
Chapter 2
Distributed Graph Algorithms

This chapter addresses three basic graph problems encountered in the context of
distributed systems. These problems are (a) the computation of the shortest paths
between a pair of processes where a positive length (or weight) is attached to each
communication channel, (b) the coloring of the vertices (processes) of a graph in
� + 1 colors (where � is the maximal number of neighbors of a process, i.e., the
maximal degree of a vertex when using the graph terminology), and (c) the detection
of knots and cycles in a graph. As for the previous chapter devoted to graph traversal
algorithms, an aim of this chapter is not only to present specific distributed graph
algorithms, but also to show that their design is not always obtained from a simple
extension of their sequential counterparts.

Keywords Distributed graph algorithm · Cycle detection · Graph coloring ·
Knot detection · Maximal independent set · Problem reduction ·
Shortest path computation

2.1 Distributed Shortest Path Algorithms

This section presents distributed algorithms which allow each process to compute
its shortest paths to every other process in the system. These algorithms can be seen
as “adaptations” of centralized algorithmic principles to the distributed context.

The notations are the same as in the previous chapter. Each process pi has a
set of neighbors denoted neighborsi ; if it exists, the channel connecting pi and pj

is denoted 〈i, j 〉. The communication channels are bidirectional (hence 〈i, j 〉 and
〈j, i〉 denote the same channel). Moreover, the communication graph is connected
and each channel 〈i, j 〉 has a positive length (or weight) denoted �gi[j] (as 〈i, j 〉
and 〈j, i〉 are the same channel, we have �gi[j] = �gj [i]).

2.1.1 A Distributed Adaptation
of Bellman–Ford’s Shortest Path Algorithm

Bellman–Ford’s sequential algorithm computes the shortest paths from one prede-
termined vertex of a graph to every other vertex. It is an iterative algorithm based

M. Raynal, Distributed Algorithms for Message-Passing Systems,
DOI 10.1007/978-3-642-38123-2_2, © Springer-Verlag Berlin Heidelberg 2013

35

http://dx.doi.org/10.1007/978-3-642-38123-2_2

36 2 Distributed Graph Algorithms

Fig. 2.1 Bellman–Ford’s
dynamic programming principle

on the dynamic programming principle. This principle and its adaptation to a dis-
tributed context are presented below.

Initial Knowledge and Local Variables Initially each process knows that there
are n processes and the set of process identities is {1, . . . , n}. It also knows its posi-
tion in the communication graph (which is captured by the set neighborsi). Interest-
ingly, it will never learn more on the structure of this graph. From a local state point
of view, each process pi manages the following variables.

• As just indicated, �gi[j], for j ∈ neighhborsi, denotes the length associated with
the channel 〈i, j 〉.

• lengthi[1..n] is an array such that lengthi[k] will contain the length of the shortest
path from pi to pk . Initially, lengthi[i] = 0 (and keeps that value forever) while
lengthi[j] = +∞ for j �= i.

• routing_toi[1..n] is an array that is not used to compute the shortest paths from
pi to each other process. It constitutes the local result of the computation. More
precisely, when the algorithm terminates, for any k, 1 ≤ k ≤ n, routing_toi[k] = j

means that pj is a neighbor of pi on a shortest path to pk , i.e., pj is an optimal
neighbor when pi has to send information to pk (where optimality is with respect
to the length of the path from pi to pk).

Bellman–Ford Principle The dynamic programming principle on which the al-
gorithm relies is the following. The local inputs at each process pi are the values
of the set neighborsi and the array �gi[neighborsi]. The output at each process pi

is the array lengthi[1..n]. The algorithm has to solve the following set of equations
(where the unknown variables are the arrays lengthi[1..n]):

∀i, k ∈ {1, . . . , n} : lengthi[k] = min
j∈neighborsi

(
�gi[j] + lengthj [k]).

The meaning of this formula is depicted in Fig. 2.1 for a process pi such that
neighborsi = {j1, j2, j3}. Each dotted line from pjx to pk , 1 ≤ x ≤ 3, represents the
shortest path joining pjx to pk and its length is lengthjx

[k]. The solution of this set
of equations is computed asynchronously and iteratively by the n processes, each
process pi computing successive approximate values of its local array lengthi[1..n]
until it stabilizes at its final value.

The Algorithm The algorithm is described in Fig. 2.2. At least one process pi

has to receive the external message START() in order to launch the algorithm. It

2.1 Distributed Shortest Path Algorithms 37

when START() is received do
(1) for each j ∈ neighborsi do send UPDATE(lengthi) to pj end for.

when UPDATE(length) is received from pj do
(2) updatedi ← false;
(3) for each k ∈ {1, . . . , n} \ {i} do
(4) if (lengthi [k] > �gi [j] + length[k])
(5) then lengthi [k] ← �gi [j] + length[k];
(6) routing_toi [k] ← j ;
(7) updatedi ← true
(8) end if
(9) end for;
(10) if (updatedi)

(11) then for each j ∈ neighborsi do send UPDATE(lengthi) to pj end for
(12) end if.

Fig. 2.2 A distributed adaptation of Bellman–Ford’s shortest path algorithm (code for pi)

sends then to each of its neighbors the message UPDATE(lengthi) which describes
its current local state as far as the computation of the length of its shortest paths to
each other process is concerned.

When a process pi receive a message UPDATE(length) from one of its neighbors
pj , it applies the forward/discard strategy introduced in Chap. 1. To that end, pi first
strives to improve its current approximation of its shortest paths to any destination
process (lines 3–9). Then, if pi has discovered shorter paths than the ones it knew
before, pi sends its new current local state to each of its neighbors (lines 10–12). If
its local state (captured by the array lengthi[1..n]) has not been modified, pi does
not send a message to its neighbors.

Termination While there is a finite time after which the arrays lengthi[1..n] and
routing_toi[1..n], 1 ≤ i ≤ n, have obtained their final values, no process ever learns
when this time has occurred.

Adding Synchronization in Order that Each Process Learns Termination The
algorithm described in Fig. 2.3 allows each process pi not only to compute the
shortest paths but also to learn that it knows them (i.e., learn that its local arrays
lengthi[1..n] and routing_toi[1..n] have converged to their final values).

This algorithm is synchronous: the processes execute a sequence of synchronous
rounds, and rounds are given for free: they belong to the computation model. During
each round r , in addition to local computation, each process sends a message to and
receives a message from each of its neighbors. The important synchrony property
lies in the fact that a message sent by a process pi to a neighbor pj at round r

is received and processed by pj during the very same round r . The progress of
a round r to the round r + 1 is governed by the underlying system. (A general
technique to simulate a synchronous algorithm on top of an asynchronous system
will be described in Chap. 9.)

38 2 Distributed Graph Algorithms

when r = 1,2, . . . ,D do
begin synchronous round
(1) for each j ∈ neighborsi do send UPDATE(lengthi) to pj end for;
(2) for each j ∈ neighborsi do receive UPDATE(lengthj) from pj end for;
(3) for each k ∈ {1, . . . , n} \ {i} do
(4) let length_ik1 = minj∈neighborsi (�gi [j] + lengthj [k]);
(5) if (length_ik < lengthi [k]) then
(6) lengthi [k] ← length_ik;
(7) routing_toi [k] ← a neighbor j that realizes the previous minimum
(8) end if
(9) end for
end synchronous round.

Fig. 2.3 A distributed synchronous shortest path algorithm (code for pi)

The algorithm considers that the diameter D of the communication graph is
known by the processes (let us remember that the diameter is the number of chan-
nels separating the two most distant processes). If D is not explicitly known, it can
be replaced by an upper bound, namely the value (n − 1).

The text of the algorithm is self-explanatory. There is a strong connection be-
tween the current round number and the number of channels composing the paths
from which pi learns information. Let us consider a process pi at the end of a
round r .

• When r < D, pi knows the shortest path from itself to any other process pk ,
which is composed of at most r channels. Hence, this length to pk is not neces-
sarily the shortest one.

• Differently, when it terminates round r = D, pi has computed both (a) the short-
est lengths from it to all the other processes and (b) the corresponding appropriate
routing neighbors.

2.1.2 A Distributed Adaptation
of Floyd–Warshall’s Shortest Paths Algorithm

Floyd–Warshall’s algorithm is a sequential algorithm that computes the shortest
paths between any two vertices of a non-directed graph. This section presents an
adaptation of this algorithm to the distributed context. This adaptation is due to
S. Toueg (1980). As previously, to make the presentation easier, we consider that
the graph (communication network) is connected and the length of each edge of
the graph (communication channel) is a positive number. (Actually, the algorithm
works when edges have negative lengths as long as no cycle has a negative length.)

Floyd–Warshall’s Sequential Algorithm Let LENGTH[1..n,1..n] be a matrix
such that, when the algorithm terminates, LENGTH[i, j] represents the length of the
shortest path from pi to pj . Initially, for any i, LENGTH[i, i] = 0, for any pair (i, j)

2.1 Distributed Shortest Path Algorithms 39

(1) for pv from 1 to n do
(2) for i from 1 to n do
(3) for j from 1 to n do
(4) if LENGTH[i,pv] + LENGTH[pv, j] < LENGTH[i, j]
(5) then LENGTH[i, j] ← LENGTH[i,pv] + LENGTH[pv, j];
(6) routing_toi [j] ← routing_toi [pv]
(7) end if
(8) end for
(9) end for
(10) end for.

Fig. 2.4 Floyd–Warshall’s sequential shortest path algorithm

Fig. 2.5 The principle that underlies Floyd–Warshall’s shortest paths algorithm

such that j ∈ neighborsi , LENGTH[i, j] is initialized to the length of the channel
from pi to pj , and LENGTH[i, j] = +∞ in the other cases. Moreover, for any i, the
array routing_toi[1..n] is such that routing_toi[i] = i, routing_toi[j] = j for each
j ∈ neighborsi and routing_toi[j] is initially undefined for the other values of j .

The principle of Floyd–Warshall’s algorithm is an iterative algorithm based on
the following principle. For any process pi , the algorithm computes first the shortest
path from any process pi to any process pj that (if any) passes through process p1.
Then, it computes the shortest path from any process pi to any process pj among
all the paths from pi to pj which pass only through processes in the set {p1,p2}.
More generally, at the step pv of the iteration, the algorithm computes the shortest
path from any process pi to any process pj among all the paths from pi to pj which
are allowed to pass through the set of processes {p1, . . . , ppv}. The text of the algo-
rithm is given in Fig. 2.4. As we can see, the algorithm is made up of three nested
for loops. The external one defines the processes (namely p1, . . . , ppv) allowed to
appear in current computation of the shortest from any process pi to any process
pj . The process index pv is usually called the pivot.

The important feature of this sequential algorithm lies in the fact that, when com-
puting the shortest path from pi to pj involving the communication channels con-
necting the processes in the set {p1, . . . , ppv}, the variable LENGTH[i,pv] contains
the length of the shortest path from pi to ppv involving only the communication
channels connecting the processes in the set {p1, . . . , ppv−1} (and similarly for the
variable LENGTH[pv, j]). This is described in Fig. 2.5 when considering the com-
putation of the shortest from pi to pj involving the processes {p1, . . . , ppv} (this
constitutes the pvth iteration step of the external loop).

40 2 Distributed Graph Algorithms

From a Sequential to a Distributed Algorithm As a distributed system has no
central memory and communication is by message passing between neighbor pro-
cesses, two issues have to be resolved to obtain a distributed algorithm. The first
concerns the distribution of the data structures; the second the synchronization of
processes so that they can correctly compute the shortest paths and the associated
routing tables.

The array LENGTH[1..n,1..n] is split into n vectors such that each pro-
cess pi computes and maintains the value of LENGTH[i,1..n] in its local array
lengthi[1..n]. Moreover, as seen before, each process pi computes the value of its
routing local array routing_toi[1..n]. On the synchronization side, there are two is-
sues:

• When pi computes the value of lengthi[j] during the iteration step pv, process pi

locally knows the current values of lengthi[j] and lengthi[pv], but it has to obtain
the current value of lengthpv[j] (see line 4 of Fig. 2.4).

• To obtain from ppv a correct value for lengthpv[j], the processes must execute
simultaneously the same iteration step pv. If a process pi is executing an iteration
step with the pivot value pv while another process pk is simultaneously executing
an iteration step with the pivot value pv′ �= pv, the values they obtain, respectively,
from ppv for lengthpv[j] and from ppv′ lengthpv′ [j] can be mutually inconsistent
if these computations are done without an appropriate synchronization.

The Distributed Algorithm The algorithm is described in Fig. 2.6. The processes
execute concurrently a loop where the index pv takes the successive values from 1
to n (line 1). If a process receives a message while it has not yet started executing its
local algorithm, it locally starts the local algorithm before processing the message.
As the communication graph is connected, it follows that, as soon as at least one
process pi starts its local algorithm, all the processes start theirs.

As indicated just previously, when the processes execute the iteration step pv, the
process ppv has to broadcast its local array lengthpv[1..n] so that each process pi to
try to improve its shortest distance to any process pj as indicated in Fig. 2.5.

To this end, let us observe that if, at the pvth iteration of the loop, there is path
from pi to ppv involving only processes in the set {p1, . . . , ppv−1}, there is then a
favorite neighbor to attain ppv, namely the process whose index has been computed
and saved in routing_toi[pv]. This means that, at the pvth iteration, the set of local
variables routing_tox[pv] of the processes px such that lengthx[pv] �= +∞ define a
tree rooted at ppv.

The algorithm executed by the processes, which ensures a correct process coor-
dination, follows from this observation. More precisely, a local algorithm is made
up of three parts:

• Part 1: lines 1–6. A process pi first sends a message to each of its neighbors pk

indicating if pi is or not one of pk’s children in the tree rooted at ppv. It then
waits until it has received such a message from each of its neighbors.

Then, pi executes the rest of the code for the pvth iteration only if it has a
chance to improve its shortest paths with the help of ppv, i.e., if lengthi[pv] �=
+∞.

2.1 Distributed Shortest Path Algorithms 41

(1) for pv from 1 to n do
(2) for each k ∈ neighborsi do
(3) if (routing_toi [pv] = k) then child ← yes else child ← no end if;
(4) send CHILD(pv, child) to pk

(5) end for;
(6) wait (a message CHILD(pv,−) received from each neighbor);
(7) if (lengthi [pv] �= +∞) then
(8) if (pv �= i) then
(9) wait (message PV_LENGTH (pv,pv_length[1..n]) from prouting_toi [pv])
(10) end if;
(11) for each k ∈ neighborsi do
(12) if (CHILD(pv,yes) received from pk) then
(13) if (pv = i) then send PV_LENGTH(pv, lengthi [1..n]) to pk

(14) else send PV_LENGTH(pv,pv_length[1..n]) to pk

(15) end if
(16) end if
(17) end for;
(18) for j from 1 to n do
(19) if lengthi [pv] + pv_length[j] < lengthi [j]
(20) then lengthi [j] ← lengthi [pv] + pv_length[j];
(21) routing_toi [j] ← routing_toi [pv]
(22) end if
(23) end for
(24) end if
(25) end for.

Fig. 2.6 Distributed Floyd–Warshall’s shortest path algorithm

• Part 2: lines 8–17. This part of the algorithm ensures that each process pi such
that lengthi[pv] �= +∞ receives a copy of the array lengthpv[1..n] so that it can
recompute the values of its shortest paths and the associated local routing table
(which is done in Part 3).

The broadcast of lengthpv[1..n] by ppv is launched at line 13, where this pro-
cess sends the message PV_LENGTH (pv, lengthpv) to all its children in the tree
whose it is the root. When it receives such a message carrying the value pv and
the array pv_length[1..n] (line 9), a process pi forwards it to its children in the
tree rooted at ppv (lines 12 and 14).

• Part 3: lines 18–23. Finally, a process pi uses the array pv_length[1..n] it has
received in order to improve its shortest paths that pass through the processes
p1, . . . , ppv.

Cost Let e be the number of communication channels. It is easy to see that, dur-
ing each iteration, (a) at most two messages CHILD() are sent on each channel (one
in each direction) and (b) at most (n − 1) messages PV_LENGTH() are sent. It fol-
lows that the number of messages is upper-bounded by n(2e + n); i.e., the message
complexity is O(n3). As far the size of messages is concerned, a message CHILD()

carries a bit, while PV_LENGTH() carries n values whose size depends on the indi-
vidual lengths associated with the communication channels.

42 2 Distributed Graph Algorithms

(1) for i from 1 to n do
(2) c ← 1;
(3) while (COLOR[i] = ⊥) do
(4) if (

∧
j∈neighborsi

COLOR[j] �= c) then COLOR[i] ← c else c ← c + 1 end if
(5) end while
(6) end for.

Fig. 2.7 Sequential (� + 1)-coloring of the vertices of a graph

Finally, there are n iteration steps, and each has O(n) time complexity. Moreover,
in the worst case, the processes starts the algorithm one after the other (a single
process starts, which entails the start of another process, etc.). When summing up,
it follows that the time complexity is upper-bounded by O(n2).

2.2 Vertex Coloring and Maximal Independent Set

2.2.1 On Sequential Vertex Coloring

Vertex Coloring An important graph problem, which is encountered when one
has to model application-level problems, concerns vertex coloring. It consists in
assigning a value (color) to each vertex such that (a) no two vertices which are
neighbors have the same color, and (b) the number of colors is “reasonably small”.
When the number of colors has to be the smallest possible one, the problem is NP-
complete.

Let � be the maximal degree of a graph (let us remember that, assuming a graph
where any two vertices are connected by at most one edge, the degree of a vertex is
the number of its neighbors). It is always possible to color the vertices of a graph in
� + 1 colors. This follows from the following simple reasoning by induction. The
assertion is trivially true for any graph with at most � vertices. Then, assuming it is
true for any graph made up of n ≥ � vertices and whose maximal degree is at most
�, let us add a new vertex to the graph. As (by assumption) the maximal degree of
the graph is �, it follows that this new vertex has at most � neighbors. Hence, this
vertex can be colored with the remaining color.

A Simple Sequential Algorithm A simple sequential algorithm that colors ver-
tices in at most (� + 1) colors is described in Fig. 2.7. The array variable
COLOR[1..n], which is initialized to [⊥, . . . ,⊥], is such that, when the algorithm
terminates, for any i, COLOR[i] will contain the color assigned to process pi .

The colors are represented by the integers 1 to (� + 1). The algorithm considers
sequentially each vertex i (process pi) and assigns to it the first color not assigned
to its neighbors. (This algorithm is sensitive to the order in which the vertices and
the colors are considered.)

2.2 Vertex Coloring and Maximal Independent Set 43

(1) for each j ∈ neighborsi do send INIT(colori [i]) to pj end for;
(2) for each j ∈ neighborsi

(3) do wait (INIT(col_j) received from pj); colori [j] ← col_j

(4) end for;
(5) for ri from (� + 2) to m do

begin asynchronous round
(6) if (colori [i] = ri)

(7) then c ← smallest color in {1, . . . ,� + 1} such that ∀j ∈ neighborsi : colori [j] �= c;
(8) colori [i] ← c

(9) end if;
(10) for each j ∈ neighborsi do send COLOR(ri, colori [i]) to pj end for;
(11) for each j ∈ neighborsi do
(12) wait (COLOR(r, col_j) with r = ri received from pj);
(13) colori [j] ← col_j

(14) end for
end asynchronous round

(15) end for.

Fig. 2.8 Distributed (� + 1)-coloring from an initial m-coloring where n ≥ m ≥ � + 2

2.2.2 Distributed (� + 1)-Coloring of Processes

This section presents a distributed algorithm which colors the processes in at most
(�+ 1) colors in such a way that no two neighbors have the same color. Distributed
coloring is encountered in practical problems such as resource allocation or pro-
cessor scheduling. More generally, distributed coloring algorithms are symmetry
breaking algorithms in the sense that they partition the set of processes into subsets
(a subset per color) such that no two processes in the same subset are neighbors.

Initial Context of the Distributed Algorithm Such a distributed algorithm is
described in Fig. 2.8. This algorithm assumes that the processes are already colored
in m ≥ � + 1 colors in such a way that no two neighbors have the same color. Let
us observe that, from a computability point of view, this is a “no-cost” assumption
(because taking m = n and defining the color of a process pi as its index i trivially
satisfies this initial coloring assumption). Differently, taking m = � + 1 assumes
that the problem is already solved. Hence, the assumption on the value of m is a
complexity-related assumption.

Local Variables Each process pi manages a local variable colori[i] which ini-
tially contains its initial color, and will contain its final color at the end of the algo-
rithm. A process pi also manages a local variable colori[j] for each of its neigh-
bors pj . As the algorithm is asynchronous and round-based, the local variable ri
managed by pi denotes its current local round number.

Behavior of a Process pi The processes proceed in consecutive asynchronous
rounds and, at each round, each process synchronizes its progress with its neigh-
bors. As the rounds are asynchronous, the round numbers are not given for free by

44 2 Distributed Graph Algorithms

the computation model. They have to be explicitly managed by the processes them-
selves. Hence, each process pi manages a local variable ri that it increases when it
starts a new asynchronous round (line 5).

The first round (lines 1–2) is an initial round during which the processes ex-
change their initial color in order to fill in their local array colori[neighborsi]. If
the processes know the initial colors of their neighbors, this communication round
can be suppressed. The processes then execute m − (� + 1) asynchronous rounds
(line 5).

The processes whose initial color belongs to the set of colors {1, . . . ,�+1} keep
their color forever. The other processes update their colors in order to obtain a color
in {1, . . . ,� + 1}. To that end, all the processes execute sequentially the rounds
� + 2, . . . , until m, considering that each round number corresponds to a given
distinct color. During round r , � + 2 ≤ r ≤ m, each process whose initial color is r

looks for a new color in {1, . . . ,� + 1} which is not the color of its neighbors and
adopts it as its new color (lines 6–8). Then, each process exchanges its color with
its neighbors (lines 10–14) before proceeding to the next round. Hence, the round
invariant is the following one: When a round r terminates, the processes whose
initial colors were in {1, . . . , r} (a) have a color in the set {1, . . . ,� + 1}, and (b)
have different colors if they are neighbors.

Cost The time complexity (counted in number of rounds) is m − � rounds (an
initial round plus m − (� + 1) rounds). Each message carries a tag, a color, and
possibly a round number which is also a color. As the initial colors are in {1, . . . ,m},
the message bit complexity is O(log2 m).

Finally, during each round, two messages are sent on each channel. The message
complexity is consequently 2e(m − �), where e denotes the number of channels.

It is easy to see that, the better the initial process coloring (i.e., the smaller the
value of m), the more efficient the algorithm.

Theorem 1 Let m ≥ � + 2. The algorithm described in Fig. 2.8 is a legal (� + 1)-
coloring of the processes (where legal means that no two neighbors have the same
color).

Proof Let us first observe that the processes whose initial color belongs to
{1, . . . ,� + 1} never modify their color. Let us assume that, up to round r , the
processes whose initial colors were in the set {1, . . . , r} have new colors in the
set {1, . . . ,� + 1} and any two of them which are neighbors have different colors.
Thanks to the initial m-coloring, this is initially true (i.e., for the fictitious round
r = � + 1).

Let us assume that the previous assertion is true up to some round r ≥ � + 1.
It follows from the algorithm that, during round r + 1, only the processes whose
current color is r + 1 update it. Moreover, each of them updates it (line 7) with a
color that (a) belongs to the set {1, . . . ,� + 1} and (b) is not a color of its neighbors
(we have seen in Sect. 2.2.1 that such a color does exist). Consequently, at the end
of round r + 1, the processes whose initial colors were in the set {1, . . . , r + 1}

2.2 Vertex Coloring and Maximal Independent Set 45

Fig. 2.9 One bit of control information when the channels are not FIFO

have new colors in the set {1, . . . ,� + 1} and no two of them have the same new
color if they are neighbors. It follows that, as claimed, this property constitutes a
round invariant from which we conclude that each process has a final color in the
set {1, . . . ,� + 1} and no two neighbor processes have the same color. �

Remark on the Behavior of the Communication Channels Let us remember
that the only assumption on channels is that they are reliable. No other behavioral
assumption is made, hence the channels are implicitly non-FIFO channels.

Let us consider two neighbor processes that execute a round r as depicted in
Fig. 2.9. Each of them sends its message COLOR(r,−) to its neighbors (line 10),
and waits for a message COLOR() from each of them, carrying the very same round
number (line 12).

In the figure, pj has received the round r message from pi , proceeded to the
next round, and sent the message COLOR(r + 1,−) to pi while pi is still waiting
for round r message from pj . Moreover, as the channel is not FIFO, the figure
depicts the case where the message COLOR(r +1,−) sent by pj to pi arrives before
the message COLOR(r,−) it sent previously. As indicated in line 12, the algorithm
forces pi to wait for the message COLOR(r,−) in order to terminate its round r .

As, in each round, each process sends a message to each of its neighbors, a closer
analysis of the message exchange pattern shows that the following relation on round
numbers is invariant. At any time we have:

∀(i, j) : (pi and pj are neighbors) ⇒ (
0 ≤ |ri − rj | ≤ 1

)
.

It follows that the message COLOR() does not need to carry the value of r but only
a bit, namely the parity of r . The algorithm can then be simplified as follows:

• At line 10, each process pi sends the message COLOR(ri mod 2, colori[i]) to each
of its neighbors.

• At line 12, each process pi waits for a message COLOR(b, colori[i]) from each
of its neighbors where b = (ri mod 2).

Finally, it follows from previous discussion that, if the channels are FIFO, the mes-
sages COLOR() do not need to carry a control value (neither r , nor its parity bit).

46 2 Distributed Graph Algorithms

Fig. 2.10 Examples of maximal independent sets

2.2.3 Computing a Maximal Independent Set

Maximal Independent Set: Definition An independent set is a subset of the ver-
tices of a graph such that no two of them are neighbors. An independent set M is
maximal if none of its strict supersets M ′ (i.e., M ⊂ M ′ and M �= M ′) is an inde-
pendent set. A graph can have several maximal independent sets.

The subset of vertices {1,4,5,8} of the graph of depicted in the left part of
Fig. 2.10 is a maximal independent set. The subsets {1,5,7} and {2,3,6,7} are
other examples of maximal independent sets of the same graph. The graph depicted
on the right part has two maximal independent sets, the set {1} and the set {2,3,4,5}.

There is a trivial greedy algorithm to compute a maximal independent set in a
sequential context. Select a vertex, add it to the independent set, suppress it and its
neighbors from the graph, and iterate until there are no more vertices. It follows that
the problem of computing a maximal independent set belongs to the time complex-
ity class P (the class of problems that can be solved by an algorithm whose time
complexity is polynomial).

A maximum independent set is an independent set with maximal cardinality.
When considering the graph at the left of Fig. 2.10, the maximal independent sets
{1,4,5,8} and {2,3,6,7} are maximum independent sets. The graph on the right of
the figure has a single maximum independent set, namely the set {2,3,4,5}.

While, from a time complexity point of view, the computation of a maximal
independent set is an easy problem, the computation of a maximum independent set
is a hard problem: it belongs to the class of NP-complete problems.

From m-Coloring to a Maximal Independent Set An asynchronous distributed
algorithm that computes a maximal independent set is presented in Fig. 2.11. Each
process pi manages a local array selectedi[j], j ∈ neighborsi ∪ {i}, initialized to
[false, . . . , false]. At the end of the algorithm pi belongs to the maximal independent
set if and only if selectedi[i] is equal to true.

This algorithm assumes that there is an initial m-coloring of the processes (as
we have just seen, this can be obtained from the algorithm of Fig. 2.8). Hence, the
algorithm of Fig. 2.11 is a distributed reduction of the maximal independent set
problem to the m-coloring problem. Its underlying principle is based on a simple
observation and a greedy strategy. More precisely,

• Simple observation: the processes that have the same color define an independent
set, but this set is not necessarily maximal.

2.2 Vertex Coloring and Maximal Independent Set 47

(1) for ri from 1 to m do
begin asynchronous round

(2) if (colori = ri) then
(3) if (

∧
j∈neighborsi

(¬selectedi [j])) then selectedi [i] ← true end if;
(4) end if;
(5) for each j ∈ neighborsi do send SELECTED(ri, selectedi [i]) to pj end for;
(6) for each j ∈ neighborsi do
(7) wait (SELECTED(r, selected_j) with r = ri received from pj);
(8) selectedi [j] ← selected_j

(9) end for
end asynchronous round

(10) end for.

Fig. 2.11 From m-coloring to a maximal independent set (code for pi)

• Greedy strategy: as the previous set is not necessarily maximal, the algorithm
starts with an initial independent set (defined by some color) and executes a se-
quence of rounds, each round r corresponding to a color, in which it strives to
add to the independent set under construction as much possible processes whose
color is r . The corresponding “addition” predicate for a process pi with color r

is that none of its neighbors is already in the set.

As previous algorithms, the algorithm described in Fig. 2.11 simulates a syn-
chronous algorithm. The color of a process pi is kept in its local variable denoted
colori . The messages carry a round number (color) which can be replaced by its
parity. The processes execute m asynchronous rounds (a round per color). When it
executes round r , if its color is r and none of its neighbors belongs to the set un-
der construction, a process pi adds itself to the set (line 3). Then, before starting
the next round, the processes exchange their membership of the maximal indepen-
dent set in order to update their local variables selectedi[j]. (As we can see, what
is important is not the fact that the rounds are executed in the order 1, . . . ,m, but
the fact that the processes execute the rounds in the same predefined order, e.g.,
1,m,2, (m − 1),)

The size of the maximal independent set that is computed is very sensitive to the
order in which the colors are visited by the algorithm. As an example, let us consider
the graph at the right of Fig. 2.10 where the process p1 is colored a while the other
processes are colored b. If a = 1 and b = 2, the maximal independent set that is
built is the set {1}. If a = 2 and b = 1, the maximal independent set that is built is
the set {2,3,4,5}.

A Simple Algorithm for Maximal Independent Set This section presents an
algorithm, due to M. Luby (1987), that builds a maximal independent set.

This algorithm uses a random function denoted random() which outputs a ran-
dom value each time it is called (the benefit of using random values is motivated
below). For ease of exposition, this algorithm, which is described in Fig. 2.12, is
expressed in the synchronous model. Let us remember that the main property of the
synchronous model lies in the fact that a message sent in a round is received by its

48 2 Distributed Graph Algorithms

(1) repeat forever
begin three synchronous rounds r , r + 1 and r + 2
beginning of round r

(2) randomi [i] ← random();
(3) for each j ∈ com_withi do send RANDOM(randomi [i]) to pj end for;
(4) for each j ∈ com_withi do
(5) wait (RANDOM(random_j) received from pj); randomi [j] ← random_j

(6) end for;
end of round r and beginning of round r + 1

(7) if (∀ j ∈ com_withi : randomi [j] > randomi [i])
(8) then for each j ∈ com_withi do send SELECTED(yes) to pj end for;
(9) statei ← in; return(in)

(10) else for each j ∈ com_withi do send SELECTED(no) to pj end for;
(11) for each j ∈ com_withi do wait (SELECTED(−) received from pj) end for;

end of round r + 1 and beginning of round r + 2
(12) if (∃ k ∈ com_withi : SELECTED(yes) received from pk)
(13) then for each j ∈ com_withi : SELECTED(no) received from pj

(14) do send ELIMINATED(yes) to pj

(15) end for;
(16) statei ← out ; return(out)

(17) else for each j ∈ com_withi do send ELIMINATED(no) to pj end for;
(18) for each j ∈ com_withi
(19) do wait (ELIMINATED(−) received from pj)
(20) end for;
(21) for each j ∈ com_withi : ELIMINATED(yes) received from pj

(22) do com_withi ← com_withi \ {j}
(23) end for;
(24) if (com_withi = ∅) then statei ← in; return(in) end if
(25) end if
(26) end if:

end three synchronous rounds
(27) end repeat.

Fig. 2.12 Luby’s synchronous random algorithm for a maximal independent set (code for pi)

destination process in the very same round. (It is easy to extend this algorithm so
that it works in the asynchronous model.)

Each process pi manages the following local variables.

• The local variable statei , whose initial value is arbitrary, is updated only once.
It final value (in or out) indicates whether pi belongs or not to the maximal in-
dependent set that is computed. When, it has updated statei to its final value, a
process pi executes the statement return() which stops its participation to the al-
gorithm. Let us notice that the processes do not necessarily terminate during the
same round.

• The local variable com_withi, which is initialized to neighborsi , is a set contain-
ing the processes with which pi will continue to communicate during the next
round.

• Each local variable randomi[j], where j ∈ neighborsi ∪ {i}, represents the local
knowledge of pi about the last random number used by pj .

2.2 Vertex Coloring and Maximal Independent Set 49

Fig. 2.13 Messages exchanged during three consecutive rounds

As indicated, the processes execute a sequence of synchronous rounds. The code
of the algorithm consists in the description of three consecutive rounds, namely the
rounds r , r + 1, and r + 2, where r = 1,4,7,10, The messages exchanged
during these three consecutive rounds are depicted in Fig. 2.13.

The behavior of the synchronous algorithm during these three consecutive rounds
is as follows:

• Round r : lines 2–6.
Each process pi invokes first the function random() to obtain a random number

(line 2) that it sends to all its neighbors it is still communicating with (line 3).
Then, it stores all the random numbers it has received, each coming from a process
in com_withi.

• Round r + 1: lines 7–11.
Then, pi sends the message SELECTED(yes) to its neighbors in com_withi if

its random number is smaller than theirs (line 8). In this case, it progresses to the
local state in and stops (line 9).

Otherwise, its random number is not the smallest. In this case, pi first sends
the message SELECTED(no) to its neighbors in com_withi (line 10), and then
waits for a message from each of these neighbors (line 11).

• Round r + 2: lines 12–26.
Finally, if pi has not entered the maximal independent set under construction,

it checks if one of its neighbors in com_withi has been added to this set (line 12).

– If one of its neighbors has been added to the independent set, pi cannot be
added to this set in the future. It consequently sends the message ELIMI-
NATED(yes) to its neighbors in com_withi to inform them that it no longer
competes to enter the independent set (line 13). In that case, it also enters the
local state out and returns it (line 16).

– If none of its neighbors in com_withi has been added to the independent set,
pi sends them the message ELIMINATED(no) to inform them that it is still
competing to enter the independent set (line 17). Then, it waits for a mes-
sage ELIMINATED(−) from each of them (line 18) and suppresses from the set
com_withi its neighbors that are no longer competing (those are the processes
which sent it the message ELIMINATED(yes), lines 21–23).

Finally, pi checks if com_withi = ∅. If it is the case, it enters the indepen-
dent set and returns (line 24). Otherwise, it proceeds to the next round.

50 2 Distributed Graph Algorithms

The algorithm computes an independent set because when a process is added to
the set, all its neighbors stop competing to be in the set (lines 12–15). This set is
maximal because when a process enters the independent set, only its neighbors are
eliminated from being candidates.

Why to Use Random Numbers Instead of Initial Names or Precomputed Colors
As we have seen, the previous algorithm associates a new random number with each
process when this process starts a new round triple. The reader can check that the
algorithm works if each process uses its identity or a legal color instead of a new
random number at each round. Hence, the question: Why use random numbers?

The instance of the algorithm using n distinct identities (or a legal process m-
coloring) requires a number of round triples upper bounded by �n/2� (or �m/2�).
This is because, in each round triple, at least one process enters the maximal inde-
pendent set and at least one process is eliminated. Taking random numbers does not
reduce this upper bound (because always taking initial identities corresponds to par-
ticular random choices) but reduces it drastically in the average case (the expected
number of round triples is then O(log2 n)).

2.3 Knot and Cycle Detection

Knots and cycles are graph patterns encountered when one has to solve distributed
computing problems such as deadlock detection. This section presents an asyn-
chronous distributed algorithm that detects such graph patterns.

2.3.1 Directed Graph, Knot, and Cycle

A directed graph is a graph where every edge is oriented from one vertex to another
vertex. A directed path in a directed graph is a sequence of vertices i1, i2, . . . , ix
such that for any y, 1 ≤ y < x, there is an edge from the vertex iy to the vertex iy+1.
A cycle is a directed path such that ix = i1.

A knot in a directed graph G is a subgraph G′ such that (a) any pair of vertices
in G′ belongs to a cycle and (b) there is no directed path from a vertex in G′ to a
vertex which is not in G′. Hence, a vertex of a directed graph belongs to a knot if
and only if it is reachable from all the vertices that are reachable from it. Intuitively,
a knot is a “black hole”: once in a knot, there is no way to go outside of it.

An example is given in Fig. 2.14. The directed graph has 11 vertices. The set
of vertices {7,10,11} defines a cycle which is not in a knot (this is because, when
traveling on this cycle, it is possible to exit from it). The subgraph restricted to the
vertices {3,5,6,8,9} is a knot (after entering this set of vertices, it is impossible to
exit from it).

2.3 Knot and Cycle Detection 51

Fig. 2.14 A directed graph with a knot

2.3.2 Communication Graph, Logical Directed Graph,
and Reachability

As previously, the underlying communication graph is not directed. Each channel is
bidirectional which means that, if two processes are neighbors, either of them can
send messages to the other.

It is assumed that a directed graph is defined on the communication graph. Its
vertices are the processes, and if pi and pj are connected by a communication
channel, there is (a) either a logical directed edge from pi to pj , or (b) a logical
directed edge from pj to pi , or (c) two logical directed edges (one in each direction).

If there is a directed edge from pi to pj , we say “pj is an immediate successor of
pi” and “pi is an immediate predecessor of pj ”. A vertex pj is said to be reachable
from a vertex pi if there is a directed path from pi to pj .

From an application point of view, a directed edge corresponds to a dependence
relation linking a process pi to its neighbor pj (e.g., pi is waiting for “something”
from pj).

2.3.3 Specification of the Knot Detection Problem

The problem consists in detecting if a given process belongs to a knot of a directed
graph. For simplicity, it is assumed that only one process initiates the knot detection.
Multiple instantiations can be distinguished by associating with each of them an
identification pair made up of a process identity and a sequence number.

The knot detection problem is defined by the following properties, where pa is
the process that initiates the detection:

• Liveness (termination). If pa starts the knot detection algorithm, it eventually
obtains an answer.

52 2 Distributed Graph Algorithms

• Safety (consistency).

– If pa obtains the answer “knot”, it belongs to a knot. Moreover, it knows the
identity of all the processes involved in the knot.

– If pa obtains the answer “no knot”, it does not belong to a knot. Moreover, if
it belongs to at least one cycle, pa knows the identity of all the processes that
are involved in a cycle with pa .

As we can see, the safety property of the knot detection problem states what is a
correct result while its liveness property states that eventually a result has to be
computed.

2.3.4 Principle of the Knot/Cycle Detection Algorithm

The algorithm that is presented below relies on the construction of a spanning tree
enriched with appropriate statements. It is due to D. Manivannan and M. Sing-
hal (2003).

Build a Directed Spanning Tree To determine if it belongs to a knot, the initiator
pa needs to check that every process that is reachable from it is on a cycle which
includes it (pa).

To that end, pa sends a message GO_DETECT() to its immediate successors in
the directed graph and these messages are propagated from immediate successors
to immediate successors along directed edges to all the processes that are reachable
from pa . The first time it receives such a message from a process pj , the receiver
process pi defines pj as its parent in the directed spanning tree.

Remark The previous message GO_DETECT() and the messages CYCLE_BACK(),
SEEN_BACK(), and PARENT_BACK() introduced below are nothing more than par-
ticular instances of the messages GO() and BACK() used in the graph traversal algo-
rithms described in Chap. 1.

How to Determine Efficiently that pa Is on a Cycle If the initiator pa receives
a message GO_DETECT() from a process pj , it knows that it is on a cycle. The issue
is then for pa to know which are the processes involved in the cycles to which it
belongs.

To that end, pa sends a message CYCLE_BACK() to pj and, more generally
when a process pi knows that it is on a cycle including pa , it will send a message
CYCLE_BACK() to each process from which it receives a message GO_DETECT()

thereafter. Hence, these processes will learn that they are on a cycle including the
initiator pa .

But it is possible that, after it has received a first message GO_DETECT(), a pro-
cess pi receives more GO_DETECT() messages from other immediate predecessors
(let pk be one of them, see Fig. 2.15). If this message exchange pattern occurs, pi

2.3 Knot and Cycle Detection 53

Fig. 2.15 Possible message pattern during a knot detection

sends back to pk the message SEEN_BACK(), and when pk receives this message it
includes the ordered pair 〈k, i〉 in a local set denoted seenk . (Basically, the message
SEEN_BACK() informs its receiver that its sender has already received a message
GO_DETECT().) In that way, if later pi is found to be on a cycle including pa , it
can be concluded from the pair 〈k, i〉 ∈ seenk that pk is also on a cycle including pa

(this is because, due to the messages GO_DETECT(), there is a directed path from
pa to pk and pi , and due to the cycle involving pa and pi , there is a directed path
from pi to pa).

Finally, as in graph traversal algorithms, when it has received an acknowledg-
ment from each of its immediate successors, a process pi sends a message PAR-
ENT_BACK() to its parent in the spanning tree. Such a message contains (a) the
processes that, due to the messages CYCLE_BACK() received by pi from immediate
successors, are known by pi to be on a cycle including pa , and (b) the ordered pairs
〈i, �〉 stored in seeni as a result of the acknowledgment messages SEEN_BACK()

and PARENT_BACK() it has received from its immediate successors in the logical
directed graph. This information, which will be propagated in the tree to pa , will
allow pa to determine if it is in a knot or a cycle.

2.3.5 Local Variables

Local Variable at the Initiator pa Only The local variable candidatesa , which
appears only at the initiator, is a set (initially empty) of process identities. If pa is in
a knot, candidatesa will contain the identities of all the processes that are in the knot
including pa , when the algorithm terminates. If pa is not in a knot, candidatesa will
contain all the processes that are in a cycle including pa (if any). If candidatesa = ∅
when the algorithm terminates, pa belongs to neither a knot, nor a cycle.

Local Variables at Each Process pi Each (initiator or not) process pi manages
the following four local variables.

• The local variable parenti is initialized to ⊥. If pi is the initiator we will have
parenti = i when it starts the detection algorithm. If pi is not the initiator,
parenti will contain the identity of the process from which the first message
GO_DETECT() was received by pi . When all the processes reachable from pa

54 2 Distributed Graph Algorithms

have received a message GO_DETECT(), these local variables define a directed
spanning tree rooted at pa which will be used to transmit information back to this
process.

• The local variable waiting_fromi is a set of process identities. It is initialized to
set of the immediate successors of pi in the logical directed graph.

• The local variable in_cyclei is a set (initially empty) of process identities. It will
contain processes that are on a cycle including pi .

• The local variable seeni is a set (initially empty) of ordered pairs of process iden-
tities. As we have seen, 〈k, j 〉 ∈ seeni means that there is a directed path from pa

to pk and a directed edge from pk to pj in the directed graph. It also means that
both pk and pj have received a message GO_DETECT() and, when pj received
the message GO_DETECT() from pk , it did not know whether it belongs to a cycle
including pa (see Fig. 2.15).

2.3.6 Behavior of a Process

The knot detection algorithm is described in Fig. 2.16.

Launching the Algorithm The only process pi that receives the external mes-
sage START() discovers that it is the initiator, i.e., pi is pa . If it has no outgoing
edges – predicate (waiting_fromi �= ∅) at line 1 –, pi returns the pair (no knot,∅),
which indicates that pi belongs neither to a cycle, nor to a knot (line 4). Otherwise,
it sends the message GO_DETECT() to all its immediate successors in the directed
graph (line 3).

Reception of a Message GO_DETECT() When a process pi receives the message
GO_DETECT() from pj , it sends back to pj the message CYCLE_BACK() if it is
the initiator, i.e., if pi = pa (line 7). If it is not the initiator and this message is the
first it receives, it first defines pj as its parent in the spanning tree (line 9). Then, if
waiting_fromi �= ∅ (line 10), pi propagates the detection to its immediate successors
in the directed graph (line 11). If waiting_fromi = ∅, pi has no successor in the
directed graph. It then returns the message PARENT_BACK(seeni , in_cyclei) to its
parent (both seeni and in_cyclei are then equal to their initial value, i.e., ∅; seeni = ∅
means that pi has not seen another detection message, while in_cyclei = ∅ means
that pi is not involved in a cycle including the initiator).

If pi is already in the detection tree, it sends back to pj the message
SEEN_BACK() or CYCLE_BACK() according to whether the local set in_cyclei is
empty or not (line 14–15). Hence, if in_cyclei �= ∅, pi is on a cycle including pa

and pj will consequently learn that it is also on a cycle including pa .

Reception of a Message XXX_BACK() When a process pi receives a message
XXX_BACK() (where XXX stands for SEEN, CYCLE, or PARENT), it first suppresses
its sender pj from waiting_fromi .

2.3 Knot and Cycle Detection 55

when START() is received do
(1) if (waiting_fromi �= ∅)

(2) then parenti ← i;
(3) for each j ∈ waiting_fromi do send GO_DETECT() to pj end for
(4) else return(no knot,∅)

(5) end if.

when GO_DETECT() is received from pj do
(6) if (parenti = i)

(7) then send CYCLE_BACK() to pj

(8) else if (parenti = ⊥)

(9) then parenti ← j ;
(10) if (waiting_fromi �= ∅)

(11) then for each k ∈ waiting_fromi do send GO_DETECT() to pk end for
(12) else send PARENT_BACK(seeni , in_cyclei) to pparenti
(13) end if
(14) else if (in_cyclei �= ∅) then send CYCLE_BACK() to pj

(15) else send SEEN_BACK() to pj

(16) end if
(17) end if
(18) end if.

when SEEN_BACK() is received from pj do
(19) waiting_fromi ← waiting_fromi \ {j}; seeni ← seeni ∪ {〈i, j〉}; check_waiting_from().

when CYCLE_BACK() is received from pj do
(20) waiting_fromi ← waiting_fromi \ {j}; in_cyclei ← in_cyclei ∪ {j};
(21) check_waiting_from().

when PARENT_BACK(seen, in_cycle) is received from pj do
(22) waiting_fromi ← waiting_fromi \ {j}; seeni ← seeni ∪ seen;
(23) if (in_cycle = ∅)

(24) then seeni ← seeni ∪ {〈i, j〉}
(25) else in_cyclei ← in_cyclei ∪ in_cycle
(26) end if;
(27) check_waiting_from().

internal operation check_waiting_from() is
(28) if (waiting_fromi = ∅) then
(29) if (parenti = i)

(30) then for each k ∈ in_cyclei do
(31) in_cyclei ← in_cyclei \ {k}; candidatesi ← candidatesi ∪ {k};
(32) for each x ∈ {1, . . . , n} do
(33) if (〈x, k〉 ∈ seeni)

(34) then in_cyclei ← in_cyclei ∪ {x};
(35) seeni ← seeni \ {〈x, k〉}
(36) end if
(37) end for
(38) end for;
(39) if (seeni = ∅) then res ← knot else res ← no knot end if;
(40) return(res, candidatesi)

(41) else if (in_cyclei �= ∅) then in_cyclei ← in_cyclei ∪ {i} end if;
(42) send PARENT_BACK(seeni , in_cyclei) to pparenti ; return()

(43) end if
(44) end if.

Fig. 2.16 Asynchronous knot detection (code of pi)

56 2 Distributed Graph Algorithms

As we have seen, a message SEEN_BACK() informs its receiver pi that its sender
pj has already been visited by the detection algorithm (see Fig. 2.15). Hence, pi

adds the ordered pair 〈i, j 〉 to seeni (line 19). Therefore, if later pj is found to be
on a cycle involving the initiator, the initiator will be able to conclude from seeni

that pi is also on a cycle involving pa . The receiver pi then invokes the internal
operation check_waiting_from().

If the message received by pi from pj is CYCLE_BACK(), pi adds j to in_cyclei

(line 20) before invoking check_waiting_from(). This is because there is a path from
the initiator to pi and a path from pj to the initiator, hence pi and pj belong to a
same cycle including pa .

If the message received by pi from pj is PARENT_BACK(seen, in_cycle), pi

adds the ordered pairs contained in seen sent by its child pj to its set seeni (line 22).
Moreover, if in_cycle is not empty, pi merges it with in_cyclei (line 25). Otherwise
pi adds the ordered pair 〈i, j 〉 to seeni (line 24). In this way, the information allow-
ing pa to know (a) if it is in a knot or (b) if it is only in a cycle involving pi will be
propagated from pi first to its parent, and then propagated from its parent until pa .
Finally, pi invokes check_waiting_from().

The Internal Operation check_waiting_from() As just seen, this operation is in-
voked each time pi receives a message XXX_BACK(). Its body is executed only
if pi has received a message XXX_BACK() from each of its immediate successors
(line 28). There are two cases.

If pi is not the initiator, it first adds itself to in_cyclei if this set is not empty
(line 41). This is because, if in_cyclei �= ∅, pi knows that it is on a cycle involving
the initiator (lines 20 and 25). Then, pi sends to its parent (whose identity has been
saved in parenti at line 9) the information it knows on cycles involving the initia-
tor. This information has been incrementally stored in its local variables seeni and
in_cyclei at lines 19–27. Finally, pi invokes return(), which terminates its partici-
pation (line 42).

If pi is the initiator pa , it executes the statements of lines 30–39. First pi cleans
its local variables seeni and in_cyclei (lines 30–38). For each k ∈ in_cyclei , pi first
moves k from in_cyclei to candidatesi . This is because, if pi is in a knot, so are all
the processes which are on a cycle including pi . Then, for each x, if the ordered
pair 〈x, k〉 ∈ seeni , pi suppresses it from seeni and adds px to in_cyclei . This is
because, after pa has received a message XXX_BACK() from each of its immediate
successors, we have for each process pk reachable from pa either k ∈ in_cyclea or
〈x, k〉 ∈ seena for some px reachable from pa . Hence, if k ∈ in_cyclea and 〈x, k〉 ∈
seena , then px is also in a cycle with pa .

Therefore, after the execution of lines 30–38, candidatesa contains the identities
of all the processes reachable from pa which are on a cycle with pa . It follows that,
if seena becomes empty, all the processes reachable from pa are on a cycle with pa .
The statement of line 39 is a direct consequence of this observation. If seena = ∅,
pa belongs to a knot made up of the processes which belong to the set candidatesi .
If seena �= ∅, candidatesa contains all the processes that are involved in a cycle
including pa (hence if candidatesa = ∅, pi is involved neither in a knot, nor in a
cycle).

2.4 Summary 57

Fig. 2.17
Knot/cycle detection:
example

An Example Let us consider the directed graph depicted in Fig. 2.17. This
graph has a knot composed of the processes p2, p3, and p4, a cycle involving
the processes p1, p6, p5 and p7, plus another process p8. If the initiator process
pa belongs to the knot, pa will discover that it is in a knot, and we will have
candidatesa = {2,3,5} and seena = ∅ when the algorithm terminates. If the ini-
tiator process pa belongs to the cycle on the right of the figure (e.g., pa is p1), we
will have candidatesa = {1,6,5,7} and seena = {〈4,2〉, 〈3,4〉, 〈2,3〉, 〈1,2〉, 〈5,4〉}
when the algorithm terminates (assuming that the messages GO_DETECT() propa-
gate first along the process chain (p1,p2,p3,p4), and only then from p5 to p4).

Cost of the Algorithm As in a graph traversal algorithm, each edge of the di-
rected graph is traversed at most once by a message GO_DETECT() and a message
SEEN_BACK(), CYCLE_BACK() or PARENT_BACK() is sent in the opposite direc-
tion. It follows that the number of message used by the algorithm is upper bounded
by 2e, where e is the number of edges of the logical directed graph.

Let DT be the depth of the spanning tree rooted at pa that is built. It is easy
to see that the time complexity is 2(DT + 1) (DT time units for the messages
GO_DETECT() to go from the root pa to the leaves, DT time units for the mes-
sages XXX_BACK() to go back in the other direction and 2 more time units for the
leaves to propagate the message GO_DETECT() to their immediate successors and
obtain their acknowledgment messages XXX_BACK()).

2.4 Summary

Considering a distributed system as a graph whose vertices are the processes and
edges are the communication channels, this chapter has presented several distributed
graph algorithms. “Distributed” means here each process cooperates with its neigh-
bors to solve a problem but never learns the whole graph structure it is part of.

The problems that have been addressed concern the computation of shortest
paths, the coloring of the vertices of a graph in � + 1 colors (where � is the maxi-
mal degree of the vertices), the computation of a maximal independent set, and the
detection of knots and cycles.

As the reader has seen, the algorithmic techniques used to solve graph problems
in a distributed context are different from their sequential counterparts.

58 2 Distributed Graph Algorithms

2.5 Bibliographic Notes

• Graph notions and sequential graph algorithms are described in many textbooks,
e.g., [122, 158]. Advanced results on graph theory can be found in [164]. Time
complexity results of numerous graph problems are presented in [148].

• Distributed graph algorithms and associated time and message complexity analy-
ses can be found in [219, 292].

• As indicated by its name, the sequential shortest path algorithm presented in
Sect. 2.1.1 is due to R.L. Ford. It is based on Bellman’s dynamic program-
ming principle [44]. Similarly, the sequential shortest path algorithm presented in
Sect. 2.1.2 is due to R.W. Floyd and R. Warshall who introduced independently
similar algorithms in [128] and [384], respectively. The adaptation of Floyd–
Warshall’s shortest path algorithm is due to S. Toueg [373].

Other distributed shortest path algorithms can be found in [77, 203].
• The random algorithm presented in Sect. 2.2.3, which computes a maximal inde-

pendent set, is due to M. Luby [240]. The reader will find in this paper a proof
that the expected number of rounds is O(log2 n). Another complexity analysis of
(� + 1)-coloring is presented in [201].

• The knot detection algorithm described in Fig. 2.3.4 is due to D. Manivannan and
M. Singhal [248] (this paper contains a correctness proof of the algorithm). Other
asynchronous distributed knot detection algorithms can be found in [59, 96, 264].

• Distributed algorithms for finding centers and medians in networks can be found
in [210].

• Deterministic distributed vertex coloring in polylogarithmic time, suited to syn-
chronous systems, is addressed in [43].

2.6 Exercises and Problems

1. Adapt the algorithms described in Sect. 2.1.1 to the case where the communica-
tion channels are unidirectional in the sense that a channel transmits messages in
one direction only.

2. Execute Luby’s maximal independent set described in Fig. 2.12 on both graphs
described in Fig. 2.10 with various values output by the function random().

3. Let us consider the instances of Luby’s algorithm where, for each process, the
random numbers are statically replaced by its initial identity or its color (where
no two neighbor processes have the same color).

Compare these two instances. Do they always have the same time complexity?
4. Adapt Luby’s synchronous maximal independent set algorithm to an asyn-

chronous message-passing system.
5. Considering the directed graph depicted in Fig. 2.14, execute the knot detection

algorithm described in Sect. 2.3.4 (a) when p5 launches the algorithm, (b) when
p10 launches the algorithm, and (c) when p4 launches the algorithm.

http://www.springer.com/978-3-642-38122-5

	Chapter 2: Distributed Graph Algorithms
	2.1 Distributed Shortest Path Algorithms
	2.1.1 A Distributed Adaptation of Bellman-Ford's Shortest Path Algorithm
	Initial Knowledge and Local Variables
	Bellman-Ford Principle
	The Algorithm
	Termination
	Adding Synchronization in Order that Each Process Learns Termination

	2.1.2 A Distributed Adaptation of Floyd-Warshall's Shortest Paths Algorithm
	Floyd-Warshall's Sequential Algorithm
	From a Sequential to a Distributed Algorithm
	The Distributed Algorithm
	Cost

	2.2 Vertex Coloring and Maximal Independent Set
	2.2.1 On Sequential Vertex Coloring
	Vertex Coloring
	A Simple Sequential Algorithm

	2.2.2 Distributed (Delta+1)-Coloring of Processes
	Initial Context of the Distributed Algorithm
	Local Variables
	Behavior of a Process pi
	Cost
	Remark on the Behavior of the Communication Channels

	2.2.3 Computing a Maximal Independent Set
	Maximal Independent Set: Deﬁnition
	From m-Coloring to a Maximal Independent Set
	A Simple Algorithm for Maximal Independent Set
	Why to Use Random Numbers Instead of Initial Names or Precomputed Colors

	2.3 Knot and Cycle Detection
	2.3.1 Directed Graph, Knot, and Cycle
	2.3.2 Communication Graph, Logical Directed Graph, and Reachability
	2.3.3 Speciﬁcation of the Knot Detection Problem
	2.3.4 Principle of the Knot/Cycle Detection Algorithm
	Build a Directed Spanning Tree
	Remark
	How to Determine Efﬁciently that pa Is on a Cycle

	2.3.5 Local Variables
	Local Variable at the Initiator pa Only
	Local Variables at Each Process pi

	2.3.6 Behavior of a Process
	Launching the Algorithm
	An Example
	Cost of the Algorithm

	2.4 Summary
	2.5 Bibliographic Notes
	2.6 Exercises and Problems

