Chapter 2
Distributed Graph Algorithms

This chapter addresses three basic graph problems encountered in the context of
distributed systems. These problems are (a) the computation of the shortest paths
between a pair of processes where a positive length (or weight) is attached to each
communication channel, (b) the coloring of the vertices (processes) of a graph in
A + 1 colors (where A is the maximal number of neighbors of a process, i.e., the
maximal degree of a vertex when using the graph terminology), and (c) the detection
of knots and cycles in a graph. As for the previous chapter devoted to graph traversal
algorithms, an aim of this chapter is not only to present specific distributed graph
algorithms, but also to show that their design is not always obtained from a simple
extension of their sequential counterparts.

Keywords Distributed graph algorithm - Cycle detection - Graph coloring -
Knot detection - Maximal independent set - Problem reduction -
Shortest path computation

2.1 Distributed Shortest Path Algorithms

This section presents distributed algorithms which allow each process to compute
its shortest paths to every other process in the system. These algorithms can be seen
as “adaptations” of centralized algorithmic principles to the distributed context.

The notations are the same as in the previous chapter. Each process p; has a
set of neighbors denoted neighbors;; if it exists, the channel connecting p; and p;
is denoted (7, j). The communication channels are bidirectional (hence (i, j) and
(j, i) denote the same channel). Moreover, the communication graph is connected
and each channel (i, j) has a positive length (or weight) denoted £g;[j] (as (i, j)
and (j, i) are the same channel, we have £g;[j] = Egj [ZD.

2.1.1 A Distributed Adaptation
of Bellman—Ford’s Shortest Path Algorithm

Bellman—Ford’s sequential algorithm computes the shortest paths from one prede-
termined vertex of a graph to every other vertex. It is an iterative algorithm based

M. Raynal, Distributed Algorithms for Message-Passing Systems, 35
DOI 10.1007/978-3-642-38123-2_2, © Springer-Verlag Berlin Heidelberg 2013

http://dx.doi.org/10.1007/978-3-642-38123-2_2

36 2 Distributed Graph Algorithms

Fig. 2.1 Bellman-Ford’s
dynamic programming principle egili] - _l_eztg{hjl[k]

lengthjz[l;]_ o :__::::@

ST length,, k]

on the dynamic programming principle. This principle and its adaptation to a dis-
tributed context are presented below.

Initial Knowledge and Local Variables Initially each process knows that there
are n processes and the set of process identities is {1, ..., n}. It also knows its posi-
tion in the communication graph (which is captured by the set neighbors;). Interest-
ingly, it will never learn more on the structure of this graph. From a local state point
of view, each process p; manages the following variables.

e As just indicated, £g;[j], for j € neighhbors;, denotes the length associated with
the channel (i, j).

o length;[1..n]is an array such that length; [k] will contain the length of the shortest
path from p; to py. Initially, length;[i] = O (and keeps that value forever) while
length;[j] = +o0c for j #i.

e routing_to;[1..n] is an array that is not used to compute the shortest paths from
pi to each other process. It constitutes the local result of the computation. More
precisely, when the algorithm terminates, for any k, 1 < k <n, routing_to;[k] = j
means that p; is a neighbor of p; on a shortest path to py, i.e., p; is an optimal
neighbor when p; has to send information to p; (where optimality is with respect
to the length of the path from p; to py).

Bellman—-Ford Principle The dynamic programming principle on which the al-
gorithm relies is the following. The local inputs at each process p; are the values
of the set neighbors; and the array £g;[neighbors;]. The output at each process p;
is the array length;[1..n]. The algorithm has to solve the following set of equations
(where the unknown variables are the arrays length;[1..n]):

Vi,kefl,....n}: lengthj[k]= min (£g;[j]+ length;[k]).

J eneighbors;

The meaning of this formula is depicted in Fig. 2.1 for a process p; such that
neighbors; = {j1, j2, j3}. Each dotted line from p;_ to pi, 1 <x < 3, represents the
shortest path joining pj, to pi and its length is length; [k]. The solution of this set
of equations is computed asynchronously and iteratively by the n processes, each
process p; computing successive approximate values of its local array length;[1..n]
until it stabilizes at its final value.

The Algorithm The algorithm is described in Fig. 2.2. At least one process p;
has to receive the external message START() in order to launch the algorithm. It

2.1 Distributed Shortest Path Algorithms 37

when START() is received do
(1) for each j € neighbors; do send UPDATE(length;) to p; end for.

when UPDATE (length) is received from p; do
(2) updated; < false;

(3) foreachke{l,...,n}\{i}do

4) if (length;[k] > £g;[j]+ length[k])

5) then length;[k] < £g;[j] + length[k];
(6) routing_to;[k] < j;

7 updated; < true

) end if

(9) end for;

(10) if (updated;)
(11) then for each j € neighbors; do send UPDATE(length;) to p; end for
(12) end if.

Fig. 2.2 A distributed adaptation of Bellman—Ford’s shortest path algorithm (code for p;)

sends then to each of its neighbors the message UPDATE(length;) which describes
its current local state as far as the computation of the length of its shortest paths to
each other process is concerned.

When a process p; receive a message UPDATE (length) from one of its neighbors
pj,itapplies the forward/discard strategy introduced in Chap. 1. To that end, p; first
strives to improve its current approximation of its shortest paths to any destination
process (lines 3-9). Then, if p; has discovered shorter paths than the ones it knew
before, p; sends its new current local state to each of its neighbors (lines 10-12). If
its local state (captured by the array length;[1..n]) has not been modified, p; does
not send a message to its neighbors.

Termination While there is a finite time after which the arrays length;[1..n] and
routing_to;[1..n], 1 <i < n, have obtained their final values, no process ever learns
when this time has occurred.

Adding Synchronization in Order that Each Process Learns Termination The
algorithm described in Fig. 2.3 allows each process p; not only to compute the
shortest paths but also to learn that it knows them (i.e., learn that its local arrays
length;[1..n] and routing_to;[1..n] have converged to their final values).

This algorithm is synchronous: the processes execute a sequence of synchronous
rounds, and rounds are given for free: they belong to the computation model. During
each round r, in addition to local computation, each process sends a message to and
receives a message from each of its neighbors. The important synchrony property
lies in the fact that a message sent by a process p; to a neighbor p; at round r
is received and processed by p; during the very same round r. The progress of
a round r to the round » + 1 is governed by the underlying system. (A general
technique to simulate a synchronous algorithm on top of an asynchronous system
will be described in Chap. 9.)

38 2 Distributed Graph Algorithms

whenr=1,2,...,D do

begin synchronous round

(1) for each j € neighbors; do send UPDATE(length;) to p; end for;

(2) for each j € neighbors; do receive UPDATE (length) from p; end for;
(3) foreachke{l,...,n}\{i}do

(€] let length_ik1 = minjeneighhorx,- (Lg;[j1+ lengthj [kD);

%) if (length_ik < length;[k]) then

(6) length;[k] < length_ik;

(7) routing_to;[k] <— a neighbor j that realizes the previous minimum
8) end if

(9) end for

end synchronous round.

Fig. 2.3 A distributed synchronous shortest path algorithm (code for p;)

The algorithm considers that the diameter D of the communication graph is
known by the processes (let us remember that the diameter is the number of chan-
nels separating the two most distant processes). If D is not explicitly known, it can
be replaced by an upper bound, namely the value (n — 1).

The text of the algorithm is self-explanatory. There is a strong connection be-
tween the current round number and the number of channels composing the paths
from which p; learns information. Let us consider a process p; at the end of a
round r.

e When r < D, p; knows the shortest path from itself to any other process py,
which is composed of at most » channels. Hence, this length to pj is not neces-
sarily the shortest one.

e Differently, when it terminates round r = D, p; has computed both (a) the short-
est lengths from it to all the other processes and (b) the corresponding appropriate
routing neighbors.

2.1.2 A Distributed Adaptation
of Floyd—Warshall’s Shortest Paths Algorithm

Floyd—Warshall’s algorithm is a sequential algorithm that computes the shortest
paths between any two vertices of a non-directed graph. This section presents an
adaptation of this algorithm to the distributed context. This adaptation is due to
S. Toueg (1980). As previously, to make the presentation easier, we consider that
the graph (communication network) is connected and the length of each edge of
the graph (communication channel) is a positive number. (Actually, the algorithm
works when edges have negative lengths as long as no cycle has a negative length.)

Floyd-Warshall’s Sequential Algorithm Let LENGTH[1..n, 1..n] be a matrix
such that, when the algorithm terminates, LENGTH[i, j] represents the length of the
shortest path from p; to p;. Initially, for any i, LENGTH[i, i] = 0, for any pair (i, j)

2.1 Distributed Shortest Path Algorithms 39

(1) for pv from 1 to n do

2) for i from 1 to n do

3) for j from 1 to n do

) if LENGTH[i, pv] + LENGTH[pv, j] < LENGTH[i, j]

5) then LENGTH(i, j] < LENGTH[i, pv] + LENGTH[pv, j1;
(6) routing_to;[j] < routing_to; [pv]

7 end if

) end for

9) end for

(10) end for.

Fig. 2.4 Floyd-Warshall’s sequential shortest path algorithm

LENGTH[i,j] =
length of the shortest path from p; to p;

@involving only processes in {pi, ..., ppo_1}

LENGTH[i,po] = ~>~._ _.-="" LENGTH[pv,j] =
length of the shortest path from p; to p,, ~ ~~~ @, -7 length of the shortest path from p,, to p,
involving only processes in {pi, ..., ppo—1} involving only processes in {p1, ..., Dyy—1}

Fig. 2.5 The principle that underlies Floyd—Warshall’s shortest paths algorithm

such that j € neighbors;, LENGTH[i, j] is initialized to the length of the channel
from p; to p;,and LENGTH(i, j] = +ooc in the other cases. Moreover, for any i, the
array routing_to;[1..n] is such that routing_to;[i] =i, routing_to;[j] = j for each
J € neighbors; and routing_to;[j] is initially undefined for the other values of j.

The principle of Floyd—Warshall’s algorithm is an iterative algorithm based on
the following principle. For any process p;, the algorithm computes first the shortest
path from any process p; to any process p; that (if any) passes through process p;.
Then, it computes the shortest path from any process p; to any process p; among
all the paths from p; to p; which pass only through processes in the set {p1, p2}.
More generally, at the step pv of the iteration, the algorithm computes the shortest
path from any process p; to any process p; among all the paths from p; to p; which
are allowed to pass through the set of processes {p1, ..., ppv}. The text of the algo-
rithm is given in Fig. 2.4. As we can see, the algorithm is made up of three nested
for loops. The external one defines the processes (namely py, ..., ppy) allowed to
appear in current computation of the shortest from any process p; to any process
pj- The process index pv is usually called the pivot.

The important feature of this sequential algorithm lies in the fact that, when com-
puting the shortest path from p; to p; involving the communication channels con-
necting the processes in the set {p1, ..., ppy}, the variable LENGTH(i, pv] contains
the length of the shortest path from p; to py, involving only the communication
channels connecting the processes in the set {p1, ..., ppy—1} (and similarly for the
variable LENGTH |pv, j]). This is described in Fig. 2.5 when considering the com-
putation of the shortest from p; to p; involving the processes {pi, ..., ppy} (this
constitutes the pvth iteration step of the external loop).

40 2 Distributed Graph Algorithms

From a Sequential to a Distributed Algorithm As a distributed system has no
central memory and communication is by message passing between neighbor pro-
cesses, two issues have to be resolved to obtain a distributed algorithm. The first
concerns the distribution of the data structures; the second the synchronization of
processes so that they can correctly compute the shortest paths and the associated
routing tables.

The array LENGTH[1..n,1..n] is split into n vectors such that each pro-
cess p; computes and maintains the value of LENGTHIi, 1..n] in its local array
length;[1..n]. Moreover, as seen before, each process p; computes the value of its
routing local array routing_to;[1..n]. On the synchronization side, there are two is-
sues:

e When p; computes the value of length; [j] during the iteration step pv, process p;
locally knows the current values of length; [j] and length;[pv], but it has to obtain
the current value of length,,, [j] (see line 4 of Fig. 2.4).

e To obtain from py,, a correct value for length, [;], the processes must execute
simultaneously the same iteration step pv. If a process p; is executing an iteration
step with the pivot value pv while another process py is simultaneously executing
an iteration step with the pivot value pv' # pv, the values they obtain, respectively,
from pp, for length,, [j] and from p,, length,,[j] can be mutually inconsistent
if these computations are done without an appropriate synchronization.

The Distributed Algorithm The algorithm is described in Fig. 2.6. The processes
execute concurrently a loop where the index pv takes the successive values from 1
to n (line 1). If a process receives a message while it has not yet started executing its
local algorithm, it locally starts the local algorithm before processing the message.
As the communication graph is connected, it follows that, as soon as at least one
process p; starts its local algorithm, all the processes start theirs.

As indicated just previously, when the processes execute the iteration step pv, the
process ppy has to broadcast its local array length,,,[1..n] so that each process p; to
try to improve its shortest distance to any process p; as indicated in Fig. 2.5.

To this end, let us observe that if, at the pvth iteration of the loop, there is path
from p; to py, involving only processes in the set {p1, ..., ppy—1}, there is then a
favorite neighbor to attain pj,, namely the process whose index has been computed
and saved in routing_to;[pv]. This means that, at the pvth iteration, the set of local
variables routing_tox[pv] of the processes p, such that length,[pv] # 400 define a
tree rooted at py,.

The algorithm executed by the processes, which ensures a correct process coor-
dination, follows from this observation. More precisely, a local algorithm is made
up of three parts:

e Part 1: lines 1-6. A process p; first sends a message to each of its neighbors py
indicating if p; is or not one of pj’s children in the tree rooted at py,. It then
waits until it has received such a message from each of its neighbors.

Then, p; executes the rest of the code for the pvth iteration only if it has a
chance to improve its shortest paths with the help of p,,, i.e., if length;[pv] #
+00.

2.1 Distributed Shortest Path Algorithms 41

(1) for pv from 1 to n do

2) for each k € neighbors; do

3) if (routing_to;[pv] = k) then child < yes else child < no end if;
4) send CHILD (pv, child) to py

5) end for;

(6) wait (a message CHILD (pv, —) received from each neighbor);

@) if (length;[pv] # +00) then

8) if (pv # i) then

) wait (message PV_LENGTH (pv, pv_length[1..n]) from prousing 10 [pv1)
(10) end if;

(11 for each k € neighbors; do

(12) if (CHILD (pv, yes) received from py) then

(13) if (pv =1) then send PV_LENGTH(pv, length;[1..n]) to p

(14) else send PV_LENGTH(pv, pv_length[1..n]) to pi
(15) end if

(16) end if

17 end for;
(18) for j from 1 to n do

(19) if length;[pv] + pv_length| j] < length;[j]

(20) then length;[j] < length;[pv] + pv_lengthlj];
21) routing_to;[j] < routing_to;[pv]

22) end if

(23) end for

(24) endif

(25) end for.

Fig. 2.6 Distributed Floyd—Warshall’s shortest path algorithm

e Part 2: lines 8—17. This part of the algorithm ensures that each process p; such
that length;[pv] # +o0 receives a copy of the array lengthy,,[1..n] so that it can
recompute the values of its shortest paths and the associated local routing table
(which is done in Part 3).

The broadcast of lengthpv[l..n] by ppy is launched at line 13, where this pro-
cess sends the message PV_LENGTH (pv, lengthpv) to all its children in the tree
whose it is the root. When it receives such a message carrying the value pv and
the array pv_length[1..n] (line 9), a process p; forwards it to its children in the
tree rooted at pp, (lines 12 and 14).

e Part 3: lines 18-23. Finally, a process p; uses the array pv_Ilength[1..n] it has
received in order to improve its shortest paths that pass through the processes

Pls«-s Ppy-

Cost Let e be the number of communication channels. It is easy to see that, dur-
ing each iteration, (a) at most two messages CHILD() are sent on each channel (one
in each direction) and (b) at most (n — 1) messages PV_LENGTH() are sent. It fol-
lows that the number of messages is upper-bounded by n(2e + n); i.e., the message
complexity is O(n?). As far the size of messages is concerned, a message CHILD()
carries a bit, while PV_LENGTH() carries n values whose size depends on the indi-
vidual lengths associated with the communication channels.

42 2 Distributed Graph Algorithms

(1) for i from 1 ton do

2) c<1;

3) while (COLOR[i]= 1) do

(@) if (/\jeneighbors’ COLOR(j] # c) then COLOR]i] < c else ¢ <— ¢ + 1 end if
5) end while

(6) end for.

Fig. 2.7 Sequential (A 4 1)-coloring of the vertices of a graph

Finally, there are n iteration steps, and each has O (n) time complexity. Moreover,
in the worst case, the processes starts the algorithm one after the other (a single
process starts, which entails the start of another process, etc.). When summing up,
it follows that the time complexity is upper-bounded by O (n?).

2.2 Vertex Coloring and Maximal Independent Set

2.2.1 On Sequential Vertex Coloring

Vertex Coloring An important graph problem, which is encountered when one
has to model application-level problems, concerns vertex coloring. It consists in
assigning a value (color) to each vertex such that (a) no two vertices which are
neighbors have the same color, and (b) the number of colors is “reasonably small”.
When the number of colors has to be the smallest possible one, the problem is NP-
complete.

Let A be the maximal degree of a graph (let us remember that, assuming a graph
where any two vertices are connected by at most one edge, the degree of a vertex is
the number of its neighbors). It is always possible to color the vertices of a graph in
A + 1 colors. This follows from the following simple reasoning by induction. The
assertion is trivially true for any graph with at most A vertices. Then, assuming it is
true for any graph made up of n > A vertices and whose maximal degree is at most
A, let us add a new vertex to the graph. As (by assumption) the maximal degree of
the graph is A, it follows that this new vertex has at most A neighbors. Hence, this
vertex can be colored with the remaining color.

A Simple Sequential Algorithm A simple sequential algorithm that colors ver-
tices in at most (A + 1) colors is described in Fig. 2.7. The array variable
COLOR]|1..n], which is initialized to [L, ..., L], is such that, when the algorithm
terminates, for any i, COLOR][i] will contain the color assigned to process p;.

The colors are represented by the integers 1 to (A + 1). The algorithm considers
sequentially each vertex i (process p;) and assigns to it the first color not assigned
to its neighbors. (This algorithm is sensitive to the order in which the vertices and
the colors are considered.)

2.2 Vertex Coloring and Maximal Independent Set 43

(1) for each j € neighbors; do send INIT(color;[i]) to p; end for;
(2) for each j € neighbors;
3) do wait (INIT(col_j) received from p;); color;[j] < col_j
(4) end for;
(5) for r; from (A +2) to m do
begin asynchronous round
(6) if (colori[i1=r;)
7 then ¢ < smallest colorin {1, ..., A 4 1} such that Vj € neighbors; : color;[j]# c;
®) colori[i] < c¢
) end if;
(10) for each j € neighbors; do send COLOR(r;, color;[i]) to p; end for;
(11) for each j € neighbors; do
(12) wait (COLOR(r, col_j) with r = r; received from p;);
(13) colori[j] < col_j
(14) end for
end asynchronous round
(15) end for.

Fig. 2.8 Distributed (A + 1)-coloring from an initial m-coloring where n > m > A 42

2.2.2 Distributed (A + 1)-Coloring of Processes

This section presents a distributed algorithm which colors the processes in at most
(A + 1) colors in such a way that no two neighbors have the same color. Distributed
coloring is encountered in practical problems such as resource allocation or pro-
cessor scheduling. More generally, distributed coloring algorithms are symmetry
breaking algorithms in the sense that they partition the set of processes into subsets
(a subset per color) such that no two processes in the same subset are neighbors.

Initial Context of the Distributed Algorithm Such a distributed algorithm is
described in Fig. 2.8. This algorithm assumes that the processes are already colored
in m > A + 1 colors in such a way that no two neighbors have the same color. Let
us observe that, from a computability point of view, this is a “no-cost” assumption
(because taking m = n and defining the color of a process p; as its index i trivially
satisfies this initial coloring assumption). Differently, taking m = A + 1 assumes
that the problem is already solved. Hence, the assumption on the value of m is a
complexity-related assumption.

Local Variables Each process p; manages a local variable color;[i] which ini-
tially contains its initial color, and will contain its final color at the end of the algo-
rithm. A process p; also manages a local variable color;[j] for each of its neigh-
bors p;. As the algorithm is asynchronous and round-based, the local variable r;
managed by p; denotes its current local round number.

Behavior of a Process p; The processes proceed in consecutive asynchronous
rounds and, at each round, each process synchronizes its progress with its neigh-
bors. As the rounds are asynchronous, the round numbers are not given for free by

44 2 Distributed Graph Algorithms

the computation model. They have to be explicitly managed by the processes them-
selves. Hence, each process p; manages a local variable r; that it increases when it
starts a new asynchronous round (line 5).

The first round (lines 1-2) is an initial round during which the processes ex-
change their initial color in order to fill in their local array color;[neighbors;]. If
the processes know the initial colors of their neighbors, this communication round
can be suppressed. The processes then execute m — (A 4+ 1) asynchronous rounds
(line 5).

The processes whose initial color belongs to the set of colors {1, ..., A+ 1} keep
their color forever. The other processes update their colors in order to obtain a color
in {1,..., A 4 1}. To that end, all the processes execute sequentially the rounds
A+ 2,..., until m, considering that each round number corresponds to a given
distinct color. During round r, A 4+ 2 <r < m, each process whose initial color is r
looks for a new color in {1, ..., A + 1} which is not the color of its neighbors and
adopts it as its new color (lines 6-8). Then, each process exchanges its color with
its neighbors (lines 10—-14) before proceeding to the next round. Hence, the round
invariant is the following one: When a round r terminates, the processes whose
initial colors were in {1, ...,r} (a) have a color in the set {1,..., A + 1}, and (b)
have different colors if they are neighbors.

Cost The time complexity (counted in number of rounds) is m — A rounds (an
initial round plus m — (A + 1) rounds). Each message carries a tag, a color, and
possibly a round number which is also a color. As the initial colors are in {1, ..., m},
the message bit complexity is O (log, m).

Finally, during each round, two messages are sent on each channel. The message
complexity is consequently 2e(m — A), where e denotes the number of channels.

It is easy to see that, the better the initial process coloring (i.e., the smaller the
value of m), the more efficient the algorithm.

Theorem 1 Let m > A + 2. The algorithm described in Fig. 2.8 is a legal (A + 1)-
coloring of the processes (where legal means that no two neighbors have the same
color).

Proof Let us first observe that the processes whose initial color belongs to
{1,..., A + 1} never modify their color. Let us assume that, up to round r, the
processes whose initial colors were in the set {1,...,r} have new colors in the
set {1,..., A + 1} and any two of them which are neighbors have different colors.
Thanks to the initial m-coloring, this is initially true (i.e., for the fictitious round
r=A+41).

Let us assume that the previous assertion is true up to some round r > A + 1.
It follows from the algorithm that, during round » + 1, only the processes whose
current color is r + 1 update it. Moreover, each of them updates it (line 7) with a
color that (a) belongs to the set {1, ..., A+ 1} and (b) is not a color of its neighbors
(we have seen in Sect. 2.2.1 that such a color does exist). Consequently, at the end
of round r + 1, the processes whose initial colors were in the set {1,...,r + 1}

2.2 Vertex Coloring and Maximal Independent Set 45

p; starts round 7 + 1

=T y rj=r+1

pi ri=r)

p; starts waiting for a round r message from its neighbor p;

Fig. 2.9 One bit of control information when the channels are not FIFO

have new colors in the set {1,..., A + 1} and no two of them have the same new
color if they are neighbors. It follows that, as claimed, this property constitutes a
round invariant from which we conclude that each process has a final color in the
set {1, ..., A+ 1} and no two neighbor processes have the same color. O

Remark on the Behavior of the Communication Channels Let us remember
that the only assumption on channels is that they are reliable. No other behavioral
assumption is made, hence the channels are implicitly non-FIFO channels.

Let us consider two neighbor processes that execute a round r as depicted in
Fig. 2.9. Each of them sends its message COLOR(r, —) to its neighbors (line 10),
and waits for a message COLOR() from each of them, carrying the very same round
number (line 12).

In the figure, p; has received the round r message from p;, proceeded to the
next round, and sent the message COLOR(r + 1, —) to p; while p; is still waiting
for round r message from p;. Moreover, as the channel is not FIFO, the figure
depicts the case where the message COLOR(r + 1, —) sent by p; to p; arrives before
the message COLOR(7, —) it sent previously. As indicated in line 12, the algorithm
forces p; to wait for the message COLOR(r, —) in order to terminate its round r.

As, in each round, each process sends a message to each of its neighbors, a closer
analysis of the message exchange pattern shows that the following relation on round
numbers is invariant. At any time we have:

Y(i,j): (piand pjareneighbors) = (0<|ri —rj| <1).

It follows that the message COLOR() does not need to carry the value of r but only
a bit, namely the parity of . The algorithm can then be simplified as follows:

e Atline 10, each process p; sends the message COLOR (r; mod 2, color;[i]) to each
of its neighbors.

e At line 12, each process p; waits for a message COLOR(b, color;[i]) from each
of its neighbors where b = (r; mod 2).

Finally, it follows from previous discussion that, if the channels are FIFO, the mes-
sages COLOR() do not need to carry a control value (neither r, nor its parity bit).

46 2 Distributed Graph Algorithms

Fig. 2.10 Examples of maximal independent sets

2.2.3 Computing a Maximal Independent Set

Maximal Independent Set: Definition An independent set is a subset of the ver-
tices of a graph such that no two of them are neighbors. An independent set M is
maximal if none of its strict supersets M’ (i.e., M C M’ and M # M’) is an inde-
pendent set. A graph can have several maximal independent sets.

The subset of vertices {1,4,5,8} of the graph of depicted in the left part of
Fig. 2.10 is a maximal independent set. The subsets {1,5,7} and {2,3,6,7} are
other examples of maximal independent sets of the same graph. The graph depicted
on the right part has two maximal independent sets, the set {1} and the set {2, 3, 4, 5}.

There is a trivial greedy algorithm to compute a maximal independent set in a
sequential context. Select a vertex, add it to the independent set, suppress it and its
neighbors from the graph, and iterate until there are no more vertices. It follows that
the problem of computing a maximal independent set belongs to the time complex-
ity class P (the class of problems that can be solved by an algorithm whose time
complexity is polynomial).

A maximum independent set is an independent set with maximal cardinality.
When considering the graph at the left of Fig. 2.10, the maximal independent sets
{1,4,5,8} and {2, 3, 6, 7} are maximum independent sets. The graph on the right of
the figure has a single maximum independent set, namely the set {2, 3, 4, 5}.

While, from a time complexity point of view, the computation of a maximal
independent set is an easy problem, the computation of a maximum independent set
is a hard problem: it belongs to the class of NP-complete problems.

From m-Coloring to a Maximal Independent Set An asynchronous distributed
algorithm that computes a maximal independent set is presented in Fig. 2.11. Each
process p; manages a local array selected;[j], j € neighbors; U {i}, initialized to
[false, ..., false]. At the end of the algorithm p; belongs to the maximal independent
set if and only if selected;[i] is equal to true.

This algorithm assumes that there is an initial m-coloring of the processes (as
we have just seen, this can be obtained from the algorithm of Fig. 2.8). Hence, the
algorithm of Fig. 2.11 is a distributed reduction of the maximal independent set
problem to the m-coloring problem. Its underlying principle is based on a simple
observation and a greedy strategy. More precisely,

e Simple observation: the processes that have the same color define an independent
set, but this set is not necessarily maximal.

2.2 Vertex Coloring and Maximal Independent Set 47

(1) for r; from 1 to m do
begin asynchronous round
2) if (color; = r;) then
3) if (/\jeneighhors,- (—selected;|[j])) then selected;[i] < true end if;
4) end if;
%) for each j € neighbors; do send SELECTED(r;, selected;[i]) to p; end for;
(6) for each j e neighbors; do

(7) wait (SELECTED (v, selected_j) with r = r; received from p;);
(8) selected;[j] < selected_j
) end for

end asynchronous round
(10) end for.

Fig. 2.11 From m-coloring to a maximal independent set (code for p;)

e Greedy strategy: as the previous set is not necessarily maximal, the algorithm
starts with an initial independent set (defined by some color) and executes a se-
quence of rounds, each round r corresponding to a color, in which it strives to
add to the independent set under construction as much possible processes whose
color is r. The corresponding “addition” predicate for a process p; with color r
is that none of its neighbors is already in the set.

As previous algorithms, the algorithm described in Fig. 2.11 simulates a syn-
chronous algorithm. The color of a process p; is kept in its local variable denoted
color;. The messages carry a round number (color) which can be replaced by its
parity. The processes execute m asynchronous rounds (a round per color). When it
executes round r, if its color is r and none of its neighbors belongs to the set un-
der construction, a process p; adds itself to the set (line 3). Then, before starting
the next round, the processes exchange their membership of the maximal indepen-
dent set in order to update their local variables selected;[j]. (As we can see, what
is important is not the fact that the rounds are executed in the order 1,...,m, but
the fact that the processes execute the rounds in the same predefined order, e.g.,
1,m,2,(m—1),....)

The size of the maximal independent set that is computed is very sensitive to the
order in which the colors are visited by the algorithm. As an example, let us consider
the graph at the right of Fig. 2.10 where the process p; is colored a while the other
processes are colored b. If a = 1 and b = 2, the maximal independent set that is
built is the set {1}. If @ = 2 and b = 1, the maximal independent set that is built is
the set {2, 3,4, 5}.

A Simple Algorithm for Maximal Independent Set This section presents an
algorithm, due to M. Luby (1987), that builds a maximal independent set.

This algorithm uses a random function denoted random() which outputs a ran-
dom value each time it is called (the benefit of using random values is motivated
below). For ease of exposition, this algorithm, which is described in Fig. 2.12, is
expressed in the synchronous model. Let us remember that the main property of the
synchronous model lies in the fact that a message sent in a round is received by its

48

2 Distributed Graph Algorithms

(1) repeat forever
begin three synchronous rounds r, r + 1 and r 42
beginning of round r
2) random;[i] < random();
3) for each j € com_with; do send RANDOM (random;[i]) to p; end for;
“4) for each j € com_with; do
5) wait (RANDOM (random_j) received from p;); random;[j] <— random_j
(6) end for;
end of round r and beginning of round r + 1
7) if (VY j € com_with; : random;|j] > random;[i])
(®) then for each j € com_with; do send SELECTED(yes) to p; end for;
) state; < in; return(in)
(10) else for each j € com_with; do send SELECTED(no) to p; end for;
(11) for each j € com_with; do wait (SELECTED(—) received from p;) end for;
end of round r + 1 and beginning of round r + 2
(12) if (3 k € com_with; : SELECTED(yes) received from py)
(13) then for each j € com_with; : SELECTED(no) received from p;
(14) do send ELIMINATED(yes) to p;
(15) end for;
(16) state; < out; return(out)
(17) else for each j € com_with; do send ELIMINATED(no) to p; end for;
(18) for each j € com_with;
(19) do wait (ELIMINATED(—) received from p;)
(20) end for;
(21) for each j € com_with; : ELIMINATED (yes) received from p
(22) do com_with; < com_with; \ {j}
(23) end for;
(24) if (com_with; =) then state; < in; return(in) end if
25) end if
(26) end if:
end three synchronous rounds
(27) end repeat.

Fig. 2.12 Luby’s synchronous random algorithm for a maximal independent set (code for p;)

destination process in the very same round. (It is easy to extend this algorithm so
that it works in the asynchronous model.)

Each process p; manages the following local variables.

The local variable state;, whose initial value is arbitrary, is updated only once.
It final value (in or out) indicates whether p; belongs or not to the maximal in-
dependent set that is computed. When, it has updated state; to its final value, a
process p; executes the statement return() which stops its participation to the al-
gorithm. Let us notice that the processes do not necessarily terminate during the
same round.

The local variable com_with;, which is initialized to neighbors;, is a set contain-
ing the processes with which p; will continue to communicate during the next
round.

Each local variable random;[j], where j € neighbors; U {i}, represents the local
knowledge of p; about the last random number used by p;.

2.2 Vertex Coloring and Maximal Independent Set

bi

RANDOM()

.

SELECTED()

/

ELIMINATED()

L

/

round r

/

round r + 1

/!

round r + 2

49

Fig. 2.13 Messages exchanged during three consecutive rounds

As indicated, the processes execute a sequence of synchronous rounds. The code
of the algorithm consists in the description of three consecutive rounds, namely the
rounds r, r + 1, and r + 2, where » = 1,4,7, 10, The messages exchanged
during these three consecutive rounds are depicted in Fig. 2.13.

The behavior of the synchronous algorithm during these three consecutive rounds
is as follows:

e Round r: lines 2-6.

Each process p; invokes first the function random() to obtain a random number
(line 2) that it sends to all its neighbors it is still communicating with (line 3).
Then, it stores all the random numbers it has received, each coming from a process
in com_with,;.

e Round r + 1: lines 7-11.

Then, p; sends the message SELECTED(yes) to its neighbors in com_with; if
its random number is smaller than theirs (line 8). In this case, it progresses to the
local state in and stops (line 9).

Otherwise, its random number is not the smallest. In this case, p; first sends
the message SELECTED(no) to its neighbors in com_with; (line 10), and then
waits for a message from each of these neighbors (line 11).

e Round r + 2: lines 12-26.

Finally, if p; has not entered the maximal independent set under construction,

it checks if one of its neighbors in com_with; has been added to this set (line 12).

— If one of its neighbors has been added to the independent set, p; cannot be
added to this set in the future. It consequently sends the message ELIMI-
NATED(yes) to its neighbors in com_with; to inform them that it no longer
competes to enter the independent set (line 13). In that case, it also enters the
local state out and returns it (line 16).

— If none of its neighbors in com_with; has been added to the independent set,
pi sends them the message ELIMINATED(no) to inform them that it is still
competing to enter the independent set (line 17). Then, it waits for a mes-
sage ELIMINATED (—) from each of them (line 18) and suppresses from the set
com_with; its neighbors that are no longer competing (those are the processes
which sent it the message ELIMINATED (yes), lines 21-23).

Finally, p; checks if com_with; = (. If it is the case, it enters the indepen-
dent set and returns (line 24). Otherwise, it proceeds to the next round.

50 2 Distributed Graph Algorithms

The algorithm computes an independent set because when a process is added to
the set, all its neighbors stop competing to be in the set (lines 12—15). This set is
maximal because when a process enters the independent set, only its neighbors are
eliminated from being candidates.

Why to Use Random Numbers Instead of Initial Names or Precomputed Colors
As we have seen, the previous algorithm associates a new random number with each
process when this process starts a new round triple. The reader can check that the
algorithm works if each process uses its identity or a legal color instead of a new
random number at each round. Hence, the question: Why use random numbers?

The instance of the algorithm using n distinct identities (or a legal process m-
coloring) requires a number of round triples upper bounded by [r/2] (or [m/2]).
This is because, in each round triple, at least one process enters the maximal inde-
pendent set and at least one process is eliminated. Taking random numbers does not
reduce this upper bound (because always taking initial identities corresponds to par-
ticular random choices) but reduces it drastically in the average case (the expected
number of round triples is then O (log, n)).

2.3 Knot and Cycle Detection

Knots and cycles are graph patterns encountered when one has to solve distributed
computing problems such as deadlock detection. This section presents an asyn-
chronous distributed algorithm that detects such graph patterns.

2.3.1 Directed Graph, Knot, and Cycle

A directed graph is a graph where every edge is oriented from one vertex to another
vertex. A directed path in a directed graph is a sequence of vertices iy, i, ..., iy
such that for any y, 1 < y < x, there is an edge from the vertex i y to the vertex iy 1.
A cycle is a directed path such that i, =1i;.

A knot in a directed graph G is a subgraph G’ such that (a) any pair of vertices
in G’ belongs to a cycle and (b) there is no directed path from a vertex in G’ to a
vertex which is not in G’. Hence, a vertex of a directed graph belongs to a knot if
and only if it is reachable from all the vertices that are reachable from it. Intuitively,
a knot is a “black hole”: once in a knot, there is no way to go outside of it.

An example is given in Fig. 2.14. The directed graph has 11 vertices. The set
of vertices {7, 10, 11} defines a cycle which is not in a knot (this is because, when
traveling on this cycle, it is possible to exit from it). The subgraph restricted to the
vertices {3, 5, 6, 8, 9} is a knot (after entering this set of vertices, it is impossible to
exit from it).

2.3 Knot and Cycle Detection 51

Fig. 2.14 A directed graph with a knot

2.3.2 Communication Graph, Logical Directed Graph,
and Reachability

As previously, the underlying communication graph is not directed. Each channel is
bidirectional which means that, if two processes are neighbors, either of them can
send messages to the other.

It is assumed that a directed graph is defined on the communication graph. Its
vertices are the processes, and if p; and p; are connected by a communication
channel, there is (a) either a logical directed edge from p; to p;, or (b) a logical
directed edge from p; to p;, or (c) two logical directed edges (one in each direction).

If there is a directed edge from p; to p;, we say “p; is an immediate successor of
p;i” and “p; is an immediate predecessor of p;”. A vertex p; is said to be reachable
from a vertex p; if there is a directed path from p; to p;.

From an application point of view, a directed edge corresponds to a dependence
relation linking a process p; to its neighbor p; (e.g., p; is waiting for “something”
from pj;).

2.3.3 Specification of the Knot Detection Problem

The problem consists in detecting if a given process belongs to a knot of a directed
graph. For simplicity, it is assumed that only one process initiates the knot detection.
Multiple instantiations can be distinguished by associating with each of them an
identification pair made up of a process identity and a sequence number.

The knot detection problem is defined by the following properties, where p, is
the process that initiates the detection:

e Liveness (termination). If p, starts the knot detection algorithm, it eventually
obtains an answer.

52 2 Distributed Graph Algorithms

e Safety (consistency).

— If p, obtains the answer “knot”, it belongs to a knot. Moreover, it knows the
identity of all the processes involved in the knot.

— If p, obtains the answer “no knot”, it does not belong to a knot. Moreover, if
it belongs to at least one cycle, p, knows the identity of all the processes that
are involved in a cycle with p,.

As we can see, the safety property of the knot detection problem states what is a
correct result while its liveness property states that eventually a result has to be
computed.

2.3.4 Principle of the Knot/Cycle Detection Algorithm

The algorithm that is presented below relies on the construction of a spanning tree
enriched with appropriate statements. It is due to D. Manivannan and M. Sing-
hal (2003).

Build a Directed Spanning Tree To determine if it belongs to a knot, the initiator
Ppa needs to check that every process that is reachable from it is on a cycle which
includes it (pg).

To that end, p, sends a message GO_DETECT() to its immediate successors in
the directed graph and these messages are propagated from immediate successors
to immediate successors along directed edges to all the processes that are reachable
from p,. The first time it receives such a message from a process p;, the receiver
process p; defines p; as its parent in the directed spanning tree.

Remark The previous message GO_DETECT() and the messages CYCLE_BACK(),
SEEN_BACK(), and PARENT_BACK() introduced below are nothing more than par-
ticular instances of the messages GO() and BACK() used in the graph traversal algo-
rithms described in Chap. 1.

How to Determine Efficiently that p, Is on a Cycle If the initiator p, receives
amessage GO_DETECT() from a process p |, it knows that it is on a cycle. The issue
is then for p, to know which are the processes involved in the cycles to which it
belongs.

To that end, p, sends a message CYCLE_BACK() to p j and, more generally
when a process p; knows that it is on a cycle including p,, it will send a message
CYCLE_BACK() to each process from which it receives a message GO_DETECT()
thereafter. Hence, these processes will learn that they are on a cycle including the
initiator p,.

But it is possible that, after it has received a first message GO_DETECT(), a pro-
cess p; receives more GO_DETECT() messages from other immediate predecessors
(let px be one of them, see Fig. 2.15). If this message exchange pattern occurs, p;

2.3 Knot and Cycle Detection 53

seeny, < seeny, U {(k, 1)}

Pk

7

First message GO DETECT() received by p;

SEEN_BACK()

Fig. 2.15 Possible message pattern during a knot detection

sends back to py the message SEEN_BACK(), and when py receives this message it
includes the ordered pair (k, i) in a local set denoted seeny.. (Basically, the message
SEEN_BACK() informs its receiver that its sender has already received a message
GO_DETECT().) In that way, if later p; is found to be on a cycle including p,, it
can be concluded from the pair (k, i) € seen; that py is also on a cycle including p,
(this is because, due to the messages GO_DETECT(), there is a directed path from
Pa to pr and p;, and due to the cycle involving p, and p;, there is a directed path
from p; to pg).

Finally, as in graph traversal algorithms, when it has received an acknowledg-
ment from each of its immediate successors, a process p; sends a message PAR-
ENT_BACK() to its parent in the spanning tree. Such a message contains (a) the
processes that, due to the messages CYCLE_BACK() received by p; from immediate
successors, are known by p; to be on a cycle including p,, and (b) the ordered pairs
(i, £) stored in seen; as a result of the acknowledgment messages SEEN_BACK()
and PARENT_BACK() it has received from its immediate successors in the logical
directed graph. This information, which will be propagated in the tree to p,, will
allow p, to determine if it is in a knot or a cycle.

2.3.5 Local Variables

Local Variable at the Initiator p, Only The local variable candidates,, which
appears only at the initiator, is a set (initially empty) of process identities. If p, is in
aknot, candidates, will contain the identities of all the processes that are in the knot
including p,, when the algorithm terminates. If p, is not in a knot, candidates, will
contain all the processes that are in a cycle including p, (if any). If candidates, = @
when the algorithm terminates, p, belongs to neither a knot, nor a cycle.

Local Variables at Each Process p; Each (initiator or not) process p; manages
the following four local variables.

e The local variable parent; is initialized to L. If p; is the initiator we will have
parent; = i when it starts the detection algorithm. If p; is not the initiator,
parent; will contain the identity of the process from which the first message
GO_DETECT() was received by p;. When all the processes reachable from p,

54 2 Distributed Graph Algorithms

have received a message GO_DETECT(), these local variables define a directed
spanning tree rooted at p, which will be used to transmit information back to this
process.

e The local variable waiting_from; is a set of process identities. It is initialized to
set of the immediate successors of p; in the logical directed graph.

e The local variable in_cycle; is a set (initially empty) of process identities. It will
contain processes that are on a cycle including p;.

e The local variable seen; is a set (initially empty) of ordered pairs of process iden-
tities. As we have seen, (k, j) € seen; means that there is a directed path from p,
to pi and a directed edge from py to p; in the directed graph. It also means that
both py and p; have received a message GO_DETECT() and, when p; received
the message GO_DETECT() from py, it did not know whether it belongs to a cycle
including p, (see Fig. 2.15).

2.3.6 Behavior of a Process

The knot detection algorithm is described in Fig. 2.16.

Launching the Algorithm The only process p; that receives the external mes-
sage START() discovers that it is the initiator, i.e., p; is p,. If it has no outgoing
edges — predicate (waiting_from; # () at line 1 —, p; returns the pair (no knot,?),
which indicates that p; belongs neither to a cycle, nor to a knot (line 4). Otherwise,
it sends the message GO_DETECT() to all its immediate successors in the directed
graph (line 3).

Reception of a Message GO_DETECT() When a process p; receives the message
GO_DETECT() from pj, it sends back to p; the message CYCLE_BACK() if it is
the initiator, i.e., if p; = p, (line 7). If it is not the initiator and this message is the
first it receives, it first defines p; as its parent in the spanning tree (line 9). Then, if
waiting_from; # ¥ (line 10), p; propagates the detection to its immediate successors
in the directed graph (line 11). If waiting_from; = (§, p; has no successor in the
directed graph. It then returns the message PARENT_BACK((seen;, in_cycle;) to its
parent (both seen; and in_cycle; are then equal to their initial value, i.e., J; seen; =)
means that p; has not seen another detection message, while in_cycle; =) means
that p; is not involved in a cycle including the initiator).

If p; is already in the detection tree, it sends back to p; the message
SEEN_BACK() or CYCLE_BACK() according to whether the local set in_cycle; is
empty or not (line 14-15). Hence, if in_cycle; # @, p; is on a cycle including p,
and p; will consequently learn that it is also on a cycle including p,.

Reception of a Message XXX_BACK() When a process p; receives a message
XXX_BACK() (where XXX stands for SEEN, CYCLE, or PARENT), it first suppresses
its sender p; from waiting_from; .

2.3 Knot and Cycle Detection 55
when START() is received do
(1) if (waiting_from; # ¥)
2) then parent; < i;
3) for each j € waiting_from; do send GO_DETECT() to p; end for
4) else return(no knot,)
(5) endif.
when GO_DETECT() is received from p; do
(6) if (parent; =1)
7 then send CYCLE_BACK() to p;
®) else if (parent; = 1)
) then parent; < j;
(10) if (waiting_from; # 0)
(11 then for each k € waiting_from; do send GO_DETECT() to pi end for
(12) else send PARENT_BACK (seen;, in_cycle;) t0 pparent,
(13) end if
(14) else if (in_cycle; # () then send CYCLE_BACK() to p;
(15) else send SEEN_BACK() to p;
(16) end if
a7 end if

(18) end if.

when SEEN_BACK() is received from p; do
(19) waiting_from; < waiting_from; \ {j}; seen; < seen; U {(i, j)}; check_waiting_from().

when CYCLE_BACK() is received from p; do

(20) waiting_from; < waiting_from; \ {j}; in_cycle; < in_cycle; U {j};
(21) check_waiting_from().

when PARENT_BACK (seen, in_cycle) is received from p; do

(22) waiting_from; < waiting_from; \ {j}; seen; < seen; U seen;
(23) if (in_cycle =)

24) then seen; < seen; U {(i, j)}
(25) else in_cycle; < in_cycle; U in_cycle
(26) end if;

(27) check_waiting_from().

internal operation check_waiting_from() is
(28) if (waiting_from; = () then

(29) if (parent; =i)

(30) then for each k € in_cycle; do

3D in_cycle; <—in_cycle; \ {k}; candidates; <— candidates; U {k};
(32) foreachx € {1,...,n}do

(33) if ((x, k) € seen;)

(34) then in_cycle; < in_cycle; U {x};

(35) seen; < seen; \ {{x, k)}

(36) end if

37 end for

(38) end for;

39) if (seen; = () then res < knot else res < no knot end if;
(40) return(res, candidates;)

41) else if (in_cycle; # ¥) then in_cycle; <— in_cycle; U {i} end if;
42) send PARENT_BACK (seen;, in_cycle;) 10 pparens; ; return()
(43) endif

(44) end if.

Fig. 2.16 Asynchronous knot detection (code of p;)

56 2 Distributed Graph Algorithms

As we have seen, a message SEEN_BACK() informs its receiver p; that its sender
pj has already been visited by the detection algorithm (see Fig. 2.15). Hence, p;
adds the ordered pair (i, j) to seen; (line 19). Therefore, if later p; is found to be
on a cycle involving the initiator, the initiator will be able to conclude from seen;
that p; is also on a cycle involving p,. The receiver p; then invokes the internal
operation check_waiting_from().

If the message received by p; from p; is CYCLE_BACK(), p; adds j to in_cycle;
(line 20) before invoking check_waiting_from(). This is because there is a path from
the initiator to p; and a path from p; to the initiator, hence p; and p; belong to a
same cycle including p,.

If the message received by p; from p; is PARENT_BACK(seen, in_cycle), p;
adds the ordered pairs contained in seen sent by its child p; to its set seen; (line 22).
Moreover, if in_cycle is not empty, p; merges it with in_cycle; (line 25). Otherwise
pi adds the ordered pair (i, j) to seen; (line 24). In this way, the information allow-
ing p, to know (a) if it is in a knot or (b) if it is only in a cycle involving p; will be
propagated from p; first to its parent, and then propagated from its parent until p,.
Finally, p; invokes check_waiting_from().

The Internal Operation check_waiting_from() As just seen, this operation is in-
voked each time p; receives a message XXX_BACK(). Its body is executed only
if p; has received a message XXX_BACK() from each of its immediate successors
(line 28). There are two cases.

If p; is not the initiator, it first adds itself to in_cycle; if this set is not empty
(line 41). This is because, if in_cycle; # ¥, p; knows that it is on a cycle involving
the initiator (lines 20 and 25). Then, p; sends to its parent (whose identity has been
saved in parent; at line 9) the information it knows on cycles involving the initia-
tor. This information has been incrementally stored in its local variables seen; and
in_cycle; at lines 19-27. Finally, p; invokes return(), which terminates its partici-
pation (line 42).

If p; is the initiator p,, it executes the statements of lines 30-39. First p; cleans
its local variables seen; and in_cycle; (lines 30-38). For each k € in_cycle;, p; first
moves k from in_cycle; to candidates;. This is because, if p; is in a knot, so are all
the processes which are on a cycle including p;. Then, for each x, if the ordered
pair (x, k) € seen;, p; suppresses it from seen; and adds py to in_cycle;. This is
because, after p, has received a message XXX_BACK() from each of its immediate
successors, we have for each process pj reachable from p, either k € in_cycle,, or
(x, k) € seen, for some p, reachable from p,. Hence, if k € in_cycle, and (x, k) €
seen,, then p, is also in a cycle with p,.

Therefore, after the execution of lines 30-38, candidates, contains the identities
of all the processes reachable from p, which are on a cycle with p,. It follows that,
if seen, becomes empty, all the processes reachable from p, are on a cycle with p,,.
The statement of line 39 is a direct consequence of this observation. If seen, = @,
P belongs to a knot made up of the processes which belong to the set candidates; .
If seen, # ¥, candidates, contains all the processes that are involved in a cycle
including p, (hence if candidates, =, p; is involved neither in a knot, nor in a
cycle).

2.4 Summary 57
Fig. 2.17

Knot/cycle detection:
example

Knot !

An Example Let us consider the directed graph depicted in Fig. 2.17. This
graph has a knot composed of the processes p»>, p3, and p4, a cycle involving
the processes pi, pe, ps and p7, plus another process pg. If the initiator process
pa belongs to the knot, p, will discover that it is in a knot, and we will have
candidates, = {2,3,5} and seen, = () when the algorithm terminates. If the ini-
tiator process p, belongs to the cycle on the right of the figure (e.g., p, is p1), we
will have candidates, = {1, 6, 5,7} and seen, = {{4, 2), (3,4), (2,3), (1,2), (5,4)}
when the algorithm terminates (assuming that the messages GO_DETECT() propa-
gate first along the process chain (p1, p2, p3, pa), and only then from ps to ps).

Cost of the Algorithm As in a graph traversal algorithm, each edge of the di-
rected graph is traversed at most once by a message GO_DETECT() and a message
SEEN_BACK(), CYCLE_BACK() or PARENT_BACK() is sent in the opposite direc-
tion. It follows that the number of message used by the algorithm is upper bounded
by 2e, where e is the number of edges of the logical directed graph.

Let D7 be the depth of the spanning tree rooted at p, that is built. It is easy
to see that the time complexity is 2(Dr + 1) (D7 time units for the messages
GO_DETECT() to go from the root p, to the leaves, Dr time units for the mes-
sages XXX_BACK() to go back in the other direction and 2 more time units for the
leaves to propagate the message GO_DETECT() to their immediate successors and
obtain their acknowledgment messages XXX_BACK()).

2.4 Summary

Considering a distributed system as a graph whose vertices are the processes and
edges are the communication channels, this chapter has presented several distributed
graph algorithms. “Distributed” means here each process cooperates with its neigh-
bors to solve a problem but never learns the whole graph structure it is part of.

The problems that have been addressed concern the computation of shortest
paths, the coloring of the vertices of a graph in A + 1 colors (where A is the maxi-
mal degree of the vertices), the computation of a maximal independent set, and the
detection of knots and cycles.

As the reader has seen, the algorithmic techniques used to solve graph problems
in a distributed context are different from their sequential counterparts.

58 2 Distributed Graph Algorithms
2.5 Bibliographic Notes

e Graph notions and sequential graph algorithms are described in many textbooks,
e.g., [122, 158]. Advanced results on graph theory can be found in [164]. Time
complexity results of numerous graph problems are presented in [148].

e Distributed graph algorithms and associated time and message complexity analy-
ses can be found in [219, 292].

e As indicated by its name, the sequential shortest path algorithm presented in
Sect. 2.1.1 is due to R.L. Ford. It is based on Bellman’s dynamic program-
ming principle [44]. Similarly, the sequential shortest path algorithm presented in
Sect. 2.1.2 is due to R.W. Floyd and R. Warshall who introduced independently
similar algorithms in [128] and [384], respectively. The adaptation of Floyd—
Warshall’s shortest path algorithm is due to S. Toueg [373].

Other distributed shortest path algorithms can be found in [77, 203].

e The random algorithm presented in Sect. 2.2.3, which computes a maximal inde-
pendent set, is due to M. Luby [240]. The reader will find in this paper a proof
that the expected number of rounds is O (log, n). Another complexity analysis of
(A + 1)-coloring is presented in [201].

e The knot detection algorithm described in Fig. 2.3.4 is due to D. Manivannan and
M. Singhal [248] (this paper contains a correctness proof of the algorithm). Other
asynchronous distributed knot detection algorithms can be found in [59, 96, 264].

e Distributed algorithms for finding centers and medians in networks can be found
in [210].

e Deterministic distributed vertex coloring in polylogarithmic time, suited to syn-
chronous systems, is addressed in [43].

2.6 Exercises and Problems

1. Adapt the algorithms described in Sect. 2.1.1 to the case where the communica-
tion channels are unidirectional in the sense that a channel transmits messages in
one direction only.

2. Execute Luby’s maximal independent set described in Fig. 2.12 on both graphs
described in Fig. 2.10 with various values output by the function random().

3. Let us consider the instances of Luby’s algorithm where, for each process, the
random numbers are statically replaced by its initial identity or its color (where
no two neighbor processes have the same color).

Compare these two instances. Do they always have the same time complexity?

4. Adapt Luby’s synchronous maximal independent set algorithm to an asyn-
chronous message-passing system.

5. Considering the directed graph depicted in Fig. 2.14, execute the knot detection
algorithm described in Sect. 2.3.4 (a) when ps launches the algorithm, (b) when
P10 launches the algorithm, and (c) when p4 launches the algorithm.

2 Springer
http://www.springer.com/978-3-642-38122-5

Distributed Algorithms for Message-Passing Systems
Raynal, M.

2013, X3, 500 p., Hardcover

ISBN: @78-3-642-3B122-5

	Chapter 2: Distributed Graph Algorithms
	2.1 Distributed Shortest Path Algorithms
	2.1.1 A Distributed Adaptation of Bellman-Ford's Shortest Path Algorithm
	Initial Knowledge and Local Variables
	Bellman-Ford Principle
	The Algorithm
	Termination
	Adding Synchronization in Order that Each Process Learns Termination

	2.1.2 A Distributed Adaptation of Floyd-Warshall's Shortest Paths Algorithm
	Floyd-Warshall's Sequential Algorithm
	From a Sequential to a Distributed Algorithm
	The Distributed Algorithm
	Cost

	2.2 Vertex Coloring and Maximal Independent Set
	2.2.1 On Sequential Vertex Coloring
	Vertex Coloring
	A Simple Sequential Algorithm

	2.2.2 Distributed (Delta+1)-Coloring of Processes
	Initial Context of the Distributed Algorithm
	Local Variables
	Behavior of a Process pi
	Cost
	Remark on the Behavior of the Communication Channels

	2.2.3 Computing a Maximal Independent Set
	Maximal Independent Set: Deﬁnition
	From m-Coloring to a Maximal Independent Set
	A Simple Algorithm for Maximal Independent Set
	Why to Use Random Numbers Instead of Initial Names or Precomputed Colors

	2.3 Knot and Cycle Detection
	2.3.1 Directed Graph, Knot, and Cycle
	2.3.2 Communication Graph, Logical Directed Graph, and Reachability
	2.3.3 Speciﬁcation of the Knot Detection Problem
	2.3.4 Principle of the Knot/Cycle Detection Algorithm
	Build a Directed Spanning Tree
	Remark
	How to Determine Efﬁciently that pa Is on a Cycle

	2.3.5 Local Variables
	Local Variable at the Initiator pa Only
	Local Variables at Each Process pi

	2.3.6 Behavior of a Process
	Launching the Algorithm
	An Example
	Cost of the Algorithm

	2.4 Summary
	2.5 Bibliographic Notes
	2.6 Exercises and Problems

