S; and Sé over x1 and L’1 the
other component of o (x)). Adding (6.33) and (6.34) gives

Ly+Ly~L' + L+ Ly + Ly,

whence
L'+ L/l ~ 0. (6.35)

To get a contradiction to X projective, it remains to prove that it is complete. For
an arbitrary variety Z the projection X x Z — Z factors as a composite of the map
o x1: X xZ— V x Z and the projection V x Z — Z. Since V is projective, the
image of a closed set under the second projection is closed, and we need only prove
that the same holds for o x 1. We know that V is a union of two open sets V \ xg
and V \ x1, and since closed is a local property, it is enough to check that both the
restrictions

ox1:(@x D) N ((V\x)xZ) > (V\x))x Z fori=0,1

take closed sets to closed sets. Now o over V \ x; is just a composite of blowups,
and it remains to prove that for any blowup o : U’ — U and any Z the morphism

ox1:U xZ—>Ux2Z

takes closed sets to closed sets. Once more since the question is local, we can assume
that o is given by the local construction Section 2.2, (a), thatis, U’ C U x P"—1 and
o is induced by the projection U x P"~! — U. But then our assertion follows from
the fact that projective space is complete, Theorem 1.11 of Section 5.2, Chapter 1.

Thus if X were quasiprojective it would be projective, and this is a contradiction,
since (6.35) is impossible in a projective variety.
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Figure 27 Hironaka’s
counterexample

Yy j
The basic idea on which the example is built is of course the relations (6.33) and
(6.34): they lead to (6.35), which cannot hold on a projective variety. These relations
are perhaps clearer if we express them in a very primitive picture (Figure 27): the

fibre Ly, of the ruled surface S| is shown breaking up into two lines drawn as
intervals L and L'.

Remark 6.3 Itis no accident that this example has dimension 3. It can be proved that
a 2-dimensional nonsingular complete variety is projective. On the other hand, there
exist examples of complete nonprojective 2-dimensional varieties with singularities.

Remark 6.4 In the example we have constructed, consider an affine openset U C X.
If both curves L" and L) in (6.35) had nonempty intersection with U, we would be
able to find a divisor D such that L'D > 0, L/ID > 0, contradicting (6.35); indeed,
we could just take D to be the closure of a hyperplane section of the affine space
containing U. Thus L’ and L are “very far apart” in X: if an affine open subset
contains a point of L’ then it must be disjoint from L.

2.4 Criterions for Projectivity

To conclude this section, we discuss a number of criterions that characterise pro-
jective varieties among arbitrary complete varieties. We do not state them in the
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greatest possible generality. In particular, in the first two we assume that the vari-
eties are nonsingular. We could avoid this assumption, but this would require some
extra explanations.

1. Chevalley—Kleiman Criterion A complete nonsingular variety X is projective
if and only if every finite set of points of X is contained in an affine open subset.

If X is a projective variety then there obviously exists a hyperplane section H not
meeting any finite subset S C X, sothat S C X \ H, and X \ H is affine. Hence one
half of the criterion is obvious. In the example of a nonprojective variety constructed
at the end of Section 2.3, this criterion obviously fails (see Remark 6.4).

2. Nakai—-Moishezon Criterion A complete nonsingular variety X is projective if
and only if there exists a divisor H on X such that for every irreducible subvariety
Y CX,

(py(H)m)Y =H"Y >0, wherem=dimY;

here py (H) is the restriction to Y of H and (py (H)™)y its m-fold selfintersection
numberon Y .

If X is a projective variety then we can take H to be a hyperplane section. In this
case

H™Y =deg?.

Thus again the criterion obviously holds for projective varieties.

To state the final criterion, recall that projective space P” has a line bundle E C
P" x V, where V is the vector space whose lines are represented by points of P” (see
Examples 6.10-6.11). Moreover, the projection P" x V — V defines a morphism
E — V that is the blowup of V centred in the origin. For this map, the unique
exceptional subvariety is the zero section of E. Let X C P be a closed subvariety.
The line bundle E’ = px (E), the restriction to X of E, is a closed subvariety of E,
and the blowup o : E — V defines a morphism ¢’: E’ — V. The completeness of
P" implies that o takes closed sets to closed sets. Hence W = ¢/ (E’) is an affine
variety. In fact it is easy to see that W is the affine cone over X C P" as in the
proof of Theorem 6.7 (compare Exercise 8 of Section 4.5). Obviously the unique
exceptional subvariety of o’ is the zero section of E’.

These arguments prove the “only if” part of the following criterion.

Grauert Criterion A complete variety X is projective if and only if there exists a
line bundle E over X, and a morphism f: E — V to an affine variety V such that
f is birational, and the unique exceptional subvariety of f is the zero section of E.
A shorter way of stating the condition is that the zero section of the line bundle E
can be contracted to a point.
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2.5 Exercises to Section 2

1 Give an alternative proof of Theorem 6.1 using Chow’s lemma and a reduction to
Theorem 2.12 of Section 3.1, Chapter 2.

2 If X is a complete variety and o : X’ — X a blowup, prove that X’ is also com-
plete.

3 If E and E’ are vector bundles such that E/ = E ® L for L a line bundle, and
P(E), P(E’) are as in Exercise 10 of Section 1.5, prove that P(E) = P(E’).

4 Suppose that X is a nonsingular complete variety with dimX =3, and ¥ C X
a nonsingular curve; let o: X’ — X be the blowup of X with centre Y, and [ =
o~ Y(yo) with yg € Y. Prove that *(D)I = 0, where D is any divisor on X and
o*(D) its pullback to X'.

5 Under the conditions of Exercise 4, set S = ¢ ~1(¥). Prove that SI = —1. [Hint:
Consider a surface D on X containing ¥ and nonsingular at yg, and apply the result
of Exercise 4 to D. Compare the calculations of Section 3.2, Chapter 4.]

6 Prove that for any nonsingular projective 3-fold X there exists a complete non-
projective variety birational to X.

7 Prove that for any irreducible variety X there exists a quasiprojective variety X
and a surjective birational morphism f: X — X. There exists an embedding X <
P* x X such that f is the restriction to X of the projection P* x X — X.

3 Coherent Sheaves

3.1 Sheaves of Ox-Modules

Sheaves of modules over the sheaf of rings Ox have already appeared in Section 1.3
in connection with vector bundles. Sheaves of this type are an extraordinarily con-
venient tool in the study of algebraic varieties; we discuss one example of this in
this section. But first we start with certain general properties of these sheaves.

Consider the most general situation: a ringed space, that is, a topological space
X with a given sheaf of rings O. In what follows we consider sheaves on X that
are sheaves of modules over O; we usually omit mention of this, speaking simply
of sheaves of modules. Any sheaf of Abelian groups on a topological space X can
obviously be viewed as a sheaf of modules over a sheaf of rings O by taking O to
be the sheaf of locally constant Z-valued functions.

The definition of a homomorphism f: F — G of sheaves of modules was
given in Section 1.3. Recall that it is a system of O(U)-module homomorphisms
fu: F(U) — G(U) satisfying certain compatibility requirements.
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Example 6.13 Let X be a nonsingular algebraic variety over k, Ox the sheaf of
regular functions, and £2' the sheaf of regular differential 1-forms. Sending f €
Ox (U) to the differential d f € 21(U) defines a homomorphism of sheaves

d: Ox—) .Ql.

This is a homomorphism of sheaves of modules over the sheaf of locally constant
k-valued functions, but not over Ox (because, by Leibnitz’ rule, d is not Oy -linear).

Our immediate objective is to define the kernel and image of a homomorphism
of sheaves of modules. The first definition is completely obvious. Let f: F — G
be a homomorphism of sheaves of modules. Set IC(U) = ker fy. By definition of
a homomorphism it follows that for U C V we have p[‘; (K(V)) c KU). Hence
the system {K(U), p(‘j/} is a presheaf; an easy verification shows that it is a sheaf of
modules. By definition this is the kernel of f.

The kernel of a homomorphism is an example of a subsheaf of a sheaf F. This
is a sheaf of modules F” such that 7'(U) C F(U) for every open set U C X, and
such that p}jy 7 1s the restriction of pl‘]/’ 7 to the submodule F° "(V).

The image of a homomorphism f: F — G is a somewhat more complicated
notion. The point is that the O(U)-modules Z(U) = im fy, together with the ho-
momorphisms 'Ol\;, G define a presheaf that is in general not a sheaf.

Example 6.14 Let X be a nonsingular irreducible curve, and KC* the constant sheaf
with *(U) = k(X)* the group of nonzero elements of k£(X) under multiplication;
let D be the sheaf of local divisors, defined by D(U) = DivU, with the obvi-
ous restriction homomorphisms. The homomorphism f: £* — D takes a function
u € K*(U) into its divisor divu on U. Since every divisor is locally principal, for
every D € DivU and every point x € U there exists a neighbourhood V, of x and a
function u € K*(Vy) such that fy_(u) = D; in other words, (im f)(Vy) 3 ,o‘(/]x(D).
However, it is not always the case that D € (im f)(U). For example, if X is projec-
tive then not every divisor is principal. Thus im f does not satisfy condition (2) in
the definition of a sheaf in Section 2.3, Chapter 5.

Thus it seems natural to define the image of a homomorphism f: F — G of
sheaves of modules as follows. First define the presheaf Z’ by setting

7’(U) = fu(FW)) forU CX;

then take the sheafication Z of the presheaf 7’ as in Section 2.4, Chapter 5; it is
called the image of f and is denoted by im f.

Recalling the definition of the sheafication of a presheaf, we see that im f is a
subsheaf of G, and (im f)(U) consists of elements a € G(U) such that every point
x € U has a neighbourhood U, for which

Py, (@) € fu, (F(Uy).
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Obviously, f defines a homomorphism
F —im f.

It follows at once from the definition that a homomorphism f: F — G for which
ker /=0 and im f G isan 1som0rphlsm

A sequence F —> Fr— - —> Fny1 of homomorphlsms is called an exact se-

quence if im f; =ker fi;q fori=1,...,n. If 0 — f—)Q—)H—) 0 is an exact
sequence then F can be viewed as a subsheaf of G. Because of this,

(im £)(U) = f(FU));

that is, in constructing the image sheaf of an injective homomorphism f, passing to
the sheafication is unnecessary. Hence the sequence

O—>]~"(U)—>Q(U) =L HW) (6.36)

is exact for any open set U.
Example 6.14 shows that the sequence

0—>]—"(U)—>Q(U) S HWU) -0

is in general not exact (for example, for U = X). This phenomenon is the reason for
the existence of a nontrivial theory of sheaf cohomology.

For any subsheaf F of a sheaf G one can construct a homomorphism f: G — H
such that ker f = F and im f = H. To obtain this, set

H(U) =G(U)/F(U)

and define homomorphisms 0 [‘j 4y as the maps induced on these quotient groups by

the homomorphisms pU g- We define H to be the sheafication of H.
It is easy to check that the stalks of this sheaf satisfy

Hx ng/}—x-

Hence an element a € G(U) defines elements a, € H, for all points x € U. An
obvious verification shows that the set of all the {a,} specify an element a’ € H(U),
and f: a > a’ defines a homomorphism with the required properties. The sheaf H
is the quotient sheaf of G by F. Obviously the sequence 0 > F - G — H — O is
exact.

Example 6.15 Let X be an irreducible algebraic variety over a field k and K* the
sheaf of locally constant functions with values in the multiplicative group of k(X).
The sheaf O* is defined by setting O*(U) to be the set of invertible elements of
O(U); here K* and O* are viewed as sheaves of Abelian groups. It is each to check
that the quotient sheaf D = KC*/O* has D(U) isomorphic to the group of locally
principal divisors of U.
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Definition The support of a sheaf F is the set X \ W, where W is the union of all
open sets V C X with F(U) = 0 for all nonempty open set U C V. This is a closed
set, and is denoted by Supp F.

Proposition If S is the support of a sheaf F and U C V are two open sets such that
U NS =V NS then the restriction ,0(‘]/ : F(V) — F(U) is an isomorphism.

Proof Let a € F(V) be such that pl‘f (a) = 0. By definition of S every point x € V
with x ¢ S has a neighbourhood V,, which we can assume to be contained in V, for
which

py, (@) =0.

By the assumption, U is a neighbourhood with this property for points x € S. It
follows from the definition of a sheaf that ¢ = 0, and thus :01‘1/ is injective.

Let a € F(U). Consider a cover V = | JU, with Uy = U and U, N S =@ for
a # 0 (for example, this holds if U, for o # 0 are sufficiently small neighbourhoods
of points x € V with x ¢ §). Set ap = a and a, = 0 for @ # 0. From the assumption
of the proposition it follows that

Us U
U, (@) = pylou, (@p).
Hence by the definition of a sheaf there exists an element a’ € F(V) such that
p(_‘ja (a/) = aO( ’

and in particular, when o = 0, we have p[‘J/ (a’) =a. Thus ,ol‘]/ is surjective, and the
proposition is proved. O

It follows from the proposition that if § is the support of a sheaf F then the
modules F(U) are canonically isomorphic for all open sets U whose intersection
with § is a given subset. Therefore we can define a sheaf 7 on § by setting

FU)=FU), whereUNS=U
for open sets U C S.

Example 6.16 Let X be ascheme and Y C X a closed subscheme. Define a subsheaf
Jy of the structure sheaf Oy by the condition Jy (U) = ay if U is an affine open
set with U = Spec A and ay C A is the ideal of the subscheme Y N U. Obviously if
U is disjoint from Y then Jy |y = Ox |y . Hence the sheaf 7 = Ox/Jy is equal to 0
on such open sets, that is, its support is contained in ¥. The corresponding sheaf F
on Y coincides with the structure sheaf Oy on the subscheme Y.

Remark The definition of support just given is not the usually accepted one, but it
is slightly more convenient for our purposes. In any case, in what follows, the two
definitions coincide in the cases where they are applied.
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3.2 Coherent Sheaves

Locally free sheaves have already appeared in Section 1.3 in connection with vector
bundles. We now consider a class of sheaves that are to arbitrary finite modules as
locally free sheaves are to finite free modules.

‘We now apply the notions introduced in Section 3.1 to the case that X, Oy is an
arbitrary scheme. We start with local considerations, and suppose that X = Spec A,
where A is an arbitrary ring.

For any module M over aring A and any multiplicative system S of elements of
A we define the localisation of M with respect to S, setting

Msg=M Q4 As.

Mg can be described in the same way as the localisation Ag in Section 1.1, Chap-
ter 5. It consists of pairs (m, s) with m € M and s € S with the same rules of iden-
tification, addition and multiplication by elements of Ag as in the case of rings; we
write m /s for the pair (m, s). In particular, taking S to be the system of powers of
an element f € A gives the module My over Ay.

The homomorphisms As — Ay defined for S C S’ generate homomorphisms
Mg — Mg . This allows us to associate with an A-module M a sheaf M on Spec A.
The definition mirrors exactly that of the sheaf O, to which it reduces in the case
M = A. In view of this, we omit some of the verifications, when these do not differ
in the general case from those carried out in Section 2.2, Chapter 5.

For an open set of the form U = D(f) with f € A we set

M@U) =

For an arbitrary open set U we consider all f € A for which D(f) C U. Whenever
D(g) D D(f), we have homomorphisms

My — My.
Using these, we can define the projective limit of the groups M . Set
MU) = l(in My

where the limit runs over f € A such that D(f) C U. Then M (U) is a module over
the ring O(U) = hm Ay;thisisa general property of projective limits. An inclusion
U C V defines a homomorphlsrn pU M(V) — M(U) as in the case M = A. The
system {M ), ,oU} defines a sheaf M of modules over the sheaf of rings Oy.

A homomorphism of A-modules ¢ : M — N defines homomorphisms ¢ : M r—
Ny for all f € A, and on passing to the limit, a homomorphism of sheaves
¢:M—> N.Ifo: M — N and ¢ : N — L are two such homomorphisms then
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M can be recovered from M. Namely, we have a generalisation of the relation
proved in Section 2.2, Chapter 5:

M(SpecA) =M,

the proof is word-for-word the same. It follows that M +— M is a one-to-one cor-
respondence between modules M and sheaves of the form M. Moreover, a simple
check allows us to deduce that ¢ — ¢ is an isomorphism of groups

Homy (M, N) = Homp (M, N),

from the group of A-module homomorphisms to the group of homomorphisms of
sheaves of Ogpec 4-modules.
We can now proceed to globalise these notions. Let X be a Noetherian scheme.

Definition A sheaf F on X is coherent if every point x € X has an affine neigh-
bourhood U of the form U = Spec A with A a Noetherian ring, such that |y is
isomorphic to a sheaf of the form M for some finite A-module M.

Proposition If X = Spec A is an affine and Noetherian scheme, then any coherent
sheaf F on X is of the form M, where M is a finite A-module.

Proof We set F(X) = M and prove that F = M.

Since open sets of the form D(f) are a basis of the Zariski topology, there exist
elements f; € A such that | D(f;) = X and F is isomorphic over D(f;) to a sheaf
M;, where M; is a finite A f;-module. Since Spec A is compact we can assume that
the f; are finite in number.

For any g € A, since F(D(g)) is an Az-module, the restriction homomorphism
pg(g): M = F(X) - F(D(g)) extends in a unique way to a homomorphism of
Ag-modules.

@g: M(D(g)) — F(D(g)).

One checks easily that this system of homomorphisms defines a homomorphism
M — F of sheaves of modules.

Everything thus reduces to proving that the homomorphism ¢, is an isomor-
phism. For this, consider the sequence of homomorphisms

0— ML@M,‘&@MU, (637)
i i,j

where

Mij=M)g; = M) =F(D(fifj)),  Am)=(....pp0m)....),

D(f; D(fj)
and p(...mj,....,mj,...)= (...,(pD((;i}j)(mi) —pD(ﬁ’fj)(mj)),...).
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We view M; and M; as A-modules in (6.37). It follows from the definition of sheaf
that (6.37) is exact. We now use a property of the functor M +— M, which is im-
portant, although trivial to verify: it takes exact sequences into exact sequences. In
particular,

0= My > Do), > DMy

is exact. On the other hand, consider the sheaf Jp(,). For it we have a similar exact
sequence

0— F(D(g)) EBf D(gf) = @D F(DGsfi f))-
ij
But F(D(gfi)) = (M;), and F(D(gfi fj)) = (M;j)g. These isomorphisms induce
an isomorphism <pg,: Mg — F(D(g)). It is easy to check that gog, = ¢, on the im-
ages of elements of M, and therefore on the whole of M,. This proves that ¢ is an
isomorphism and F = M.

It remains to prove that M is Noetherian; we know that the modules M; = My,
are Noetherian. Let M), be an ascending chain of submodules of M. Then (M,) , =
(My41) 7, for all f; and for n sufficiently large. It follows from this that M;, = M, ;1.
The proposition is proved. d

Example 6.17 The simplest example of a coherent sheaf is the structure sheaf Oy.
In the case X = Spec A, this is the ring A viewed as a module over itself. A more
general example is the sheaf Lg corresponding to a vector bundle over a scheme X
as in Theorem 6.2.

Example 6.18 For any sheaf F on a scheme X, the dual sheaf G = Hom(F, Ox)
is the sheaﬁcatlon of the presheaf G(U) =Hom(F(U), Ox(U)).1f X = Spec A and
F = M then Hom (F,0x) = N, where N = Homy, (M, A). If A is Noetherian and
M = Ami + --- + Am, is finite then a homomorphism M — A is determined by
its values on the generators m;, so that Hom4 (M, A) C A", and is therefore again
finite. It follows from this that if X is a Noetherian scheme and F is coherent then
Hom(F, Ox) is again coherent.

Example 6.19 Let X be a scheme of finite type over k. We define for X the ana-
logue of the cotangent sheaf £2 )1( (Example 6.7). If X = Spec A then we constructed
in Section 5.2, Chapter 3 an A-module §24 that coincides with .Q)l([X ] for a non-
singular variety X. By construction, §24 is a finite A-module. For any scheme X of
finite type over k and any affine open U = Spec A we set 2(U) = §24. The sheafi-
cation £2 of this subsheaf is coherent and is called the cotangent sheaf. The sheaf
® =Hom(82, Oy) is also coherent and is called the tangent sheaf. If X = Spec A
then @ (X) = Dery (A, A) is the module of derivations of A (compare Exercise 10
of Section 5.5, Chapter 3). If X is nonsingular then, as we know, both sheaves £2
and @ are locally free, and correspond to the cotangent and tangent bundles.
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Example 6.20 Let X be a Noetherian scheme, Y a closed subscheme and Zy the
sheaf of ideals corresponding to ¥ (Example 6.16). Since Ox (U) is Noetherian by
assumption, Zy is a coherent sheaf.

Example 6.21 Under the assumptions of Example 6.20, the sheaf of modules Zy / I%
is coherent. We prove that if X and Y are nonsingular then it is locally free. This is a
local assertion, and it is enough to check it in the case X = Spec A, Y = Spec B
and B = A/I, and we can even assume that A is the local ring of a point x €
X. Since X and Y are nonsingular we can assume that I = (uq,..., U, ), where
ui,...,u, (withn > m)is a system of local parameters of the maximal ideal of the
ring A. Obviously 7/7? is generated as B-module by w1, ..., u,,, and we need only
check that they are free. This means that if Y u;a; € I 2 then a; € 1. Suppose that
Y uia; =) u;jv; with v; € I. Then ) u;a; =0 where a; = a; — v;. Hence u;a; €
(uy,...,Uj,...,uy), and since uy, ..., u, is a regular sequence (see Section 1.2,
Chapter 4), it follows that a; € (u1, ..., u;, ..., u,) C I, and hence ¢; € I.

Thus in this case, the sheaf Zy /I% corresponds to some vector bundle on Y. The
transition matrixes Cqg of this vector bundle are of the form Cug = (h;;), where
the h;; are given as follows: if uy 1, ..., Uq n are local equations of Y in U, and
ug,1,...,ugm local equations of ¥ in Ug and us; = ) fijup, j then h;; is the
restriction to Y of f;;. As we saw in Section 1.3, this is the transition matrix of
the vector bundle Ny NE which is in this case the vector bundle corresponding to the

sheaf Zy /1)2,. In the general case (when X and Y are not assumed to be nonsingular),
Ty /I% is the conormal sheaf to Y in X. If X and Y are nonsingular then the vector

bundle Nx,y corresponds to the sheaf Hom (Zy /T2, Oy). This sheaf is called the
normal sheaf of the subscheme ¥ C X and denoted by Nx /Y-
We give an interpretation in these terms of the sequence

0— @y—)j*@xﬁNX/y—)O, (638)

where j* is the restriction to Y. For the corresponding sheaves and affine varieties
it gives
0 — Dery (B, B) — Der; (A, B) — Deri (I, B) — 0, (6.39)

where B = A/I, and Dery (P, Q) is the module of derivations D: P — Q. Itis easy
to see that D(12) =0 for D € Dery (I, B), so that Dery(/, B) = HomB(I/IZ, B).
Hence the sequences (6.38) and (6.39) coincide.

3.3 Dévissage of Coherent Sheaves

We now discuss a method that allows us to reduce arbitrary coherent sheaves to free
sheaves (admittedly, only in some very coarse respects).

Proposition 6.1 For any coherent sheaf F over a Noetherian reduced irreducible
scheme X, there exists a dense open set W such that F|w is free.
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Proof The assertion is local in nature, so that we can restrict to the case X = Spec A,
where A is a Noetherian ring without nilpotents and F = M for a finite A-module
M. In addition, we can obviously assume that X is irreducible. Then X reduced and
irreducible implies that A has no zerodivisors.

Recall that the rank of an A-module is the maximal number of linearly indepen-
dent elements of M over A. By assumption, M has finite rank. Write » for the rank,
and let x1, ..., x, € M be linearly independent over A; by definition, they generate
a free submodule M’ C M. Let yy, ..., y, be a system of generators of M. Then for
each i there exist elements d; € A with d; # 0 such that

diyieM'. (6.40)

Con~sider the open set W = D(d), where d = d| - - - dy,,. The sheaf F|w is isomorphic
to My. But My = M, by (6.40), and hence

Fiw = M),

Now M/, is a free module over the ring Ay, since M’ is free. The proposition is
proved. U

Proposition 6.2 For any coherent sheaf F over a Noetherian reduced irreducible
scheme X, there exists a coherent sheaf G containing a free subsheaf O", and a
homomorphism ¢: F — G such that the two sheaves kerg and G/O, both have
support distinct from X .

As we will see, in the proof we construct a homomorphism ¢: F — G such that
both ker ¢ and G/im ¢ have support distinct from the whole of X. Since G/O" also
has support distinct from the whole of X, Proposition 6.2 shows that any coherent
sheaf is “free modulo sheaves with support distinct from the whole of X”’.

Proof Let W be the open set and f: Fjw — O the isomorphism whose exis-
tence was established in Proposition 6.1. We can assume that W is a principal open
set, and will do so in what follows. Define the sheaf G by the condition

GW) = furw (pSaw FO)) + pYnw (O7(W)). (6.41)

Since pYqy (O"(U)) C O"(UNW) and funw (oY nwFU)) C O"(U N W), both
terms of the right-hand side of (6.41) are contained in the same group. We con-
sider the sum of these subgroups, which obviously becomes an O(U)-submodule of
O" (U N W) when we set

ax = pJaw(@x forae OWU)andx € 0" (UNW).

Since F(U) and O" (U) are finite O(U)-modules, the same holds for G(U).
The definition of the homomorphisms ,o‘l/] is self-explanatory. It follows at once
from what we said above that the sheaf G we have constructed is coherent.
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For the sheaf O", the restriction pgmw is an inclusion. It is enough to verify this
for an affine open set U = Spec A. Consider a principal open set D(f) C U N W.
The kernel of pg( ) consists of elements x € A such that f"x = 0 for some n > 0;
since X is irreducible, the ring A has no zerodivisors, and hence x = 0. A fortiori,
ker 'Oll]]ﬁW =0. Thus p[ljlnw allows us to identify the sheaf O" with a subsheaf of G.

We define the homomorphism ¢ : F — G by the condition

U
ou = funw °© PyAw-

If U C W then

GW) = fu(pYaw (FW))) = fu(FWU)) = O"(U) = pfrw (O" (1)),

and fy is an isomorphism. Hence ¢y is an isomorphism, and G(U) = O (U). This
proves that the sheaves kerg and G/QO" are both 0 on W, and hence they have
supports contained in X \ W. The proposition is proved. 0

Proposition 6.2 leads us to the question of the structure of coherent sheaves
whose support is distinct from the whole scheme. If the support of F is a closed
set Y C X then by the discussion at the end of Section 3.1, there is a sheaf FonY
defined by the condition

FU)=FU), whereUNY=U

for open sets U C Y.

We consider Y as a reduced closed subscheme of X. Is F a coherent sheaf on Y,
or even a sheaf of @O-modules? This is false in general, as shown by the following
example. Suppose that X = SpecZ, and let F be the coherent sheaf corresponding
to the module Z/ p>Z, where p is a prime. The support of F is the prime ideal (p),
and the corresponding reduced subscheme is Spec(Z/pZ). It is obviously impossi-
ble to put a (Z/ p)-module structure on Z/ p*Z.

Nevertheless, we prove that there is a weaker sense in which the sheaf 7 can be
reduced to coherent sheaves on Y.

Proposition 6.3 A coherent sheaf F on a Noetherian scheme X with support Y # X
has a chain of subsheaves

F=FoDF1D---ODFn=0
such that each quotient sheaf F; | Fiy1 is a coherent sheaf of Oy-modules.

Proof InExample 6.16, we gave the example of the sheaf Zy of ideals of the reduced
subscheme Y. Obviously F is a coherent sheaf of Oy-modules if

Iy - F=0. (6.42)

Indeed, under this ass%nption, all the Ox (U )—modules~]-' (U) are modules over
Ox(U)/Zy(U) = Oy(U). Thus if F is of the form M on an affine open set
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U = Spec A then ay - M =0, and M is therefore an (A/ay)-module. Moreover,
if we now view M as an (A/ay)-module then F=M.

We show that a slightly weaker statement always holds: there exists an integer
k > 0 such that

8 . F=o0. (6.43)

Consider an affine open set U = Spec A such that Fjy is of the form M with
M a finite A-module. Let ay be the ideal of the subset Y N U. If f € ay then
D(f) cU\ (UNY), and by assumption the restriction of F to D(f) is zero. This
means that My = 0, and hence for every m € M there exists k(m) > O such that
£k = 0. Since M is a finite A-module, it follows that f*M = 0 for some & > 0.
Since this relation holds for any f € ay and ay has a finite basis, it follows that

d, M =0 (6.44)

for some / > 0. In other words, (6.43) holds on the open set U. Choosing a finite
cover of X by open sets U as above, and taking k to be the maximum of the [/ for
which (6.44) holds on each of the U, we get (6.43) on the whole of X.

Set F; = I; - Ffori=0,...,k and F = Fy. Obviously the support of each of
the F; is contained in Y. Write F; for the sheaf on ¥ determined by F; on X. Since

Iy - (Fi/Fi+1) =0,

the sheaf F; /71'“ satisfies (6.42), and so is a coherent sheaf of Oy-modules. This
proves Proposition 6.3. O

To conclude, we show how the methods used throughout this section allow us to
reduce the study of sheaves to the case of irreducible schemes.

Proposition 6.4 Let X be a Noetherian reduced scheme with X = | X; its de-
composition as a union of irreducible components, and suppose that F is a co-
herent sheaf on X. There exist coherent sheaves F; on X and a homomorphism
@: F — @ F; such that the support of F; is contained in X;, the sheaf Fi defined
on X; by F is coherent, and the kernel of ¢ has support contained in Ui#j XiNnX;.

Proof Set F; = F/(Ix, - F), and let ¢;: F — F; be the natural projection and
¢ = P ¢i. We saw in Section 3.2 that the support of F; is contained in X;, and Fi
is a coherent sheaf of Ox,-modules since Zx, - F; = 0.

Consider the open set

Ui=Xx:\|JXinx;.
i#]
On U; we have Ixj = Oy for j #1i and Zx;, =0, so that 7y, =0 for j #1i
and F;y; = Fly;. Therefore on U; we have ¢; =0 for j # i, and ¢ = ¢; is an
isomorphism. Hence the kernel of ¢ equals 0 on [ Uj;, as required to prove. O
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3.4 The Finiteness Theorem

Theorem If X is a complete variety over a field k and F a coherent sheaf on X,
the vector space F(X) is finite dimensional over k.

Proof The essence of the proof is the following remark. Given a homomorphism
¢: F — G of sheaves over X, set H = ker ¢; then

H(X) and G(X) finite dimensional —> F(X) is finite dimensional.  (6.45)

This follows since H(X) = ker{px: F(X) — G(X)}, by definition of the kernel.
From this, we deduce by induction that F(X) is finite dimensional if there exist
subsheaves

F=FoDFiD  -DFy=0 (6.46)

such that each vector space F; /F;+1(X) is finite dimensional.

We prove the theorem by induction on the dimension of X. If dim X = 0 then X
consists of a finite number of points, and a coherent sheaf F on X is by definition a
finite dimensional vector space over k, so that the theorem is obvious.

Suppose that the theorem holds for complete varieties of dimension less than
dim X. Let us prove that this implies the theorem for all sheaves 7 on X having
support contained in a closed subvariety ¥ C X with dimY < dim X.

Indeed, by definition, the sheaf F on Y has F(X) = F(Y), and we can apply the
assertion of the theorem to coherent sheaves on Y. Here we run into the difficult that
F is not in general coherent on Y, but Proposition 6.3 saves the day. It provides a
sequence

F=FoDFi1D--DFu=0

such that the quotient sheaves F;/F; | are coherent on ¥ and hence we can apply
the inductive assumption to them. We get the existence of a sequence of sheaves
(6.46), from which the finite dimensionality of F(Y) follows, and hence also that of
F(X).

The next step of the proof consists of reducing the assertion to the case of an irre-
ducible variety. Suppose that X = |_J X; is a decomposition into irreducible compo-
nents. Now we can apply Proposition 6.4. The homomorphism ¢ constructed there
has kernel supported in the subvariety | J; +; Xi N Xj, which has dimension less than
dim X. Hence it is enough to prove that (5 F;)(X) is finite dimensional. But

(P 7)o =PFx.

and since F; is a coherent sheaf on X;, this reduces the assertion to the case of the
irreducible varieties X;.

Finally we can proceed with the central step of the proof, assuming that X is ir-
reducible. Here we build on the foundation of Proposition 6.2. Since X is complete,
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O(X) =k by the discussion in Section 1.1, so that dim O" (X) = r. Since the sup-
port of G/O" is distinct from X, the theorem holds for G/O", and hence for G we
have a homomorphism ¢ : G — G/O" satisfying conditions (6.45). Hence G(X) is
finite dimensional. On the other hand, the homomorphism ¢: F — G constructed
in Proposition 6.2 again satisfies (6.45), so that F(X) is finite dimensional, which
is what the theorem asserts. The theorem is proved. O

The theorem we have proved has many important applications. Some of these
have been mentioned earlier. First of all, in Section 1.4 we associated with each
divisor D on a variety X a sheaf L£p such that £p(X) is isomorphic to the space
L(D) introduced in Section 1.5, Chapter 3. We saw in Section 3.4 that Lp is locally
free of rank 1, and therefore coherent. Thus our theorem is applicable to it, and we
obtain the result that we have already used many times:

Corollary 6.1 The dimension [(D) of a locally principal divisor D on a complete
variety is finite.

Applying the theorem to the sheaf corresponding to the cotangent sheaf 2! and
its exterior powers £27 we get the following result.

Corollary 6.2 On a complete nonsingular variety X, the dimension h? of the space
P[X] of regular differential p-forms is finite.

This result was also stated in Section 6.1, Chapter 3, where we saw that it pro-
vides a series of birational invariants of varieties.

As a further example, consider the sheaf 7 corresponding to the tangent bundle.
An element of 7 (X) is called a regular vector field on X. It can be viewed as a
function taking each point x € X to a tangent vector ¢, € @, at x. In this case our
theorem gives the next result.

Corollary 6.3 The space of regular vector fields on a complete nonsingular variety
is finite dimensional.

3.5 Exercises to Section 3

1 In this question, X is assumed to be irreducible. A coherent sheaf F is a forsion
sheaf if F(U) is a torsion module over Oy (U) for any open set U. Prove that F is
a torsion sheaf if and only if its support is distinct from X.

2 Find the general form of torsion sheaves on a nonsingular curve.

3 Let E — X be a vector bundle over an affine variety X = Spec A. Prove that the
set Mg of sections of E is a finite A-module.
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4 Prove that the module Mg introduced in Exercise 3 is a projective A-module. (For
the definition of a projective module, see for example Bourbaki [18, Section 3.2.2,
Chapter II] or Matsumura [57, Appendix B].)

5 Under the assumptions of Exercise 3, prove that the modules Mg and Mg’ are
isomorphic if and only if E and E’ are isomorphic vector bundles.

6 Prove that every vector bundle over the affine line A! is trivial.

7 Let E — X be a vector bundle over a complete variety X. Prove that the set of
sections of E is a finite dimensional vector space.

8 Prove that the set of morphisms f: E; — E; between vector bundles E; — X
(for i =1, 2) over a complete variety X is a finite dimensional vector space.

9 Suppose that A is a 1-dimensional regular local ring with field of fractions K,
and X = Spec A; let x € X be the generic point and U = {x}. A sheaf F of O-
modules on X is given by an A-module M, a K-vector space L and a restriction
map ¢: M — L which is an A-module homomorphism. Express in terms of M,
L and ¢ what it means for F to be a coherent sheaf. Construct an example of a
subsheaf of a coherent sheaf which is not coherent.

10 Let X be an irreducible variety and xg € X a closed point. Define a sheaf F on
X by setting F(U) =OU) if U & xg and F(U) =0 if U > x¢. Prove that F is a
sheaf, that it is a subsheaf of O, and that it is not coherent.

4 Classification of Geometric Objects and Universal Schemes

4.1 Schemes and Functors

A phenomenon that has already occurred several times is that a set of certain geo-
metric objects depends on parameters, and more precisely, is parametrised by the
points of some algebraic variety. For example, lines in the projective space P> are
parametrised by points of the 4-dimensional Pliicker quadric (Section 4.1, Chap-
ter 1). What is the precise meaning of this assertion? What meaning at all? We
indicated the construction of the Pliicker coordinates of a line, and showed that it
defines a one-to-one correspondence between lines of P> and points of the Pliicker
quadric. But there is no guarantee that this construction is unique; that is, that we
might not be able to establish some other equally natural one-to-one correspondence
between lines of 3 and points of some other variety, perhaps even of a different di-
mension. After all, as far as set theory goes, the set of lines has only one invariant,
its cardinality. At the same time, it is obviously very important to be able to define
some natural variety (or a more general notion) classifying geometric objects of a
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given type: its properties, such as dimension, rationality or unirationality and so on,
give important characteristics of the whole set of these objects. We describe one ap-
proach that in many cases allows us to determine what precisely it means to say that
a given set of objects is parametrised by the points of a given variety or scheme.

Since we are talking about geometric objects, the notion of an algebraic family of
objects is usually well defined. For example, if we are talking about r-dimensional
linear subspaces of a given vector space V, an algebraic family of these with base §
is a vector bundle £ — § of rank r which is a vector subbundle of the direct prod-
uct § x V. In exactly the same way, since we study objects modulo a well-defined
equivalence relation, this equivalence relation carries over also to families over any
base. For example, in studying the subspaces of a given space V, we naturally con-
sider two vector subbundles E — S and E’ — S in S x V as the same if they are
equal as subschemes of S x V. Or if we are interested, say, in the classification of
nonsingular complete curves of genus g, then by a family of these curves we mean
a scheme C — S all of whose (scheme-theoretic) fibres over closed points of §
are nonsingular complete curves of genus g. An isomorphism between two families
C — S and C’ — § is an isomorphism of schemes f: C — C’ commuting with the
projection to S, that is, such that the diagram

is commutative.

Suppose that for some type of geometric objects we have found a “natural” va-
riety (or scheme) X classifying them. Let’s try to clarify this idea of “naturality”.
Obviously, to each object there should correspond a definite closed point of X. Let
¢: Y — S be an algebraic family of our objects over a base which is a variety. Then
to each fibre ¢! (s) for s € S there corresponds some point of X, and this defines
amap f: S — X. In the notion of “naturality” it is first of all reasonable to in-
clude the requirement that this map of points be a morphism, and even to require
that the same type of morphism exists for families whose base is a scheme (with
certain conditions: over a field k, of finite type, and so on). Moreover, it is reason-
able to suppose that two families ¥ — § and Y’ — S determine the same morphism
f: S — X if and only if they are equivalent in the sense of the equivalence defined
for our objects. Finally, the “naturality” of X should include the requirement that
every point of X corresponds to some object of our type. Then any map f: S — X
of a variety S to X will determine over each point s € S the object which the point
f(s) € X parametrises; in other words, set-theoretically, it will determine a “fam-
ily” of objects parametrised by points s € S. It is also reasonable to include in the
notion of “naturality” the requirement that if f is a morphism then we obtain in this
way an algebraic family of objects.

All of these conditions are summed up very simply in the single statement that
there should exist a one-to-one correspondence between algebraic families ¥ — §
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of our objects (the base S may satisfy some restrictions such as being a Noetherian
scheme), considered up to equivalence, and all morphisms § — X.

We now formulate the definition we have arrived at. A scheme X is universal
for some type of objects if for any scheme S (possibly with certain restrictions)
there exists a one-to-one correspondence fs between the set @ (S) of all algebraic
families Y — S of objects of the given type, considered up to equivalence, and the
set M(S, X) of morphisms S — X. The correspondence fs: @(S) — M(S, X)
should satisfy the following condition: for any morphism ¢: S — §’, the diagram

@ () g M(S', X)

gl lh (6.47)

@(S) e M(S, X)
JS

is commutative, where g is defined by taking the inverse image of families under
@ (that is, their fibre product or pullback by ¢), and & by composing a morphism
S’ — X with the morphism ¢: § — §’.

In the language of categories, an operation that sends a scheme S to a set @ (S)
and a morphism ¢: S — S’ to a map @ (¢): ®(S") — D(S) is called a functor
if for two morphisms ¢: § — S’ and ¥: ' — S” we have @ (Y o ¢) = P (¢) o
@ (). In particular, if @(S) is the set of all algebraic families of objects of our
type, and for a morphism ¢: S — S’ the map @(¢): @(S’) — P(S) is defined
by taking inverse image of families, then @ is a functor. A trivial example of a
functor ¥x (S) is determined by an arbitrary scheme X: here Wy (S) = M(S, X) is
the set of all morphisms S — X to X and, if ¢: S — S’ is a morphism, the map
Ux(p): ¥x(§') — ¥x(S) sends f: S — X into the composite fog@: S — X.
Diagram (6.47) in the definition of universal scheme means that the functor @ is
isomorphic to the functor ¥x for some scheme X in the theory of categories, @ is
then called a representable functor. Thus the question of the existence of a universal
scheme is the question of the representability of the functor @ of families of objects
of the given type.

Note that our definition does not in any way guarantees the existence of a uni-
versal scheme: we will soon see that it does not always exist. For the moment, we
assume that a universal scheme exists for objects of some type, and note some prop-
erties that support the naturality of the definition.

First of all, a universal scheme X is unique if it exists. Indeed, if Y is a second
such scheme then by definition, we have isomorphisms u: M(X, X) = @ (X) =
MX,Y)and v: MY, Y)=E DY) = M(Y, X); and a morphism ¢: X — Y gives
rise to a commutative diagram

(X)) = MX,X) > M(X,Y)

gT Th (6.48)

DY) = MY, X) e M(Y,Y)
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where g(§) =& o¢ and h(n) =no¢. Let 1x: X — X and ly: ¥ — Y be the
identity morphisms, and set u(1x) = « and v~!(l1y) = B. Consider the diagram
(6.48) for ¢ = «, and apply it to B € M(Y, X); then u(B o) =a = u(ly), and
since u is a bijection, B o « = ly. Similarly one proves that « o 8 = 1x. Therefore
« is an isomorphism.

But we can get even more. In view of the one-to-one correspondence @ (X) =
M(X, X), the identity morphism 1x € M (X, X) determines an element ex € @ (X)
called the universal family over X. It follows from the definition that any family
& € @(S) not only determines a morphism f: S — X, but is determined by it, as
the inverse image of the universal family ey under f, that is, as the fibre product
Ex Xx S.

Finally, suppose that all the objects and schemes are defined over an algebraically
closed field k. Consider some individual object &, that is, a family £ — Speck.
Then & is an element of the set @ (Speck), which by definition is in one-to-one
correspondence with the set M (Speck, X), that is, with the closed points of X.
Therefore our object £ determines a closed point of the scheme X, and all objects,
up to equivalence, are in one-to-one correspondence with these points. Thus in this
sense the objects under consideration are parametrised by points of X.

Example 6.22 Let us see that the Grassmannian Grass(r, V) really is a universal
scheme for r-dimensional subspaces of a vector space V. We consider schemes
over an algebraically closed field k. For a k-scheme S, we define @ (S) as the
set of vector bundles £ — S that are vector subbundles of the direct product
S x V. For a morphism ¢: §" — §, we define @ (p): @ (S) — @(§’) as the in-
verse image map E > E xg S’. We need to determine a one-to-one correspon-
dence fs: @(S) = M(S, Grass(r, V)) which is functorial (that is, gives commuta-
tive diagrams (6.47)). These maps fg are an exact analogue of writing down the
Pliicker coordinates (see Example 1.24 of Section 4.1, Chapter 1). Let E — S
be a vector bundle of rank r, and S = | J U, a cover such that E|y, = Uy x A".
We choose a basis fi,..., f, in A" and a basis eq, ..., e, in V. The embedding
E — § x V allows us to express the f; as f; = Za,-jej with a;; € O(U,), and
fin---Afras) pj . jej A Aej with pj i € O(Uy). This gives the mor-
phism Uy — /\r V determined by the functions pj, ;.. From it we get a morphism
U, — P( /\r V), which does not depend on the choice of the basis fi, ..., f;. Ob-
viously pj,.. ;. satisfy the Pliicker equations of the Grassmannian, so that we have
a morphism U, — Grass(r, V). Since these morphisms for different « are defined
invariantly, they glue together to give a global morphism S — Grass(r, V) that we
take for fs(E). The inverse map M(S, Grass(r, V)) — @ (S) is obtained by taking
the inverse image under any map ¢: S — Grass(r, V) of the universal bundle over
Grass(r, V) (see Example 6.4). It is trivial to check that these two maps are inverse
to one another.

Example 6.23 We now give an example of a situation where the universal scheme
does not exist. This is an extremely important case, nonsingular curves of given
genus g. The reason for nonexistence is already present most vividly in the most
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trivial case, curves of genus 0. We know that all such curves are isomorphic to P!,
Therefore, if the universal scheme X exists, it must have a single closed point; that
is, it would be an affine scheme Spec A, where A is a local ring. Now consider a
concrete family of curves of genus 0. For this, consider the plane P? with coordi-
nates (xg : x1 : x2) and the rational map P2 — P! given by (xp : x1 : x2) — (X1 : x2).
This has a single point of indeterminacy (1 : 0 : 0). Blowing up this point we get a
surface V and a morphism ¢: V — P! (see the example at the end of Section 3.3
of Chapter 4). The fibres of ¢ are all isomorphic to the projective line, so ¢ is pre-
cisely a family of curves of genus 0 over P!, that is, an element of the set & (P').
If a universal scheme X existed then our family would be the inverse image of the
universal family over X = Spec A under some morphism f: P! — X, and f must
map P! to the single closed point of X. However, f then corresponds to another
element of @ (P!), the direct product P! x PL. To nail down the contradiction, it
remains to see that the family V — P! is not isomorphic to P! x P!, This follows
for example from the fact that the selfintersection of any divisor on P! x P! is even:
if C; =P' x x and C; = y x P! then any divisor D on P! x P! is linearly equiva-
lent to n1Cy 4 n2Ca, so that D? = 2n1n5. On the other hand, V contains the curve
L obtained by blowing up (1:0:0) € P2, and L?> = —1 (compare Exercise 14 of
Section 1.5).

The family constructed above is locally trivial: it is easy to see that if U; = P!\ co
and U, =P\ 0 then ¢~ ' (U) = U; x P! and ¢! (U) = U, x P'. But this is not
necessarily the case: the family in P2 x A? given by Sg = uélz + v§22, where A2
has coordinates u, v and P2 has coordinates (£o : £ : &) is not isomorphic to a
trivial family over any open subset U C A?. This follows from the fact that it has no
rational section: there do not exist polynomials pg, p1, p2 € k[u, v] such that p% =
upl2 + vp%. Indeed, we can suppose that pg, p1, p> do not have any common factors.
Setting u = 0 we get po(0, v)? = vp2 (0, v)2, which is only possible if py(0, v) =
p2(0,v) = 0, that is, both pg and p, are divisible by u. Then p; would also be
divisible by u.

Of course, similar examples can be constructed for curves of genus g > 0. Nev-
ertheless, the notion of universal scheme can be modified in such a way that it does
exist for curves of any genus. This can be done in two different ways. One can either
drop the requirement in the definition of universal scheme X that the correspondence
between families over S and morphisms S — X be one-to-one, and require only that
every family defines a morphism: then the universal object will exist as a variety. Or
one can insist on having a one-to-one correspondence, but allow the universal ob-
ject to be something more general than a scheme, a so-called topology or algebraic
stack. See Mumford and Fogarty [64] and Mumford [63].

The interpretation of a scheme as a functor has already appeared in a slightly dif-
ferent context. In Section 3.4, Chapter 5 we showed that if x € X is any closed point
of a scheme X over a field k, we can describe the tangent space Oy, as the set of
morphisms M, (Spec D, X), where D = k[e]/(¢?), and we allow in M, only the
morphisms that map the closed point of Spec D to the point x € X. This interpreta-
tion of the tangent space gives a convenient method of describing it if the scheme
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X itself is a universal scheme for some type of objects. Putting together Proposi-
tion of Section 3.4, Chapter 5 with the definition of a universal scheme shows that
in this case @y , coincides with the set M, (Spec D, X) = &, (Spec D) of fami-
lies over Spec D with given fibre over the point 0. This provides grounds for the
intuition that the tangent vector to a universal scheme is a first order infinitesimal
deformation of a given object.

Example 6.24 (The tangent space to the Grassmannian Grass(r, V))) Suppose that a
point x € Grass(r, V) corresponds to a vector subspace E with basis e, ..., e,. By
what we said above, ©, is isomorphic to the set of vector bundles over Spec D that
are vector subbundles of Spec D x V with fibre over 0 equal to E. Passing to the
corresponding sheaves, we see that a vector bundle over Spec D is a module over
D that is locally free, hence free. Hence the vector bundle is trivial and has basis
e1+e¢uq, ..., e +¢cu,. It remains to determine when two bases of this form give the
same vector subbundle of Spec D x V. If the second basis is e; + vy, ..., e, + €vx
then this will happen if and only if

e +ev; = Z(Cij +edij)(ej + euj)

J

fori =1,...,r. This implies ¢; = ) cijej, so that (c;;) is the identity matrix. Next,
vi =) cjjuj+ Y dijej =u; +w;, where w; = ) d;;je; is an arbitrary vector in E.
Thus the vector subbundle of Spec D x V' is uniquely determined by the vectors u;
in V/E. Setting ¢(e;) = u; mod E, we see that the required vector subbundles are
uniquely specified by homomorphisms ¢ : E — V/E, so that ®, = Hom(E, V/E).

Example 6.25 (The scheme of associative algebras) (See Example 2.5 of Sec-
tion 4.1, Chapter 1 and Example 5.20.) A closed point of this scheme is a mul-
tiplication £ x E — E; if E has basis ey, ..., e,, the multiplication is given by
ejej =7y c;'jfem. Tautologically, the scheme is universal for multiplication laws in
S x; E, where now S is an arbitrary scheme and c;’} € O(S). Hence if x is the
closed point of this scheme corresponding to the structure constants {cf’}}, the tan-
gent space ®, is isomorphic to the set of multiplication laws on D x E of the
form e;e; = Z(c;’} + edi’;?)em where di"]? € k are any elements for which this mul-
tiplication is associative. The associativity condition can be written out at once by
comparing the coefficient of ¢ in (e;e;)ex and e; (ejex):

m gl m .l _ m gl m 4l
Zcijdmk + Zdijcmk = chkdim + chkdim
m m m m

for all i, j, k,l. These are the same equations as we obtained in Example 2.5 of
Section 1.3, Chapter 2 by differentiating the associativity relation; but now they
have acquired a transparent meaning, as the first order infinitesimal deformations of
the structure constants.
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4.2 The Hilbert Polynomial

The remainder of this section will be taken up with the description of the universal
scheme for an extremely important type of object: closed subvarieties, and even
subschemes of projective space PV. For the case of linear subspaces we already
know the universal scheme, the Grassmannian.

Already in the example of linear subspaces we see that, rather than consider-
ing all subvarieties at the same time, we get the natural answer by breaking up the
subvarieties into classes, and then considering these separately. In the case of the
Grassmannian, we fixed the dimension r of the subspace and its degree 1. We now
describe similar discrete invariants of projective schemes that one has to fix in order
to arrive at the natural universal schemes; these are the so-called Hilbert polynomi-
als.

With each projective subscheme X C PV we associate an infinite sequence a, (X)
of integers: a,(X) is the number of forms of degree r in the homogeneous coordi-
nates of PV that are linearly independent on X. To give a more formal definition,
consider the homogeneous ideal ax of a projective scheme X c PV (Section 3.3,
Chapter 5, and compare Section 4.1, Chapter 1), and write ag) for its homoge-
neous piece of degree r, that is, the space of forms of degree r in ayx. Write S
for the space of forms of degree r in the homogeneous coordinates of PV . Now
set a,(X) = dimy S (r )/ ag). These numbers depend, of course, on the embedding
X < PV and in this respect they are analogous to the degree.

The infinite sequence of numbers just constructed can be described in finite
terms.

Theorem 6.5 There exists a polynomial Px(T) € Q[T] such that a,(X) = Px(r)
for all sufficiently large integers r.

The polynomial Px(T) whose existence is established in the theorem is obvi-
ously uniquely determined. It is called the Hilbert polynomial of X.

Proof The theorem is proved by induction on the dimension N, and, as often hap-
pens, it is convenient to prove a more general assertion. Consider a finite graded
module M over the polynomial ring S = k[&p, ..., En]. This means that M is a
module over S, with a fixed decomposition M = P M (") as a direct sum of k-vector
subspaces such that

xeM® and feSP — frem"tD.

The subspaces M) are called the homogeneous pieces of M of degree r. Each sub-
space M (") is finite dimensional over k: indeed, as a k-vector space, M () =~ M| =
(D;~, MD)/(D;-, MD), where & M = 0 for each i, so that M/ is a finite mod-
ule over k. We set a, (M) = dimy M) and prove that the statement of the theorem
holds for a,(M). The theorem itself is obtained by setting M = S/ax.
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We can set S =k for N = —1 and assume that in this case a graded module
over S is of the form M = My, with My a finite dimensional graded k-vector space.
From this point on, the theorem is proved by induction on N. Consider the ho-
momorphism &y : M — M consisting of multiplication by the variable £x5. Then
ExM ¢ MU+D | which implies that the kernel K and cokernel C = M /&y M are
both graded modules: K = @ K" and C =@ C"), where K" = M) N K and
C" =MD /ey MU~ We have an exact sequence

0— KO s p® 5N gt oG+ (6.49)

Now by construction K and C are graded S-modules on which &y acts by 0, so that
we can view them as modules over k[&p, ..., &y—1] and assume by induction that
the assertion holds for them. Write Px and Pc for the polynomials corresponding
to them. Then the exact sequence (6.49) implies that

ar41(M) —ar(M) = Pc(r +1) — Px(r).

for all sufficiently large r. Now it follows from very simple properties of polynomi-
als (see Section 2, Appendix) that a sequence of integers satisfying this condition is
given for all sufficiently large r as the values of some polynomial Py (T) € Q[T],
that is, a, (M) = Py (T), as asserted. O

Example 6.26 Let X C PV be a 0-dimensional subscheme. Suppose that the un-
derlying set X;.q does not intersect the hyperplane & = 0. Taking a homogeneous
polynomial F € S to the polynomial f = F/&y € klxy,...,xn] = k[AN] where
x; = & /&, we see that S©)/a) = v /(v N 1), where V) C k[x1, ..., xy]
is the space of polynomials of degree < r and I the ideal defining the subscheme
X c AN, Since dimV® (V) N 1) < dim VD /(vE+D A 1), the sequence of
numbers a,(X) stabilises from some r onwards. It follows that Px(7T) = const. =
dimk[AN]/I. In other words,

X=SpecA, A=k[AN]/I and Px(T)=const.=dimy A.

Since §) ag) for any r (assuming X nonempty), the Hilbert polynomial can-
not be identically zero. We now determine how it reflects two of the simplest in-
variants of a scheme X, the dimension and the degree. We only carry through the
proof in the case that X is a nonsingular variety (possibly irreducible). The same
result holds for arbitrary closed subschemes X C PV, but to prove it requires a little
more commutative algebra (see Hartshorne [37, Section 7, Chapter I] or Fulton [29,
Example 2.5.2]).

Theorem 6.6 The Hilbert polynomial Px of a nonsingular variety X has degree
equal to the dimension of X. If X has dimension n and degree d then the leading
term of Px is (d/n!)T".
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Proof The proof is based on the same arguments as that of Theorem 6.5. We use
induction on n = dim X. If n = 0, the result follows from Example 6.26: X consists
of d distinct points, and A = K[AN] /1 is a direct sum of d copies of k, and obviously
ar(X) =d for r > 0. This proves the theorem in this case.

In the general case, choose a coordinate system such that the hyperplane &y = 0
is transversal to X at all points of intersection. The fact that this is possible follows
easily from the usual dimension count that we have used many times. Write P*
for the projective space of hyperplanes of PV. In X x P* we need to consider the
subvariety Z = {(x, 1) | x € X, * € P* and A D @y . }. Considering the projection
Z — X shows that dimZ < N — 1, and hence the image of the projection of Z to
P* is not the whole of P*. Hence there exists a hyperplane transversal to X at every
point of intersection, and we can take this to be &y = 0.

We now apply the argument from the proof of Theorem 6.5 to the module M =
S/ax and determine K and C in this case. We prove that K = 0. Suppose that F €
K that is, £y F =0 on X. Then for any i < N the function f = F/&] satisfies
En/&)f =0o0n X. But uy =&y/&; is part of a local parameter system at every
point of X at which uy = 0, and we saw in Section 1.2, Chapter 4 that none of
the local parameters can be a zerodivisor. A fortiori u is not a zerodivisor in a
neighbourhood of points where uy # 0. Therefore f = 0 on every component of
X, thatis, F € ay.

Let us determine the module C. In what follows we use the notation introduced
after the definition of projective scheme in Section 3.3, Chapter 5. By definition
C = S/(&n, ax). The ideal (&, ax) consists of forms that vanish on X’, the section
of X with the hyperplane £y = 0. We prove that (¢, ax) = ax/. For this it is enough
to check on each affine open set U; given by &; # 0 that (xy, a;) = ag, where xy =
En/& and q is the ideal of functions that vanish on the intersection of X N U;
with xy = 0. It is enough to prove that (xy, a;)/a; = a;/ai in k[X N U;]. For this
it is enough to prove that if ¢ € k[X N U;] and ¢” € (xy) then ¢ € (xy). This
property holds locally in the neighbourhood of any point « € X N U;. Indeed, as
usual, it is enough to check this in the local ring O, of a point o. We need to
prove that if ¢” € (xy) then ¢ € (xy) for ¢ € O,. But this follows at once because
Oy is a UFD (Theorem 2.10 of Section 3.1, Chapter 2), together with the fact that
xy 1is prime, as an element of a local system of parameters. Passing to the global
situation, we can cover X N U; by open sets of the form D(f)) and assume that
¢ € (xn, a))k[D(f)] for every 1. Now it is enough to find for any arbitrarily large
m functions g, € k[X N U;] such that ) f"¢y =1. Then ¢ = ¢ ) f;" g, and we
can assume that ¢f;" € (xy, a}) by the choice of m.

Thus in the sequence (6.49) we now have K =0 and C = §'/axs where §' =
k[&o,...,Ev—_1] and X’ is nonsingular, (n — 1)-dimensional and of degree d. Using
induction we can assume that the theorem holds for X’. We have an exact sequence

0— S(’)/ag) SN S(’“)/a;*” N S/(’“)/ag;,“) o
and hence for sufficiently large r we have

Px(r+1)— Px(r) = Px/(r +1),
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that is,
Px(T +1)— Px(T)=Px/(T +1). (6.50)

By induction, we can assume that Py (T') has leading term (d/(n — DHT" L. Writ-
ing the leading term of Py (7T') as aT™ we see from (6.50) that m =n and a = d/n!,
as asserted in the theorem. O

The Hilbert polynomial provides the most natural answer to the question dis-
cussed at the beginning of this section of dividing up all projective subschemes
X c PV into natural classes, the classes of X with given Hilbert polynomial.

4.3 Flat Families

We proceed to consider families of closed subschemes X PV with a given Hilbert
polynomial. First of all, we have to determine when all the schemes of a family
with irreducible base have the same Hilbert polynomial. The fact that this does not
always happen is shown by the following examples.

Example 6.27 Leto: X — Y be ablowup of a point yp € ¥ withdim X =dimY >
1, and let Z = o~ !(yg). Then for y € Y, we have dimo~!'(y) =0 if y # yo and
dimo~'(yp) > 0. By Theorem 6.6, even the degree of the Hilbert polynomial
changes.

Example 6.28 Let X be a curve with an ordinary double point x¢ and let X" be
the normalisation of X. We consider the family v: X” — X as a family of 0O-
dimensional schemes over the base X. Then for x # xo the fibre v (x) is a
single point, and v~ 1(xg) is two points, that is, vl(x) = Speck and v l(xg) =
Spec(k @ k). By Example 6.26, we have Pv—l(x)(i") = const. = 1 for x # xg but
P, -1 () (r) = const. = 2.

Example 6.29 Suppose that chark = 2; let g be the automorphism of X = A? of
order 2 given by g(x,y) = (—x, —y) and S = X/G the quotient of X by the group
G ={1, g} (see Example 1.21 of Section 2.3, Chapter 1 and Section 2.1, Chapter 2).

Then S C A3 is given by uv = w?, and the morphism X — S by u = x2, v = y?
and w = xy. We view X — S as a family of 0-dimensional subschemes of A2 with
base S. For s = (a, b, ¢) € S, the fibre f‘l(s) = Speck[x, y]/I where [ is the ideal
I = (x> —a,y*> — b, xy — ¢). Multiplying xy — ¢ by x and by y, we see that I 3
ay — cx and bx — cy. Thus if, say, a # 0, we have [ = (x2 —a,y— (c/a)x), and
klx,yl/I = k[x]/(x2 —a), so that dimk[x, y]/I = 2. By Example 6.27, this means
that P -1, (r) = const. = 2. The same holds if b £ 0. However, if s = (0, 0, 0) then
I =(x? xy,y* and dimk[x, y]/I =3, that is, P/, (r) = const. = 3.
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Thus we can only expect the Hilbert polynomial of fibres to remain constant
in a family under some condition of “continuity” or “fluidity” of the fibres of the
family. There does indeed exist such a condition, reflecting perfectly the idea of “no
jumping” of the fibres; it is the condition that the family is flat. The definition of flat
may seem somewhat strange at first sight, since it is purely algebraic in nature. It is
hard to lead the reader to this notion by pure logic; it is easier to define it first, then
to show just how useful it is.

Definition A module M over a ring A is flat if for any ideal, a C A the surjective
map a ® M — aM defined by @ ® m — am is an isomorphism. A family f: X —
S, where X and S are schemes, is flat if O, is flat as a module over O f () for every
x € X. We then also say that f is a flat morphism, or that X is flat over S.

To check that M is a flat A-module, it is enough to check that the homomorphism
a® M — M defined by o ® m + am has no kernel. In particular, if a = (a) is a
principal ideal and a is a non-zerodivisor, the condition reduces to saying that the
only element of M killed by a is 0. Thus a flat module over an integral principal
ideal domain is just a torsion-free module.

We note that an individual scheme over a field & (that is, S = Spec k) is automat-
ically flat; thus flatness is a dynamic property, reflecting the change of the schemes
in a family over a base S.

We now enumerate a number of properties of flat morphisms that we neither
prove nor make use of, and which characterise flat families as “families with no
jumping”. They are all geometric restatements of the corresponding properties of
rings, and are proved in this form in Bourbaki [17].2

Proposition A If X and S are irreducible schemes of finite type over a field k and
f: X — S is a flat morphism, then all the fibres of f have the same dimension.
(Compare Example 6.27.)

Proposition B A finite morphism f: X — S of Noetherian schemes is flat if and
only ifﬂk(s)(f_l (s)) is a locally constant function of s € S. Here Zk(s)(f_l (5)) =
dim Ay, where the fibre is f~(s) = Spec(Ay). (Compare Examples 6.28—6.29.)

Proposition C If X and S are nonsingular varieties and f: X — S a morphism
suchthat df : Ox x — Og, r(x) is surjective for every x € X then f is flat.

Proposition D If f: X — S is a flat morphism and S' — S an arbitrary morphism
then f': X x5 S8 — S’ is again flat.

Proposition E For rings A and B and a homomorphism f: A — B, the morphism
¢: Spec B — Spec A is flat if and only if the ring B is flat over A.

2Compare also Hartshorne [37, especially A: Proposition 9.5, B: Theorem 9.9, C: Proposition 10.4,
D-E: Proposition 9.2, Chapter I1I].
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In what follows, we need one very particular case of this final property.

Lemma Let A be a principal ideal domain, and B an A-algebra; if Spec B is flat
over Spec A then B is a flat A-algebra.

Proof We need to show that a nonzero element a € A is a non-zerodivisor in B.
The given information is that the localisation Bp of B at any prime ideal P C B is
flat over Ay, where p = P N A. Hence if ab = 0 for some b € B then ¢p(b) =0,
where ¢p : B — Bp is the localisation map (Section 1.1, Chapter 2). We prove that
this implies b = 0; moreover, the conditions ¢y, (b) = 0 for all maximal ideal of B
is already sufficient. Indeed, it follows from this that for any maximal ideal m there
exists an element ¢y, € B such that ¢y, ¢ m and bcyy, = 0. Then b1 = 0, where [ is
the ideal generated by all the cy,. But I is not contained in any maximal ideal m,
since it contains ¢y, ¢ m. Hence I = B and b = 0. The lemma is proved. g

For the questions we are interested in, the flat condition on a family is also re-
lated to “uniformity”: the Hilbert polynomial is constant in a flat family of closed
subschemes of P" with a connected base S. Straightforward arguments reduce this
assertion to the case that S is Spec of a 1-dimensional regular local ring. Namely,
it is enough to prove the theorem for a 1-dimensional base S, since in the gen-
eral case we need only join any two points of S by a chain of curves. Moreover,
we can assume that S is irreducible and normal, since otherwise we need to pass
to the normalisation SV and pullback our family to SV, that is, replace X — S by
X xg 8Y — SY. Finally, to prove that the Hilbert polynomial of the fibres over all
points s € S coincide, it is enough to prove this for any closed point s € S and the
generic point n € S. We set A = O, and pass to the family X x g Spec A, thus reduc-
ing the assertion to the following: to prove that the Hilbert polynomial of the fibres
over the closed and generic points of Spec A are equal. We now consider this case.

We will understand a family of closed subschemes of PV over the base § =
Spec A to mean a closed subscheme of ]P’X . Since there is a canonical morphism
Pg — Spec A, a morphism X — Spec A is defined for any closed subscheme X C
]P’]X , which allows us to view X as a family over the base Spec A.

Theorem 6.7 Let A be the local ring of a nonsingular point of a curve over an
algebraically closed field, and X C IP’X a closed subscheme such that the morphism
X — Spec A is flat. Then the fibres of X over the closed and generic points of Spec A
have the same Hilbert polynomial.

Proof Let
ax =Py cr=AlT.....Ty]
r>0

be the homogeneous ideal corresponding to the closed subscheme X. Set B =
I'Jax =D, =0 B™). Then each B is a finite A-module. Let K be the field of
fractions of A and (r) C A the maximal ideal. The fibre X ® 4 K of X over the
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generic point of Spec A is defined by the ideal axy ® K C K[Ty, ..., Ty]; and the
fibre X ®4 k over the closed point is defined by the ideal ax/tax C k[Ty, ..., Tn].
Hence the Hilbert polynomial of the fibre over the generic point is defined by the
dimensions of the K -vector spaces B") ® 4 K and that of the fibre over the closed
point by the dimensions of the k-vector spaces B")/tB"). Since B") is a finite
A-module, the equality

dimg (B") ®4 K) = dimy (B /1B™)

just means that B is torsion-free for all sufficiently large r, and, for this, it is
enough to check that 7h = 0 with b € B is only possible for b = 0.

The ring B defines an affine scheme Z = Spec B. This is called the affine cone
over X, and X is the base of the cone Z; compare Exercise 8 of Section 4.5. The
intersection ay N A is an ideal of A. If this ideal were nonzero it would be of the
form (‘(k) for some k > 0, and thus 75 B = 0; one sees easily that this would imply
Oy = 0, so that Ox would not be flat over A. Hence ay NA = 0, thatis, B® = A.

Write n; for the images of the 7; in B, and [ for the ideal (7o, ...,ny). By
what we just said B/I = A, so that [ is a prime ideal. Write ¢ for the point of Z
corresponding to this prime ideal. We call it the vertex of Z. Obviously the sub-
scheme defined by nyq, ..., ny is the closure of ¢, that is, ﬂ(j)v V (n;) = ¢, and hence
Z\¢=Ugy D).

Consider a set D(n;). By definition D(#;) = Spec(By,), where B;, is the ring
of fractions u/n} with u € B and v > 0. If u = > u™) then u/n; can be written
uniquely in the form )" »!" (u"")/n?). Here v, = r — v is an integer, possibly neg-
ative, so that u/#; can be written as a polynomial in n; and n;” ! with coefficients
of the form u")/n}. We have seen (Section 3.3, Chapter 5) that elements u" /5"
form a ring C; = A;/a; with SpecC; = V; C X. Hence B, = Ci[n;, r;i_l]. Since
Spec(Z[T, T~') = A"\ 0, D(;) = V; x (Al \ 0). It is easy to see (we do not
require this) that the projections D(n;) — V; glue together to a global morphism
Z \ ¢ — X. That is, removing the origin, the cone has a projection to its base with
fibre A! \ 0 (because we removed the origin). Note that we have proved more: this
is a locally trivial fibration—over each V; it turns into a direct product. (See Fig-
ure 28.)

Thus Z \ ¢ is covered by N + 1 open sets each of which is isomorphic to V; x
(A'\ 0) where V; C X are open sets. Since X is flat over A so are the schemes V;. It
follows that the V; x (Al \ 0) are also flat over A; since in our case flat is equivalent
to torsion-free, this follows from the fact that V; = Spec C; and V; x (Al \0) =
Spec C; [T, T-1. Finally, since flat is a local condition, we conclude that Z \E is
flat over A.

What does this mean from the point of view of B? If we recall the definition of
the ring O(U) for an open set U C Spec B (Section 2.2, Chapter 5), the answer is as
follows: suppose that b € B and tb = 0; then for any f € (5o, ..., ny) the element b
is zero on the open set D(f), thatis, f*b =0 for some s > 0. In particular nfib =0
for some s;, and hence I'b=0fort >sg+ -+ sn.
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Figure 28 The affine cone

31

All elements b € B with b = 0 form an ideal J, which, since B is Noetherian,
has a finite basis, say, J = a1 B + - - - + a,, B. From the fact that /% a; = 0 for some
t; > 0, it follows that all components of a; B of sufficiently high degree are zero,
and therefore the same holds for J. This means that J N B") = 0 for all sufficiently
large r; that is, B is a torsion-free module, and this is what we had to prove. [

4.4 The Hilbert Scheme

We can now state the fundamental existence theorem. Let S be a scheme over a
field k. A family of closed subschemes of PV with base S is a closed subscheme
X C PV x; S with the natural projection morphism X — S. Let P € Q[T] be a
polynomial. Consider the functor ¥ © that sends a scheme S to the set ¥ ¥ (S) of all
flat families of closed subschemes of PV with base S and Hilbert polynomial P. For
a morphism f: S’ — S, we define & (f) to be the map ¥ * (S) — ¥ (S’) which
sends a family X — S into the pullback family X' = X xg 8’ — §'.

IgN for the functor WF; it is a
projective scheme over k, called the Hilbert scheme of PV .

Theorem F There exists a universal scheme Hilb

The proof of this theorem is not difficult, but we cannot give it here because
it uses cohomological methods. Roughly speaking, one proves that for sufficiently
large r, the homogeneous ideal ay of any flat family X — S with Hilbert poly-

nomial P has every homogeneous component ag;) with ¢ > r generated by forms

of degree r, that is, agp =rirn. ugg). For r sufficiently large, the codimen-
sion of ag) c I'") equals P(r), and it determines a point of the Grassmannian

Grass((N;"r), P(r)). Conversely, this point determines ag). One checks further-
more that, for sufficiently large r, the points of Grass((N ;H) P(r)) for which

the corresponding space of forms a‘”) generates a homogeneous ideal a defining
a closed subscheme with Hilbert polynomial P is itself a closed subscheme of
Grass((N:rr), P(r)). This is the universal scheme HilefN.
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It follows easily from Theorem F (or it can be proved directly in the same way as
Theorem F) that if ¥ PV is a closed subscheme then closed subschemes of Y with
given Hilbert polynomial P also have a universal family Hilb; . The proof of these
theorems are given in condensed form in Grothendieck’s Bourbaki seminars [35].
For the case of 1-dimensional subschemes of a surface Y it is given in Mumford
[62]. The general case is worked out in Altman and Kleiman [5, 6].

It is also proved that for a given polynomial P (7') the Hilbert scheme Hilng is
connected; for a simple proof of this theorem of Hartshorne, see Cartier’s Bourbaki
seminar [21]. Thus the Hilbert polynomial is a complete set of discrete invariants of
projective schemes.

Applying Theorem F, we now show how one can find the tangent space to a point
of Hilbl.

Theorem 6.8 Let X C PN be a closed subscheme. The tangent space to the
Hilbert scheme Hilef\i at the point corresponding to X is isomorphic to the space
Npwn /x(X) of sections of the normal sheaf Npw /x (Example 6.21).

Proof Write x € Hilbgﬁf, for the point corresponding under the universal property
of the Hilbert scheme Hilb to the scheme X. The tangent space to Hilb, as for
any scheme, equals M (Spec D, Hilbﬂf,’é), where D = k[e]/(e%) (by Proposition of
Section 3.4, Chapter 5). If we now use the universal property of the Hilbert scheme,
this set can be given another interpretation: it equals the set of flat families of closed
subschemes X C IP’% with base Spec D whose fibre over the closed point of Spec D
coincides with X. We now describe this set.

We start with the analogous problem for affine schemes. Let A and B be algebras
over k with B = A/I, so that Spec B C Spec A is a closed subscheme. Write A =
A ®k D =A@ ¢eA. A closed subscheme of SpecA is of the form Spec B, where

A/I and T C A is an ideal such that (I +¢eA)/eA =1. Since D has a unique
nonzero ideal (¢), flatness over D means the 1som0rph1sm E® B = ¢B. In other
words, this means that for ¢ be B, wehave eb =0 < b = &¢. Or in terms of the
ideal T,ifea e T fora € A then @ = ¢X¥mod /; then @ = X + i for some i € I and
ga = ¢i. That is, B flat over D is the condition that

eANT=el. 6.51)

By assumption, (7+8A)/8A = I, thatis, any element j € T is of the form j=i +ea
with a € A, and conversely, for any i € I one can find a € A such thati + ea € I.
By (6.51), ¢l C T, and hence a is only defined modulo /. But for given i € [, it
follows from (6.51) that the residue class modulo / consisting of elements a such
that i + ea € I is uniquely determined. Thus by condition (6.51), that is, by the
flatness of B over D, the ideal 7 is determined by a homomorphism ¢: I — A/l =
B, and consists of elements i + ea such that a € ¢(i). We see that the set of closed
subschemes of Spec A flat over Spec D which intersect the closed fibre in the given
scheme Spec B is the set Homa (I, B). Since IB = 0, any ¢ € Hom4(/, B) has
@(I?) =0, so that Homy (I, B) = Homy (I/I%, B).
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In the case of any scheme P (for example PV), closed subschemes of P x Spec D
that are flat over D are described in an entirely analogous way. We have to cover
P by affine pieces Uy = Spec Aq. The closed subscheme X C P defines in Uy a
subscheme Uy, N X = Uy Xp X = Spec(Ay/ly). A family X C P x Spec D with
closed fibre equal to X determines by what we said above homomorphisms ¢, €
Homy, (Ia/Ig, Ay /Iy). These homomorphisms must be compatible on U, N Ug,
and hence they define a global homomorphism ¢: Zx /I)z( — Oy of coherent
sheaves on X, where Zy is the sheaf of ideals defining the subscheme X C P.
Conversely, any homomorphism of coherent sheaves ¢: Zx /I)z( — Oy defines
flat subschemes X, C U, x Spec D that are compatible, that is, a subscheme
X CP x SpecD.

We see that all families of the type we are interested in are described by homo-
morphisms ¢: Ty /I)z( — Oy of sheaves of Ox-modules. The homomorphism ¢ is
a section over X of the sheaf ’Hom(Ix/I2 , Ox). Since ’Hom(IX/I2 ,O0x) = J\/p/x
(see Example 6.21), the families under consideration are in one-to-one correspon-
dence with elements of the set N'p,x (X). By what we said at the start of the proof
we thus establish a one-to-one correspondence between the set Np, x (X) and the

tangent space to the Hilbert scheme Hilbgf@. A routine verification shows that this
correspondence is an isomorphism of vector spaces; we need to use the interpreta-
tion of the algebraic operations in the tangent space indicated after Proposition of
Section 3.4, Chapter 5. The theorem is proved. O

Mumford [62, Lecture 22] gives an example (already known in different ter-
minology to the ancient Italian geometers) of a nonsingular projective surface Y
containing a curve C which does not move on Y, but for which the tangent space
to the scheme Hilblljc at the point & corresponding to C is 1-dimensional. That is,
the reduced subscheme of Hilb)ljc in a neighbourhood of & consists of the single
point &, but the local ring of this point on Hilbf;c has nonzero nilpotent elements;

in other words, this component of Hilb;jc is of the form Spec A where A is a fi-
nite dimensional k-algebra with radical m and A/m = k. This result shows that the
curve C on Y can be moved infinitesimally to first order, but not moved globally. It
again demonstrates vividly that schemes with nilpotent elements appear naturally in
entirely classical questions of algebraic geometry.

The Hilbert scheme plays a basic role not only in studying subschemes of PV,
but also in the study of algebraic varieties in the “abstract” setting, that is, up to iso-
morphism. The reason, of course, is that one problem can be reduced to the other.
Thus we saw in Section 7.1, Chapter 3 that for a nonsingular projective curve X
of genus g > 1 the map ¢3x corresponding to the divisor class 3K is an isomor-
phic embedding X < P34% The images of curves of genus g under this em-
bedding are curves of degree 6g — 6, and their Hilbert polynomial is easily seen
to be P(T) = (6g — 6)T — g + 1. They are thus parametrised by points of the
scheme Hilbf;sg,6: more precisely, by points of the locally closed subset H, corre-
sponding to nonsingular curves for which the hyperplane section is in the class 3K .
Points x, y € Hy correspond to isomorphic curves if and only if the curves in p58—6
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parametrised by x and y are taken into one another by a projective transformation.
Thus H, has an action of the group G of projective transformations of P38~ and
all nonsingular projective curves of genus g (up to isomorphism) are parametrised
by the points of the quotient space H,/G. A treatment of this theory is contained in
Mumford and Fogarty [64].

4.5 Exercises to Section 4

1 Prove that for a closed subscheme X C ]P’,](v the power series ), a,(X)T" rep-
resents a rational function.

2 Find the numbers a, (X) and the Hilbert polynomial Py (T') for a projective curve
X Cc P2 of degree d. From what value of r is it true that a,(X) = Px(r)?

3 Find the Hilbert polynomial of a hypersurface of degree d in PV.

4 Find and prove a relation analogous to (6.50) in the case that X’ is the intersection
of X with a hypersurface of degree d transversal to X.

5 Find the Hilbert polynomial for the variety that is the intersection of two nonsin-
gular transversal hypersurfaces of degree d; and d; in PV.

6 Is the ring B = k[T] flat over its subring consisting of polynomials F(7T") such
that F/(T) =0?

7 Prove that a localisation Ag of any ring A is flat over A.

8 Prove that if X C PV is a closed variety then the cone Z over it (introduced in
proof of Theorem 6.7) is contained in AN+,

9 Prove that if a,b € k with 4a® + 27b% # 0 and c¢(¢) € k[¢] then the family of
elliptic curves y? = x3 4 ac(t)?x + bc(t)? has all the fibres over 7 with c() # 0
isomorphic. Prove that if c(¢) is not a perfect square in k[¢] then the family is not
isomorphic to a direct product over any open set U C A!. Deduce from this that for
elliptic curves there does not exist a universal family.

10 Find the Hilbert polynomial for the two curves of degree 2 in P3: a plane irre-
ducible conic and a pair of skew lines.

11 Let ¢: X — Al = Speck[r] be a family of curves of degree 2 in P3 whose
fibres over ¢ # 0 are pairs of skew lines, and over r = 0 a pair of intersecting lines.
Describe the scheme ¢~ (0).
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12 Prove the converse of Theorem 6.8: if X — Spec A is a projective scheme over
a 1-dimensional regular local ring A, and the fibres of X over the closed and generic
points of Spec A have the same Hilbert polynomial, then X is flat over Spec A.
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