Chapter 2
A Class of Robust Solution for Linear
Bilevel Programming

Bo Liu, Bo Li and Yan Li

Abstract Under the way of the centralized decision-making, the linear bi-level
programming (BLP) whose coefficients are supposed to be unknown but bounded
in box disturbance set is studied. Accordingly, a class of robust solution for linear
BLP is defined, and the original uncertain BLP was converted to the deterministic
triple level programming, then a solving process is proposed for the robust solu-
tion. Finally, a numerical example is shown to demonstrate the effectiveness and
feasibility of the algorithm.

Keywords Box disturbance - Linear bilevel programming - Robust optimization -
Robust solution

2.1 Introduction

Bilevel programming (BLP) is the model with leader-follower hierarchical
structure, which makes the parameter optimization problems as the constraints
(Dempe 2002). In its decision framework, the upper level programming is con-
nected with not only the decision variables in its level but also with the optimal
solution in the lower level programming, while the optimal solution in the lower
lever programming is affected by decision variables in the upper level
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programming. Due to the leader-follower hierarchical structure problems widely
exist in the realistic decision-making environment, the scholars have been paying
great attention to BLP and have brought about good results on the theory and
algorithms (Bialas and Karwan 1982; Fortuny-Amat and McCarl 1981; Mathieu
et al. 1994; Lai 1996). Some degree of uncertainty exists in realistic decision-
making environment, such as the inevitable error of measuring instrument in data
collection, incompleteness in data information, the approximate handle for the
model and other factors; hence it is necessary to study on the uncertain Bilevel
programming. For the uncertainty problem, the fuzzy optimization and stochastic
optimization have been applied widely. However, it is difficult for decision-makers
to give the precise distribution functions or membership functions which are
required in above methods. Thus, the robust optimization become an important
method, because it can seek for the best solution for the uncertain input without
considering the parameter distribution of uncertain parameters and is immune from
the uncertain data (Soyster 1973).

For the uncertain BLP, the definition of robust solution is influenced by the
dependent degree of the upper and lower levels in the decision-making process.
When the dependent degree is relative independence, the robust solution to the
uncertain BLP is defined by the way of the decentralized decision-making (Li and
Du 2011); when the dependent degree is relative dependence, the robust solution
to the uncertain BLP is defined by the way of the centralized decision-making, that
is, when the lower level seeks its own robust solution, it considers the influence to
the robust solution of the upper level firstly. In the paper, the latter case will be
discussed, and the coefficients of BLP are supposed to be unknown but bounded in
box disturbance set. By the transform of the uncertain model, the robust solution of
BLP is obtained. Finally, a numerical example is shown to demonstrate the
effectiveness and feasibility of the algorithm.

2.2 The Definition of Robust BLP
2.2.1 The Model and the Definition

In this paper we consider Linear BLP formulated as follows:
min F(x,y) = clx+dly
X
s.t. where y solves
min f(x,y) = c;x + dy y (2.1)
y

s.t.Ax+By>h
x,y>0
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In model (2.1),
XERMXI, y ERnXl, b ERle,dl ER”XI, le {172}7
Ac R™*™ B c R R c Rr><1

there is some uncertainty or variation in the parameters c,d;,cz,d>,A, B, h. Let
(c1,d1,¢2,dr,A;B,h) € p, u is a given uncertainty set in Box disturbance as
follows:

Cli = C; + (”m)n (ue )z* < (”61) < (“61)
dy = dj + (uq,);, —(ug); < (a); < (uq);
axi = aj; + (), —(ua) gy < (a) < (ua)y;
= (c1,di, A, B, h) | big = by + (up)g, —(up)yy < (un); < (up)y (2.2)
hie = hg + (un) s = (un)ye < (un )y < (un)

(u
I={1,2}, ie{l,...m},
je{l,.. n}, k:{l,..., r}.

For I={1,2},ie{l,...m},je{l,...,n},k={1,....r}, c}.dj,ay. dy;, hy
are the given data, and (Mc,), s (ua); 5 (a) s (uB)kj, (up);, are the given nonnegative
data.

Under the way of the centralized decision-making, the robust solution of
uncertain BLP (1) is defined as follows:

Definition 1
(1) Constraint region of the linear BLP (1):

Q= {(x,y)|[Ax+By>h,x,y>0,(A,B,h) € u}
(2) Feasible set for the follower for each fixed x

Q(x) = {y|Ax +By>h,x,y>0,(A,B,h) € u}
(3) Follower’s rational reaction set for each fixed x

C§x+d2Ty, y € Q(x), }}

Mx) = {y (A,B,h) € 1

y € arg min{

(4) Inducible region:

IR = {(x,y)[(x,y) € Q,y € M(x)}.
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Definition 2 Let

F .= {(x,y,t) ER"XR"XR

¢ x+d y<t
(x,), (c1, d) € p

The programming

min{r|(x,,1) € F} (23)

is defined as robust counterpart of uncertain linear BLP(1); F is defined as the
robust feasible set of uncertain linear BLP(1).

2.2.2 The Transform of Uncertain BLP Model

Under the way of the centralized decision-making, based on the original idea of
robust optimization that the objective function can get the optimal solution even in
the worst and uncertain situation, the transform theorem can be described as
followings:

Theorem The robust linear BLP (1) with its coefficients unknown but bounded in
box disturbance set | is equivalent to Model (2.4) with certain coefficients as
followings:

m
mm F(x,y) Z i+ (1), )xi + Z (df, (1a,) )
=1

s.t.where d solves

m

Indg'xz (clt 'uCl xl + Z ( 'ud] )y

=1
s.t.dy; — (udz) <dy<dy; + (d)j7 i={1,...,n};

where y solves

min f (x,y) =d3y

s.t. Z (aj; — (pa)p)xi + Z (bltj - (MB)Zj))’j > hy + (1)
=1 =
k={1,..,r}
x,y>0.

Proof (1) Firstly, the constraint region Q of the linear BLP (1) is transformed into
the certain region. Consider the constraint region of the linear BLP (1):
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Q= {(x,y)|Ax +By>h,x,y>0, (A,B,h) € u}

According to the process of the transformation (Lobo et al. 1998), we can
obtain

Ax+By>h,(A,B,h) € u

ki S (uA)k”

u . — (up)y < (up)yy; < (up)y
<0< min E agixi + E bkjyj — hy b= 4
HasHp s My i=1 j=1 hk = h; + (uh)k7

= (un) < (un) < (un)ys
ied{l,...m}, je{l,...n},
ke{l,....r}

<0< Zaklx, + Z bkjyj

+min O3 (ua)igxi D (un)gy; = () ()i < ()< ()
R I =1

ke{l,...7r}

@Z(dkl (ua)y; XIJFZ(@ (up k])yj>h + (un);, ke{l,...r}

(2.5)

So the linear BLP (1) is transformed into the model (2.6) as followings:
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min F(x,y) = clx +d[y
X

s.t. where y solves

mvinf(x,y) =cyx+dyy

m
s.t. Z (ag; — (ua)g)xi + Z (bk] (ug /g) v >y 4 (un);
P

k={1,..,r}
x,y>0

(2.6)

(2) Next, according the equivalent form (Lobo et al. 1998)

. min ¢
min f(x) -
X
st.x €D stf(0) <t
xeD

and the K-T method, the model (2.6) can be transform-ed into the model (2.7) (Li
and Du 2011):

minF(x,y) =t

stchrd y<t

where y solves

. T T
min f(x,y) = c;x+d

! fx,y) =cx+dyy 27)
Z ag; — (ua)y, xl—|—z (bkj (up kj) > WA+ (up);

={1,..,r}

x,y=0

(3) Similar to the transformation (2 5)
T dfy<tfend) € u 5" 5 (6 + (u)] )x,+z (i + (a); )y <t

So the model (2.7) can be transformed to the model (2.8) as follows:
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m

min F(x,y) = > (ef; + (ie,); xz+Z( (a); )

i—1
s.t. where y solves

myinf(x,y) =clx+diy

st 3 (s = i)+ D0 (B — (o)) = h + (),
i=1

J=1

(2.8)

ke{l,...r}
x,y>0

(4) Next, because the optimal solution of BLP (1) is not influenced by the value of
¢y, we only consider how to choose the value of d,. Based on the original idea of
robust optimization, the model (2.8) is transformed into the model (2.4) above.

2.3 Solving Process of the Model

The deterministic triple level programming (2.4) can be written as the following
programming (2.9) by the K-T method.

m
min max F(x,y) Z c; + ,uCl x, + Z ( :“dl )y

x  dyyuyv g

r

s.t. dzj = Z Uy, (sz — (MB)ZI) +v;

k=1

d;j (udz) < dzj < dZ) + (udz)

uklz (a,g )x,—i—Z(bk] (s ,q) — e+ (n )k)]zo (2.9)

=]
iji =0

m

Z (ag; — (ua) ) xi + Z ( i — (U k,))b > I+ ()

i=1

]z{l,...,n},k:{l,...,r};

x7y7uavzo-

According to the literature (Wang 2010), the model (2.9) can be transformed
into the model (2.10) as follows
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min ¢
X,dp,y,u,v

m
s.t. Z (ch; + ,ucI x, + Z ( (1a,) )y <t
i=1

dyj = Z Uy (b;:j - (MB)Itj> + Vi

k=1
d;j - (utl’z))}F <dy Sdzj + (Mdz);7

m n (2.10)
g [Z g — (1)) + > (bZ,- - (MB)Z,)yj (he + ()i )] =0,

J=1

Z (ag; — (1)) xi + Z (b/g MB)Z]'))’./ >y + (g

i=1
j={1,..,n}k= {1,...,r},
x,y,u,v>0.
By introducing a large constant M, the model (2.10) above can be transformed
into a mixed integer programming as follows (Fortuny-Amat and McCarl 1981):

min ¢t
X,day,u,vt.w

m
s.t.Z(cTi ,uLl x,—i—Z( (1q,) )y <t
=1
,

oy = > (b — (un)y) + v,

k=1
d;/ (udz) < dzj < d2] + (udz)
v <M(1-1),
ur < Mwy,

m

(aii - (HA)Z[)xi + z": (ij tuB)k;) (hk + (1 )*) <M(1 —wy)
=1

1

3

[dZi - (ﬂA)ZJ "X+ Z [sz - (:uB)Zj} - 2 I+ ()i
1 =

j= {1,...,11},/(: {1,...,1‘},2}' S {0,1},Wk S {0, 1},
x,y,u,v>0.

(2.11)
The model (2.11) can be solved by the software Lingo 9.0
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2.4 A Numerical Example

We give a numerical example to demonstrate the proposed approach as follows:

mxinF = cnx +dnyr +dny:
§.2.25<x<8
where yy, y solve

minf = dyy1 + dny>
yi.y2

s.t.anxy + by + by > h
azxi + byyr + bny: > hy
az1x1 + b31y1 + bayr > h3
ag1x) + bary1 + baxyr > hy
y1 20,

220

where ay] = 0, b21 = 1, asy :O, ag = 0, b41 = 07 b42 =—1.
And the others are the uncertain data, the given variables and disturbances are

¢ =15,d, =15 d) =2,
&y =15, dj = 3.5,
bi, =175, by = —1.15, bl = 2.5,
@ = 3.5, by = —1.5, hy = 5.75.
= —11,b%, = —3.5,b% = —1.25, % = 23,
(ue,)1= 0.5, (ug,);= 0.5, (ug,)5= 3, (ug,) ;= 0.5, (ug,),= 0.5,
(up)];=0.25, (up)1,= 0.15, (u,);= 0.5,
()= 0.5, (p) = 0.5, (un)y= 1,
(up)3;= 0.5, (up)3,=0.25, (up)3= 1, (up),= 0.25.

According to the theorem and these data above, robust model transformed is
demonstrated as
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min ¢
X,Y,U, V1,2

st.2x —y + <t
2.5<x<8,
» <5.5,
1.5y; — 1.3y, >3,
—4x+y — 2y 2> — 10,
— 4y, — 1.5y, > — 22,
— 1< 1.5u; +upy — 4us + vy <2,
—4< —1.3u; —2up — 1.5u3 —ug + v, < — 3,
yiSMny,y2 <M,
vi SM(1—ny), va <M(1 —n),
u, <Mz, k=1,2,34.
1.5y; — 1.3y, —3<(1 —zy),
—4x+y =2y, +10< (1 — z2),

—dy; — 1.5y, +22< (1 — 23),

-y +55<(1 —z),

x,y,u,v,1,2>0,

n,m, € {01}z € {0.1}, k=1,2,3.4.

By the software Lingo 9.0, the robust solution is obtained as follows:

(x,y1,y2) = (2.5201,4.6443,2.2819),
The robust optimal value is Fii, = 2.6779.

2.5 Conclusion and Future Work

Under the way of the centralized decision-making, a class of robust solution for
uncertain linear BLP is defined, which expands further the application of BLP in
different circumstances. And based on the original idea of robust optimization, the
uncertain BLP was converted to the deterministic triple level programming. The
solving process is proposed to obtain the robust solution of uncertain linear BLP.
Finally, a numerical example is shown to demonstrate the effectiveness and fea-
sibility of the algorithm.
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